


Fortran

Subroutines for

Mathematical

Applications

Math/Library
Volumes 1 and 2

Quick Tips on How to Use this Online Manual

Click to display only the page.

Click to display both bookmark
and the page.

Click to display both thumbnails
and the page.

Click and drag to page to magnify
the view.

Click to go to the first page.

Click and drag to the page to select text.

Click and drag to page to reduce the view.

Click to go to the last page.

Click to go back to the previous view and
page from which you jumped.

Click to return to the next view.

Click to view the page at 100% zoom.

Click to fit the entire page within the
window.

Click to fit the page width inside the
window.

Click to find part of a word, a complete
word, or multiple words in a active
document.

Double-click to jump to a topic
when the bookmarks are displayed.

Click to jump to a topic when the
bookmarks are displayed.

Click to go to the next page.

Click to go back to the previous page
from which you jumped.

Click and use to drag the page in vertical
direction and to select items on the page.

Printing an online file: Select Print from the File menu to print an online file. The dialog box that opens allows you
to print full text, range of pages, or selection.

Important Note: The last blank page of each chapter (appearing in the hard copy documentation) has been deleted
from the on-line documentation causing a skip in page numbering before the first page of the next chapter, for
instance, Chapter 1 in the on-line documentation ends on page 317 and Chapter 2 begins on page 319.

Numbering Pages. When you refer to a page number in the PDF online documentation, be aware that the page
number in the PDF online documentation will not match the page number in the original document. A PDF
publication always starts on page 1, and supports only one page-numbering sequence per file.

Copying text. Click the button and drag to select and copy text.

Viewing Multiple Online Manuals: Select Open from the File menu, and open the .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area in Windows: Drag the double-headed arrow that appears on the area’s border as you
pass over it.

Resizing the Bookmark Area in UNIX: Click and drag the button that appears on the area’s border at the
bottom of the vertical bar.

Jumping to Topics: Throughout the text of this manual, links to chapters and other sections appear in green color
text to indicate that you can jump to them. To return to the page from which you jumped, click the return
back icon on the toolbar. Note: If you zoomed in or out after jumping to a topic, you will return to the
previous zoom view(s) before returning to the page from which you jumped.

Let’s try it, click on the following green color text: Chapter 1: Linear Systems

If you clicked on the green color in the example above, Chapter 1: Linear Systems opened.
To return to this page, click the on the toolbar.

Visual Numerics, Inc.
Corporate Headquarters
9990 Richmond Avenue, Suite 400
Houston, Texas 77042-4548
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: marketing@houston.vni.com

Visual Numerics International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL
RG12 1YQ
UNITED KINGDOM

PHONE: +44 (0) 1344-311300
FAX: +44 (0) 1344-311377
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles
F-92049 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C. V.
Cerrada de Berna #3
Tercer Piso Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-5-514-9730 or 9628
FAX: +52-5-514-4873

Visual Numerics International GmbH
Zettachring 10, D-70567
Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 113

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273-2634
e-mail: leevni@chollian.dacom.co.kr

COPYRIGHT NOTICE: Copyright 1997, by Visual Numerics, Inc.

The information contained in this document is subject to change without notice.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect damages
in connection with the furnishing, performance, or use of this material.

All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of
Visual Numerics, Inc.

Restricted Rights Legend
Use, duplication or disclosure by the US Government is subject to restrictions as set forth in FAR 52.227-19, subparagraph (c) (l) (ii) of
DOD FAR SUPP 252.227-7013, or the equivalent government clause for agencies.

Restricted Rights Notice: The version of the IMSL Numerical Libraries described in this document is sold under a per-machine license
agreement. Its use, duplication, and disclosure are subject to the restrictions on the license agreement.

IMSL Fortran and C
Application Development Tools

Visual Numerics, Inc.
Corporate Headquarters
9990 Richmond Avenue, Suite 400
Houston, Texas 77042-4548
USA

PHONE: 713-784-3131
FAX: 713-781-9260
e-mail: marketing@houston.vni.com

Visual Numerics International Ltd.
Centennial Court
Suite 1, North Wing
Easthampstead Road
BRACKNELL
RG12 1YQ
UNITED KINGDOM

PHONE: +44 (0) 1344-311300
FAX: +44 (0) 1344-311377
e-mail: info@vniuk.co.uk

Visual Numerics SARL
Tour Europe
33 Place des Corolles
F-92049 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C. V.
Cerrada de Berna #3
Tercer Piso Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-5-514-9730 or 9628
FAX: +52-5-514-4873

Visual Numerics International GmbH
Zettachring 10, D-70567
Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 113

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: (886) 2-727-2255
FAX: (886) 2-727-6798
e-mail: info@vni.com.tw

World Wide Web site: http://www.vni.com

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273-2634
e-mail: leevni@chollian.dacom.co.kr

COPYRIGHT NOTICE: Copyright 1997, by Visual Numerics, Inc.

The information contained in this document is subject to change without notice.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Visual Numerics, Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect damages
in connection with the furnishing, performance, or use of this material.

All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of
Visual Numerics, Inc.

Restricted Rights Legend
Use, duplication or disclosure by the US Government is subject to restrictions as set forth in FAR 52.227-19, subparagraph (c) (l) (ii) of
DOD FAR SUPP 252.227-7013, or the equivalent government clause for agencies.

Restricted Rights Notice: The version of the IMSL Numerical Libraries described in this document is sold under a per-machine license
agreement. Its use, duplication, and disclosure are subject to the restrictions on the license agreement.

IMSL Fortran and C
Application Development Tools

Math Library
Volumes 1 and 2

 Version Revision History Year Part Number

1.0 Original Issue 1984 MALB-USM-PERFCT-1.0

1.1 Fixed bugs and added significant
changes to functionality.

1989 MALB-USM-PERFCT-1.0

2.0 Added routines to enhance
functionality.

1991 MALB-USM-PERFCT-EN9109-2.0

3.0 Added more routines to improve
functionality.

1994 Vol. 1 5371, Vol. 2 5372

IMSL 

Fortran
Subroutines for
Mathematical
Applications

IMSL MATH/LIBRARY Contents • i

 Click here to go to F77/Stat/Vol.1/Library Click here to go to F77/Sfun/ Library

 Click here to go to F90 MP Library Click here to go to F77/Stat/Vol. 2/Library

Contents

Volume I

Introduction iii

Chapter 1: Linear Systems 1

Chapter 2: Eigensystem Analysis 319

Chapter 3: Interpolation and Approximation 411

Chapter 4: Integration and Differentiation 585

Chapter 5: Differential Equations 641

Chapter 6: Transforms 761

Chapter 7: Nonlinear Equations 835

Chapter 8: Optimization 867

Chapter 9: Basic Matrix/Vector 1031

Chapter 10: Utilities 1115

Reference Material 1193

ii Contents IMSL MATH/LIBRARY

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Index i

Product Support vii

IMSL MATH/LIBRARY Contents • i

 Click here to go to DNFL

 Click here to go to F77/SFUN/ Library

 Click here to go to F77/Stat/ Library

Contents

Volumes I & II

Introduction iii

Chapter 1: Linear Systems 1

Chapter 2: Eigensystem Analysis 319

Chapter 3: Interpolation and Approximation 411

Chapter 4: Integration and Differentiation 585

Chapter 5: Differential Equations 641

Chapter 6: Transforms 761

Chapter 7: Nonlinear Equations 835

Chapter 8: Optimization 867

Chapter 9: Basic Matrix/Vector 1031

Chapter 10: Utilities 1115

Reference Material 1193

ii Contents IMSL MATH/LIBRARY

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Index i

Product Support vii

IMSL MATH/LIBRARY Introduction • iii

Introduction

The IMSL Libraries
The IMSL Libraries consist of two separate but coordinated Libraries that allow
easy user access. These Libraries are organized as follows:

• MATH/LIBRARY general applied mathematics and special functions

• STAT/LIBRARY statistics

The IMSL MATH/LIBRARY User’s Manual has two parts: MATH/LIBRARY and
MATH/LIBRARY Special Functions.

Most of the routines are available in both single and double precision versions.
The same user interface is found on the many hardware versions that span the
range from personal computer to supercomputer. Note that some IMSL routines
are not distributed for FORTRAN compiler environments that do not support
double precision complex data. The names of the IMSL routines that return or
accept the type double complex begin with the letter “Z” and, occasionally, “DC.”

Getting Started
The IMSL MATH/LIBRARY is a collection of FORTRAN routines and
functions useful in research and mathematical analysis. Each routine is designed
and documented to be used in research activities as well as by technical
specialists.

To use any of these routines, you must write a program in FORTRAN (or
possibly some other language) to call the MATH/LIBRARY routine. Each
routine conforms to established conventions in programming and documentation.
We give first priority in development to efficient algorithms, clear
documentation, and accurate results. The uniform design of the routines makes it
easy to use more than one routine in a given application. Also, you will find that
the design consistency enables you to apply your experience with one
MATH/LIBRARY routine to all other IMSL routines that you use.

iv • Introduction IMSL MATH/LIBRARY

Finding the Right Routine
lauds The MATH/LIBRARY is organized into chapters; each chapter contains
routines with similar computational or analytical capabilities. To locate the right
routine for a given problem, you may use either the table of contents located in
each chapter introduction, or the alphabetical list of routines. The GAMS index
uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner, and J.L.
Springmann 1990, Guide to Available Mathematical Software , National Institute
of Standards and Technology NISTIR 90-4237). Use the GAMS index to locate
which MATH/LIBRARY routines pertain to a particular topic or problem.

Often the quickest way to use the MATH/LIBRARY is to find an example similar
to your problem and then to mimic the example. Each routine document has at
least one example demonstrating its application. The example for a routine may
be created simply for illustration, it may be from a textbook (with reference to the
source), or it may be from the mathematical literature.

Organization of the Documentation
This manual contains a concise description of each routine, with at least one
demonstrated example of each routine, including sample input and results. You
will find all information pertaining to the MATH/LIBRARY in this manual.
Moreover, all information pertaining to a particular routine is in one place within
a chapter.

Each chapter begins with an introduction followed by a table of contents that lists
the routines included in the chapter. Documentation of the routines consists of the
following information:

• IMSL Routine Name

• Purpose: a statement of the purpose of the routine

• Usage: the form for referencing the subprogram with arguments listed. There are
two usage forms:
– CALL sub(argument-list) for subroutines
– fun(argument-list) for functions

• Arguments: a description of the arguments in the order of their occurrence. Input
arguments usually occur first, followed by input/output arguments, with output
arguments described last. For functions, the function symbolic name is described
after the argument descriptions.

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through
this argument; cannot be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input
or output. See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The
routine returns output through this argument.

IMSL MATH/LIBRARY Introduction • v

• Remarks: details pertaining to code usage and workspace allocation

• Algorithm: a description of the algorithm and references to detailed information.
In many cases, other IMSL routines with similar or complementary functions are
noted.

• Programming notes: an optional section that contains programming details not
covered elsewhere

• Example: at least one application of this routine showing input and required
dimension and type statements

• Output: results from the example(s)

• References: periodicals and books with details of algorithm development

Naming Conventions
The names of the routines are mnemonic and unique. Most routines are available
in both a single precision and a double precision version, with names of the two
versions sharing a common root. The name of the double precision version begins
with a “D.” The single precision version is generally just the mnemonic root, but
sometimes a letter “S” or “A” is used as a prefix. For example, the following pairs
are names of routines in the two different precisions: GQRUL/DGQRUL (the root is
“GQRUL ,” for “Gauss quadrature rule”), RECCF/DRECCF (the root is “RECCF,” for
“recurrence coefficient”), and SADD/DADD (the root is “ADD”). The names of the
IMSL routines that return or accept the type double complex begin with the letter
“Z” or, occasionally, “DC.”

Except when expressly stated otherwise, the names of the variables in the
argument lists follow the FORTRAN default type for integer and floating point.
In other words, a variable whose name begins with one of the letters “I” through
“N” is of type INTEGER, and otherwise is of type REAL or DOUBLE PRECISION,
depending on the precision of the routine.

An array with more than one dimension that is used as a FORTRAN argument
can have an assumed-size declarator for the last dimension only. In the
MATH/LIBRARY routines, this information is passed by a variable with the
prefix “LD” and with the array name as the root. For example, the argument LDA

contains the leading dimension of array A.

Where appropriate, the same variable name is used consistently throughout a
chapter in the MATH/LIBRARY. For example, in the routines for random
number generation, NR denotes the number of random numbers to be generated,
and R or IR denotes the array that stores the numbers.

When writing programs accessing the MATH/LIBRARY, the user should choose
FORTRAN names that do not conflict with names of IMSL subroutines,
functions, or named common blocks. The careful user can avoid any conflicts
with IMSL names if, in choosing names, the following rules are observed:

• Do not choose a name that appears in the Alphabetical Summary of Routines, at
the end of the User’s Manual.

vi • Introduction IMSL MATH/LIBRARY

• Do not choose a name consisting of more than three characters with a numeral in
the second or third position.

For further details, see the section on “Reserved Names” in the Reference
Material.

Programming Conventions
In general, the IMSL MATH/LIBRARY codes are written so that computations
are not affected by underflow, provided the system (hardware or software) places
a zero value in the register. In this case, system error messages indicating
underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensioning.

In many cases, the documentation for a routine points out common pitfalls that
can lead to failure of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat
them accordingly. This error-handling capability provides automatic protection
for the user without requiring the user to make any specific provisions for the
treatment of error conditions. See the section on “User Errors” in the Reference
Material for further details.

Error Handling
The routines in the IMSL MATH/LIBRARY attempt to detect and report errors
and invalid input. Errors are classified and are assigned a code number. By
default, errors of moderate or worse severity result in messages being
automatically printed by the routine. Moreover, errors of worse severity cause
program execution to stop. The severity level as well as the general nature of the
error is designated by an “error type” with numbers from 0 to 5. An error type 0 is
no error; types 1 through 5 are progressively more severe. In most cases, you
need not be concerned with our method of handling errors. For those interested, a
complete description of the error-handling system is given in the Reference
Material, which also describes how you can change the default actions and access
the error code numbers.

Work Arrays
A few routines in the IMSL MATH/LIBRARY require work arrays. On most
systems, the workspace allocation is handled transparently, but on some systems,
workspace is obtained from a large array in a COMMON block. On these systems,
when you have a very large problem, the default workspace may be too small.
The routine will print a message telling you the statements to insert in your

IMSL MATH/LIBRARY Introduction • vii

program in order to provide the needed space (using the common block WORKSP
for integer or real numbers or the common block WKSPCH for characters). The
routine will then automatically halt execution. See “Automatic Workspace
Allocation” in the Reference Material for details on common block names and
default sizes.

For each routine that obtains workspace from the common area, a second routine
is available that allows you to provide the workspace explicitly. For example, the
routine LSLRG, page 11, uses workspace and automatically allocates the
required amount, if available. The routine L2LRG does the same as LSLRG but has
a work array in its argument list, which the user must declare to be of appropriate
size. The “Automatic Workspace Allocation” section in the Reference Material
contains further details on this subject.

Printing Results
Most of the routines in the IMSL MATH/LIBRARY (except the line printer
routines and special utility routines) do not print any of the results. The output is
returned in FORTRAN variables, and you can print these yourself. See Chapter
10, “Utilities,” for detailed descriptions of these routines.

A commonly used routine in the examples is the IMSL routine UMACH, which
(page 1173), retrieves the FORTRAN device unit number for printing the results.
Because this routine obtains device unit numbers, it can be used to redirect the
input or output. The section on “Machine-Dependent Constants” in the Reference
Material contains a description of the routine UMACH.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 1

Chapter 1: Linear Systems

Routines
1.1. Solution of Linear Systems, Matrix Inversion, and Determinant

Evaluation

1.1.1 Real General Matrices
High accuracy linear system solutionLSARG 10
Solve a linear system... LSLRG 11
Factor and compute condition numberLFCRG 15
Factor ... LFTRG 18
Solve after factoring ...LFSRG 20
High accuracy linear system solution after factoring............. LFIRG 22
Compute determinant after factoringLFDRG 24
Invert ...LINRG 26

1.1.2 Complex General Matrices
High accuracy linear system solution...................................LSACG 27
Solve a linear system... LSLCG 30
Factor and compute condition numberLFCCG 32
Factor ... LFTCG 35
Solve a linear system after factoring....................................LFSCG 37
High accuracy linear system solution after factoring............. LFICG 39
Compute determinant after factoringLFDCG 42
Invert ...LINCG 43

1.1.3 Real Triangular Matrices
Solve a linear system..LSLRT 45
Compute condition number.. LFCRT 46
Compute determinant after factoring LFDRT 48
Invert ... LINRT 49

1.1.4 Complex Triangular Matrices
Solve a linear system..LSLCT 50
Compute condition number.. LFCCT 52
Compute determinant after factoring LFDCT 54
Invert ... LINCT 55

2 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

1.1.5 Real Positive Definite Matrices
High accuracy linear system solutionLSADS 56
Solve a linear system.. LSLDS 59
Factor and compute condition numberLFCDS 61
Factor ...LFTDS 63
Solve a linear system after factoringLFSDS 65
High accuracy linear system solution after factoring LFIDS 67
Compute determinant after factoring....................................LFDDS 69
Invert..LINDS 71

1.1.6 Real Symmetric Matrices
High accuracy linear system solution LSASF 72
Solve a linear system.. LSLSF 75
Factor and compute condition numberLFCSF 77
Factor ... LFTSF 80
Solve a linear system after factoring LFSSF 81
High accuracy linear system solution after factoringLFISF 83
Compute determinant after factoring....................................LFDSF 85

1.1.7 Complex Hermitian Positive Definite Matrices
High accuracy linear system solution LSADH 87
Solve a linear system..LSLDH 89
Factor and compute condition number LFCDH 92
Factor ...LFTDH 95
Solve a linear system after factoringLFSDH 97
High accuracy linear system solution after factoringLFIDH 99
Compute determinant after factoring................................... LFDDH 101

1.1.8 Complex Hermitian Matrices
High accuracy linear system solutionLSAHF 103
Solve a linear system.. LSLHF 105
Factor and compute condition numberLFCHF 108
Factor ... LFTHF 110
Solve a linear system after factoringLFSHF 112
High accuracy linear system solution after factoring LFIHF 114
Compute determinant after factoring....................................LFDHF 117

1.1.9 Real Band Matrices in Band Storage
Solve a tridiagonal system.. LSLTR 118
Solve a tridiagonal system: Cyclic Reduction.......................LSLCR 119
High accuracy linear system solutionLSARB 122
Solve a linear system.. LSLRB 124
Factor and compute condition numberLFCRB 127
Factor ...LFTRB 130
Solve a linear system after factoringLFSRB 132
High accuracy linear system solution after factoring LFIRB 134
Compute determinant after factoring....................................LFDRB 136

1.1.10 Real Band Symmetric Positive Definite Matrices in Band Storage
High accuracy linear system solution LSAQS 138
Solve a linear system..LSLQS 140
Solve a linear system.. LSLPB 143

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 3

Factor and compute condition numberLFCQS 145
Factor ... LFTQS 148
Solve a linear system after factoring.................................... LFSQS 149
High accuracy linear system solution after factoring............. LFIQS 151
Compute determinant after factoringLFDQS 153

1.1.11 Complex Band Matrices in Band Storage
Solve a tridiagonal system ... LSLTQ 155
Solve a tridiagonal system: Cyclic Reduction LSLCQ 156
High accuracy linear system solution................................... LSACB 159
Solve a linear system..LSLCB 162
Factor and compute condition number LFCCB 164
Factor ... LFTCB 167
Solve a linear system after factoring.................................... LFSCB 170
High accuracy linear system solution after factoring..............LFICB 172
Compute determinant after factoring LFDCB 175

1.1.12 Complex Band Positive Definite Matrices in Band Storage
High accuracy linear system solution...................................LSAQH 176
Solve a linear system... LSLQH 179
Solve a linear system... LSLQB 181
Factor and compute condition numberLFCQH 184
Factor ... LFTQH 187
Solve a linear system after factoring....................................LFSQH 189
High accuracy linear system solution after factoring............. LFIQH 191
Compute determinant after factoringLFDQH 193

1.1.13 Real Sparse Linear Equation Solvers
Solve a sparse linear system ... LSLXG 195
Factor ... LFTXG 199
Solve a linear system after factoring.................................... LFSXG 204

1.1.14 Complex Sparse Linear Equation Solvers
Solve a sparse linear system ... LSLZG 207
Factor ... LFTZG 212
Solve a linear system after factoring.................................... LFSZG 217

1.1.15 Real Sparse Symmetric Positive Definite Linear Equation Solvers
Solve a sparse linear system ... LSLXD 220
Symbolic Factor ...LSCXD 224
Compute Factor ... LNFXD 228
Solve a linear system after factoring.................................... LFSXD 232

1.1.16 Complex Sparse Hermitian Positive Definite Linear Equation Solvers
Solve a sparse linear system ..LSLZD 236
Compute Factor ... LNFZD 240
Solve a linear system after factoring.................................... LFSZD 244

1.1.17 Real Toeplitz Matrices in Toeplitz Storage
Solve a linear system... LSLTO 248

1.1.18 Complex Toeplitz Matrices in Toeplitz Storage
Solve a linear system..LSLTC 249

4 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

1.1.19 Complex Circulant Matrices in Circulant Storage
Solve a linear system..LSLCC 251

1.1.20 Iterative Methods
Preconditioned conjugate gradient PCGRC 253
Jacobi conjugate gradient..JCGRC 259
Generalized minimum residual ... GMRES 262

1.2. Linear Least Squares and Matrix Factorization

1.2.1 Least Squares, QR Decomposition and Generalized Inverse
Solve a Least-squares system ..LSQRR 272
Solve a Least-squares system ..LQRRV 275
High accuracy Least squares .. LSBRR 279
Linearly constrained Least squares......................................LCLSQ 282
QR decomposition ...LQRRR 286
Accumulation of QR decompositionLQERR 289
QR decomposition Utilities ...LQRSL 292
QR factor update ...LUPQR 295

1.2.2 Cholesky Factorization
Cholesky factoring for rank deficient matrices.....................LCHRG 299
Cholesky factor update.. LUPCH 301
Cholesky factor down-date ..LDNCH 304

1.2.3 Singular Value Decomposition (SVD)
Real singular value decomposition...................................... LSVRR 307
Complex singular value decomposition............................... LSVCR 311
Generalized inverse...LSGRR 314

Usage Notes

Solving Linear Equations

Many of the routines described in this chapter are for matrices with special
properties or structure. Computer time and storage requirements for solving
systems with coefficient matrices of these types can often be drastically reduced,
using the appropriate routine, compared with using a routine for solving a general
complex system.

The appropriate matrix property and corresponding routine can be located in the
“Routines” section. Many of the linear equation solver routines in this chapter are
derived from subroutines from LINPACK, Dongarra et al. (1979). Other routines
have been developed by Visual Numerics staff, derived from draft versions of
LAPACK subprograms, Bischof et al. (1988), or were obtained from alternate
sources.

A system of linear equations is represented by Ax = b where A is the n × n
coefficient data matrix, b is the known right-hand-side n-vector, and x is the
unknown or solution n-vector. Figure 1-1 summarizes the relationships among

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 5

the subroutines. Routine names are in boxes and input/output data are in ovals.
The suffix ** in the subroutine names depend on the matrix type. For example, to
compute the determinant of A use LFC** or LFT** followed by LFD**.

The paths using LSA** or LFI** use iterative refinement for a more accurate
solution. The path using LSA** is the same as using LFC** followed by LFI**.
The path using LSL** is the same as the path using LFC** followed by LFS**.
The matrix inversion routines LIN** are available only for certain matrix types.

Matrix Types

The two letter codes for the form of coefficient matrix, indicated by ** in Figure
1-1, are as follows:

RG Real general (square) matrix.
CG Complex general (square) matrix.
TR or CRReal tridiagonal matrix.
RB Real band matrix.
TQ or CQComplex tridiagonal matrix.
CB Complex band matrix.
SF Real symmetric matrix stored in the upper half of a square

matrix.
DS Real symmetric positive definite matrix stored in the upper half

of a square matrix.
DH Complex Hermitian positive definite matrix stored in the upper

half of a complex square matrix.
HF Complex Hermitian matrix stored in the upper half of a

complex square matrix.
QS or PB Real symmetric positive definite band matrix.
QH or QBComplex Hermitian positive definite band matrix.
XG Real general sparse matrix.
ZG Complex general sparse matrix.
XD Real symmetric positive definite sparse matrix.
ZD Complex Hermitian positive definite sparse matrix.

6 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

A

b
LFT** LFC**

LFD**LFI**
LFS**

LIN** LSA**
LSL**

Condition
number

Factorization

DeterminantA−1
x = A b

or
x = A b

−1

−T

Figure 1-1 Solution and Factorization of Linear Systems

Solution of Linear Systems

The simplest routines to use for solving linear equations are LSL** and LSA**
For example, the mnemonic for matrices of real general form is RG. So, the
routines LSLRG (page 11) and LSARG (page 10) are appropriate to use for solving
linear systems when the coefficient matrix is of real general form. The routine
LSARG uses iterative refinement, and more time than LSLRG, to determine a high
accuracy solution.

The high accuracy solvers provide maximum protection against extraneous
computational errors. They do not protect the results from instability in the
mathematical approximation. For a more complete discussion of this and other
important topics about solving linear equations, see Rice (1983), Stewart (1973),
or Golub and van Loan (1989).

Multiple Right Sides

There are situations where the LSL** and LSA** routines are not appropriate.
For example, if the linear system has more than one right-hand-side vector, it is
most economical to solve the system by first calling a factoring routine and then
calling a solver routine that uses the factors. After the coefficient matrix has been
factored, the routine LFS** or LFI** can be used to solve for one right-

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 7

hand side at a time. Routines LFI** uses iterative refinement to determine a high
accuracy solution but requires more computer time and storage than routines
LFS**.

Determinants

The routines for evaluating determinants are named LFD**. As indicated in
Figure 1-1, these routines require the factors of the matrix as input. The values of
determinants are often badly scaled. Additional complications in structures for
evaluating them result from this fact. See Rice (1983) for comments on
determinant evaluation.

Iterative Refinement

Iterative refinement can often improve the accuracy of a well-posed numerical
solution. The iterative refinement algorithm used is as follows:

x0 = A-1b
For i = 1, 50

rL = AxL-1 − b computed in higher precision

pL = A-1 rL
xL = xL-1 + pL
if (|| pL ||� ≤ ε|| xL ||�) Exit

End for
Error — Matrix is too ill-conditioned

If the matrix A is in single precision, then the residual rL = AxL - 1 − b is computed
in double precision. If A is in double precision, then quadruple-precision
arithmetic routines are used.

Matrix Inversion

An inverse of the coefficient matrix can be computed directly by one of the
routines named LIN**. These routines are provided for general matrix forms and
some special matrix forms. When they do not exist, or when it is desirable to
compute a high accuracy inverse, the two-step technique of calling the factoring
routine followed by the solver routine can be used. The inverse is the solution of
the matrix system AX = I where I denotes the n × n identity matrix, and the

solution is X = A-1.

Singularity

The numerical and mathematical notions of singularity are not the same. A matrix
is considered numerically singular if it is sufficiently close to a mathematically
singular matrix. If error messages are issued regarding an exact singularity then
specific error message level reset actions must be taken to handle the error
condition. By default, the routines in this chapter stop. The solvers require that

8 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

the coefficient matrix be numerically nonsingular. There are some tests to
determine if this condition is met. When the matrix is factored, using routines
LFC**, the condition number is computed. If the condition number is large
compared to the working precision, a warning message is issued and the
computations are continued. In this case, the user needs to verify the usability of
the output. If the matrix is determined to be mathematically singular, or ill-
conditioned, a least-squares routine or the singular value decomposition routine
may be used for further analysis.

Special Linear Systems

Toeplitz matrices have entries which are constant along each diagonal, for
example:

A

p p p p

p p p p

p p p p

p p p p

=

�

!

"

$

####
−

− −

− − −

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

Real Toeplitz systems can be solved using LSLTO, page 248. Complex Toeplitz
systems can be solved using LSLTC, page 249.

Circulant matrices have the property that each row is obtained by shifting the row
above it one place to the right. Entries that are shifted off at the right reenter at
the left. For example:

A

p p p p

p p p p

p p p p

p p p p

=

�

!

"

$

####

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

Complex circulant systems can be solved using LSLCC, page 251.

Iterative Solution of Linear Systems

The preconditioned conjugate gradient routines PCGRC, page 253, and JCGRC,
page 259, can be used to solve symmetric positive definite systems. The routines
are particularly useful if the system is large and sparse. These routines use reverse
communication, so A can be in any storage scheme. For general linear systems,
use GMRES, page 262.

QR Decomposition

The QR decomposition of a matrix A consists of finding an orthogonal matrix Q,
a permutation matrix P, and an upper trapezoidal matrix R with diagonal elements
of nonincreasing magnitude, such that AP = QR. This decomposition is

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 9

determined by the routines LQRRR, page 286, or LQRRV, page 275. It returns R
and the information needed to compute Q. To actually compute Q use LQERR,
page 289. Figure 1-2 summarizes the relationships among the subroutines.

The QR decomposition can be used to solve the linear system Ax = b. This is

equivalent to Rx = Q7Pb. The routine LQRSL, page 292, can be used to find

Q7Pb from the information computed by LQRRR. Then x can be computed by
solving a triangular system using LSLRT, page 45. If the system Ax = b is
overdetermined, then this procedure solves the least-squares problem, i.e., it finds
an x for which

Ax b− 2
2

is a minimum.

If the matrix A is changed by a rank-1 update, A → A + αxy7, the QR
decomposition of A can be updated/down-dated using the routine LUPQR,
page 295. In some applications a series of linear systems which differ by rank-1
updates must be solved. Computing the QR decomposition once and then
updating or down-dating it usually faster than newly solving each system.

A

LUPQR

LQRSL

Least-squares
solution

QR decomposition

Qb, Q b,T

Q

b
A −>A + αxyT

LQERR

LQRRR or LQRRV

Figure 1-2 Least-Squares Routine

10 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSARG/DLSARG (Single/Double precision)
Solve a real general system of linear equations with iterative refinement.

Usage
CALL LSARG (N, A, LDA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficients of the linear system. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A7X = B is solved.

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is

LSARG N2 + 2N units, or

DLSARG 2N2 + 3N units.

Workspace may be explicitly provided, if desired, by use of
L2ARG/DL2ARG. The reference is
CALL L2ARG (N, A, LDA, B, IPATH, X, FAC, IPVT, WK)

The additional arguments are as follows:

FAC — Work vector of length N2 containing the LU factorization of A
on output.

IPVT — Integer work vector of length N containing the pivoting
information for the LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 11

Algorithm

Routine LSARG solves a system of linear algebraic equations having a real general
coefficient matrix. It first uses the routine LFCRG, page 15, to compute an LU
factorization of the coefficient matrix and to estimate the condition number of the
matrix. The solution of the linear system is then found using the iterative
refinement routine LFIRG, page 22.

LSARG fails if U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSARG solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of three linear equations is solved. The coefficient matrix has real
general form and the right-hand-side vector b has three elements.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (33.0 16.0 72.0)
C (-24.0 -10.0 -57.0)
C (18.0 -11.0 7.0)
C
C B = (129.0 -96.0 8.5)
C
 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
 DATA B/129.0, -96.0, 8.5/
C
 CALL LSARG (N, A, LDA, B, IPATH, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
1.000 1.500 1.000

12 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSLRG/DLSLRG (Single/Double precision)
Solve a real general system of linear equations without iterative refinement.

Usage
CALL LSLRG (N, A, LDA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficients of the linear system. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A7X = B is solved.

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Comments

1. Automatic workspace usage does not exceed

LSLRG N(N + 1) + 2N units, or
DLSLRG 2N(N + 1) + 3N units.

Workspace may be explicitly provided, if desired, by use of
L2LRG/DL2LRG. The reference is
CALL L2LRG (N, A, LDA, B, IPATH, X, FAC, IPVT, WK)

The additional arguments are as follows:

FAC — Work vector of length N2 containing the LU factorization of A
on output. If A is not needed, A and FAC can share the same storage
locations. See Item 3 below to avoid memory bank conflicts.

IPVT — Integer work vector of length N containing the pivoting
information for the LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 13

 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LRG the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2); respectively, in LSLRG.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLRG. Users directly
calling L2LRG can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLRG or L2LRG. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLRG temporarily replaces
IVAL(2) by IVAL(1). The routine L2CRG computes the
condition number if IVAL(2) = 2. Otherwise L2CRG skips this
computation. LSLRG restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSLRG solves a system of linear algebraic equations having a real general
coefficient matrix. It first uses the routine LFCRG (page 15) to compute an LU
factorization of the coefficient matrix based on Gauss elimination with partial
pivoting. Experiments were analyzed to determine efficient implementations on
several different computers. For some supercomputers, particularly those with
efficient vendor-supplied BLAS, page 1046, versions that call Level 1, 2 and 3
BLAS are used. The remaining computers use a factorization method provided to
us by Dr. Leonard J. Harding of the University of Michigan. Harding’s work
involves “loop unrolling and jamming” techniques that achieve excellent
performance on many computers. Using an option, LSLRG will estimate the
condition number of the matrix. The solution of the linear system is then found
using LFSRG (page 20).

The routine LSLRG fails if U, the upper triangular part of the factorization, has a
zero diagonal element. This occurs only if A is close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that small changes in A can
cause large changes in the solution x. If the coefficient matrix is ill-conditioned or
poorly scaled, it is recommended that either LSVRR, page 307, or LSARG,
page 10, be used.

14 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example 1

A system of three linear equations is solved. The coefficient matrix has real
general form and the right-hand-side vector b has three elements.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (33.0 16.0 72.0)
C (-24.0 -10.0 -57.0)
C (18.0 -11.0 7.0)
C
C B = (129.0 -96.0 8.5)
C
 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
 DATA B/129.0, -96.0, 8.5/
C
 CALL LSLRG (N, A, LDA, B, IPATH, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
1.000 1.500 1.000

Example 2

A system of N = 16 linear equations is solved using the routine L2LRG. The option
manager is used to eliminate memory bank conflict inefficiencies that may occur
when the matrix dimension is a multiple of 16. The leading dimension of FAC = A
is increased from N to N + IVAL (3)=17, since N=16=IVAL (4). The data used for
the test is a nonsymmetric Hadamard matrix and a right-hand side generated by a
known solution, xM = j, j = 1, ..., N.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=17, N=16)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHP, IPATH, IPUT, KBANK
 REAL ONE, ZERO
 PARAMETER (ICHP=1, IPATH=1, IPUT=2, KBANK=16, ONE=1.0E0,
 & ZERO=0.0E0)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IPVT(N), J, K, NN
 REAL A(LDA,N), B(N), WK(N), X(N)
C SPECIFICATIONS FOR SAVE VARIABLES
 INTEGER IOPT(1), IVAL(4)
 SAVE IVAL
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL IUMAG, L2LRG, SGEMV, WRRRN
C Data for option values.
 DATA IVAL/1, 16, 1, 16/

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 15

C Set values for A and B:
 A(1,1) = ONE
 NN = 1
C Generate Hadamard matrix.
 DO 20 K=1, 4
 DO 10 J=1, NN
 DO 10 I=1, NN
 A(NN+I,J) = -A(I,J)
 A(I,NN+J) = A(I,J)
 A(NN+I,NN+J) = A(I,J)
 10 CONTINUE
 NN = NN + NN
 20 CONTINUE
C Generate right-hand-side.
 DO 30 J=1, N
 X(J) = J
 30 CONTINUE
C Set B = A*X.
 CALL SGEMV (’N’, N, N, ONE, A, LDA, X, 1, ZERO, B, 1)
C Clear solution array.
 DO 40 J=1, N
 X(J) = ZERO
 40 CONTINUE
C Set option to avoid memory
C bank conflicts.
 IOPT(1) = KBANK
 CALL IUMAG (’MATH’, ICHP, IPUT, 1, IOPT, IVAL)
C Solve A*X = B.
 CALL L2LRG (N, A, LDA, B, IPATH, X, A, IPVT, WK)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3 4 5 6 7 8 9 10
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

 11 12 13 14 15 16
11.00 12.00 13.00 14.00 15.00 16.00

LFCRG/DLFCRG (Single/Double precision)
Compute the LU factorization of a real general matrix and estimate its L1
condition number.

Usage
CALL LFCRG (N, A, LDA, FAC, LDFAC, IPVT, RCOND)

Arguments

N — Order of the matrix. (Input)

A — N by N matrix to be factored. (Input)

16 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC— N by N matrix containing the LU factorization of the matrix A. (Output)
If A is not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCRG N units, or
DLFCRG 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CRG/DL2CRG. The reference is

CALL L2CRG (N, A, LDA, FAC, LDFAC, IPVT, RCOND, WK)

The additional argument is

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 4 2 The input matrix is singular.

Algorithm

Routine LFCRG performs an LU factorization of a real general coefficient matrix.
It also estimates the condition number of the matrix. The LU factorization is done
using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting
in that the pivoting strategy is the same as if each row were scaled to have the
same ∞-norm.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since

it is expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described in a paper
by Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCRG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A either is singular or is very close to a singular
matrix.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 17

The LU factors are returned in a form that is compatible with routines LFIRG,
page 22, LFSRG, page 20, and LFDRG, page 24. To solve systems of equations
with multiple right-hand-side vectors, use LFCRG followed by either LFIRG or
LFSRG called once for each right-hand side. The routine LFDRG can be called to
compute the determinant of the coefficient matrix after LFCRG has performed the
factorization.

Let F be the matrix FAC and let p be the vector IPVT. The triangular matrix U is
stored in the upper triangle of F. The strict lower triangle of F contains the

information needed to reconstruct L-1 using

L-1 = L1��P1�� … L1P1

where PN is the identity matrix with rows k and pN interchanged and LN is the

identity with FLN for i = k + 1, …, N inserted below the diagonal. The strict lower
half of F can also be thought of as containing the negative of the multipliers.
LFCRG is based on the LINPACK routine SGECO; see Dongarra et al. (1979).
SGECO uses unscaled partial pivoting.

Example

The inverse of a 3 × 3 matrix is computed. LFCRG is called to factor the matrix
and to check for singularity or ill-conditioning. LFIRG is called to determine the
columns of the inverse.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N), J, NOUT
 REAL A(LDA,LDA), AINV(LDA,LDA), FAC(LDFAC,LDFAC), RCOND,
 & RES(N), RJ(N)
C Set values for A
C A = (1.0 3.0 3.0)
C (1.0 3.0 4.0)
C (1.0 4.0 3.0)
C
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
C
 CALL LFCRG (N, A, LDA, FAC, LDFAC, IPVT, RCOND)
C Print the reciprocal condition number
C and the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0, RJ, 1)
 DO 10 J=1, N
 RJ(J) = 1.0
C RJ is the J-th column of the identity
C matrix so the following LFIRG
C reference places the J-th column of

18 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C the inverse of A in the J-th column
C of AINV
 CALL LFIRG (N, A, LDA, FAC, LDFAC, IPVT, RJ, IPATH,
 & AINV(1,J), RES)
 RJ(J) = 0.0
 10 CONTINUE
C Print results
 CALL WRRRN (’AINV’, N, N, AINV, LDA, 0)
C
99998 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.015
L1 Condition number = 66.471

 AINV
 1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

LFTRG/DLFTRG (Single/Double precision)
Compute the LU factorization of a real general matrix.

Usage
CALL LFTRG (N, A, LDA, FAC, LDFAC, IPVT)

Arguments

N — Order of the matrix. (Input)

A — N by N matrix to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the LU factorization of the matrix A. (Output)
If A is not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization. (Output)

Comments

1. Automatic workspace usage is

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 19

LFTRG N units, or
DLFTRG 2N units.

Workspace may be explicitly provided, if desired, by use of L2TRG/
DL2TRG. The reference is
CALL L2TRG (N, A, LDA, FAC, LDFAC, IPVT, WK)

The additional argument is

WK — Work vector of length N used for scaling.

2. Informational error
Type Code
 4 2 The input matrix is singular.

Algorithm

Routine LFTRG performs an LU factorization of a real general coefficient matrix.
The LU factorization is done using scaled partial pivoting. Scaled partial pivoting
differs from partial pivoting in that the pivoting strategy is the same as if each row
were scaled to have the same ∞-norm.

The routine LFTRG fails if U, the upper triangular part of the factorization, has a
zero diagonal element. This can occur only if A is singular or very close to a
singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG

(page 22), LFSRG (page 20) and LFDRG (page 24). To solve systems of equations
with multiple right-hand-side vectors, use LFTRG followed by either LFIRG or
LFSRG called once for each right-hand side. The routine LFDRG can be called to
compute the determinant of the coefficient matrix after LFTRG has performed the
factorization. Let F be the matrix FAC and let p be the vector IPVT. The
triangular matrix U is stored in the upper triangle of F. The strict lower triangle of

F contains the information needed to reconstruct L-1 using

L-1 = L1��P1�� . . . L1P1

where PN is the identity matrix with rows k and pN interchanged and LN is the
identity with FLN for i = k + 1, ..., N inserted below the diagonal. The strict lower
half of F can also be thought of as containing the negative of the multipliers.

Routine LFTRG is based on the LINPACK routine SGEFA. See Dongarra et al.
(1979). The routine SGEFA uses partial pivoting.

Example

A linear system with multiple right-hand sides is solved. Routine LFTRG is called
to factor the coefficient matrix. The routine LFSRG is called to compute the two
solutions for the two right-hand sides. In this case, the coefficient matrix is
assumed to be well-conditioned and correctly scaled. Otherwise, it would be

20 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

better to call LFCRG (page 15) to perform the factorization, and LFIRG (page 22)
to compute the solutions.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N), J
 REAL A(LDA,LDA), B(N,2), FAC(LDFAC,LDFAC), X(N,2)
C
C Set values for A and B
C
C A = (1.0 3.0 3.0)
C (1.0 3.0 4.0)
C (1.0 4.0 3.0)
C
C B = (1.0 10.0)
C (4.0 14.0)
C (-1.0 9.0)
C
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
 DATA B/1.0, 4.0, -1.0, 10.0, 14.0, 9.0/
C
 CALL LFTRG (N, A, LDA, FAC, LDFAC, IPVT)
C Solve for the two right-hand sides
 DO 10 J=1, 2
 CALL LFSRG (N, FAC, LDFAC, IPVT, B(1,J), IPATH, X(1,J))
 10 CONTINUE
C Print results
 CALL WRRRN (’X’, N, 2, X, N, 0)
 END

Output
 X
 1 2
1 -2.000 1.000
2 -2.000 -1.000
3 3.000 4.000

LFSRG/DLFSRG (Single/Double precision)
Solve a real general system of linear equations given the LU factorization of the
coefficient matrix.

Usage
CALL LFSRG (N, FAC, LDFAC, IPVT, B, IPATH, X)

Arguments

N — Number of equations. (Input)

FAC — N by N matrix containing the LU factorization of the coefficient matrix A

as output from routine LFCRG (page 15). (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 21

IPVT — Vector of length N containing the pivoting information for the LU
factorization of A as output from subroutine LFCRG (page 15) or LFTRG/DLFTRG
(page 18). (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A7X = B is solved.

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Algorithm

Routine LFSRG computes the solution of a system of linear algebraic equations
having a real general coefficient matrix. To compute the solution, the coefficient
matrix must first undergo an LU factorization. This may be done by calling either
LFCRG, page 15, or LFTRG, page 18. The solution to Ax = b is found by solving
the triangular systems Ly = b and Ux = y. The forward elimination step consists of
solving the system Ly = b by applying the same permutations and elimination
operations to b that were applied to the columns of A in the factorization routine.
The backward substitution step consists of solving the triangular system Ux = y
for x.

LFSRG and LFIRG, page 22, both solve a linear system given its LU factorization.
LFIRG generally takes more time and produces a more accurate answer than
LFSRG. Each iteration of the iterative refinement algorithm used by LFIRG calls
LFSRG. The routine LFSRG is based on the LINPACK routine SGESL; see
Dongarra et al. (1979).

Example

The inverse is computed for a real general 3 × 3 matrix. The input matrix is
assumed to be well-conditioned, hence, LFTRG is used rather than LFCRG.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER I, IPVT(N), J
 REAL A(LDA,LDA), AINV(LDA,LDA), FAC(LDFAC,LDFAC), RJ(N)
C
C Set values for A
C A = (1.0 3.0 3.0)
C (1.0 3.0 4.0)
C (1.0 4.0 3.0)
C
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
C
 CALL LFTRG (N, A, LDA, FAC, LDFAC, IPVT)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0, RJ, 1)

22 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

DO 10 J=1, N
 RJ(J) = 1.0
C RJ is the J-th column of the identity
C matrix so the following LFSRG
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSRG (N, FAC, LDFAC, IPVT, RJ, IPATH, AINV(1,J))
 RJ(J) = 0.0
 10 CONTINUE
C Print results
 CALL WRRRN (’AINV’, N, N, AINV, LDA, 0)
 END

Output
 AINV
 1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

LFIRG/DLFIRG (Single/Double precision)
Use iterative refinement to improve the solution of a real general system of linear
equations.

Usage
CALL LFIRG (N, A, LDA, FAC, LDFAC, IPVT, B, IPATH, X, RES)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the linear system. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the LU factorization of the coefficient matrix A

as output from routine LFCRG/DLFCRG or LFTRG/DLFTRG. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization of A as output from routine LFCRG/DLFCRG or LFTRG/DLFTRG.
(Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 23

IPATH — Path indicator. (Input)
IPATH = 1 means the system A * X = B is solved.

IPATH = 2 means the system A7X = B is solved.

X — Vector of length N containing the solution to the linear system. (Output)

RES — Vector of length N containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
 3 2 The input matrix is too ill-conditioned for iterative

refinement to be effective.

Algorithm

Routine LFIRG computes the solution of a system of linear algebraic equations
having a real general coefficient matrix. Iterative refinement is performed on the
solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU
factorization. This may be done by calling either LFCRG, page 15, or LFTRG,
page 18.

Iterative refinement fails only if the matrix is very ill-conditioned.

Routines LFIRG and LFSRG (page 20) both solve a linear system given its LU
factorization. LFIRG generally takes more time and produces a more accurate
answer than LFSRG. Each iteration of the iterative refinement algorithm used by
LFIRG calls LFSRG.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.5 to the
second element.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), B(N), FAC(LDFAC,LDFAC), RCOND, RES(N), X(N)
C
C Set values for A and B
C
C A = (1.0 3.0 3.0)
C (1.0 3.0 4.0)
C (1.0 4.0 3.0)
C
C B = (-0.5 -1.0 1.5)
C
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/

24 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

DATA B/-0.5, -1.0, 1.5/
C
 CALL LFCRG (N, A, LDA, FAC, LDFAC, IPVT, RCOND)
C Print the reciprocal condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Solve the three systems
 DO 10 J=1, 3
 CALL LFIRG (N, A, LDA, FAC, LDFAC, IPVT, B, IPATH, X, RES)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
C Perturb B by adding 0.5 to B(2)
 B(2) = B(2) + 0.5
 10 CONTINUE
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.015
L1 Condition number = 66.471
 X
 1 2 3
-5.000 2.000 -0.500

 X
 1 2 3
-6.500 2.000 0.000

 X
 1 2 3
-8.000 2.000 0.500

LFDRG/DLFDRG (Single/Double precision)
Compute the determinant of a real general matrix given the LU factorization of
the matrix.

Usage
CALL LFDRG (N, FAC, LDFAC, IPVT, DET1, DET2)

Arguments

N — Order of the matrix. (Input)

FAC — N by N matrix containing the LU factorization of the matrix A as output
from routine LFCRG/DLFCRG (page 15). (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization as output from routine LFTRG/DLFTRG or LFCRG/DLFCRG. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 25

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Algorithm

Routine LFDRG computes the determinant of a real general coefficient matrix. To
compute the determinant, the coefficient matrix must first undergo an LU
factorization. This may be done by calling either LFCRG (page 15) or LFTRG
(page 18). The formula det A = det L det U is used to compute the determinant.
Since the determinant of a triangular matrix is the product of the diagonal
elements

detU Uiii

N= =∏ 1

(The matrix U is stored in the upper triangle of FAC.) Since L is the product of
triangular matrices with unit diagonals and of permutation matrices,

det L = (−1)N where k is the number of pivoting interchanges.

Routine LFDRG is based on the LINPACK routine SGEDI; see Dongarra et al.
(1979).

Example

The determinant is computed for a real general 3 × 3 matrix.

C Declare variables
 PARAMETER (LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), DET1, DET2, FAC(LDFAC,LDFAC)
C
C Set values for A
C A = (33.0 16.0 72.0)
C (-24.0 -10.0 -57.0)
C (18.0 -11.0 7.0)
C
 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
C
 CALL LFTRG (N, A, LDA, FAC, LDFAC, IPVT)
C Compute the determinant
 CALL LFDRG (N, FAC, LDFAC, IPVT, DET1, DET2)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
C
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)
 END

Output
The determinant of A is -4.761 * 10**3.

26 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LINRG/DLINRG (Single/Double precision)
Compute the inverse of a real general matrix.

Usage
CALL LINRG (N, A, LDA, AINV, LDAINV)

Arguments

N — Order of the matrix A. (Input)

A — N by N matrix containing the matrix to be inverted. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

AINV — N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

LDAINV — Leading dimension of AINV exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

LINRG 2N + N(N − 1)/2 units, or
DLINRG 3N + N(N − 1) units.

Workspace may be explicitly provided, if desired, by use of
L2NRG/DL2NRG. The reference is
CALL L2NRG (N, A, LDA, AINV, LDAINV, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length N+ N(N − 1)/2.

IWK — Integer work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The inverse

might not be accurate.
 4 2 The input matrix is singular.

Algorithm

Routine LINRG computes the inverse of a real general matrix. It first uses the
routine LFCRG (page 15) to compute an LU factorization of the coefficient matrix
and to estimate the condition number of the matrix. Routine LFCRG computes U

and the information needed to compute L-1. LINRT, page 49, is then used to

compute U-1. Finally, A-1 is computed using A-1 = U-1L-1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 27

The routine LINRG fails if U, the upper triangular part of the factorization, has a
zero diagonal element or if the iterative refinement algorithm fails to converge.
This error occurs only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A

can cause very large changes in A-1.

Example

The inverse is computed for a real general 3 × 3 matrix.

C Declare variables
 PARAMETER (LDA=3, LDAINV=3, N=3)
 INTEGER I, J, NOUT
 REAL A(LDA,LDA), AINV(LDAINV,LDAINV)
C
C Set values for A
C A = (1.0 3.0 3.0)
C (1.0 3.0 4.0)
C (1.0 4.0 3.0)
C
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
C
 CALL LINRG (N, A, LDA, AINV, LDAINV)
C Print results
 CALL WRRRN (’AINV’, N, N, AINV, LDAINV, 0)
 END

Output
 AINV
 1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

LSACG/DLSACG (Single/Double precision)
Solve a complex general system of linear equations with iterative refinement.

Usage
CALL LSACG (N, A, LDA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficients of the linear system.
(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

28 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A+X = B is solved.

X — Complex vector of length N containing the solution to the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSACG 2N2 + 3N units, or

DLSACG 4N2 + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2ACG/DL2ACG. The reference is

CALL L2ACG (N, A, LDA, B, IPATH, X, FAC, IPVT, WK)

The additional arguments are as follows:

FAC — Complex work vector of length N2 containing the LU
factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting
information for the LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2ACG the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2); respectively, in LSACG.
Additional memory allocation for FAC and option value
restoration are done automatically in LSACG. Users directly
calling L2ACG can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSACG or L2ACG. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 29

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSACG temporarily replaces
IVAL(2) by IVAL(1). The routine L2CCG computes the
condition number if IVAL(2) = 2. Otherwise L2CCG skips this
computation. LSACG restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSACG solves a system of linear algebraic equations with a complex
general coefficient matrix. It first uses the routine LFCCG, page 32, to compute an
LU factorization of the coefficient matrix and to estimate the condition number of
the matrix. The solution of the linear system is then found using the iterative
refinement routine LFICG, page 39.

LSACG fails if U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSACG solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of three linear equations is solved. The coefficient matrix has complex
general form and the right-hand-side vector b has three elements.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, N=3)
 COMPLEX A(LDA,LDA), B(N), X(N)
C Set values for A and B
C
C A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)
C (1.0+1.0i 2.0-6.0i 1.0+2.0i)
C (4.0+0.0i -5.0+1.0i 3.0-2.0i)
C
C B = (10.0+5.0i 6.0-7.0i -1.0+2.0i)
C
 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),
 & (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/
 DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/
C Solve AX = B (IPATH = 1)
 CALL LSACG (N, A, LDA, B, IPATH, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 END

30 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output
 X
 1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

LSLCG/DLSLCG (Single/Double precision)
Solve a complex general system of linear equations without iterative refinement.

Usage
CALL LSLCG (N, A, LDA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficients of the linear system.
(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A+X = B is solved.

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, B and X can share the same storage locations.

Comments

1. Automatic workspace usage is

LSLCG 2N2 + 3N units, or

DLSLCG 4N2 + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2LCG/DL2LCG. The reference is

CALL L2LCG (N, A, LDA, B, IPATH, X, FAC, IPVT, WK)

The additional arguments are as follows:

FAC — Complex work vector of length N2 containing the LU
factorization of A on output. If A is not needed, A and FAC can share the
same storage locations.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 31

IPVT — Integer work vector of length N containing the pivoting
information for the LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LCG the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2); respectively, in LSLCG.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLCG. Users directly
calling L2LCG can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLCG or L2LCG. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLCG temporarily replaces
IVAL(2) by IVAL(1). The routine L2CCG computes the
condition number if IVAL(2) = 2. Otherwise L2CCG skips this
computation. LSLCG restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSLCG solves a system of linear algebraic equations with a complex
general coefficient matrix. It first uses the routine LFCCG, page 32, to compute an
LU factorization of the coefficient matrix and to estimate the condition number of
the matrix. The solution of the linear system is then found using LFSCG, page 37.

LSLCG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This occurs only if A either is a singular matrix or is very close to a
singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. If the coefficient matrix is ill-
conditioned or poorly scaled, it is recommended that LSACG, page 27, be used.

32 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example

A system of three linear equations is solved. The coefficient matrix has complex
general form and the right-hand-side vector b has three elements.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, N=3)
 COMPLEX A(LDA,LDA), B(N), X(N)
C Set values for A and B
C
C A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)
C (1.0+1.0i 2.0-6.0i 1.0+2.0i)
C (4.0+0.0i -5.0+1.0i 3.0-2.0i)
C
C B = (10.0+5.0i 6.0-7.0i -1.0+2.0i)
C
 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),
 & (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/
 DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/
C Solve AX = B (IPATH = 1)
 CALL LSLCG (N, A, LDA, B, IPATH, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

LFCCG/DLFCCG (Single/Double precision)
Compute the LU factorization of a complex general matrix and estimate its L1
condition number.

Usage
CALL LFCCG (N, A, LDA, FAC, LDFAC, IPVT, RCOND)

Arguments

N — Order of the matrix. (Input)

A — Complex N by N matrix to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — Complex N by N matrix containing the LU factorization of the matrix A
(Output)
If A is not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 33

IPVT — Vector of length N containing the pivoting information for the LU
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCCG 2N units, or
DLFCCG 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CCG/DL2CCG. The reference is
CALL L2CCG (N, A, LDA, FAC, LDFAC, IPVT, RCOND, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 4 2 The input matrix is singular.

Algorithm

Routine LFCCG performs an LU factorization of a complex general coefficient
matrix. It also estimates the condition number of the matrix. The LU factorization
is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to
have the same ∞-norm.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since

it is expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCCG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A either is singular or is very close to a singular
matrix.

The LU factors are returned in a form that is compatible with routines LFICG,
page 39, LFSCG, page 37, and LFDCG, page 42. To solve systems of equations
with multiple right-hand-side vectors, use LFCCG followed by either LFICG or
LFSCG called once for each right-hand side. The routine LFDCG can be called to

34 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

compute the determinant of the coefficient matrix after LFCCG has performed the
factorization.

Let F be the matrix FAC and let p be the vector IPVT. The triangular matrix U is
stored in the upper triangle of F. The strict lower triangle of F contains the

information needed to reconstruct L-1 using

L-1 = L1��P1�� … L1P1

where PN is the identity matrix with rows k and pN interchanged and LN is the
identity with FLN for i = k + 1, ..., N inserted below the diagonal. The strict lower
half of F can also be thought of as containing the negative of the multipliers.

LFCCG is based on the LINPACK routine CGECO; see Dongarra et al. (1979).
CGECO uses unscaled partial pivoting.

Example

The inverse of a 3 × 3 matrix is computed. LFCCG is called to factor the matrix
and to check for singularity or ill-conditioning. LFICG (page 39) is called to
determine the columns of the inverse.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL RCOND, THIRD
 COMPLEX A(LDA,LDA), AINV(LDA,LDA), RJ(N), FAC(LDFAC,LDFAC),
 & RES(N)
C Declare functions
 COMPLEX CMPLX
C Set values for A
C
C A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)
C (2.0+1.0i 5.0+3.0i 7.0+4.0i)
C (-2.0+1.0i -4.0+4.0i -5.0+3.0i)
C
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
 & (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
C
C Scale A by dividing by three
 THIRD = 1.0/3.0
 DO 10 I=1, N
 CALL CSSCAL (N, THIRD, A(1,I), 1)
 10 CONTINUE
C Factor A
 CALL LFCCG (N, A, LDA, FAC, LDFAC, IPVT, RCOND)
C Print the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0,0.0), RJ, 1)
 DO 20 J=1, N
 RJ(J) = CMPLX(1.0,0.0)
C RJ is the J-th column of the identity
C matrix so the following LFIRG

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 35

C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFICG (N, A, LDA, FAC, LDFAC, IPVT, RJ, IPATH,
 & AINV(1,J), RES)
 RJ(J) = CMPLX(0.0,0.0)
 20 CONTINUE
C Print results
 CALL WRCRN (’AINV’, N, N, AINV, LDA, 0)
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.016
L1 Condition number = 63.104

 AINV
 1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

LFTCG/DLFTCG (Single/Double precision)
Compute the LU factorization of a complex general matrix.

Usage
CALL LFTCG (N, A, LDA, FAC, LDFAC, IPVT)

Arguments

N — Order of the matrix. (Input)

A — Complex N by N matrix to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — Complex N by N matrix containing the LU factorization of the matrix A.
(Output)
If A is not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization. (Output)

Comments

1. Automatic workspace usage is

36 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTCG 2N units, or
DLFTCG 4N units.

Workspace may be explicitly provided, if desired, by use of
L2TCG/DL2TCG. The reference is

CALL L2TCG (N, A, LDA, FAC, LDFAC, IPVT, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational error
Type Code
 4 2 The input matrix is singular.

Algorithm

Routine LFTCG performs an LU factorization of a complex general coefficient
matrix. The LU factorization is done using scaled partial pivoting. Scaled partial
pivoting differs from partial pivoting in that the pivoting strategy is the same as if
each row were scaled to have the same ∞-norm.

LFTCG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A either is singular or is very close to a singular
matrix.

The LU factors are returned in a form that is compatible with routines LFICG,
page 39, LFSCG, page 37, and LFDCG, page 42. To solve systems of equations
with multiple right-hand-side vectors, use LFTCG followed by either LFICG or
LFSCG called once for each right-hand side. The routine LFDCG can be called to
compute the determinant of the coefficient matrix after LFCCG (page 32) has
performed the factorization.

Let F be the matrix FAC and let p be the vector IPVT. The triangular matrix U is
stored in the upper triangle of F. The strict lower triangle of F contains the

information needed to reconstruct L-1 using

L-1 = L1��P1�� … L1P1

where PN is the identity matrix with rows k and PN interchanged and LN is the
identity with FLN for i = k + 1, ..., N inserted below the diagonal. The strict lower
half of F can also be thought of as containing the negative of the multipliers.

LFTCG is based on the LINPACK routine CGEFA; see Dongarra et al. (1979).
CGEFA uses unscaled partial pivoting.

Example

A linear system with multiple right-hand sides is solved. LFTCG is called to
factor the coefficient matrix. LFSCG is called to compute the two solutions for the
two right-hand sides. In this case the coefficient matrix is assumed to be well-

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 37

conditioned and correctly scaled. Otherwise, it would be better to call LFCCG to
perform the factorization, and LFICG to compute the solutions.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N)
 COMPLEX A(LDA,LDA), B(N,2), X(N,2), FAC(LDFAC,LDFAC)
C Set values for A
C A = (1.0+1.0i 2.0+3.0i 3.0-3.0i)
C (2.0+1.0i 5.0+3.0i 7.0-5.0i)
C (-2.0+1.0i -4.0+4.0i 5.0+3.0i)
C
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
 & (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/
C
C Set the right-hand sides, B
C B = (3.0+ 5.0i 9.0+ 0.0i)
C (22.0+10.0i 13.0+ 9.0i)
C (-10.0+ 4.0i 6.0+10.0i)
C
 DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0), (9.0,0.0),
 & (13.0,9.0), (6.0,10.0)/
C
C Factor A
 CALL LFTCG (N, A, LDA, FAC, LDFAC, IPVT)
C Solve for the two right-hand sides
 DO 10 J=1, 2
 CALL LFSCG (N, FAC, LDFAC, IPVT, B(1,J), IPATH, X(1,J))
 10 CONTINUE
C Print results
 CALL WRCRN (’X’, N, 2, X, N, 0)
 END

Output
 X
 1 2
1 (1.000,-1.000) (0.000, 2.000)
2 (2.000, 4.000) (-2.000,-1.000)
3 (3.000, 0.000) (1.000, 3.000)

LFSCG/DLFSCG (Single/Double precision)
Solve a complex general system of linear equations given the LU factorization of
the coefficient matrix.

Usage
CALL LFSCG (N, FAC, LDFAC, IPVT, B, IPATH, X)

Arguments

N — Number of equations. (Input)

38 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

FAC — Complex N by N matrix containing the LU factorization of the coefficient
matrix A as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization of A as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.
(Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A+X = B is solved.

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, B and X can share the same storage locations.

Algorithm

Routine LFSCG computes the solution of a system of linear algebraic equations
having a complex general coefficient matrix. To compute the solution, the
coefficient matrix must first undergo an LU factorization. This may be done by
calling either LFCCG, page 32, or LFTCG, page 35. The solution to Ax = b is found
by solving the triangular systems Ly = b and Ux = y. The forward elimination step
consists of solving the system Ly = b by applying the same permutations and
elimination operations to b that were applied to the columns of A in the
factorization routine. The backward substitution step consists of solving the
triangular system Ux = y for x.

Routines LFSCG and LFICG (page 39) both solve a linear system given its LU
factorization. LFICG generally takes more time and produces a more accurate
answer than LFSCG. Each iteration of the iterative refinement algorithm used by
LFICG calls LFSCG.

LFSCG is based on the LINPACK routine CGESL; see Dongarra et al. (1979).

Example

The inverse is computed for a complex general 3 × 3 matrix. The input matrix is
assumed to be well-conditioned, hence LFTCG (page 35) is used rather than
LFCCG.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N)
 REAL THIRD
 COMPLEX A(LDA,LDA), AINV(LDA,LDA), RJ(N), FAC(LDFAC,LDFAC)
C Declare functions

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 39

 COMPLEX CMPLX
C Set values for A
C
C A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)
C (2.0+1.0i 5.0+3.0i 7.0+4.0i)
C (-2.0+1.0i -4.0+4.0i -5.0+3.0i)
C
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
 & (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
C
C Scale A by dividing by three
 THIRD = 1.0/3.0
 DO 10 I=1, N
 CALL CSSCAL (N, THIRD, A(1,I), 1)
 10 CONTINUE
C Factor A
 CALL LFTCG (N, A, LDA, FAC, LDFAC, IPVT)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0,0.0), RJ, 1)
 DO 20 J=1, N
 RJ(J) = CMPLX(1.0,0.0)
C RJ is the J-th column of the identity
C matrix so the following LFSCG
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSCG (N, FAC, LDFAC, IPVT, RJ, IPATH, AINV(1,J))
 RJ(J) = CMPLX(0.0,0.0)
 20 CONTINUE
C Print results
 CALL WRCRN (’AINV’, N, N, AINV, LDA, 0)
 END

Output
 AINV
 1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

LFICG/DLFICG (Single/Double precision)
Use iterative refinement to improve the solution of a complex general system of
linear equations.

Usage
CALL LFICG (N, A, LDA, FAC, LDFAC, IPVT, B, IPATH, X, RES)

Arguments

N — Number of equations. (Input)

40 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

A — Complex N by N matrix containing the coefficient matrix of the linear
system. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — Complex N by N matrix containing the LU factorization of the coefficient
matrix A as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization of A as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.
(Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A+X = B is solved.

X — Complex vector of length N containing the solution to the linear system.
(Output)

RES — Complex vector of length N containing the residual vector at the
improved solution. (Output)

Comments

Informational error
Type Code
 3 2 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

Routine LFICG computes the solution of a system of linear algebraic equations
having a complex general coefficient matrix. Iterative refinement is performed on
the solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU
factorization. This may be done by calling either LFCCG, page 32, or LFTCG,
page 35.

Iterative refinement fails only if the matrix is very ill-conditioned. Routines
LFICG and LFSCG (page 37) both solve a linear system given its LU
factorization. LFICG generally takes more time and produces a more accurate

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 41

answer than LFSCG. Each iteration of the iterative refinement algorithm used by
LFICG calls LFSCG.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.5 + 0.5i
to the second element.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL RCOND
 COMPLEX A(LDA,LDA), B(N), X(N), FAC(LDFAC,LDFAC), RES(N)
C Declare functions
 COMPLEX CMPLX
C Set values for A
C
C A = (1.0+1.0i 2.0+3.0i 3.0-3.0i)
C (2.0+1.0i 5.0+3.0i 7.0-5.0i)
C (-2.0+1.0i -4.0+4.0i 5.0+3.0i)
C
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
 & (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/
C
C Set values for B
C B = (3.0+5.0i 22.0+10.0i -10.0+4.0i)
C
 DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0)/
C Factor A
 CALL LFCCG (N, A, LDA, FAC, LDFAC, IPVT, RCOND)
C Print the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Solve the three systems
 DO 10 J=1, 3
 CALL LFICG (N, A, LDA, FAC, LDFAC, IPVT, B, IPATH, X, RES)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
C Perturb B by adding 0.5+0.5i to B(2)
 B(2) = B(2) + CMPLX(0.5,0.5)
 10 CONTINUE
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.023
L1 Condition number = 42.799
 X
 1 2 3
(1.000,-1.000) (2.000, 4.000) (3.000, 0.000)

 X
 1 2 3
(0.910,-1.061) (1.986, 4.175) (3.123, 0.071)

42 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 X
 1 2 3
(0.821,-1.123) (1.972, 4.349) (3.245, 0.142)

LFDCG/DLFDCG (Single/Double precision)
Compute the determinant of a complex general matrix given the LU factorization
of the matrix.

Usage
CALL LFDCG (N, FAC, LDFAC, IPVT, DET1, DET2)

Arguments

N — Order of the matrix. (Input)

FAC — Complex N by N matrix containing the LU factorization of the matrix A as
output from routine LFTCG/DLFTCG or LFCCG/DLFCCG. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization as output from routine LFTCG/DLFTCG or LFCCG/DLFCCG. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Algorithm

Routine LFDCG computes the determinant of a complex general coefficient
matrix. To compute the determinant the coefficient matrix must first undergo an
LU factorization. This may be done by calling either LFCCG, page 32, or LFTCG,
page 35. The formula det A = det L det U is used to compute the determinant.
Since the determinant of a triangular matrix is the product of the diagonal
elements,

detU Uiii

N= =∏ 1

(The matrix U is stored in the upper triangle of FAC.) Since L is the product of
triangular matrices with unit diagonals and of permutation matrices,

det L = (−1)N where k is the number of pivoting interchanges.

LFDCG is based on the LINPACK routine CGEDI; see Dongarra et al. (1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 43

Example

The determinant is computed for a complex general 3 × 3 matrix.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, LDFAC=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL DET2
 COMPLEX A(LDA,LDA), FAC(LDFAC,LDFAC), DET1
C Set values for A
C
C A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)
C (1.0+1.0i 2.0-6.0i 1.0+2.0i)
C (4.0+0.0i -5.0+1.0i 3.0-2.0i)
C
 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),
 & (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/
C
C Factor A
 CALL LFTCG (N, A, LDA, FAC, LDFAC, IPVT)
C Compute the determinant for the
C factored matrix
 CALL LFDCG (N, FAC, LDFAC, IPVT, DET1, DET2)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
C
99999 FORMAT (’ The determinant of A is’,3X,’(’,F6.3,’,’,F6.3,
 & ’) * 10**’,F2.0)
 END

Output
The determinant of A is (0.700, 1.100) * 10**1.

LINCG/DLINCG (Single/Double precision)
Compute the inverse of a complex general matrix.

Usage
CALL LINCG (N, A, LDA, AINV, LDAINV)

Arguments

N — Order of the matrix A. (Input)

A — Complex N by N matrix containing the matrix to be inverted. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

AINV — Complex N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

LDAINV — Leading dimension of AINV exactly as specified in the dimension
statement of the calling program. (Input)

44 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

LINCG 3N + N(N − 1) units, or
DLINCG 5N + 2N(N − 1) units.

Workspace may be explicitly provided, if desired, by use of
L2NCG/DL2NCG. The reference is

CALL L2NCG (N, A, LDA, AINV, LDAINV, WK, IWK)

The additional arguments are as follows:

WK — Complex work vector of length N + N(N − 1)/2.

IWK — Integer work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The inverse

might not be accurate.
 4 2 The input matrix is singular.

Algorithm

Routine LINCG computes the inverse of a complex general matrix.

It first uses the routine LFCCG, page 32, to compute an LU factorization of the
coefficient matrix and to estimate the condition number of the matrix. LFCCG

computes U and the information needed to compute L-1. LINCT, page 55, is then

used to compute U-1. Finally A-1 is computed using A-1 = U-1L-1.

LINCG fails if U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. This errors
occurs only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A

can cause very large changes in A-1.

Example

The inverse is computed for a complex general 3 × 3 matrix.

C Declare variables
 PARAMETER (LDA=3, LDAINV=3, N=3)
 REAL THIRD
 COMPLEX A(LDA,LDA), AINV(LDAINV,LDAINV)
C Set values for A
C
C A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)
C (2.0+1.0i 5.0+3.0i 7.0+4.0i)
C (-2.0+1.0i -4.0+4.0i -5.0+3.0i)
C

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 45

 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
 & (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
C
C Scale A by dividing by three
 THIRD = 1.0/3.0
 DO 10 I=1, N
 CALL CSSCAL (N, THIRD, A(1,I), 1)
 10 CONTINUE
C Calculate the inverse of A
 CALL LINCG (N, A, LDA, AINV, LDAINV)
C Print results
 CALL WRCRN (’AINV’, N, N, AINV, LDAINV, 0)
 END

Output
 AINV
 1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

LSLRT/DLSLRT (Single/Double precision)
Solve a real triangular system of linear equations.

Usage
CALL LSLRT (N, A, LDA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix for the triangular linear
system. (Input)
For a lower triangular system, only the lower triangular part and diagonal of A are
referenced. For an upper triangular system, only the upper triangular part and
diagonal of A are referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means solve AX = B, A lower triangular.
IPATH = 2 means solve AX = B, A upper triangular.

IPATH = 3 means solve A7X = B, A lower triangular.

IPATH = 4 means solve A7X = B, A upper triangular.

46 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Algorithm

Routine LSLRT solves a system of linear algebraic equations with a real triangular
coefficient matrix. LSLRT fails if the matrix A has a zero diagonal element, in
which case A is singular. LSLRT is based on the LINPACK routine STRSL; see
Dongarra et al. (1979).

Example

A system of three linear equations is solved. The coefficient matrix has lower
triangular form and the right-hand-side vector, b, has three elements.

C Declare variables
 PARAMETER (IPATH=1, LDA=3, N=3)
 REAL A(LDA,LDA), B(LDA), X(LDA)
C Set values for A and B
C
C A = (2.0)
C (2.0 -1.0)
C (-4.0 2.0 5.0)
C
C B = (2.0 5.0 0.0)
C
 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
 DATA B/2.0, 5.0, 0.0/
C
C Solve AX = B (IPATH = 1)
 CALL LSLRT (N, A, LDA, B, IPATH, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
1.000 -3.000 2.000

LFCRT/DLFCRT (Single/Double precision)
Estimate the condition number of a real triangular matrix.

Usage
CALL LFCRT (N, A, LDA, IPATH, RCOND)

Arguments

N — Order of the matrix. (Input)

A — N by N matrix containing the triangular matrix whose condition number is to
be estimated. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 47

For a lower triangular matrix, only the lower triangular part and diagonal of A are
referenced. For an upper triangular matrix, only the upper triangular part and
diagonal of A are referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCRT N units, or
DLFCRT 2N units.

Workspace may be explicitly provided, if desired, by use of L2CRT/
DL2CRT. The reference is

CALL L2CRT (N, A, LDA, IPATH, RCOND, WK)

The additional argument is

WK — Work vector of length N.

2. Informational error
Type Code
 3 1 The input triangular matrix is algorithmically singular.

Algorithm

Routine LFCRT estimates the condition number of a real triangular matrix. The L1
condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since it is

expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A

can cause very large changes in the solution x.

LFCRT is based on the LINPACK routine STRCO; see Dongarra et al. (1979).

Example

An estimate of the reciprocal condition number is computed for a 3 × 3 lower
triangular coefficient matrix.

48 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C Declare variables
 PARAMETER (IPATH=1, LDA=3, N=3)
 REAL A(LDA,LDA), RCOND
 INTEGER NOUT
C Set values for A and B
C A = (2.0)
C (2.0 -1.0)
C (-4.0 2.0 5.0)
C
 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
C
C Compute the reciprocal condition
C number (IPATH=1)
 CALL LFCRT (N, A, LDA, IPATH, RCOND)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.091
L1 Condition number = 10.968

LFDRT/DLFDRT (Single/Double precision)
Compute the determinant of a real triangular matrix.

Usage
CALL LFDRT (N, A, LDA, DET1, DET2)

Arguments

N — Order of the matrix A. (Input)

A — N by N matrix containing the triangular matrix. (Input)
The matrix can be either upper or lower triangular.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Comments

Informational error
Type Code
 3 1 The input triangular matrix is singular.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 49

Algorithm

Routine LFDRT computes the determinant of a real triangular coefficient matrix.
The determinant of a triangular matrix is the product of the diagonal elements .

det A Aiii

N= =∏ 1

LFDRT is based on the LINPACK routine STRDI; see Dongarra et al. (1979).

Example

The determinant is computed for a 3 × 3 lower triangular matrix.

C Declare variables
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), DET1, DET2
 INTEGER NOUT
C Set values for A
C A = (2.0)
C (2.0 -1.0)
C (-4.0 2.0 5.0)
C
 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
C
C Compute the determinant of A
 CALL LFDRT (N, A, LDA, DET1, DET2)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)
 END

Output
The determinant of A is -1.000 * 10**1.

LINRT/DLINRT (Single/Double precision)
Compute the inverse of a real triangular matrix.

Usage
CALL LINRT (N, A, LDA, IPATH, AINV, LDAINV)

Arguments

N — Order of the matrix. (Input)

A — N by N matrix containing the triangular matrix to be inverted. (Input)
For a lower triangular matrix, only the lower triangular part and diagonal of A are
referenced. For an upper triangular matrix, only the upper triangular part and
diagonal of A are referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

50 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.

AINV — N by N matrix containing the inverse of A. (Output)
If A is lower triangular, AINV is also lower triangular. If A is upper triangular,
AINV is also upper triangular. If A is not needed, A and AINV can share the same
storage locations.

LDAINV — Leading dimension of AINV exactly as specified in the dimension
statement of the calling program. (Input)

Algorithm

Routine LINRT computes the inverse of a real triangular matrix. It fails if A has a
zero diagonal element.

Example

The inverse is computed for a 3 × 3 lower triangular matrix.

C Declare variables
 PARAMETER (LDA=3, LDAINV=3, N=3)
 REAL A(LDA,LDA), AINV(LDA,LDA)
C Set values for A
C A = (2.0)
C (2.0 -1.0)
C (-4.0 2.0 5.0)
C
 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
C
C Compute the inverse of A
 IPATH = 1
 CALL LINRT (N, A, LDA, IPATH, AINV, LDAINV)
C Print results
 CALL WRRRN (’AINV’, N, N, AINV, LDA, 0)
 END

Output
 AINV
 1 2 3
1 0.500 0.000 0.000
2 1.000 -1.000 0.000
3 0.000 0.400 0.200

LSLCT/DLSLCT (Single/Double precision)
Solve a complex triangular system of linear equations.

Usage
CALL LSLCT (N, A, LDA, B, IPATH, X)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 51

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficient matrix of the triangular
linear system. (Input)
For a lower triangular system, only the lower triangle of A is referenced. For an
upper triangular system, only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means solve AX = B, A lower triangular
IPATH = 2 means solve AX = B, A upper triangular

IPATH = 3 means solve A+X = B, A lower triangular

IPATH = 4 means solve A+X = B, A upper triangular

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, B and X can share the same storage locations.

Comments

Informational error
Type Code
 4 1 The input triangular matrix is singular. Some of its diagonal

elements are near zero.

Algorithm

Routine LSLCT solves a system of linear algebraic equations with a complex
triangular coefficient matrix. LSLCT fails if the matrix A has a zero diagonal
element, in which case A is singular. LSLCT is based on the LINPACK routine
CTRSL; see Dongarra et al. (1979).

Example

A system of three linear equations is solved. The coefficient matrix has lower
triangular form and the right-hand-side vector, b, has three elements.

C Declare variables
 INTEGER IPATH, LDA, N
 PARAMETER (LDA=3, N=3)
 COMPLEX A(LDA,LDA), B(LDA), X(LDA)
C Set values for A and B
C
C A = (-3.0+2.0i)
C (-2.0-1.0i 0.0+6.0i)
C (-1.0+3.0i 1.0-5.0i -4.0+0.0i)
C
C B = (-13.0+0.0i -10.0-1.0i -11.0+3.0i)

52 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C
 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),
 & (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
 DATA B/(-13.0,0.0), (-10.0,-1.0), (-11.0,3.0)/
C
C Solve AX = B
 IPATH = 1
 CALL LSLCT (N, A, LDA, B, IPATH, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
(3.000, 2.000) (1.000, 1.000) (2.000, 0.000)

LFCCT/DLFCCT (Single/Double precision)
Estimate the condition number of a complex triangular matrix.

Usage
CALL LFCCT (N, A, LDA, IPATH, RCOND)

Arguments

N — Order of the matrix. (Input)

A — Complex N by N matrix containing the triangular matrix. (Input)
For a lower triangular system, only the lower triangle of A is referenced. For an
upper triangular system, only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCCT 2N units, or
DLFCCT 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CCT/DL2CCT. The reference is

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 53

CALL L2CCT (N, A, LDA, IPATH, RCOND, CWK)

The additional argument is

CWK — Complex work vector of length N.

2. Informational error
Type Code
 3 1 The input triangular matrix is algorithmically singular.

Algorithm

Routine LFCCT estimates the condition number of a complex triangular matrix.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since

it is expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979). If the estimated condition number is greater than 1/ε (where ε is
machine precision), a warning error is issued. This indicates that very small
changes in A can cause very large changes in the solution x. LFCCT is based on
the LINPACK routine CTRCO; see Dongarra et al. (1979).

Example

An estimate of the reciprocal condition number is computed for a 3 × 3 lower
triangular coefficient matrix.

C Declare variables
 INTEGER IPATH, LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER NOUT
 REAL RCOND
 COMPLEX A(LDA,LDA)
C Set values for A
C
C A = (-3.0+2.0i)
C (-2.0-1.0i 0.0+6.0i)
C (-1.0+3.0i 1.0-5.0i -4.0+0.0i)
C
 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),
 & (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
C
C Compute the reciprocal condition
C number
 IPATH = 1
 CALL LFCCT (N, A, LDA, IPATH, RCOND)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

54 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output
RCOND = 0.191
L1 Condition number = 5.223

LFDCT/DLFDCT (Single/Double precision)
Compute the determinant of a complex triangular matrix.

Usage
CALL LFDCT (N, A, LDA, DET1, DET2)

Arguments

N — Order of the matrix A. (Input)

A — Complex N by N matrix containing the triangular matrix.(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Comments

Informational error
Type Code
 3 1 The input triangular matrix is singular.

Algorithm

Routine LFDCT computes the determinant of a complex triangular coefficient
matrix. The determinant of a triangular matrix is the product of the diagonal
elements

det A Aiii

N= =∏ 1

LFDCT is based on the LINPACK routine CTRDI; see Dongarra et al. (1979).

Example

The determinant is computed for a 3 × 3 complex lower triangular matrix.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER NOUT
 REAL DET2
 COMPLEX A(LDA,LDA), DET1

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 55

C Set values for A
C
C A = (-3.0+2.0i)
C (-2.0-1.0i 0.0+6.0i)
C (-1.0+3.0i 1.0-5.0i -4.0+0.0i)
C
 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),
 & (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
C
C Compute the determinant of A
 CALL LFDCT (N, A, LDA, DET1, DET2)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (’ The determinant of A is (’,F4.1,’,’,F4.1,’) * 10**’,
 & F2.0)
 END

Output
The determinant of A is (0.5, 0.7) * 10**2.

LINCT/DLINCT (Single/Double precision)
Compute the inverse of a complex triangular matrix.

Usage
CALL LINCT (N, A, LDA, IPATH, AINV, LDAINV)

Arguments

N — Order of the matrix. (Input)

A — Complex N by N matrix containing the triangular matrix to be inverted.
(Input)
For a lower triangular matrix, only the lower triangle of A is referenced. For an
upper triangular matrix, only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.

AINV — Complex N by N matrix containing the inverse of A. (Output)
If A is lower triangular, AINV is also lower triangular. If A is upper triangular,
AINV is also upper triangular. If A is not needed, A and AINV can share the same
storage locations.

LDAINV — Leading dimension of AINV exactly as specified in the dimension
statement of the calling program. (Input)

56 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

Informational error
Type Code
 4 1 The input triangular matrix is singular. Some of its diagonal

elements are close to zero.

Algorithm

Routine LINCT computes the inverse of a complex triangular matrix. It fails if A
has a zero diagonal element.

Example

The inverse is computed for a 3 × 3 lower triangular matrix.

C Declare variables
 INTEGER IPATH, LDA, LDAINV, N
 PARAMETER (LDA=3, N=3, LDAINV=3)
 COMPLEX A(LDA,LDA), AINV(LDA,LDA)
C Set values for A
C
C A = (-3.0+2.0i)
C (-2.0-1.0i 0.0+6.0i)
C (-1.0+3.0i 1.0-5.0i -4.0+0.0i)
C
 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),
 & (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
C
C Compute the inverse of A
 IPATH = 1
 CALL LINCT (N, A, LDA, IPATH, AINV, LDAINV)
C Print results
 CALL WRCRN (’AINV’, N, N, AINV, LDAINV, 0)
 END

Output
 AINV
 1 2 3
1 (-0.2308,-0.1538) (0.0000, 0.0000) (0.0000, 0.0000)
2 (-0.0897, 0.0513) (0.0000,-0.1667) (0.0000, 0.0000)
3 (0.2147,-0.0096) (-0.2083,-0.0417) (-0.2500, 0.0000)

LSADS/DLSADS (Single/Double precision)
Solve a real symmetric positive definite system of linear equations with iterative
refinement.

Usage
CALL LSADS (N, A, LDA, B, X)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 57

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric positive
definite linear system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is

LSADS N2 + N units, or

DLSADS 2N2 + 2N units.

Workspace may be explicitly provided, if desired, by use of
L2ADS/DL2ADS. The reference is

CALL L2ADS (N, A, LDA, B, X, FAC, WK)

The additional arguments are as follows:

FAC — Work vector of length N2 containing the R7R factorization of A
on output.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2ADS the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSADS.
Additional memory allocation for FAC and option value
restoration are done automatically in LSADS. Users directly
calling L2ADS can allocate additional space for FAC

and set IVAL(3) and IVAL(4) so that memory bank conflicts
no longer cause inefficiencies. There is no requirement that
users change existing applications that use LSADS or L2ADS.

58 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSADS temporarily replaces
IVAL(2) by IVAL(1). The routine L2CDS computes the
condition number if IVAL(2) = 2. Otherwise L2CDS skips this
computation. LSADS restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSADS solves a system of linear algebraic equations having a real
symmetric positive definite coefficient matrix. It first uses the routine LFCDS,

page 61, to compute an R7R Cholesky factorization of the coefficient matrix and
to estimate the condition number of the matrix. The matrix R is upper triangular.
The solution of the linear system is then found using the iterative refinement
routine LFIDS, page 67. LSADS fails if any submatrix of R is not positive definite,
if R has a zero diagonal element or if the iterative refinement algorithm fails to
converge. These errors occur only if A is either very close to a singular matrix or
a matrix which is not positive definite. If the estimated condition number is
greater than 1/ε (where ε is machine precision), a warning error is issued. This
indicates that very small changes in A can cause very large changes in the solution
x. Iterative refinement can sometimes find the solution to such a system. LSADS
solves the problem that is represented in the computer; however, this problem
may differ from the problem whose solution is desired.

Example

A system of three linear equations is solved. The coefficient matrix has real
positive definite form and the right-hand-side vector b has three elements.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (1.0 -3.0 2.0)
C (-3.0 10.0 -5.0)
C (2.0 -5.0 6.0)
C
C B = (27.0 -78.0 64.0)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
 DATA B/27.0, -78.0, 64.0/
C
 CALL LSADS (N, A, LDA, B, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
C

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 59

END

Output
 X
 1 2 3
1.000 -4.000 7.000

LSLDS/DLSLDS (Single/Double precision)
Solve a real symmetric positive definite system of linear equations without
iterative refinement.

Usage
CALL LSLDS (N, A, LDA, B, X)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric positive
definite linear system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Comments

1. Automatic workspace usage is

LSLDS N2 + N units, or

DLSLDS 2N2 + 2N units.

Workspace may be explicitly provided, if desired, by use of
L2LDS/DL2LDS. The reference is

CALL L2LDS (N, A, LDA, B, X, FAC, WK)

The additional arguments are as follows:

FAC — Work vector of length N2 containing the R7R factorization of A
on output. If A is not needed, A can share the same storage locations as
FAC.

WK — Work vector of length N.

60 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LDS the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSLDS.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLDS. Users directly
calling L2LDS can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLDS or L2LDS. Default values
for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLDS temporarily replaces
IVAL(2) by IVAL(1). The routine L2CDS computes the
condition number if IVAL(2) = 2. Otherwise L2CDS skips this
computation. LSLDS restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSLDS solves a system of linear algebraic equations having a real
symmetric positive definite coefficient matrix. It first uses the routine LFCDS,

page 61, to compute an R7R Cholesky factorization of the coefficient matrix and
to estimate the condition number of the matrix. The matrix R is upper triangular.
The solution of the linear system is then found using the routine LFSDS, page 65.
LSLDS fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A either is very close to a singular
matrix or to a matrix which is not positive definite. If the estimated condition
number is greater than 1/ε (where ε is machine precision), a warning error is
issued. This indicates that very small changes in A can cause very large changes
in the solution x. If the coefficient matrix is ill-conditioned, it is recommended
that LSADS, page 56, be used.

Example

A system of three linear equations is solved. The coefficient matrix has real
positive definite form and the right-hand-side vector b has three elements.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 61

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (1.0 -3.0 2.0)
C (-3.0 10.0 -5.0)
C (2.0 -5.0 6.0)
C
C B = (27.0 -78.0 64.0)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
 DATA B/27.0, -78.0, 64.0/
C
 CALL LSLDS (N, A, LDA, B, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3
1.000 -4.000 7.000

LFCDS/DLFCDS (Single/Double precision)
Compute the R7R Cholesky factorization of a real symmetric positive definite
matrix and estimate its L1 condition number.

Usage
CALL LFCDS (N, A, LDA, FAC, LDFAC, RCOND)

Arguments

N — Order of the matrix. (Input)

A — N by N symmetric positive definite matrix to be factored. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the upper triangular matrix R of the
factorization of A in the upper triangular part. (Output)
Only the upper triangle of FAC will be used. If A is not needed, A and FAC can
share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

62 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCDS N units, or
DLFCDS 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CDS/DL2CDS. The reference is

CALL L2CDS (N, A, LDA, FAC, LDFAC, RCOND, WK)

The additional argument is

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 4 2 The input matrix is not positive definite.

Algorithm

Routine LSADS computes an R7R Cholesky factorization and estimates the
condition number of a real symmetric positive definite coefficient matrix. The
matrix R is upper triangular.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since

it is expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCDS fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

The R7R factors are returned in a form that is compatible with routines LFIDS,
page 67, LFSDS, page 65, and LFDDS, page 69. To solve systems of equations
with multiple right-hand-side vectors, use LFCDS followed by either LFIDS or
LFSDS called once for each right-hand side. The routine LFDDS can be called to
compute the determinant of the coefficient matrix after LFCDS has performed the
factorization.

LFCDS is based on the LINPACK routine SPOCO; see Dongarra et al. (1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 63

Example

The inverse of a 3 × 3 matrix is computed. LFCDS is called to factor the matrix
and to check for nonpositive definiteness or ill-conditioning. LFIDS (page 67) is
called to determine the columns of the inverse.

C Declare variables
 INTEGER LDA, LDFAC, N, NOUT
 PARAMETER (LDA=3, LDFAC=3, N=3)
 REAL A(LDA,LDA), AINV(LDA,LDA), COND, FAC(LDFAC,LDFAC),
 & RES(N), RJ(N)
C
C Set values for A
C A = (1.0 -3.0 2.0)
C (-3.0 10.0 -5.0)
C (2.0 -5.0 6.0)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C Factor the matrix A
 CALL LFCDS (N, A, LDA, FAC, LDFAC, COND)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0E0, RJ, 1)
 DO 10 J=1, N
 RJ(J) = 1.0E0
C RJ is the J-th column of the identity
C matrix so the following LFIDS
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFIDS (N, A, LDA, FAC, LDFAC, RJ, AINV(1,J), RES)
 RJ(J) = 0.0E0
 10 CONTINUE
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) COND, 1.0E0/COND
 CALL WRRRN (’AINV’, N, N, AINV, LDA, 0)
99999 FORMAT (’ COND = ’,F5.3,/,’ L1 Condition number = ’,F9.3)
 END

Output
COND = 0.001
L1 Condition number = 673.839

 AINV
 1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

64 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTDS/DLFTDS (Single/Double precision)
Compute the R7R Cholesky factorization of a real symmetric positive definite
matrix.

Usage
CALL LFTDS (N, A, LDA, FAC, LDFAC)

Arguments

N — Order of the matrix. (Input)

A — N by N symmetric positive definite matrix to be factored. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the upper triangular matrix R of the
factorization of A in the upper triangle. (Output)
Only the upper triangle of FAC will be used. If A is not needed, A and FAC can
share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

Informational error
Type Code
 4 2 The input matrix is not positive definite.

Algorithm

Routine LFTDS computes an R7R Cholesky factorization of a real symmetric
positive definite coefficient matrix. The matrix R is upper triangular.

LFTDS fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

The R7R factors are returned in a form that is compatible with routines LFIDS,
page 67, LFSDS, page 65, and LFDDS, page 69. To solve systems of equations
with multiple right-hand-side vectors, use LFTDS followed by either LFIDS or
LFSDS called once for each right-hand side. The routine LFDDS can be called to
compute the determinant of the coefficient matrix after LFTDS has performed the
factorization.

LFTDS is based on the LINPACK routine SPOFA; see Dongarra et al. (1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 65

Example

The inverse of a 3 × 3 matrix is computed. LFTDS is called to factor the matrix
and to check for nonpositive definiteness. LFSDS (page 65) is called to determine
the columns of the inverse.

C Declare variables
 INTEGER LDA, LDFAC, N
 PARAMETER (LDA=3, LDFAC=3, N=3)
 REAL A(LDA,LDA), AINV(LDA,LDA), FAC(LDFAC,LDFAC), RJ(N)
C
C Set values for A
C A = (1.0 -3.0 2.0)
C (-3.0 10.0 -5.0)
C (2.0 -5.0 6.0)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C Factor the matrix A
 CALL LFTDS (N, A, LDA, FAC, LDFAC)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0E0, RJ, 1)
 DO 10 J=1, N
 RJ(J) = 1.0E0
C RJ is the J-th column of the identity
C matrix so the following LFSDS
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSDS (N, FAC, LDFAC, RJ, AINV(1,J))
 RJ(J) = 0.0E0
 10 CONTINUE
C Print the results
 CALL WRRRN (’AINV’, N, N, AINV, LDA, 0)
C
 END

Output
 AINV
 1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

LFSDS/DLFSDS (Single/Double precision)
Solve a real symmetric positive definite system of linear equations given the R7 R
Cholesky factorization of the coefficient matrix.

Usage
CALL LFSDS (N, FAC, LDFAC, B, X)

66 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Arguments

N — Number of equations. (Input)

FAC — N by N matrix containing the R7 R factorization of the coefficient matrix
A as output from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Comments

Informational error
Type Code
 4 1 The input matrix is singular.

Algorithm

This routine computes the solution for a system of linear algebraic equations
having a real symmetric positive definite coefficient matrix. To compute the

solution, the coefficient matrix must first undergo an R7R factorization. This may
be done by calling either LFCDS, page 61, or LFTDS, page 63. R is an upper
triangular matrix.

The solution to Ax = b is found by solving the triangular systems R7y = b and
Rx = y.

LFSDS and LFIDS, page 67, both solve a linear system given its R7R
factorization. LFIDS generally takes more time and produces a more accurate
answer than LFSDS. Each iteration of the iterative refinement algorithm used by
LFIDS calls LFSDS.

LFSDS is based on the LINPACK routine SPOSL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successively. LFTDS (page 63) is called to factor
the coefficient matrix. LFSDS is called to compute the four solutions for the four
right-hand sides. In this case the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better to call LFCDS

(page 61) to perform the factorization, and LFIDS (page 67) to compute the
solutions.

C Declare variables
 INTEGER LDA, LDFAC, N
 PARAMETER (LDA=3, LDFAC=3, N=3)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 67

 REAL A(LDA,LDA), B(N,4), FAC(LDFAC,LDFAC), X(N,4)
C
C Set values for A and B
C
C A = (1.0 -3.0 2.0)
C (-3.0 10.0 -5.0)
C (2.0 -5.0 6.0)
C
C B = (-1.0 3.6 -8.0 -9.4)
C (-3.0 -4.2 11.0 17.6)
C (-3.0 -5.2 -6.0 -23.4)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
 DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,
 & -9.4, 17.6, -23.4/
C Factor the matrix A
 CALL LFTDS (N, A, LDA, FAC, LDFAC)
C Compute the solutions
 DO 10 I=1, 4
 CALL LFSDS (N, FAC, LDFAC, B(1,I), X(1,I))
 10 CONTINUE
C Print solutions
 CALL WRRRN (’The solution vectors are’, N, 4, X, N, 0)
C
 END

Output
 The solution vectors are
 1 2 3 4
1 -44.0 118.4 -162.0 -71.2
2 -11.0 25.6 -36.0 -16.6
3 5.0 -19.0 23.0 6.0

LFIDS/DLFIDS (Single/Double precision)
Use iterative refinement to improve the solution of a real symmetric positive
definite system of linear equations.

Usage
CALL LFIDS (N, A, LDA, FAC, LDFAC, B, X, RES)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the symmetric positive definite coefficient matrix
of the linear system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

68 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

FAC — N by N matrix containing the R7R factorization of the coefficient matrix
A as output from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)

RES — Vector of length N containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
 3 2 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

Routine LFIDS computes the solution of a system of linear algebraic equations
having a real symmetric positive definite coefficient matrix. Iterative refinement
is performed on the solution vector to improve the accuracy. Usually almost all of
the digits in the solution are accurate, even if the matrix is somewhat ill-
conditioned.

To compute the solution, the coefficient matrix must first undergo an R7R
factorization. This may be done by calling either LFCDS, page 61, or LFTDS,
page 63.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIDS and LFSDS, page 65, both solve a linear system given its R7R
factorization. LFIDS generally takes more time and produces a more accurate
answer than LFSDS. Each iteration of the iterative refinement algorithm used by
LFIDS calls LFSDS.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.2 to the
second element.

C Declare variables
 INTEGER LDA, LDFAC, N
 PARAMETER (LDA=3, LDFAC=3, N=3)
 REAL A(LDA,LDA), B(N), COND, FAC(LDFAC,LDFAC), RES(N,3),
 & X(N,3)
C
C Set values for A and B

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 69

C
C A = (1.0 -3.0 2.0)
C (-3.0 10.0 -5.0)
C (2.0 -5.0 6.0)
C
C B = (1.0 -3.0 2.0)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
 DATA B/1.0, -3.0, 2.0/
C Factor the matrix A
 CALL LFCDS (N, A, LDA, FAC, LDFAC, COND)
C Print the estimated condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) COND, 1.0E0/COND
C Compute the solutions
 DO 10 I=1, 3
 CALL LFIDS (N, A, LDA, FAC, LDFAC, B, X(1,I), RES(1,I))
 B(2) = B(2) + .2E0
 10 CONTINUE
C Print solutions and residuals
 CALL WRRRN (’The solution vectors are’, N, 3, X, N, 0)
 CALL WRRRN (’The residual vectors are’, N, 3, RES, N, 0)
C
99999 FORMAT (’ COND = ’,F5.3,/,’ L1 Condition number = ’,F9.3)
 END

Output
COND = 0.001
L1 Condition number = 673.839

The solution vectors are
 1 2 3
1 1.000 2.600 4.200
2 0.000 0.400 0.800
3 0.000 -0.200 -0.400

The residual vectors are
 1 2 3
1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000

LFDDS/DLFDDS (Single/Double precision)
Compute the determinant of a real symmetric positive definite matrix given the

R7R Cholesky factorization of the matrix.

Usage
CALL LFDDS (N, FAC, LDFAC, DET1, DET2)

Arguments

N — Order of the matrix. (Input)

70 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

FAC — N by N matrix containing the R7R factorization of the coefficient matrix
A as output from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that, 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, det(A) = DET1 * 10DET2.

Algorithm

Routine LFDDS computes the determinant of a real symmetric positive definite
coefficient matrix. To compute the determinant, the coefficient matrix must first

undergo an R7R factorization. This may be done by calling either LFCDS,

page 61, or LFTDS, page 63. The formula det A = det R7 det R = (det R)2 is used
to compute the determinant. Since the determinant of a triangular matrix is the
product of the diagonal elements,

det R Riii

N= =∏ 1

(The matrix R is stored in the upper triangle of FAC.)

LFDDS is based on the LINPACK routine SPODI; see Dongarra et al. (1979).

Example

The determinant is computed for a real positive definite 3 × 3 matrix.

C Declare variables
 INTEGER LDA, LDFAC, N, NOUT
 PARAMETER (LDA=3, N=3, LDFAC=3)
 REAL A(LDA,LDA), DET1, DET2, FAC(LDFAC,LDFAC)
C
C Set values for A
C A = (1.0 -3.0 2.0)
C (-3.0 20.0 -5.0)
C (2.0 -5.0 6.0)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 20.0, -5.0, 2.0, -5.0, 6.0/
C Factor the matrix
 CALL LFTDS (N, A, LDA, FAC, LDFAC)
C Compute the determinant
 CALL LFDDS (N, FAC, LDFAC, DET1, DET2)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
C
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 71

Output
The determinant of A is 2.100 * 10**1.

LINDS/DLINDS (Single/Double precision)
Compute the inverse of a real symmetric positive definite matrix.

Usage
CALL LINDS (N, A, LDA, AINV, LDAINV)

Arguments

N — Order of the matrix A. (Input)

A — N by N matrix containing the symmetric positive definite matrix to be
inverted. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

AINV — N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

LDAINV — Leading dimension of AINV exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

LINDS N units, or
DLINDS 2N units.

Workspace may be explicitly provided, if desired, by use of
L2NDS/DL2NDS. The reference is

CALL L2NDS (N, A, LDA, AINV, LDAINV, WK)

The additional argument is

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is not positive definite.

72 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Algorithm

Routine LINDS computes the inverse of a real symmetric positive definite matrix.

It first uses the routine LFCDS, page 61, to compute an R7R factorization of the
coefficient matrix and to estimate the condition number of the matrix. LINRT,

page 49, is then used to compute R-1. Finally A-1 is computed using R-1 = R-1 R-

7.

LINDS fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A

can cause very large changes in A-1.

Example

The inverse is computed for a real positive definite 3 × 3 matrix.

C Declare variables
 INTEGER LDA, LDAINV, N
 PARAMETER (LDA=3, LDAINV=3, N=3)
 REAL A(LDA,LDA), AINV(LDAINV,LDAINV)
C
C Set values for A
C A = (1.0 -3.0 2.0)
C (-3.0 10.0 -5.0)
C (2.0 -5.0 6.0)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C
 CALL LINDS (N, A, LDA, AINV, LDAINV)
C Print results
 CALL WRRRN (’AINV’, N, N, AINV, LDAINV, 0)
C
 END

Output
 AINV
 1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

LSASF/DLSASF (Single/Double precision)
Solve a real symmetric system of linear equations with iterative refinement.

Usage
CALL LSASF (N, A, LDA, B, X)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 73

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric linear
system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is

LSASF N2 + 2N units, or

DLSASF 2N2 + 3N units.

Workspace may be explicitly provided, if desired, by use of
L2ASF/DL2ASF. The reference is

CALL L2ASF (N, A, LDA, B, X, FAC, IPVT, WK)

The additional arguments are as follows:

FAC — Work vector of length N * N containing information about the

U DU7 factorization of A on output. If A is not needed, A and FAC can
share the same storage location.

IPVT — Integer work vector of length N containing the pivoting
information for the factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2ASF the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSASF.
Additional memory allocation for FAC and option value
restoration are done automatically in LSASF. Users

74 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

directly calling L2ASF can allocate additional space for FAC
and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users
change existing applications that use LSASF or L2ASF. Default
values for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSASF temporarily replaces
IVAL(2) by IVAL(1). The routine L2CSF computes the
condition number if IVAL(2) = 2. Otherwise L2CSF skips this
computation. LSASF restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSASF solves systems of linear algebraic equations having a real
symmetric indefinite coefficient matrix. It first uses the routine LFCSF, page 77,

to compute a U DU7 factorization of the coefficient matrix and to estimate the
condition number of the matrix. D is a block diagonal matrix with blocks of order
1 or 2, and U is a matrix composed of the product of a permutation matrix and a
unit upper triangular matrix. The solution of the linear system is then found using
the iterative refinement routine LFISF, page 83.

LSASF fails if a block in D is singular or if the iterative refinement algorithm fails
to converge. These errors occur only if A is singular or very close to a singular
matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSASF solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of three linear equations is solved. The coefficient matrix has real
symmetric form and the right-hand-side vector b has three elements.

C Declare variables
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (1.0 -2.0 1.0)
C (-2.0 3.0 -2.0)
C (1.0 -2.0 3.0)
C
C B = (4.1 -4.7 6.5)
C
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 75

 DATA B/4.1, -4.7, 6.5/
C
 CALL LSASF (N, A, LDA, B, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
-4.100 -3.500 1.200

LSLSF/DLSLSF (Single/Double precision)
Solve a real symmetric system of linear equations without iterative refinement.

Usage
CALL LSLSF (N, A, LDA, B, X)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric linear
system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is

LSLSF N2 + 2N units, or

DLSLSF 2N2 + 3N units.

Workspace may be explicitly provided, if desired, by use of
L2LSF/DL2LSF. The reference is

CALL L2LSF (N, A, LDA, B, X, FAC, IPVT, WK)

The additional arguments are as follows:

FAC — Work vector of length N2 containing information about the

U DU7 factorization of A on output. If A is not needed, A and FAC can
share the same storage locations.

76 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPVT — Integer work vector of length N containing the pivoting
information for the factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine LSLSF the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSLSF.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLSF. Users directly
calling LSLSF can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLSF or LSLSF. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLSF temporarily replaces
IVAL(2) by IVAL(1). The routine L2CSF computes the
condition number if IVAL(2) = 2. Otherwise L2CSF skips this
computation. LSLSF restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSLSF solves systems of linear algebraic equations having a real
symmetric indefinite coefficient matrix. It first uses the routine LFCSF, page 77,

to compute a U DU7 factorization of the coefficient matrix. D is a block diagonal
matrix with blocks of order 1 or 2, and U is a matrix composed of the product of
a permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LFSSF, page 81.

LSLSF fails if a block in D is singular. This occurs only if A either is singular or is
very close to a singular matrix.

Example

A system of three linear equations is solved. The coefficient matrix has real
symmetric form and the right-hand-side vector b has three elements.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 77

C Declare variables
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (1.0 -2.0 1.0)
C (-2.0 3.0 -2.0)
C (1.0 -2.0 3.0)
C
C B = (4.1 -4.7 6.5)
C
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
 DATA B/4.1, -4.7, 6.5/
C
 CALL LSLSF (N, A, LDA, B, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
-4.100 -3.500 1.200

LFCSF/DLFCSF (Single/Double precision)
Compute the U DU7 factorization of a real symmetric matrix and estimate its L1
condition number.

Usage
CALL LFCSF (N, A, LDA, FAC, LDFAC, IPVT, RCOND)

Arguments

N — Order of the matrix. (Input)

A — N by N symmetric matrix to be factored. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing information about the factorization of the
symmetric matrix A. (Output)
Only the upper triangle of FAC is used. If A is not needed, A and FAC can share the
same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

78 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPVT — Vector of length N containing the pivoting information for the
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCSF N units, or
DLFCSF 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CSF/DL2CSF. The reference is

CALL L2CSF (N, A, LDA, FAC, LDFAC, IPVT, RCOND, WK)

The additional argument is

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 4 2 The input matrix is singular.

Algorithm

Routine LFCSF performs a U DU7 factorization of a real symmetric indefinite
coefficient matrix. It also estimates the condition number of the matrix. The U

DU7 factorization is called the diagonal pivoting factorization.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since

it is expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A

can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCSF fails if A is singular or very close to a singular matrix.

The U DU7 factors are returned in a form that is compatible with routines LFISF,
page 83, LFSSF, page 81, and LFDSF, page 85. To solve systems of equations
with multiple right-hand-side vectors, use LFCSF followed by either LFISF or
LFSSF called once for each right-hand side. The routine LFDSF can be called to
compute the determinant of the coefficient matrix after LFCSF has performed the
factorization.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 79

LFCSF is based on the LINPACK routine SSICO; see Dongarra et al. (1979).

Example

The inverse of a 3 × 3 matrix is computed. LFCSF is called to factor the matrix
and to check for singularity or ill-conditioning. LFISF (page 83) is called to
determine the columns of the inverse.

C Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), AINV(N,N), FAC(LDA,LDA), RJ(N), RES(N),
 & COND
C
C Set values for A
C
C A = (1.0 -2.0 1.0)
C (-2.0 3.0 -2.0)
C (1.0 -2.0 3.0)
C
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
C Factor A and return the reciprocal
C condition number estimate
 CALL LFCSF (N, A, LDA, FAC, LDA, IPVT, COND)
C Print the estimate of the condition
C number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) COND, 1.0E0/COND
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0E0, RJ, 1)
 DO 10 J=1, N
 RJ(J) = 1.0E0
C RJ is the J-th column of the identity
C matrix so the following LFISF
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFISF (N, A, LDA, FAC, LDA, IPVT, RJ, AINV(1,J), RES)
 RJ(J) = 0.0E0
 10 CONTINUE
C Print the inverse
 CALL WRRRN (’AINV’, N, N, AINV, LDA, 0)
99999 FORMAT (’ COND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
COND = 0.034
L1 Condition number = 29.750

 AINV
 1 2 3
1 -2.500 -2.000 -0.500
2 -2.000 -1.000 0.000
3 -0.500 0.000 0.500

80 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTSF/DLFTSF (Single/Double precision)
Compute the U DU7 factorization of a real symmetric matrix.

Usage
CALL LFTSF (N, A, LDA, FAC, LDFAC, IPVT)

Arguments

N — Order of the matrix. (Input)

A — N by N symmetric matrix to be factored. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the information about the factorization of the
symmetric matrix A. (Output)
Only the upper triangle of FAC is used. If A is not needed, A and FAC can share the
same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the
factorization. (Output)

Comments

Informational error
Type Code
 4 2 The input matrix is singular.

Algorithm

Routine LFTSF performs a U DU7 factorization of a real symmetric indefinite

coefficient matrix. The U DU7 factorization is called the diagonal pivoting
factorization.

LFTSF fails if A is singular or very close to a singular matrix.

The U DU7 factors are returned in a form that is compatible with routines LFISF,
page 83, LFSSF, page 81, and LFDSF, page 85. To solve systems of equations
with multiple right-hand-side vectors, use LFTSF followed by either LFISF or
LFSSF called once for each right-hand side. The routine LFDSF can be called to
compute the determinant of the coefficient matrix after LFTSF has performed the
factorization.

LFTSF is based on the LINPACK routine SSIFA; see Dongarra et al. (1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 81

Example

The inverse of a 3 × 3 matrix is computed. LFTSF is called to factor the matrix
and to check for singularity. LFSSF (page 81) is called to determine the columns
of the inverse.

C Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N)
 REAL A(LDA,LDA), AINV(N,N), FAC(LDA,LDA), RJ(N)
C
C Set values for A
C A = (1.0 -2.0 1.0)
C (-2.0 3.0 -2.0)
C (1.0 -2.0 3.0)
C
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
C Factor A
 CALL LFTSF (N, A, LDA, FAC, LDA, IPVT)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0E0, RJ, 1)
 DO 10 J=1, N
 RJ(J) = 1.0E0
C RJ is the J-th column of the identity
C matrix so the following LFSSF
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSSF (N, FAC, LDA, IPVT, RJ, AINV(1,J))
 RJ(J) = 0.0E0
 10 CONTINUE
C Print the inverse
 CALL WRRRN (’AINV’, N, N, AINV, LDA, 0)
 END

Output
 AINV
 1 2 3
1 -2.500 -2.000 -0.500
2 -2.000 -1.000 0.000
3 -0.500 0.000 0.500

LFSSF/DLFSSF (Single/Double precision)
Solve a real symmetric system of linear equations given the U DU7 factorization
of the coefficient matrix.

Usage
CALL LFSSF (N, FAC, LDFAC, IPVT, B, X)

Arguments

N — Number of equations. (Input)

82 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

FAC — N by N matrix containing the factorization of the coefficient matrix A as
output from routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)
Only the upper triangle of FAC is used.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the
factorization of A as output from routine LFCSF/DLFCSF or LFTSF/DLFTSF.
(Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Algorithm

Routine LFSSF computes the solution of a system of linear algebraic equations
having a real symmetric indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undergo a U DU7
factorization. This may be done by calling either LFCSF, page 77, or LFTSF,
page 80.

LFSSF and LFISF, page 83, both solve a linear system given its U DU7
factorization. LFISF generally takes more time and produces a more accurate
answer than LFSSF. Each iteration of the iterative refinement algorithm used by
LFISF calls LFSSF.

LFSSF is based on the LINPACK routine SSISL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successively. LFTSF (page 80) is called to factor
the coefficient matrix. LFSSF is called to compute the four solutions for the four
right-hand sides. In this case the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better to call LFCSF

(page 77) to perform the factorization, and LFISF (page 83) to compute the
solutions.

C Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N)
 REAL A(LDA,LDA), B(N,4), X(N,4), FAC(LDA,LDA)
C
C Set values for A and B
C
C A = (1.0 -2.0 1.0)
C (-2.0 3.0 -2.0)
C (1.0 -2.0 3.0)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 83

C
C B = (-1.0 3.6 -8.0 -9.4)
C (-3.0 -4.2 11.0 17.6)
C (-3.0 -5.2 -6.0 -23.4)
C
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
 DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,
 & -9.4, 17.6, -23.4/
C Factor A
 CALL LFTSF (N, A, LDA, FAC, LDA, IPVT)
C Solve for the four right-hand sides
 DO 10 I=1, 4
 CALL LFSSF (N, FAC, LDA, IPVT, B(1,I), X(1,I))
 10 CONTINUE
C Print results
 CALL WRRRN (’X’, N, 4, X, N, 0)
 END

Output
 X
 1 2 3 4
1 10.00 2.00 1.00 0.00
2 5.00 -3.00 5.00 1.20
3 -1.00 -4.40 1.00 -7.00

LFISF/DLFISF (Single/Double precision)
Use iterative refinement to improve the solution of a real symmetric system of
linear equations.

Usage
CALL LFISF (N, A, LDA, FAC, LDFAC, IPVT, B, X, RES)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric linear
system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the factorization of the coefficient matrix A as
output from routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)
Only the upper triangle of FAC is used.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the
factorization of A as output from routine LFCSF/DLFCSF or LFTSF/DLFTSF.
(Input)

84 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution. (Input)

RES — Vector of length N containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
 3 2 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

LFISF computes the solution of a system of linear algebraic equations having a
real symmetric indefinite coefficient matrix. Iterative refinement is performed on
the solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo a U DU7
factorization. This may be done by calling either LFCSF, page 77, or LFTSF,
page 80.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFISF and LFSSF, page 81, both solve a linear system given its U DU7
factorization. LFISF generally takes more time and produces a more accurate
answer than LFSSF. Each iteration of the iterative refinement algorithm used by
LFISF calls LFSSF.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.2 to the
second element.

C Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), B(N), X(N), FAC(LDA,LDA), RES(N), COND
C
C Set values for A and B
C A = (1.0 -2.0 1.0)
C (-2.0 3.0 -2.0)
C (1.0 -2.0 3.0)
C
C B = (4.1 -4.7 6.5)
C
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
 DATA B/4.1, -4.7, 6.5/
C Factor A and compute the estimate

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 85

C of the reciprocal condition number
 CALL LFCSF (N, A, LDA, FAC, LDA, IPVT, COND)
C Print condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) COND, 1.0E0/COND
C Solve, then perturb right-hand side
 DO 10 I=1, 3
 CALL LFISF (N, A, LDA, FAC, LDA, IPVT, B, X, RES)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 CALL WRRRN (’RES’, 1, N, RES, 1, 0)
 B(2) = B(2) + .20E0
 10 CONTINUE
C
99999 FORMAT (’ COND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
COND = 0.034
L1 Condition number = 29.750

 X
 1 2 3
-4.100 -3.500 1.200

 RES
 1 2 3
-2.384E-07 -2.384E-07 0.000E+00

 X
 1 2 3
-4.500 -3.700 1.200

 RES
 1 2 3
-2.384E-07 -2.384E-07 0.000E+00

 X
 1 2 3
-4.900 -3.900 1.200

 RES
 1 2 3
-2.384E-07 -2.384E-07 0.000E+00

LFDSF/DLFDSF (Single/Double precision)
Compute the determinant of a real symmetric matrix given the U DU7
factorization of the matrix.

Usage
CALL LFDSF (N, FAC, LDFAC, IPVT, DET1, DET2)

86 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Arguments

N — Order of the matrix. (Input)

FAC — N by N matrix containing the factored matrix A as output from subroutine
LFTSF/DLFTSF or LFCSF/DLFCSF. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the U DU7
factorization as output from routine LFTSF/DLFTSF or LFCSF/DLFCSF. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that, 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, det(A) = DET1 * 10DET2.

Algorithm

Routine LFDSF computes the determinant of a real symmetric indefinite
coefficient matrix. To compute the determinant, the coefficient matrix must first

undergo a U DU7 factorization. This may be done by calling either LFCSF,
page 77, or LFTSF, page 80. Since det U = ±1, the formula det A = det U det

D det U7 = det D is used to compute the determinant. Next det D is computed as
the product of the determinants of its blocks.

LFDSF is based on the LINPACK routine SSIDI; see Dongarra et al. (1979).

Example

The determinant is computed for a real symmetric 3 × 3 matrix.

C Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), FAC(LDA,LDA), DET1, DET2
C
C Set values for A
C A = (1.0 -2.0 1.0)
C (-2.0 3.0 -2.0)
C (1.0 -2.0 3.0)
C
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
C Factor A
 CALL LFTSF (N, A, LDA, FAC, LDA, IPVT)
C Compute the determinant
 CALL LFDSF (N, FAC, LDA, IPVT, DET1, DET2)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 87

Output
The determinant of A is -2.000 * 10**0.

LSADH/DLSADH (Single/Double precision)
Solve a Hermitian positive definite system of linear equations with iterative
refinement.

Usage
CALL LSADH (N, A, LDA, B, X)

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficient matrix of the Hermitian
positive definite linear system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution of the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSADH 2N2 + 2N units, or

DLSADH 4N2 + 4N units.

Workspace may be explicitly provided, if desired, by use of
L2ADH/DL2ADH. The reference is

CALL L2ADH (N, A, LDA, B, X, FAC, WK)

The additional arguments are as follows:

FAC — Complex work vector of length N2 containing the R+ R
factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.

88 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 3 4 The input matrix is not Hermitian. It has a diagonal
entry with a small imaginary part.

 4 2 The input matrix is not positive definite.
 4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2ADH the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSADH.
Additional memory allocation for FAC and option value
restoration are done automatically in LSADH. Users directly
calling L2ADH can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSADH or L2ADH. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSADH temporarily replaces
IVAL(2) by IVAL(1). The routine L2CDH computes the
condition number if IVAL(2) = 2. Otherwise L2CDH skips this
computation. LSADH restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSADH solves a system of linear algebraic equations having a complex
Hermitian positive definite coefficient matrix. It first uses the routine LFCDH,

page 92, to compute an R+ R Cholesky factorization of the coefficient matrix and
to estimate the condition number of the matrix. The matrix R is upper triangular.
The solution of the linear system is then found using the iterative refinement
routine LFIDH, page 99.

LSADH fails if any submatrix of R is not positive definite, if R has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if A either is very close to a singular matrix or is a matrix that is not
positive definite.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSADH solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 89

Example

A system of five linear equations is solved. The coefficient matrix has complex
positive definite form and the right-hand-side vector b has five elements.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=5, N=5)
 COMPLEX A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
C (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
C (10.0+0.0i 0.0+4.0i 0.0+0.0i)
C (6.0+0.0i 1.0+1.0i)
C (9.0+0.0i)
C
C B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)
C
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
 & 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),
 & (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),
 & (25.0,16.0)/
C
 CALL LSADH (N, A, LDA, B, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
 5
(3.000, 2.000)

LSLDH/DLSLDH (Single/Double precision)
Solve a complex Hermitian positive definite system of linear equations without
iterative refinement.

Usage
CALL LSLDH (N, A, LDA, B, X)

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficient matrix of the Hermitian
positive definite linear system. (Input)
Only the upper triangle of A is referenced.

90 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, B and X can share the same storage locations.

Comments

1. Automatic workspace usage is

LSLDH 2N2 + 2N units, or

DLSLDH 4N2 + 4N units.

Workspace may be explicitly provided, if desired, by use of L2LDH/
DL2LDH. The reference is
CALL L2LDH (N, A, LDA, B, X, FAC, WK)

The additional arguments are as follows:

FAC — Complex work vector of length N2 containing the R+ R
factorization of A on output. If A is not needed, A can share the same
storage locations as FAC.

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.
 4 2 The input matrix is not positive definite.
 4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LDH the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSLDH.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLDH. Users
directly calling L2LDH can allocate additional space for FAC

and set IVAL(3) and IVAL(4) so that memory bank conflicts
no longer cause inefficiencies. There is no requirement that

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 91

users change existing applications that use LSLDH or L2LDH.
Default values for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLDH temporarily replaces
IVAL(2) by IVAL(1). The routine L2CDH computes the
condition number if IVAL(2) = 2. Otherwise L2CDH skips this
computation. LSLDH restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSLDH solves a system of linear algebraic equations having a complex
Hermitian positive definite coefficient matrix. It first uses the routine LFCDH,

page 92, to compute an R+ R Cholesky factorization of the coefficient matrix and
to estimate the condition number of the matrix. The matrix R is upper triangular.
The solution of the linear system is then found using the routine LFSDH, page 97.

LSLDH fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. If the coefficient matrix is ill-
conditioned or poorly scaled, it is recommended that LSADH, page 87, be used.

Example

A system of five linear equations is solved. The coefficient matrix has complex
Hermitian positive definite form and the right-hand-side vector b has five
elements.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=5, N=5)
 COMPLEX A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
C (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
C (10.0+0.0i 0.0+4.0i 0.0+0.0i)
C (6.0+0.0i 1.0+1.0i)
C (9.0+0.0i)
C
C B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)
C
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
 & 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),
 & (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),

92 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 & (25.0,16.0)/
C
 CALL LSLDH (N, A, LDA, B, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
 5
(3.000, 2.000)

LFCDH/DLFCDH (Single/Double precision)
Compute the R+ R factorization of a complex Hermitian positive definite matrix
and estimate its L1 condition number.

Usage
CALL LFCDH (N, A, LDA, FAC, LDFAC, RCOND)

Arguments

N — Order of the matrix. (Input)

A — Complex N by N Hermitian positive definite matrix to be factored. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — Complex N by N matrix containing the upper triangular matrix R of the
factorization of A in the upper triangle. (Output)
Only the upper triangle of FAC will be used. If A is not needed, A and FAC can
share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCDH 2N units, or
DLFCDH 4N units.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 93

Workspace may be explicitly provided, if desired, by use of
L2CDH/DL2CDH. The reference is
CALL L2CDH (N, A, LDA, FAC, LDFAC, RCOND, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.
 4 4 The input matrix is not Hermitian.
 4 2 The input matrix is not positive definite. It has a

diagonal entry with an imaginary part.

Algorithm

Routine LFCDH computes an R+ R Cholesky factorization and estimates the
condition number of a complex Hermitian positive definite coefficient matrix.
The matrix R is upper triangular.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since

it is expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCDH fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

The R+ R factors are returned in a form that is compatible with routines LFIDH,
page 99, LFSDH, page 97, and LFDDH, page 101. To solve systems of equations
with multiple right-hand-side vectors, use LFCDH followed by either LFIDH or
LFSDH called once for each right-hand side. The routine LFDDH can be called to
compute the determinant of the coefficient matrix after LFCDH has performed the
factorization.

LFCDH is based on the LINPACK routine CPOCO; see Dongarra et al. (1979).

94 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example

The inverse of a 5 × 5 Hermitian positive definite matrix is computed. LFCDH is
called to factor the matrix and to check for nonpositive definiteness or ill-
conditioning. LFIDH (page 99) is called to determine the columns of the inverse.

C Declare variables
 INTEGER LDA, LDFAC, N, NOUT
 PARAMETER (LDA=5, LDFAC=5, N=5)
 REAL COND
 COMPLEX A(LDA,LDA), AINV(LDA,LDA), FAC(LDFAC,LDFAC),
 & RES(N), RJ(N)
C
C Set values for A
C
C A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
C (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
C (10.0+0.0i 0.0+4.0i 0.0+0.0i)
C (6.0+0.0i 1.0+1.0i)
C (9.0+0.0i)
C
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
 & 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),
 & (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
C Factor the matrix A
 CALL LFCDH (N, A, LDA, FAC, LDFAC, COND)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0E0,0.0E0), RJ, 1)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
C RJ is the J-th column of the identity
C matrix so the following LFIDH
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFIDH (N, A, LDA, FAC, LDFAC, RJ, AINV(1,J), RES)
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) COND, 1.0E0/COND
 CALL WRCRN (’AINV’, N, N, AINV, LDA, 0)
C
99999 FORMAT (’ COND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
COND = 0.067
L1 Condition number = 14.961

 AINV
 1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)
4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)
5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 95

 5
1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

LFTDH/DLFTDH (Single/Double precision)
Compute the R+ R factorization of a complex Hermitian positive definite matrix.

Usage
CALL LFTDH (N, A, LDA, FAC, LDFAC)

Arguments

N — Order of the matrix. (Input)

A — Complex N by N Hermitian positive definite matrix to be factored. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — Complex N by N matrix containing the upper triangular matrix R of the
factorization of A in the upper triangle. (Output)
Only the upper triangle of FAC will be used. If A is not needed, A and FAC can
share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

Informational errors
Type Code
 3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.
 4 2 The input matrix is not positive definite.
 4 4 The input matrix is not Hermitian. It has a diagonal entry with

an imaginary part.

Algorithm

Routine LFTDH computes an R+ R Cholesky factorization of a complex
Hermitian positive definite coefficient matrix. The matrix R is upper triangular.

96 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTDH fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

The R+ R factors are returned in a form that is compatible with routines LFIDH,
page 99, LFSDH, page 97, and LFDDH, page 101. To solve systems of equations
with multiple right-hand-side vectors, use LFCDH followed by either LFIDH or
LFSDH called once for each right-hand side. The IMSL routine LFDDH can be
called to compute the determinant of the coefficient matrix after LFCDH has
performed the factorization.

LFTDH is based on the LINPACK routine CPOFA; see Dongarra et al. (1979).

Example

The inverse of a 5 × 5 matrix is computed. LFTDH is called to factor the matrix
and to check for nonpositive definiteness. LFSDH (page 97) is called to determine
the columns of the inverse.

C Declare variables
 INTEGER LDA, LDFAC, N
 PARAMETER (LDA=5, LDFAC=5, N=5)
 COMPLEX A(LDA,LDA), AINV(LDA,LDA), FAC(LDFAC,LDFAC), RJ(N)
C
C Set values for A
C
C A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
C (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
C (10.0+0.0i 0.0+4.0i 0.0+0.0i)
C (6.0+0.0i 1.0+1.0i)
C (9.0+0.0i)
C
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
 & 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),
 & (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
C Factor the matrix A
 CALL LFTDH (N, A, LDA, FAC, LDFAC)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0E0,0.0E0), RJ, 1)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
C RJ is the J-th column of the identity
C matrix so the following LFSDH
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSDH (N, FAC, LDFAC, RJ, AINV(1,J))
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
C Print the results
 CALL WRCRN (’AINV’, N, N, AINV, LDA, 1)
C
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 97

Output
 AINV
 1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (0.1797, 0.0000) (0.0000,-0.1244)
4 (0.2592, 0.0000)
 5
1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

LFSDH/DLFSDH (Single/Double precision)
Solve a complex Hermitian positive definite system of linear equations given the

R+ R factorization of the coefficient matrix.

Usage
CALL LFSDH (N, FAC, LDFAC, B, X)

Arguments

N — Number of equations. (Input)

FAC — Complex N by N matrix containing the factorization of the coefficient
matrix A as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, B and X can share the same storage locations.

Comments

Informational error
Type Code
 4 1 The input matrix is singular.

Algorithm

This routine computes the solution for a system of linear algebraic equations
having a complex Hermitian positive definite coefficient matrix. To compute the

solution, the coefficient matrix must first undergo an R+ R factorization. This

98 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

may be done by calling either LFCDH, page 92, or LFTDH, page 95. R is an upper
triangular matrix.

The solution to Ax = b is found by solving the triangular systems R+ y = b and
Rx = y.

LFSDH and LFIDH, page 99, both solve a linear system given its R+ R
factorization. LFIDH generally takes more time and produces a more accurate
answer than LFSDH. Each iteration of the iterative refinement algorithm used by
LFIDH calls LFSDH.

LFSDH is based on the LINPACK routine CPOSL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successively. LFTDH (page 95) is called to factor
the coefficient matrix. LFSDH is called to compute the four solutions for the four
right-hand sides. In this case, the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better to call LFCDH
(page 92) to perform the factorization, and LFIDH (page 99) to compute the
solutions.

C Declare variables
 INTEGER LDA, LDFAC, N
 PARAMETER (LDA=5, LDFAC=5, N=5)
 COMPLEX A(LDA,LDA), B(N,3), FAC(LDFAC,LDFAC), X(N,3)
C
C Set values for A and B
C
C A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
C (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
C (10.0+0.0i 0.0+4.0i 0.0+0.0i)
C (6.0+0.0i 1.0+1.0i)
C (9.0+0.0i)
C
C B = (3.0+3.0i 4.0+0.0i 29.0-9.0i)
C (5.0-5.0i 15.0-10.0i -36.0-17.0i)
C (5.0+4.0i -12.0-56.0i -15.0-24.0i)
C (9.0+7.0i -12.0+10.0i -23.0-15.0i)
C (-22.0+1.0i 3.0-1.0i -23.0-28.0i)
C
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
 & 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),
 & (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),
 & (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),
 & (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),
 & (-23.0,-15.0), (-23.0,-28.0)/
C
C Factor the matrix A
 CALL LFTDH (N, A, LDA, FAC, LDFAC)
C Compute the solutions
 DO 10 I=1, 3
 CALL LFSDH (N, FAC, LDFAC, B(1,I), X(1,I))
 10 CONTINUE

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 99

C Print solutions
 CALL WRCRN (’X’, N, 3, X, N, 0)
C
 END

Output
 X
 1 2 3
1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)
2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)
3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)
4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)
5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

LFIDH/DLFIDH (Single/Double precision)
Use iterative refinement to improve the solution of a complex Hermitian positive
definite system of linear equations.

Usage
CALL LFIDH (N, A, LDA, FAC, LDFAC, B, X, RES)

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficient matrix of the linear
system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — Complex N by N matrix containing the factorization of the coefficient
matrix A as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH. (Input)
Only the upper triangle of FAC is used.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution. (Input)

RES — Complex vector of length N containing the residual vector at the
improved solution. (Output)

100 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

Informational error
Type Code
 3 3 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

Routine LFIDH computes the solution of a system of linear algebraic equations
having a complex Hermitian positive definite coefficient matrix. Iterative
refinement is performed on the solution vector to improve the accuracy. Usually
almost all of the digits in the solution are accurate, even if the matrix is somewhat
ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an R+ R
factorization. This may be done by calling either LFCDH, page 92, or LFTDH,
page 95.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIDH and LFSDH, page 97, both solve a linear system given its R+ R
factorization. LFIDH generally takes more time and produces a more accurate
answer than LFSDH. Each iteration of the iterative refinement algorithm used by
LFIDH calls LFSDH.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed by adding (1 + i)/2 to the second element after each call to LFIDH.

C Declare variables
 INTEGER LDA, LDFAC, N
 PARAMETER (LDA=5, LDFAC=5, N=5)
 REAL RCOND
 COMPLEX A(LDA,LDA), B(N), FAC(LDFAC,LDFAC), RES(N,3), X(N,3)
C
C Set values for A and B
C
C A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
C (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
C (10.0+0.0i 0.0+4.0i 0.0+0.0i)
C (6.0+0.0i 1.0+1.0i)
C (9.0+0.0i)
C
C B = (3.0+3.0i 5.0-5.0i 5.0+4.0i 9.0+7.0i -22.0+1.0i)
C
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
 & 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),
 & (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/
C Factor the matrix A
 CALL LFCDH (N, A, LDA, FAC, LDFAC, RCOND)
C Print the estimated condition number

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 101

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Compute the solutions, then perturb B
 DO 10 I=1, 3
 CALL LFIDH (N, A, LDA, FAC, LDFAC, B, X(1,I), RES(1,I))
 B(2) = B(2) + (0.5E0,0.5E0)
 10 CONTINUE
C Print solutions and residuals
 CALL WRCRN (’X’, N, 3, X, N, 0)
 CALL WRCRN (’RES’, N, 3, RES, N, 0)
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.067
L1 Condition number = 14.961

 X
 1 2 3
1 (1.000, 0.000) (1.217, 0.000) (1.433, 0.000)
2 (1.000,-2.000) (1.217,-1.783) (1.433,-1.567)
3 (2.000, 0.000) (1.910, 0.030) (1.820, 0.060)
4 (2.000, 3.000) (1.979, 2.938) (1.959, 2.876)
5 (-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)

 RES
 1 2 3
1 (1.192E-07, 0.000E+00) (6.592E-08, 1.686E-07) (1.318E-07, 2.010E-14)
2 (1.192E-07,-2.384E-07) (-5.329E-08,-5.329E-08) (1.318E-07,-2.258E-07)
3 (2.384E-07, 8.259E-08) (2.390E-07,-3.309E-08) (2.395E-07, 1.015E-07)
4 (-2.384E-07, 2.814E-14) (-8.240E-08,-8.790E-09) (-1.648E-07,-1.758E-08)
5 (-2.384E-07,-1.401E-08) (-2.813E-07, 6.981E-09) (-3.241E-07,-2.795E-08)

LFDDH/DLFDDH (Single/Double precision)
Compute the determinant of a complex Hermitian positive definite matrix given

the R7 R Cholesky factorization of the matrix.

Usage
CALL LFDDH (N, FAC, LDFAC, DET1, DET2)

Arguments

N — Order of the matrix. (Input)

FAC — Complex N by N matrix containing the R7 R factorization of the
coefficient matrix A as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.
(Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

102 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Algorithm

Routine LFDDH computes the determinant of a complex Hermitian positive
definite coefficient matrix. To compute the determinant, the coefficient matrix

must first undergo an R+ R factorization. This may be done by calling either

LFCDH, page 92, or LFTDH, page 95. The formula det A = det R+ det R = (det R)2
is used to compute the determinant. Since the determinant of a triangular matrix is
the product of the diagonal elements,

det R Riii

N= =∏ 1

(The matrix R is stored in the upper triangle of FAC.)

LFDDH is based on the LINPACK routine CPODI; see Dongarra et al. (1979).

Example

The determinant is computed for a complex Hermitian positive definite 3 × 3
matrix.

C Declare variables
 INTEGER LDA, LDFAC, N, NOUT
 PARAMETER (LDA=3, N=3, LDFAC=3)
 REAL DET1, DET2
 COMPLEX A(LDA,LDA), FAC(LDFAC,LDFAC)
C
C Set values for A
C
C A = (6.0+0.0i 1.0-1.0i 4.0+0.0i)
C (1.0+1.0i 7.0+0.0i -5.0+1.0i)
C (4.0+0.0i -5.0-1.0i 11.0+0.0i)
C
 DATA A /(6.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (7.0,0.0),
 & (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (11.0,0.0)/
C Factor the matrix
 CALL LFTDH (N, A, LDA, FAC, LDFAC)
C Compute the determinant
 CALL LFDDH (N, FAC, LDFAC, DET1, DET2)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
C
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
 END

Output
The determinant of A is 1.400 * 10**2.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 103

LSAHF/DLSAHF (Single/Double precision)
Solve a complex Hermitian system of linear equations with iterative refinement.

Usage
CALL LSAHF (N, A, LDA, B, X)

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficient matrix of the Hermitian
linear system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution to the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSAHF 2N2 + 3N units, or

DLSAHF 4N2 + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2AHF/DL2AHF. The reference is
CALL L2AHF (N, A, LDA, B, X, FAC, IPVT, CWK)

The additional arguments are as follows:

FAC — Complex work vector of length N2 containing information about

the U DU+ factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting
information for the factorization of A on output.

CWK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.
 4 2 The input matrix singular.
 4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.

104 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2AHF the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSAHF.
Additional memory allocation for FAC and option value
restoration are done automatically in LSAHF. Users directly
calling L2AHF can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSAHF or L2AHF. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSAHF temporarily replaces
IVAL(2) by IVAL(1). The routine L2CHF computes the
condition number if IVAL(2) = 2. Otherwise L2CHF skips this
computation. LSAHF restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSAHF solves systems of linear algebraic equations having a complex
Hermitian indefinite coefficient matrix. It first uses the routine LFCHF, page 108,

to compute a U DU+�factorization of the coefficient matrix and to estimate the
condition number of the matrix. D is a block diagonal matrix with blocks of order
1 or 2 and U is a matrix composed of the product of a permutation matrix and a
unit upper triangular matrix. The solution of the linear system is then found using
the iterative refinement routine LFIHF, page 114.

LSAHF fails if a block in D is singular or if the iterative refinement algorithm fails
to converge. These errors occur only if A is singular or very close to a singular
matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSAHF solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 105

Example

A system of three linear equations is solved. The coefficient matrix has complex
Hermitian form and the right-hand-side vector b has three elements.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 COMPLEX A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
C (1.0+1.0i 2.0+0.0i -5.0+1.0i)
C (4.0+0.0i -5.0-1.0i -2.0+0.0i)
C
C B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)
C
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
 & (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
C
 CALL LSAHF (N, A, LDA, B, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

LSLHF/DLSLHF (Single/Double precision)
Solve a complex Hermitian system of linear equations without iterative
refinement.

Usage
CALL LSLHF (N, A, LDA, B, X)

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficient matrix of the Hermitian
linear system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

106 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

X — Complex vector of length N containing the solution to the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSLHF 2N2 + 3N units, or

DLSLHF 4N2 + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2LHF/DL2LHF. The reference is
CALL L2LHF (N, A, LDA, B, X, FAC, IPVT, CWK)

The additional arguments are as follows:

FAC — Complex work vector of length N2 containing information about

the U DU+ factorization of A on output. If A is not needed, A can share
the same storage locations with FAC.

IPVT — Integer work vector of length N containing the pivoting
information for the factorization of A on output.

CWK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.
 4 2 The input matrix is singular.
 4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LHF the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSLHF.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLHF. Users directly
calling L2LHF can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLHF or L2LHF. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition
number is to be computed. Routine LSLHF temporarily

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 107

replaces IVAL(2) by IVAL(1). The routine L2CHF computes the
condition number if IVAL(2) = 2. Otherwise L2CHF skips this
computation. LSLHF restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSLHF solves systems of linear algebraic equations having a complex
Hermitian indefinite coefficient matrix. It first uses the routine LFCHF, page 108,

to compute a U DU+ factorization of the coefficient matrix. D is a block diagonal
matrix with blocks of order 1 or 2 and U is a matrix composed of the product of a
permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LFSHF,
page 112. LSLHF fails if a block in D is singular. This occurs only if A is singular
or very close to a singular matrix. If the coefficient matrix is ill-conditioned or
poorly scaled, it is recommended that LSAHF, page 103 be used.

Example

A system of three linear equations is solved. The coefficient matrix has complex
Hermitian form and the right-hand-side vector b has three elements.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 COMPLEX A(LDA,LDA), B(N), X(N)
C
C Set values for A and B
C
C A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
C (1.0+1.0i 2.0+0.0i -5.0+1.0i)
C (4.0+0.0i -5.0-1.0i -2.0+0.0i)
C
C B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)
C
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
 & (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
C
 CALL LSLHF (N, A, LDA, B, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3
(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

108 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFCHF/DLFCHF (Single/Double precision)
Compute the U DU+ factorization of a complex Hermitian matrix and estimate its
L1 condition number.

Usage
CALL LFCHF (N, A, LDA, FAC, LDFAC, IPVT, RCOND)

Arguments

N — Order of the matrix. (Input)

A — Complex N by N Hermitian matrix to be factored. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — Complex N by N matrix containing the information about the
factorization of the Hermitian matrix A. (Output)
Only the upper triangle of FAC is used. If A is not needed, A and FAC can share the
same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCHF 2N units, or
DLFCHF 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CHF/DL2CHF. The reference is
CALL L2CHF (N, A, LDA, FAC, LDFAC, IPVT, RCOND, CWK)

The additional argument is

CWK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 109

4 2 The input matrix is singular.
 4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.

Algorithm

Routine LFCHF performs a U DU+ factorization of a complex Hermitian
indefinite coefficient matrix. It also estimates the condition number of the matrix.

The U DU+ factorization is called the diagonal pivoting factorization.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since

it is expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCHF fails if A is singular or very close to a singular matrix.

The U DU+ factors are returned in a form that is compatible with routines
LFIHF, page 114, LFSHF, page 112, and LFDHF, page 117. To solve systems of
equations with multiple right-hand-side vectors, use LFCHF followed by either
LFIHF or LFSHF called once for each right-hand side. The routine LFDHF can be
called to compute the determinant of the coefficient matrix after LFCHF has
performed the factorization.

LFCHF is based on the LINPACK routine CSICO; see Dongarra et al. (1979).

Example

The inverse of a 3 × 3 complex Hermitian matrix is computed. LFCHF is called to
factor the matrix and to check for singularity or ill-conditioning. LFIHF
(page 114) is called to determine the columns of the inverse.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL RCOND
 COMPLEX A(LDA,LDA), AINV(LDA,N), FAC(LDA,LDA), RJ(N), RES(N)
C Set values for A
C
C A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
C (1.0+1.0i 2.0+0.0i -5.0+1.0i)
C (4.0+0.0i -5.0-1.0i -2.0+0.0i)
C
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
 & (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
C Set output unit number

110 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL UMACH (2, NOUT)
C Factor A and return the reciprocal
C condition number estimate
 CALL LFCHF (N, A, LDA, FAC, LDA, IPVT, RCOND)
C Print the estimate of the condition
C number
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0E0,0.0E0), RJ, 1)
 DO 10 J=1, N
 RJ(J) = (1.0E0, 0.0E0)
C RJ is the J-th column of the identity
C matrix so the following LFIHF
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFIHF (N, A, LDA, FAC, LDA, IPVT, RJ, AINV(1,J), RES)
 RJ(J) = (0.0E0, 0.0E0)
 10 CONTINUE
C Print the inverse
 CALL WRCRN (’AINV’, N, N, AINV, LDA, 0)
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.240
L1 Condition number = 4.175

 AINV
 1 2 3
1 (0.2000, 0.0000) (0.1200, 0.0400) (0.0800,-0.0400)
2 (0.1200,-0.0400) (0.1467, 0.0000) (-0.1267,-0.0067)
3 (0.0800, 0.0400) (-0.1267, 0.0067) (-0.0267, 0.0000)

LFTHF/DLFTHF (Single/Double precision)
Compute the U DU+ factorization of a complex Hermitian matrix.

Usage
CALL LFTHF (N, A, LDA, FAC, LDFAC, IPVT)

Arguments

N — Order of the matrix. (Input)

A — Complex N by N Hermitian matrix to be factored. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 111

FAC — Complex N by N matrix containing information about the factorization of
the Hermitian matrix A. (Output)
Only the upper triangle of FAC is used. If A is not needed, A and FAC can share the
same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the
factorization. (Output)

Comments

Informational errors
Type Code
 3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.
 4 2 The input matrix is singular.
 4 4 The input matrix is not Hermitian. It has a diagonal entry with

an imaginary part.

Algorithm

Routine LFTHF performs a U DU+ factorization of a complex Hermitian

indefinite coefficient matrix. The U DU+ factorization is called the diagonal
pivoting factorization.

LFTHF fails if A is singular or very close to a singular matrix.

The U DU+ factors are returned in a form that is compatible with routines
LFIHF, page 114, LFSHF, page 112, and LFDHF, page 117. To solve systems of
equations with multiple right-hand-side vectors, use LFTHF followed by either
LFIHF or LFSHF called once for each right-hand side. The routine LFDHF can be
called to compute the determinant of the coefficient matrix after LFTHF has
performed the factorization.

LFTHF is based on the LINPACK routine CSIFA; see Dongarra et al. (1979).

Example

The inverse of a 3 × 3 matrix is computed. LFTHF is called to factor the matrix
and check for singularity. LFSHF is called to determine the columns of the
inverse.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N)
 COMPLEX A(LDA,LDA), AINV(LDA,N), FAC(LDA,LDA), RJ(N)
C
C Set values for A
C
C A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)

112 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C (1.0+1.0i 2.0+0.0i -5.0+1.0i)
C (4.0+0.0i -5.0-1.0i -2.0+0.0i)
C
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
 & (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
C Factor A
 CALL LFTHF (N, A, LDA, FAC, LDA, IPVT)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0E0,0.0E0), RJ, 1)
 DO 10 J=1, N
 RJ(J) = (1.0E0, 0.0E0)
C RJ is the J-th column of the identity
C matrix so the following LFSHF
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSHF (N, FAC, LDA, IPVT, RJ, AINV(1,J))
 RJ(J) = (0.0E0, 0.0E0)
 10 CONTINUE
C Print the inverse
 CALL WRCRN (’AINV’, N, N, AINV, LDA, 0)
 END

Output
 AINV
 1 2 3
1 (0.2000, 0.0000) (0.1200, 0.0400) (0.0800,-0.0400)
2 (0.1200,-0.0400) (0.1467, 0.0000) (-0.1267,-0.0067)
3 (0.0800, 0.0400) (-0.1267, 0.0067) (-0.0267, 0.0000)

LFSHF/DLFSHF (Single/Double precision)
Solve a complex Hermitian system of linear equations given the U DU+
factorization of the coefficient matrix.

Usage
CALL LFSHF (N, FAC, LDFAC, IPVT, B, X)

Arguments

N — Number of equations. (Input)

FAC — Complex N by N matrix containing the factorization of the coefficient
matrix A as output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)
Only the upper triangle of FAC is used.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 113

IPVT — Vector of length N containing the pivoting information for the
factorization of A as output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.
(Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, B and X can share the same storage locations.

Algorithm

Routine LFSHF computes the solution of a system of linear algebraic equations
having a complex Hermitian indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undergo a U DU+
factorization. This may be done by calling either LFCHF, page 108, or LFTHF,
page 110.

LFSHF and LFIHF, page 114, both solve a linear system given its U DU+
factorization. LFIHF generally takes more time and produces a more accurate
answer than LFSHF. Each iteration of the iterative refinement algorithm used by
LFIHF calls LFSHF.

LFSHF is based on the LINPACK routine CSISL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successively. LFTHF (page 110) is called to
factor the coefficient matrix. LFSHF is called to compute the three solutions for
the three right-hand sides. In this case the coefficient matrix is assumed to be
well-conditioned and correctly scaled. Otherwise, it would be better to call LFCHF

(page 108) to perform the factorization, and LFIHF (page 114) to compute the
solutions.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), I
 COMPLEX A(LDA,LDA), B(N,3), X(N,3), FAC(LDA,LDA)
C
C Set values for A and B
C
C A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
C (1.0+1.0i 2.0+0.0i -5.0+1.0i)
C (4.0+0.0i -5.0-1.0i -2.0+0.0i)
C
C B = (7.0+32.0i -6.0+11.0i -2.0-17.0i)
C (-39.0-21.0i -5.5-22.5i 4.0+10.0i)
C (51.0+ 9.0i 16.0+17.0i -2.0+12.0i)
C
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
 & (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

114 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0), (-6.0,11.0),
 & (-5.5,-22.5), (16.0,17.0), (-2.0,-17.0), (4.0,10.0),
 & (-2.0,12.0)/
C Factor A
 CALL LFTHF (N, A, LDA, FAC, LDA, IPVT)
C Solve for the three right-hand sides
 DO 10 I=1, 3
 CALL LFSHF (N, FAC, LDA, IPVT, B(1,I), X(1,I))
 10 CONTINUE
C Print results
 CALL WRCRN (’X’, N, 3, X, N, 0)
 END

Output
 X
 1 2 3
1 (2.00, 1.00) (1.00, 0.00) (0.00, -1.00)
2 (-10.00, -1.00) (-3.00, -4.00) (0.00, -2.00)
3 (3.00, 5.00) (-0.50, 3.00) (0.00, -3.00)

LFIHF/DLFIHF (Single/Double precision)
Use iterative refinement to improve the solution of a complex Hermitian system
of linear equations.

Usage
CALL LFIHF (N, A, LDA, FAC, LDFAC, IPVT, B, X, RES)

Arguments

N — Number of equations. (Input)

A — Complex N by N matrix containing the coefficient matrix of the Hermitian
linear system. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

FAC — Complex N by N matrix containing the factorization of the coefficient
matrix A as output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)
Only the upper triangle of FAC is used.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the
factorization of A as output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.
(Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 115

X — Complex vector of length N containing the solution. (Output)

RES — Complex vector of length N containing the residual vector at the
improved solution. (Output)

Comments

Informational error
Type Code
 3 3 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

Routine LFIHF computes the solution of a system of linear algebraic equations
having a complex Hermitian indefinite coefficient matrix.

Iterative refinement is performed on the solution vector to improve the accuracy.
Usually almost all of the digits in the solution are accurate, even if the matrix is
somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo a U DU+
factorization. This may be done by calling either LFCHF, page 108, or LFTHF,
page 110.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIHF and LFSHF, page 112, both solve a linear system given its U DU+
factorization. LFIHF generally takes more time and produces a more accurate
answer than LFSHF. Each iteration of the iterative refinement algorithm used by
LFIHF calls LFSHF.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.2 + 0.2i
to the second element.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL RCOND
 COMPLEX A(LDA,LDA), B(N), X(N), FAC(LDA,LDA), RES(N)
C
C
C Set values for A and B
C
C A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
C (1.0+1.0i 2.0+0.0i -5.0+1.0i)
C (4.0+0.0i -5.0-1.0i -2.0+0.0i)
C
C B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)

116 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
 & (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
C Set output unit number
 CALL UMACH (2, NOUT)
C Factor A and compute the estimate
C of the reciprocal condition number
 CALL LFCHF (N, A, LDA, FAC, LDA, IPVT, RCOND)
 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND
C Solve, then perturb right-hand side
 DO 10 I=1, 3
 CALL LFIHF (N, A, LDA, FAC, LDA, IPVT, B, X, RES)
C Print results
 WRITE (NOUT,99999) I
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 CALL WRCRN (’RES’, 1, N, RES, 1, 0)
 B(2) = B(2) + (0.2E0, 0.2E0)
 10 CONTINUE
C
99998 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
99999 FORMAT (//,’ For problem ’, I1)
 END

Output
RCOND = 0.240
L1 Condition number = 4.175
For problem 1
 X
 1 2 3
(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

 RES
 1 2 3
(2.384E-07,-4.768E-07) (0.000E+00,-3.576E-07) (-1.421E-14, 1.421E-14)

For problem 2
 X
 1 2 3
(2.016, 1.032) (-9.971,-0.971) (2.973, 4.976)

 RES
 1 2 3
(2.098E-07,-1.764E-07) (6.231E-07,-1.518E-07) (1.272E-07, 4.005E-07)

For problem 3
 X
 1 2 3
(2.032, 1.064) (-9.941,-0.941) (2.947, 4.952)

 RES
 1 2 3
(4.196E-07,-3.529E-07) (2.925E-07,-3.632E-07) (2.543E-07, 3.242E-07)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 117

LFDHF/DLFDHF (Single/Double precision)
Compute the determinant of a complex Hermitian matrix given the U DU+
factorization of the matrix.

Usage
CALL LFDHF (N, FAC, LDFAC, IPVT, DET1, DET2)

Arguments

N — Number of equations. (Input)

FAC — Complex N by N matrix containing the factorization of the coefficient
matrix A as output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)
Only the upper triangle of FAC is used.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the
factorization of A as output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.
(Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Algorithm

Routine LFDHF computes the determinant of a complex Hermitian indefinite
coefficient matrix. To compute the determinant, the coefficient matrix must first

undergo a U DU+ factorization. This may be done by calling either LFCHF,
page 108, or LFTHF, page 110. Since det U = ±1, the formula det A = det U det

D det U+ = det D is used to compute the determinant. det D is computed as the
product of the determinants of its blocks.

LFDHF is based on the LINPACK routine CSIDI; see Dongarra et al. (1979).

Example

The determinant is computed for a complex Hermitian 3 × 3 matrix.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL DET1, DET2
 COMPLEX A(LDA,LDA), FAC(LDA,LDA)
C

118 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C Set values for A
C
C A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
C (1.0+1.0i 2.0+0.0i -5.0+1.0i)
C (4.0+0.0i -5.0-1.0i -2.0+0.0i)
C
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
 & (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
C Factor A
 CALL LFTHF (N, A, LDA, FAC, LDA, IPVT)
C Compute the determinant
 CALL LFDHF (N, FAC, LDA, IPVT, DET1, DET2)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
C
99999 FORMAT (’ The determinant is’, F5.1, ’ * 10**’, F2.0)
 END

Output
The determinant is -1.5 * 10**2.

LSLTR/DLSLTR (Single/Double precision)
Solve a real tridiagonal system of linear equations.

Usage
CALL LSLTR (N, C, D, E, B)

Arguments

N — Order of the tridiagonal matrix. (Input)

C — Vector of length N containing the subdiagonal of the tridiagonal matrix in
C(2) through C(N). (Input/Output)
On output C is destroyed.

D — Vector of length N containing the diagonal of the tridiagonal matrix.
(Input/Output)
On output D is destroyed.

E — Vector of length N containing the superdiagonal of the tridiagonal matrix in
E(1) through E(N − 1). (Input/Output)
On output E is destroyed.

B — Vector of length N containing the right-hand side of the linear system on
entry and the solution vector on return. (Input/Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 119

Comments

Informational error
Type Code
 4 2 An element along the diagonal became exactly zero during

execution.

Algorithm

Routine LSLTR factors and solves the real tridiagonal linear system Ax = b.
LSLTR is intended just for tridiagonal systems. The coefficient matrix does not
have to be symmetric. The algorithm is Gaussian elimination with partial pivoting
for numerical stability. See Dongarra (1979), LINPACK subprograms
SGTSL/DGTSL, for details. When computing on vector or parallel computers the
cyclic reduction algorithm, page 119, should be considered as an alternative
method to solve the system.

Example

A system of n = 4 linear equations is solved.
C Declaration of variables
 INTEGER N
 PARAMETER (N=4)
C
 REAL B(N), C(N), D(N), E(N)
 CHARACTER CLABEL(1)*6, FMT*8, RLABEL(1)*4
 EXTERNAL LSLTR, WRRRL
C
 DATA FMT/’(E13.6)’/
 DATA CLABEL/’NUMBER’/
 DATA RLABEL/’NONE’/
C C(*), D(*), E(*), and B(*)
C contain the subdiagonal, diagonal,
C superdiagonal and right hand side.
 DATA C/0.0, 0.0, -4.0, 9.0/, D/6.0, 4.0, -4.0, -9.0/
 DATA E/-3.0, 7.0, -8.0, 0.0/, B/48.0, -81.0, -12.0, -144.0/
C
C
 CALL LSLTR (N, C, D, E, B)
C Output the solution.
 CALL WRRRL (’Solution:’, 1, N, B, 1, 0, FMT, RLABEL, CLABEL)
 END

Output
Solution:
 1 2 3 4
0.400000E+01 -0.800000E+01 -0.700000E+01 0.900000E+01

120 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSLCR/DLSLCR (Single/Double precision)
Compute the L DU factorization of a real tridiagonal matrix A using a cyclic
reduction algorithm.

Usage
CALL LSLCR (N, C, A, B, IJOB, Y, U, IR, IS)

Arguments

N — Order of the matrix. (Input)
N must be greater than zero.

C — Array of size 2N containing the upper codiagonal of the N by N tridiagonal
matrix in the entries C(1), …, C(N − 1). (Input/Output)

A — Array of size 2N containing the diagonal of the N by N tridiagonal matrix in
the entries A(1), …, A(N). (Input/Output)

B — Array of size 2N containing the lower codiagonal of the N by N tridiagonal
matrix in the entries B(1), …, B(N − 1). (Input/Output)

IJOB — Flag to direct the desired factoring or solving step. (Input)

IJOB Action
1 Factor the matrix A and solve the system Ax = y, where y is stored in

array Y.
2 Do the solve step only. Use y from array Y. (The factoring step has

already been done.)
3 Factor the matrix A but do not solve a system.
4, 5, 6 Same meaning as with the value IJOB = 3. For efficiency, no error

checking is done on the validity of any input value.

Y — Array of size 2N containing the right hand side for the system Ax = y in the
order Y(1), …, Y(N). (Input/Output)

The vector x overwrites Y in storage.

U — Array of size 2N of flags that indicate any singularities of A. (Output)
A value U(I) = 1. means that a divide by zero would have occurred during the
factoring. Otherwise U(I) = 0.

IR — Array of integers that determine the sizes of loops performed in the cyclic
reduction algorithm. (Output)

IS — Array of integers that determine the sizes of loops performed in the cyclic
reduction algorithm. (Output)
The sizes of IR and IS must be at least log2(N) + 3.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 121

Algorithm

Routine LSLCR factors and solves the real tridiagonal linear system Ax = y. The
matrix is decomposed in the form A = L DU, where L is unit lower triangular, U
is unit upper triangular, and D is diagonal. The algorithm used for the
factorization is effectively that described in Kershaw (1982). More details, tests
and experiments are reported in Hanson (1990).

LSLCR is intended just for tridiagonal systems. The coefficient matrix does not
have to be symmetric. The algorithm amounts to Gaussian elimination, with no
pivoting for numerical stability, on the matrix whose rows and columns are
permuted to a new order. See Hanson (1990) for details. The expectation is that
LSLCR will outperform either LSLTR, page 118, or LSLPB, page 143, on vector or
parallel computers. Its performance may be inferior for small values of n, on
scalar computers, or high-performance computers with non-optimizing compilers.

Example

A system of n = 1000 linear equations is solved. The coefficient matrix is the
symmetric matrix of the second difference operation, and the right-hand-side
vector y is the first column of the identity matrix. Note that aQ��Q= 1. The solution
vector will be the first column of the inverse matrix of A. Then a new system is
solved where y is now the last column of the identity matrix. The solution vector
for this system will be the last column of the inverse matrix.

C Declare variables
 INTEGER LP, N, N2
 PARAMETER (LP=12, N=1000, N2=2*N)
C
 INTEGER I, IJOB, IR(LP), IS(LP), NOUT
 REAL A(N2), B(N2), C(N2), U(N2), Y1(N2), Y2(N2)
 EXTERNAL LSLCR, UMACH
C
C Define matrix entries:
 DO 10 I=1, N - 1
 C(I) = -1.E0
 A(I) = 2.E0
 B(I) = -1.E0
 Y1(I+1) = 0.E0
 Y2(I) = 0.E0
 10 CONTINUE
 A(N) = 1.E0
 Y1(1) = 1.E0
 Y2(N) = 1.E0
C
C Obtain decomposition of matrix and
C solve the first system:
 IJOB = 1
 CALL LSLCR (N, C, A, B, IJOB, Y1, U, IR, IS)
C
C Solve the second system with the
C decomposition ready:
 IJOB = 2

122 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL LSLCR (N, C, A, B, IJOB, Y2, U, IR, IS)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The value of n is: ’, N
 WRITE (NOUT,*) ’ Elements 1, n of inverse matrix columns 1 ’//
 & ’and n:’, Y1(1), Y2(N)
 END

Output
The value of n is: 1000
Elements 1, n of inverse matrix columns 1 and n: 1.00000 1000.000

LSARB/DLSARB (Single/Double precision)
Solve a real system of linear equations in band storage mode with iterative
refinement.

Usage
CALL LSARB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient
matrix in band storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX= B is solved.

IPATH = 2 means the system A7X = B is solved.

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is

LSARB (2 * NLCA + NUCA + 1) * N+ 2N units, or
DLSARB 2(2 * NLCA + NUCA + 1) * N+ 3N units.

Workspace may be explicitly provided, if desired, by use of
L2ARB/DL2ARB. The reference is

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 123

CALL L2ARB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FAC,
 IPVT, WK)

The additional arguments are as follows:

FAC — Work vector of length (2 * NLCA + NUCA + 1) * N containing
the LU factorization of A on output.

IPVT — Work vector of length N containing the pivoting information
for the LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2ARB the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSARB.
Additional memory allocation for FAC and option value
restoration are done automatically in LSARB. Users directly
calling L2ARB can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSARB or L2ARB. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSARB temporarily replaces
IVAL(2) by IVAL(1). The routine L2CRB computes the
condition number if IVAL(2) = 2. Otherwise L2CRB skips this
computation. LSARB restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSARB solves a system of linear algebraic equations having a real banded
coefficient matrix. It first uses the routine LFCRB, page 127, to compute an LU
factorization of the coefficient matrix and to estimate the condition number of the
matrix. The solution of the linear system is then found using the iterative
refinement routine LFIRB, page 134.

LSARB fails if U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if A is singular or very close to a singular matrix.

124 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSARB solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of four linear equations is solved. The coefficient matrix has real
banded form with 1 upper and 1 lower codiagonal. The right-hand-side vector b
has four elements.

C Declare variables
 INTEGER IPATH, LDA, N, NLCA, NUCA
 PARAMETER (IPATH=1, LDA=3, N=4, NLCA=1, NUCA=1)
 REAL A(LDA,N), B(N), X(N)
 EXTERNAL LSARB, WRRRN
C Set values for A in band form, and B
C
C A = (0.0 -1.0 -2.0 2.0)
C (2.0 1.0 -1.0 1.0)
C (-3.0 0.0 2.0 0.0)
C
C B = (3.0 1.0 11.0 -2.0)
C
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
 & 2.0, 1.0, 0.0/
 DATA B/3.0, 1.0, 11.0, -2.0/
C
 CALL LSARB (N, A, LDA, NLCA, NUCA, B, IPATH, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
2.000 1.000 -3.000 4.000

LSLRB/DLSLRB (Single/Double precision)
Solve a real system of linear equations in band storage mode without iterative
refinement.

Usage
CALL LSLRB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 125

A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient
matrix in band storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX= B is solved.

IPATH = 2 means the system A7X = B is solved.

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Comments

1. Automatic workspace usage is

LSLRB (2 * NLCA + NUCA + 1) * N + 2N units, or
DLSLRB 2(2 * NLCA + NUCA + 1) * N + 3N units.

Workspace may be explicitly provided, if desired, by use of
L2LRB/DL2LRB. The reference is

CALL L2LRB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FAC,
 IPVT, WK)

The additional arguments are as follows:

FAC — Work vector of length (2 * NLCA + NUCA + 1) * N containing
the LU factorization of A on output. If A is not needed, A can share the
first (NLCA + NUCA + 1) * N storage locations with FAC.

IPVT — Work vector of length N containing the pivoting information
for the LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LRB the leading
dimension of FAC is increased by IVAL(3) when N is a multiple

126 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSLRB.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLRB. Users directly
calling L2LRB can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLRB or L2LRB. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLRB temporarily replaces
IVAL(2) by IVAL(1). The routine L2CRB computes the
condition number if IVAL(2) = 2. Otherwise L2CRB skips this
computation. LSLRB restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSLRB solves a system of linear algebraic equations having a real banded
coefficient matrix. It first uses the routine LFCRB, page 127, to compute an LU
factorization of the coefficient matrix and to estimate the condition number of the
matrix. The solution of the linear system is then found using LFSRB, page 132.
LSLRB fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This occurs only if A is singular or very close to a singular matrix. If the
estimated condition number is greater than 1/ε (where ε is machine precision), a
warning error is issued. This indicates that very small changes in A can cause very
large changes in the solution x. If the coefficient matrix is ill-conditioned or
poorly scaled, it is recommended that LSARB, page 122, be used.

Example

A system of four linear equations is solved. The coefficient matrix has real
banded form with 1 upper and 1 lower codiagonal. The right-hand-side vector b
has four elements.

C Declare variables
 INTEGER IPATH, LDA, N, NLCA, NUCA
 PARAMETER (IPATH=1, LDA=3, N=4, NLCA=1, NUCA=1)
 REAL A(LDA,N), B(N), X(N)
 EXTERNAL LSLRB, WRRRN
C Set values for A in band form, and B
C
C A = (0.0 -1.0 -2.0 2.0)
C (2.0 1.0 -1.0 1.0)
C (-3.0 0.0 2.0 0.0)
C
C B = (3.0 1.0 11.0 -2.0)
C
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 127

 & 2.0, 1.0, 0.0/
 DATA B/3.0, 1.0, 11.0, -2.0/
C
 CALL LSLRB (N, A, LDA, NLCA, NUCA, B, IPATH, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
2.000 1.000 -3.000 4.000

LFCRB/DLFCRB (Single/Double precision)
Compute the LU factorization of a real matrix in band storage mode and estimate
its L1 condition number.

Usage
CALL LFCRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RCOND)

Arguments

N — Order of the matrix. (Input)

A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage
mode to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FAC — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the
matrix A. (Output)
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FAC
.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

128 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFCRB N units, or
DLFCRB 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CRB/DL2CRB. The reference is

CALL L2CRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT,
 RCOND, WK)

The additional argument is

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 4 2 The input matrix is singular.

Algorithm

Routine LFCRB performs an LU factorization of a real banded coefficient matrix.
It also estimates the condition number of the matrix. The LU factorization is done
using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting
in that the pivoting strategy is the same as if each row were scaled to have the
same ∞-norm.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1.
Since it is expensive to compute ||A-1||1, the condition number is only estimated.
The estimation algorithm is the same as used by LINPACK and is described by
Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LSCRB fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A is singular or very close to a singular matrix.
The LU factors are returned in a form that is compatible with routines LFIRB,
page 134, LFSRB, page 132, and LFDRB, page 136. To solve systems of equations
with multiple right-hand-side vectors, use LFCRB followed by either LFIRB or
LFSRB called once for each right-hand side. The routine LFDRB can be called to
compute the determinant of the coefficient matrix after LFCRB has performed the
factorization.

Let F be the matrix FAC, let mO= NLCA and let mX = NUCA. The first mO+ mX + 1
rows of F contain the triangular matrix U in band storage form. The lower mO

rows of F contain the multipliers needed to reconstruct L-1 .

LFCRB is based on the LINPACK routine SGBCO; see Dongarra et al. (1979).
SGBCO uses unscaled partial pivoting.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 129

Example

The inverse of a 4 × 4 band matrix with one upper and one lower codiagonal is
computed. LFCRB is called to factor the matrix and to check for singularity or ill-
conditioning. LFIRB (page 134) is called to determine the columns of the inverse.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA, NOUT
 PARAMETER (IPATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)
 REAL A(LDA,N), AINV(N,N), FAC(LDFAC,N), RCOND, RJ(N), RES(N)
 EXTERNAL LFCRB, LFIRB, SSET, UMACH, WRRRN
C Set values for A in band form
C A = (0.0 -1.0 -2.0 2.0)
C (2.0 1.0 -1.0 1.0)
C (-3.0 0.0 2.0 0.0)
C
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
 & 2.0, 1.0, 0.0/
C
 CALL LFCRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RCOND)
C Print the reciprocal condition number
C and the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0E0, RJ, 1)
 DO 10 J=1, N
 RJ(J) = 1.0E0
C RJ is the J-th column of the identity
C matrix so the following LFIRB
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFIRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RJ, IPATH,
 & AINV(1,J), RES)
 RJ(J) = 0.0E0
 10 CONTINUE
C Print results
 CALL WRRRN (’AINV’, N, N, AINV, N, 0)
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.065
L1 Condition number = 15.351

 AINV
 1 2 3 4
1 -1.000 -1.000 0.400 -0.800
2 -3.000 -2.000 0.800 -1.600
3 0.000 0.000 -0.200 0.400
4 0.000 0.000 0.400 0.200

130 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTRB/DLFTRB (Single/Double precision)
Compute the LU factorization of a real matrix in band storage mode.

Usage
CALL LFTRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)

Arguments

N — Order of the matrix. (Input)

A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage
mode to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FAC — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the
matrix A. (Output)
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FAC
.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization. (Output)

Comments

1. Automatic workspace usage is

LFTRB N units, or
DLFTRB 2N units.

Workspace may be explicitly provided, if desired, by use of
L2TRB/DL2TRB. The reference is

CALL L2TRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT,
 WK)

The additional argument is

WK — Work vector of length N used for scaling.

2 Informational error
Type Code
 4 2 The input matrix is singular.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 131

3. Integer Options with Chapter 10 Options Manager

21 The performance of the LU factorization may improve on high-
performance computers if the blocking factor, NB, is increased.
The current version of the routine allows NB to be reset to a
value no larger than 32. Default value is NB = 1.

Algorithm

The routine LFTRB performs an LU factorization of a real banded coefficient
matrix using Gaussian elimination with partial pivoting. A failure occurs if U, the
upper triangular factor, has a zero diagonal element. This can happen if A is close
to a singular matrix. The LU factors are returned in a form that is compatible with
routines LFIRB, page 134, LFSRB, page 132, and LFDRB, page 136. To solve
systems of equations with multiple right-hand-side vectors, use LFTRB followed
by either LFIRB or LFSRB called once for each right-hand side. The routine
LFDRB can be called to compute the determinant of the coefficient matrix after
LFTRB has performed the factorization

Let mO = NLCA, and let mX = NUCA. The first mO + mX + 1 rows of FAC contain the
triangular matrix U in band storage form. The next mO rows of FAC contain the

multipliers needed to produce L-1.

The routine LFTRB is based on the the blocked LU factorization algorithm for
banded linear systems given in Du Croz, et al. (1990). Level-3 BLAS invocations
were replaced by in-line loops. The blocking factor nb has the default value 1 in
LFTRB. It can be reset to any positive value not exceeding 32.

Example

A linear system with multiple right-hand sides is solved. LFTRB is called to factor
the coefficient matrix. LFSRB (page 132) is called to compute the two solutions
for the two right-hand sides. In this case the coefficient matrix is assumed to be
appropriately scaled. Otherwise, it may be better to call routine LFCRB (page 127)
to perform the factorization, and LFIRB (page 134) to compute the solutions.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA
 PARAMETER (IPATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL A(LDA,N), B(N,2), FAC(LDFAC,N), X(N,2)
 EXTERNAL LFTRB, LFSRB, WRRRN
C Set values for A in band form, and B
C
C A = (0.0 -1.0 -2.0 2.0)
C (2.0 1.0 -1.0 1.0)
C (-3.0 0.0 2.0 0.0)
C
C B = (12.0 -17.0)
C (-19.0 23.0)
C (6.0 5.0)

132 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C (8.0 5.0)
C
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
 & 2.0, 1.0, 0.0/
 DATA B/12.0, -19.0, 6.0, 8.0, -17.0, 23.0, 5.0, 5.0/
C Compute factorization
 CALL LFTRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)
C Solve for the two right-hand sides
 DO 10 J=1, 2
 CALL LFSRB (N, FAC, LDFAC, NLCA, NUCA, IPVT, B(1,J), IPATH,
 & X(1,J))
 10 CONTINUE
C Print results
 CALL WRRRN (’X’, N, 2, X, N, 0)
C
 END

Output
 X
 1 2
1 3.000 -8.000
2 -6.000 1.000
3 2.000 1.000
4 4.000 3.000

LFSRB/DLFSRB (Single/Double precision)
Solve a real system of linear equations given the LU factorization of the
coefficient matrix in band storage mode.

Usage
CALL LFSRB (N, FAC, LDFAC, NLCA, NUCA, IPVT, B, IPATH, X)

Arguments

N — Number of equations. (Input)

FAC — (2 ∗ NLCA + NUCA + 1) by N array containing the LU factorization of the
coefficient matrix A as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.
(Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization of A as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.
(Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 133

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A7X = B is solved.

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Algorithm

Routine LFSRB computes the solution of a system of linear algebraic equations
having a real banded coefficient matrix. To compute the solution, the coefficient
matrix must first undergo an LU factorization. This may be done by calling either
LFCRB, page 127, or LFTRB, page 130. The solution to Ax = b is found by solving
the banded triangular systems Ly = b and Ux = y. The forward elimination step
consists of solving the system Ly = b by applying the same permutations and
elimination operations to b that were applied to the columns of A in the
factorization routine. The backward substitution step consists of solving the
banded triangular system Ux = y for x.

LFSRB and LFIRB, page 134, both solve a linear system given its LU
factorization. LFIRB generally takes more time and produces a more accurate
answer than LFSRB. Each iteration of the iterative refinement algorithm used by
LFIRB calls LFSRB.

LFSRB is based on the LINPACK routine SGBSL; see Dongarra et al. (1979).

Example

The inverse is computed for a real banded 4 × 4 matrix with one upper and one
lower codiagonal. The input matrix is assumed to be well-conditioned, hence
LFTRB (page 130) is used rather than LFCRB.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA
 PARAMETER (IPATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL A(LDA,N), AINV(N,N), FAC(LDFAC,N), RJ(N)
 EXTERNAL LFSRB, LFTRB, SSET, WRRRN
C Set values for A in band form
C A = (0.0 -1.0 -2.0 2.0)
C (2.0 1.0 -1.0 1.0)
C (-3.0 0.0 2.0 0.0)
C
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
 & 2.0, 1.0, 0.0/
C
 CALL LFTRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0E0, RJ, 1)
 DO 10 J=1, N

134 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 RJ(J) = 1.0E0
C RJ is the J-th column of the identity
C matrix so the following LFSRB
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSRB (N, FAC, LDFAC, NLCA, NUCA, IPVT, RJ, IPATH,
 & AINV(1,J))
 RJ(J) = 0.0E0
 10 CONTINUE
C Print results
 CALL WRRRN (’AINV’, N, N, AINV, N, 0)
C
 END

Output
 AINV
 1 2 3 4
1 -1.000 -1.000 0.400 -0.800
2 -3.000 -2.000 0.800 -1.600
3 0.000 0.000 -0.200 0.400
4 0.000 0.000 0.400 0.200

LFIRB/DLFIRB (Single/Double precision)
Use iterative refinement to improve the solution of a real system of linear
equations in band storage mode.

Usage
CALL LFIRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, B,

 IPATH, X,RES)

Arguments

N — Number of equations. (Input)

A — (NUCA +NLCA +1) by N array containing the N by N banded coefficient
matrix in band storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FAC — (2 * NLCA +NUCA +1) by N array containing the LU factorization of the
matrix A as output from routines LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 135

IPVT — Vector of length N containing the pivoting information for the LU
factorization of A as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.
(Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A7X = B is solved.

X — Vector of length N containing the solution to the linear system. (Output)

RES — Vector of length N containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
 3 2 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

Routine LFIRB computes the solution of a system of linear algebraic equations
having a real banded coefficient matrix. Iterative refinement is performed on the
solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU
factorization. This may be done by calling either LFCRB, page 127, or LFTRB,
page 130.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIRB and LFSRB, page 132, both solve a linear system given its LU
factorization. LFIRB generally takes more time and produces a more accurate
answer than LFSRB. Each iteration of the iterative refinement algorithm used by
LFIRB calls LFSRB.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.5 to the
second element.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA, NOUT
 PARAMETER (IPATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL A(LDA,N), B(N), FAC(LDFAC,N), RCOND, RES(N), X(N)
 EXTERNAL LFCRB, LFIRB, UMACH, WRRRN

136 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C Set values for A in band form, and B
C
C A = (0.0 -1.0 -2.0 2.0)
C (2.0 1.0 -1.0 1.0)
C (-3.0 0.0 2.0 0.0)
C
C B = (3.0 5.0 7.0 -9.0)
C
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
 & 2.0, 1.0, 0.0/
 DATA B/3.0, 5.0, 7.0, -9.0/
C
 CALL LFCRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RCOND)
C Print the reciprocal condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Solve the three systems
 DO 10 J=1, 3
 CALL LFIRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, B,
 & IPATH, X, RES)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
C Perturb B by adding 0.5 to B(2)
 B(2) = B(2) + 0.5E0
 10 CONTINUE
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.065
L1 Condition number = 15.351
 X
 1 2 3 4
2.000 1.000 -5.000 1.000

 X
 1 2 3 4
1.500 0.000 -5.000 1.000

 X
 1 2 3 4
1.000 -1.000 -5.000 1.000

LFDRB/DLFDRB (Single/Double precision)
Compute the determinant of a real matrix in band storage mode given the LU
factorization of the matrix.

Usage
CALL LFDRB (N, FAC, LDFAC, NLCA, NUCA, IPVT, DET1, DET2)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 137

Arguments

N — Order of the matrix. (Input)

FAC — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the
matrix A as output from routine LFTRB/DLFTRB or LFCRB/DLFCRB. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

NLCA — Number of lower codiagonals in matrix A. (Input)

NUCA — Number of upper codiagonals in matrix A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization as output from routine LFTRB/DLFTRB or LFCRB/DLFCRB. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Algorithm

Routine LFDRB computes the determinant of a real banded coefficient matrix. To
compute the determinant, the coefficient matrix must first undergo an LU
factorization. This may be done by calling either LFCRB, page 127, or LFTRB,
page 130. The formula det A = det L det U is used to compute the determinant.
Since the determinant of a triangular matrix is the product of the diagonal
elements,

detU Uiii

N= =∏ 1

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FAC as a banded
matrix.) Since L is the product of triangular matrices with unit diagonals and of

permutation matrices, det L = (−1)N, where k is the number of pivoting
interchanges.

LFDRB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979).

Example

The determinant is computed for a real banded 4 × 4 matrix with one upper and
one lower codiagonal.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA, NOUT
 PARAMETER (IPATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL A(LDA,N), DET1, DET2, FAC(LDFAC,N)
 EXTERNAL LFTRB, LFDRB, UMACH
C Set values for A in band form
C A = (0.0 -1.0 -2.0 2.0)

138 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C (2.0 1.0 -1.0 1.0)
C (-3.0 0.0 2.0 0.0)
C
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
 & 2.0, 1.0, 0.0/
C
 CALL LFTRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)
C Compute the determinant
 CALL LFDRB (N, FAC, LDFAC, NLCA, NUCA, IPVT, DET1, DET2)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)
 END

Output
The determinant of A is 5.000 * 10**0.

LSAQS/DLSAQS (Single/Double precision)
Solve a real symmetric positive definite system of linear equations in band
symmetric storage mode with iterative refinement.

Usage
CALL LSAQS (N, A, LDA, NCODA, B, X)

Arguments

N — Number of equations. (Input)

A — NCODA + 1 by N array containing the N by N positive definite band
coefficient matrix in band symmetric storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is

LSAQS N(NCODA + 1) + N units, or
DLSAQS 2N(NCODA + 1) + 2N units.

Workspace may be explicitly provided, if desired, by use of
L2AQS/DL2AQS. The reference is

CALL L2AQS (N, A, LDA, NCODA, B, X, FAC, WK)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 139

The additional arguments are as follows:

FAC — Work vector of length NCODA + 1 by N containing the R7 R
factorization of A in band symmetric storage form on output.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2AQS the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSAQS.
Additional memory allocation for FAC and option value
restoration are done automatically in LSAQS.

Users directly calling L2AQS can allocate additional space for
FAC and set IVAL(3) and IVAL(4) so that memory bank
conflicts no longer cause inefficiencies. There is no
requirement that users change existing applications that use
LSAQS or L2AQS. Default values for the option are IVAL(*) =
1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSAQS temporarily replaces
IVAL(2) by IVAL(1). The routine L2CQS computes the
condition number if IVAL(2) = 2. Otherwise L2CQS skips this
computation. LSAQS restores the option. Default values for the
option are IVAL(*) = 1,2.

Algorithm

Routine LSAQS solves a system of linear algebraic equations having a real
symmetric positive definite band coefficient matrix. It first uses the routine

LFCQS, page 145, to compute an R7R Cholesky factorization of the coefficient
matrix and to estimate the condition number of the matrix. R is an upper
triangular band matrix. The solution of the linear system is then found using the
iterative refinement routine LFIQS, page 151.

LSAQS fails if any submatrix of R is not positive definite, if R has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

140 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSAQS solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of four linear equations is solved. The coefficient matrix has real
positive definite band form, and the right-hand-side vector b has four elements.

C Declare variables
 INTEGER LDA, N, NCODA
 PARAMETER (LDA=3, N=4, NCODA=2)
 REAL A(LDA,N), B(N), X(N)
C
C Set values for A in band symmetric form, and B
C
C A = (0.0 0.0 -1.0 1.0)
C (0.0 0.0 2.0 -1.0)
C (2.0 4.0 7.0 3.0)
C
C B = (6.0 -11.0 -11.0 19.0)
C
 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/
 DATA B/6.0, -11.0, -11.0, 19.0/
C Solve A*X = B
 CALL LSAQS (N, A, LDA, NCODA, B, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
 4.000 -6.000 2.000 9.000

LSLQS/DLSLQS (Single/Double precision)
Solve a real symmetric positive definite system of linear equations in band
symmetric storage mode without iterative refinement.

Usage
CALL LSLQS (N, A, LDA, NCODA, B, X)

Arguments

N — Number of equations. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 141

A — NCODA + 1 by N array containing the N by N positive definite band
symmetric coefficient matrix in band symmetric storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is

LSLQS N(NCODA + 1) + N units, or
DLSLQS 2N(NCODA + 1) + 2N units.

Workspace may be explicitly provided, if desired, by use of
L2LQS/DL2LQS. The reference is

CALL L2LQS (N, A, LDA, NCODA, B, X, FAC, WK)

The additional arguments are as follows:

FAC — Work vector of length NCODA + 1 by N containing the R7R
factorization of A in band symmetric form on output. If A is not needed,
A and FAC can share the same storage locations.

WK — Work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LQS the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSLQS.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLQS. Users directly
calling L2LQS can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLQS or L2LQS. Default values
for the option are IVAL(*) = 1,16,0,1.

142 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLQS temporarily replaces
IVAL(2) by IVAL(1). The routine L2CQS computes the
condition number if IVAL(2) = 2. Otherwise L2CQS skips this
computation. LSLQS restores the option. Default values for the
option are IVAL(*) = 1,2.

Algorithm

Routine LSLQS solves a system of linear algebraic equations having a real
symmetric positive definite band coefficient matrix. It first uses the routine

LFCQS, page 145, to compute an R7R Cholesky factorization of the coefficient
matrix and to estimate the condition number of the matrix. R is an upper
triangular band matrix. The solution of the linear system is then found using the
routine LFSQS, page 149.

LSLQS fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. If the coefficient matrix is ill-
conditioned or poorly scaled, it is recommended that LSAQS, page 138, be used.

Example

A system of four linear equations is solved. The coefficient matrix has real
positive definite band form and the right-hand-side vector b has four elements.

C Declare variables
 INTEGER LDA, N, NCODA
 PARAMETER (LDA=3, N=4, NCODA=2)
 REAL A(LDA,N), B(N), X(N)
C
C Set values for A in band symmetric form, and B
C
C A = (0.0 0.0 -1.0 1.0)
C (0.0 0.0 2.0 -1.0)
C (2.0 4.0 7.0 3.0)
C
C B = (6.0 -11.0 -11.0 19.0)
C
 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/
 DATA B/6.0, -11.0, -11.0, 19.0/
C Solve A*X = B
 CALL LSLQS (N, A, LDA, NCODA, B, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 143

Output
 X
 1 2 3 4
 4.000 -6.000 2.000 9.000

LSLPB/DLSLPB (Single/Double precision)
Compute the R7DR Cholesky factorization of a real symmetric positive definite
matrix A in codiagonal band symmetric storage mode. Solve a system Ax = b.

Usage
CALL LSLPB (N, A, LDA, NCODA, IJOB, U)

Arguments

N — Order of the matrix. (Input)
Must satisfy N > 0.

A — Array containing the N by N positive definite band coefficient matrix and
right hand side in codiagonal band symmetric storage mode. (Input/Output)
The number of array columns must be at least NCODA + 2. The number of columns
is not an input to this subprogram.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)
Must satisfy LDA ≥ N + NCODA.

NCODA — Number of upper codiagonals of matrix A. (Input)
Must satisfy NCODA ≥ 0 and NCODA < N.

IJOB — Flag to direct the desired factorization or solving step. (Input)

IJOB Meaning

1 factor the matrix A and solve the system Ax = b, where b is stored in
column NCODA + 2 of array A. The vector x overwrites b in storage.

2 solve step only. Use b as column NCODA + 2 of A. (The factorization step
has already been done.) The vector x overwrites b in storage.

3 factor the matrix A but do not solve a system.

4,5,6 same meaning as with the value IJOB = 3. For efficiency, no error
checking is done on values LDA, N, NCODA, and U(*).

U — Array of flags that indicate any singularities of A, namely loss of positive-
definiteness of a leading minor. (Output)
A value U(I) = 0. means that the leading minor of dimension I is not positive-
definite. Otherwise, U(I) = 1.

144 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

LSLPB NCODA units, or
DLSLPB 2 * NCODA units.

Workspace may be explicitly provided, if desired, by use of
L2LPB/DL2LPB The reference is

CALL L2LPB (N, A, LDA, NCODA, IJOB, U, WK)

The additional argument is

WK — Work vector of length NCODA.

2. Informational error
Type Code
 4 2 The input matrix is not positive definite.

Algorithm

Routine LSLPB factors and solves the symmetric positive definite banded linear

system Ax = b. The matrix is factored so that A = R7DR, where R is unit upper
triangular and D is diagonal. The reciprocals of the diagonal entries of D are
computed and saved to make the solving step more efficient. Errors will occur if
D has a non-positive diagonal element. Such events occur only if A is very close
to a singular matrix or is not positive definite.

LSLPB is efficient for problems with a small band width. The particular cases
NCODA = 0, 1, 2 are done with special loops within the code. These cases will give
good performance. See Hanson (1989) for details. When solving tridiagonal
systems, NCODA = 1 , the cyclic reduction code LSLCR, page 119, should be
considered as an alternative. The expectation is that LSLCR will outperform
LSLPB on vector or parallel computers. It may be inferior on scalar computers or
even parallel computers with non-optimizing compilers.

Example

A system of four linear equations is solved. The coefficient matrix has real
positive definite codiagonal band form and the right-hand-side vector b has four
elements.

C Declare variables
 INTEGER LDA, N, NCODA
 PARAMETER (N=4, NCODA=2, LDA=N+NCODA)
C
 INTEGER IJOB
 REAL A(LDA,NCODA+2), U(N)
 EXTERNAL LSLPB, WRRRN
C
C Set values for A and right side in
C codiagonal band symmetric form:
C
C A = (* * * *)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 145

C (* * * *)
C (2.0 * * 6.0)
C (4.0 0.0 * -11.0)
C (7.0 2.0 -1.0 -11.0)
C (3.0 -1.0 1.0 19.0)
C
 DATA ((A(I+NCODA,J),I=1,N),J=1,NCODA+2)/2.0, 4.0, 7.0, 3.0, 0.0,
 & 0.0, 2.0, -1.0, 0.0, 0.0, -1.0, 1.0, 6.0, -11.0, -11.0,
 & 19.0/
C Factor and solve A*x = b.
 IJOB = 1
 CALL LSLPB (N, A, LDA, NCODA, IJOB, U)
C Print results
 CALL WRRRN (’X’, 1, N, A(NCODA+1,NCODA+2), 1, 0)
 END

Output
 X
 1 2 3 4
 4.000 -6.000 2.000 9.000

LFCQS/DLFCQS (Single/Double precision)
Compute the R7 R Cholesky factorization of a real symmetric positive definite
matrix in band symmetric storage mode and estimate its L1 condition number.

Usage
CALL LFCQS (N, A, LDA, NCODA, FAC, LDFAC, RCOND)

Arguments

N — Order of the matrix. (Input)

A — NCODA + 1 by N array containing the N by N positive definite band
coefficient matrix in band symmetric storage mode to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals of A. (Input)

FAC — NCODA + 1 by N array containing the R7R factorization of the matrix A in
band symmetric form. (Output)
If A is not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

RCOND — Scalar containing an estimate of the reciprocal of the L1condition
number of A. (Output)

146 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

LFCQS N units, or
DLFCQS 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CQS/DL2CQS. The reference is

CALL L2CQS (N, A, LDA, NCODA, FAC, LDFAC, RCOND, WK)

The additional argument is

WK — Work vector of length N.

2. Informational errors
Type Code
 3 3 The input matrix is algorithmically singular.
 4 2 The input matrix is not positive definite.

Algorithm

Routine LFCQS computes an R7R Cholesky factorization and estimates the
condition number of a real symmetric positive definite band coefficient matrix. R
is an upper triangular band matrix.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1 ||1.
Since it is expensive to compute ||A-1||1, the condition number is only estimated.
The estimation algorithm is the same as used by LINPACK and is described by
Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCQS fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

The R7R factors are returned in a form that is compatible with routines LFIQS,
page 151, LFSQS, page 149, and LFDQS, page 153. To solve systems of equations
with multiple right-hand-side vectors, use LFCQS followed by either LFIQS or
LFSQS called once for each right-hand side. The routine LFDQS can be called to
compute the determinant of the coefficient matrix after LFCQS has performed the
factorization.

LFCQS is based on the LINPACK routine SPBCO; see Dongarra et al. (1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 147

Example

The inverse of a 4 × 4 symmetric positive definite band matrix with one
codiagonal is computed. LFCQS is called to factor the matrix and to check for
nonpositive definiteness or ill-conditioning. LFIQS (page 151) is called to
determine the columns of the inverse.

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA, NOUT
 PARAMETER (LDA=2, LDFAC=2, N=4, NCODA=1)
 REAL A(LDA,N), AINV(N,N), RCOND, FAC(LDFAC,N),
 & RES(N), RJ(N)
C
C Set values for A in band symmetric form
C
C A = (0.0 1.0 1.0 1.0)
C (2.0 2.5 2.5 2.0)
C
 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
C Factor the matrix A
 CALL LFCQS (N, A, LDA, NCODA, FAC, LDFAC, RCOND)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0E0, RJ, 1)
 DO 10 J=1, N
 RJ(J) = 1.0E0
C RJ is the J-th column of the identity
C matrix so the following LFIQS
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFIQS (N, A, LDA, NCODA, FAC, LDFAC, RJ, AINV(1,J), RES)
 RJ(J) = 0.0E0
 10 CONTINUE
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
 CALL WRRRN (’AINV’, N, N, AINV, N, 0)
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.160
L1 Condition number = 6.248
 AINV
 1 2 3 4
 1 0.6667 -0.3333 0.1667 -0.0833
 2 -0.3333 0.6667 -0.3333 0.1667
 3 0.1667 -0.3333 0.6667 -0.3333
 4 -0.0833 0.1667 -0.3333 0.6667

148 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTQS/DLFTQS (Single/Double precision)
Compute the R7R Cholesky factorization of a real symmetric positive definite
matrix in band symmetric storage mode.

Usage
CALL LFTQS (N, A, LDA, NCODA, FAC, LDFAC)

Arguments

N — Order of the matrix. (Input)

A — NCODA + 1 by N array containing the N by N positive definite band
coefficient matrix in band symmetric storage mode to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals of A. (Input)

FAC — NCODA + 1 by N array containing the R7�R factorization of the matrix A.
(Output)
If A s not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

Informational error
Type Code
 4 2 The input matrix is not positive definite.

Algorithm

Routine LFTQS computes an R7 R Cholesky factorization of a real symmetric
positive definite band coefficient matrix. R is an upper triangular band matrix.

LFTQS fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A is very close to a singular matrix
or to a matrix which is not positive definite.

The R7 R factors are returned in a form that is compatible with routines LFIQS,
page 151, LFSQS, page 149, and LFDQS, page 153. To solve systems of equations
with multiple right hand-side vectors, use LFTQS followed by either LFIQS or
LFSQS called once for each right-hand side. The routine LFDQS can be called to
compute the determinant of the coefficient matrix after LFTQS has performed the
factorization.

LFTQS is based on the LINPACK routine CPBFA; see Dongarra et al. (1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 149

Example

The inverse of a 3 × 3 matrix is computed. LFTQS is called to factor the matrix
and to check for nonpositive definiteness. LFSQS (page 149) is called to
determine the columns of the inverse.

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA
 PARAMETER (LDA=2, LDFAC=2, N=4, NCODA=1)
 REAL A(LDA,N), AINV(N,N), FAC(LDFAC,N), RJ(N)
C
C Set values for A in band symmetric form
C
C A = (0.0 1.0 1.0 1.0)
C (2.0 2.5 2.5 2.0)
C
 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
C Factor the matrix A
 CALL LFTQS (N, A, LDA, NCODA, FAC, LDFAC)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL SSET (N, 0.0E0, RJ, 1)
 DO 10 J=1, N
 RJ(J) = 1.0E0
C RJ is the J-th column of the identity
C matrix so the following LFSQS
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSQS (N, FAC, LDFAC, NCODA, RJ, AINV(1,J))
 RJ(J) = 0.0E0
 10 CONTINUE
C Print the results
 CALL WRRRN (’AINV’, N, N, AINV, N, 1)
 END

Output
 AINV
 1 2 3 4
1 0.6667 -0.3333 0.1667 -0.0833
2 0.6667 -0.3333 0.1667
3 0.6667 -0.3333
4 0.6667

LFSQS/DLFSQS (Single/Double precision)
Solve a real symmetric positive definite system of linear equations given the
factorization of the coefficient matrix in band symmetric storage mode.

Usage
CALL LFSQS (N, FAC, LDFAC, NCODA, B, X)

150 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Arguments

N — Number of equations. (Input)

FAC — NCODA + 1 by N array containing the R7 R factorization of the positive
definite band matrix A in band symmetric storage mode as output from subroutine
LFCQS/DLFCQS or LFTQS/DLFTQS. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X an share the same storage locations.

Comments

Informational error
Type Code
 4 1 The factored matrix is singular.

Algorithm

This routine computes the solution for a system of linear algebraic equations
having a real symmetric positive definite band coefficient matrix. To compute the

solution, the coefficient matrix must first undergo an R7 R factorization. This may
be done by calling either LFCQS, page 145, or LFTQS, page 148. R is an upper
triangular band matrix.

The solution to Ax = b is found by solving the triangular systems R7y = b and
Rx = y.

LFSQS and LFIQS, page 151, both solve a linear system given its R7 R
factorization. LFIQS generally takes more time and produces a more accurate
answer than LFSQS. Each iteration of the iterative refinement algorithm used by
LFIQS calls LFSQS.

LFSQS is based on the LINPACK routine SPBSL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successively. LFTQS (page 148) is called to
factor the coefficient matrix. LFSQS is called to compute the four solutions for the
four right-hand sides. In this case the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better to call LFCQS

(page 145) to perform the factorization, and LFIQS (page 151) to compute the
solutions.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 151

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA
 PARAMETER (LDA=3, LDFAC=3, N=4, NCODA=2)
 REAL A(LDA,N), B(N,4), FAC(LDFAC,N), X(N,4)
C
C
C Set values for A in band symmetric form, and B
C
C A = (0.0 0.0 -1.0 1.0)
C (0.0 0.0 2.0 -1.0)
C (2.0 4.0 7.0 3.0)
C
C B = (4.0 -3.0 9.0 -1.0)
C (6.0 10.0 29.0 3.0)
C (15.0 12.0 11.0 6.0)
C (-7.0 1.0 14.0 2.0)
C
 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/
 DATA B/4.0, 6.0, 15.0, -7.0, -3.0, 10.0, 12.0, 1.0, 9.0, 29.0,
 & 11.0, 14.0, -1.0, 3.0, 6.0, 2.0/
C Factor the matrix A
 CALL LFTQS (N, A, LDA, NCODA, FAC, LDFAC)
C Compute the solutions
 DO 10 I=1, 4
 CALL LFSQS (N, FAC, LDFAC, NCODA, B(1,I), X(1,I))
 10 CONTINUE
C Print solutions
 CALL WRRRN (’X’, N, 4, X, N, 0)
C
 END

Output
 X
 1 2 3 4
1 3.000 -1.000 5.000 0.000
2 1.000 2.000 6.000 0.000
3 2.000 1.000 1.000 1.000
4 -2.000 0.000 3.000 1.000

LFIQS/DLFIQS (Single/Double precision)
Use iterative refinement to improve the solution of a real symmetric positive
definite system of linear equations in band symmetric storage mode.

Usage
CALL LFIQS (N, A, LDA, NCODA, FAC, LDFAC, B, X, RES)

Arguments

N — Number of equations. (Input)

A — NCODA + 1 by N array containing the N by N positive definite band
coefficient matrix in band symmetric storage mode. (Input)

152 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals of A. (Input)

FAC — NCODA + 1 by N array containing the R7 R factorization of the matrix A
as output from routine LFCQS/DLFCQS or LFTQS/DLFTQS. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

X — Vector of length N containing the solution to the system. (Output)

RES — Vector of length N containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
 3 4 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

Routine LFIQS computes the solution of a system of linear algebraic equations
having a real symmetric positive-definite band coefficient matrix. Iterative
refinement is performed on the solution vector to improve the accuracy. Usually
almost all of the digits in the solution are accurate, even if the matrix is somewhat
ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an R7 R
factorization. This may be done by calling either IMSL routine LFCQS, page 145,
or LFTQS, page 148.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIQS and LFSQS, page 149, both solve a linear system given its R7 R
factorization. LFIQS generally takes more time and produces a more accurate
answer than LFSQS. Each iteration of the iterative refinement algorithm used by
LFIQS calls LFSQS.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.5 to the
second element.

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA, NOUT

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 153

 PARAMETER (LDA=2, LDFAC=2, N=4, NCODA=1)
 REAL A(LDA,N), B(N), RCOND, FAC(LDFAC,N), RES(N,3),
 & X(N,3)
C
C Set values for A in band symmetric form, and B
C
C A = (0.0 1.0 1.0 1.0)
C (2.0 2.5 2.5 2.0)
C
C B = (3.0 5.0 7.0 4.0)
C
 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
 DATA B/3.0, 5.0, 7.0, 4.0/
C Factor the matrix A
 CALL LFCQS (N, A, LDA, NCODA, FAC, LDFAC, RCOND)
C Print the estimated condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Compute the solutions
 DO 10 I=1, 3
 CALL LFIQS (N, A, LDA, NCODA, FAC, LDFAC, B, X(1,I), RES(1,I))
 B(2) = B(2) + 0.5E0
 10 CONTINUE
C Print solutions and residuals
 CALL WRRRN (’X’, N, 3, X, N, 0)
 CALL WRRRN (’RES’, N, 3, RES, N, 0)
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.160
L1 Condition number = 6.248
 X
 1 2 3
1 1.167 1.000 0.833
2 0.667 1.000 1.333
3 2.167 2.000 1.833
4 0.917 1.000 1.083

 RES
 1 2 3
1 7.947E-08 0.000E+00 9.934E-08
2 7.947E-08 0.000E+00 3.974E-08
3 7.947E-08 0.000E+00 1.589E-07
4 -3.974E-08 0.000E+00 -7.947E-08

LFDQS/DLFDQS (Single/Double precision)
Compute the determinant of a real symmetric positive definite matrix given the

R7R Cholesky factorization of the band symmetric storage mode.

Usage
CALL LFDQS (N, FAC, LDFAC, NCODA, DET1, DET2)

154 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Arguments

N — Number of equations. (Input)

FAC — NCODA + 1 by N array containing the R7 R factorization of the positive
definite band matrix, A, in band symmetric storage mode as output from
subroutine LFCQS/DLFCQS or LFTQS/DLFTQS. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

NCODA — Number of upper codiagonals of A. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Algorithm

Routine LFDQS computes the determinant of a real symmetric positive-definite
band coefficient matrix. To compute the determinant, the coefficient matrix must

first undergo an R7 R factorization. This may be done by calling either IMSL

routine LFCQS, page 145, or LFTQS, page 148. The formula det A = det R7�det R

= (det R)2 is used to compute the determinant. Since the determinant of a
triangular matrix is the product of the diagonal elements,

det R Riii

N= =∏ 1

LFDQS is based on the LINPACK routine SPBDI; see Dongarra et al. (1979).

Example

The determinant is computed for a real positive definite 4 × 4 matrix with 2
codiagonals.

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA, NOUT
 PARAMETER (LDA=3, N=4, LDFAC=3, NCODA=2)
 REAL A(LDA,N), DET1, DET2, FAC(LDFAC,N)
C
C Set values for A in band symmetric form
C
C A = (0.0 0.0 1.0 -2.0)
C (0.0 2.0 1.0 3.0)
C (7.0 6.0 6.0 8.0)
C
 DATA A/2*0.0, 7.0, 0.0, 2.0, 6.0, 1.0, 1.0, 6.0, -2.0, 3.0, 8.0/
C Factor the matrix
 CALL LFTQS (N, A, LDA, NCODA, FAC, LDFAC)
C Compute the determinant
 CALL LFDQS (N, FAC, LDFAC, NCODA, DET1, DET2)
C Print results

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 155

 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
C
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
 END

Output
The determinant of A is 1.186 * 10**3.

LSLTQ/DLSLTQ (Single/Double precision)
Solve a complex tridiagonal system of linear equations.

Usage
CALL LSLTQ (N, C, D, E, B)

Arguments

N — Order of the tridiagonal matrix. (Input)

C — Complex vector of length N containing the subdiagonal of the tridiagonal
matrix in C(2) through C(N). (Input/Output)
On output C is destroyed.

D — Complex vector of length N containing the diagonal of the tridiagonal
matrix. (Input/Output)
On output D is destroyed.

E — Complex vector of length N containing the superdiagonal of the tridiagonal
matrix in E(1) through E(N − 1). (Input/Output)
On output E is destroyed.

B — Complex vector of length N containing the right-hand side of the linear
system on entry and the solution vector on return. (Input/Output)

Comments

Informational error
Type Code
 4 2 An element along the diagonal became exactly zero during

execution.

Algorithm

Routine LSLTQ factors and solves the complex tridiagonal linear system Ax = b.
LSLTQ is intended just for tridiagonal systems. The coefficient matrix does not
have to be symmetric. The algorithm is Gaussian elimination with pivoting for
numerical stability. See Dongarra et al. (1979), LINPACK subprograms
CGTSL/ZGTSL, for details. When computing on vector or parallel computers the

156 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

cyclic reduction algorithm, page 156, should be considered as an alternative
method to solve the system.

Example

A system of n = 4 linear equations is solved.
C Declaration of variables
 INTEGER N
 PARAMETER (N=4)
C
 COMPLEX B(N), C(N), D(N), E(N)
 CHARACTER CLABEL(1)*6, FMT*8, RLABEL(1)*4
 EXTERNAL LSLTQ, WRCRL
C
 DATA FMT/’(E13.6)’/
 DATA CLABEL/’NUMBER’/
 DATA RLABEL/’NONE’/
C C(*), D(*), E(*) and B(*)
C contain the subdiagonal,
C diagonal, superdiagonal and
C right hand side.
 DATA C/(0.0,0.0), (-9.0,3.0), (2.0,7.0), (7.0,-4.0)/
 DATA D/(3.0,-5.0), (4.0,-9.0), (-5.0,-7.0), (-2.0,-3.0)/
 DATA E/(-9.0,8.0), (1.0,8.0), (8.0,3.0), (0.0,0.0)/
 DATA B/(-16.0,-93.0), (128.0,179.0), (-60.0,-12.0), (9.0,-108.0)/
C
C
 CALL LSLTQ (N, C, D, E, B)
C Output the solution.
 CALL WRCRL (’Solution:’, 1, N, B, 1, 0, FMT, RLABEL, CLABEL)
 END

Output
Solution:
 1 2
(-0.400000E+01,-0.700000E+01) (-0.700000E+01, 0.400000E+01)
 3 4
(0.700000E+01,-0.700000E+01) (0.900000E+01, 0.200000E+01)

LSLCQ/DLSLCQ (Single/Double precision)
Compute the LDU factorization of a complex tridiagonal matrix A using a cyclic
reduction algorithm.

Usage
CALL LSLCQ (N, C, A, B, IJOB, Y, U, IR, IS)

Arguments

N — Order of the matrix. (Input)
N must be greater than zero.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 157

C — Complex array of size 2N containing the upper codiagonal of the N by N
tridiagonal matrix in the entries C(1), …, C(N − 1). (Input/Output)

A — Complex array of size 2N containing the diagonal of the N by N tridiagonal
matrix in the entries A(1), …, A(N − 1). (Input/Output)

B — Complex array of size 2N containing the lower codiagonal of the N by N
tridiagonal matrix in the entries B(1), …, B(N − 1). (Input/Output)

IJOB — Flag to direct the desired factoring or solving step. (Input)

IJOB Action
1 Factor the matrix A and solve the system Ax = y, where y is stored in

array Y.
2 Do the solve step only. Use y from array Y. (The factoring step has

already been done.)
3 Factor the matrix A but do not solve a system.
4 Same meaning as with the value IJOB = 3. For efficiency, no error

checking is done on the validity of any input value.

Y — Complex array of size 2N containing the right-hand side of the system Ax = y
in the order Y(1),…,Y(N). (Input/Output)
The vector x overwrites Y in storage.

U — Real array of size 2N of flags that indicate any singularities of A. (Output)
A value U(I) = 1. means that a divide by zero would have occurred during the
factoring. Otherwise U(I) = 0.

IR — Array of integers that determine the sizes of loops performed in the cyclic
reduction algorithm. (Output)

IS — Array of integers that determine the sizes of loops performed in the cyclic
reduction algorithm. (Output)
The sizes of these arrays must be at least log2(N) + 3.

Algorithm

Routine LSLCQ factors and solves the complex tridiagonal linear system Ax = y.
The matrix is decomposed in the form A = LDU, where L is unit lower triangular,
U is unit upper triangular, and D is diagonal. The algorithm used for the
factorization is effectively that described in Kershaw (1982). More details, tests
and experiments are reported in Hanson (1990).

LSLCQ is intended just for tridiagonal systems. The coefficient matrix does not
have to be Hermitian. The algorithm amounts to Gaussian elimination, with no
pivoting for numerical stability, on the matrix whose rows and columns are
permuted to a new order. See Hanson (1990) for details. The expectation is that
LSLCQ will outperform either LSLTQ, page 155, or LSLQB, page 181, on vector or
parallel computers. Its performance may be inferior for small values of n, on
scalar computers, or high-performance computers with non-optimizing compilers.

158 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example

A real skew-symmetric tridiagonal matrix, A, of dimension n = 1000 is given by
cN = −k, aN = 0, and bN = k, k = 1, …, n − 1, aQ = 0. This matrix will have
eigenvalues that are purely imaginary. The eigenvalue closest to the imaginary
unit is required. This number is obtained by using inverse iteration to
approximate a complex eigenvector y. The eigenvalue is approximated by

λ = y+ Ay/y+ y. (This example is contrived in the sense that the given tridiagonal
skew-symmetric matrix eigenvalue problem is essentially equivalent to the
tridiagonal symmetic eigenvalue problem where the cN = k and the other data are
unchanged.)

C Declare variables
 INTEGER LP, N, N2
 PARAMETER (LP=12, N=1000, N2=2*N)
C
 INTEGER I, IJOB, IR(LP), IS(LP), K, NOUT
 REAL AIMAG, U(N2)
 COMPLEX A(N2), B(N2), C(N2), CMPLX, CONJG, S, T, Y(N2)
 INTRINSIC AIMAG, CMPLX, CONJG
 EXTERNAL LSLCQ, UMACH
C Define entries of skew-symmetric
C matrix, A:
 DO 10 I=1, N - 1
 C(I) = -I
C This amounts to subtracting the
C positive imaginary unit from the
C diagonal. (The eigenvalue closest
C to this value is desired.)
 A(I) = CMPLX(0.E0,-1.0E0)
 B(I) = I
C This initializes the approximate
C eigenvector.
 Y(I) = 1.E0
 10 CONTINUE
 A(N) = CMPLX(0.E0,-1.0E0)
 Y(N) = 1.E0
C First step of inverse iteration
C follows. Obtain decomposition of
C matrix and solve the first system:
 IJOB = 1
 CALL LSLCQ (N, C, A, B, IJOB, Y, U, IR, IS)
C
C Next steps of inverse iteration
C follow. Solve the system again with
C the decomposition ready:
 IJOB = 2
 DO 20 K=1, 3
 CALL LSLCQ (N, C, A, B, IJOB, Y, U, IR, IS)
 20 CONTINUE
C
C Compute the Raleigh quotient to
C estimate the eigenvalue closest to
C the positive imaginary unit. After
C the approximate eigenvector, y, is
C computed, the estimate of the

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 159

C eigenvalue is ctrans(y)*A*y/t,
C where t = ctrans(y)*y.
 S = -CONJG(Y(1))*Y(2)
 T = CONJG(Y(1))*Y(1)
 DO 30 I=2, N - 1
 S = S + CONJG(Y(I))*((I-1)*Y(I-1)-I*Y(I+1))
 T = T + CONJG(Y(I))*Y(I)
 30 CONTINUE
 S = S + CONJG(Y(N))*(N-1)*Y(N-1)
 T = T + CONJG(Y(N))*Y(N)
 S = S/T
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The value of n is: ’, N
 WRITE (NOUT,*) ’ Value of approximate imaginary eigenvalue:’,
 & AIMAG(S)
 STOP
 END

Output
The value of n is: 1000
Value of approximate imaginary eigenvalue: 1.03811

LSACB/DLSACB (Single/Double precision)
Solve a complex system of linear equations in band storage mode with iterative
refinement.

Usage
CALL LSACB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — Complex NLCA + NUCA + 1 by N array containing the N by N banded
coefficient matrix in band storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A+X = B is solved.

X — Complex vector of length N containing the solution to the linear system.
(Output)

160 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

LSACB 2N(2 * NLCA + NUCA + 1) + 3N units, or
DLSACB 4N(2 * NLCA + NUCA + 1) + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2ACB/DL2ACB The reference is

CALL L2ACB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FAC,
 IPVT, WK)

The additional arguments are as follows:

FAC — Complex work vector of length (2 * NLCA + NUCA + 1) * N
containing the LU factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting
information for the LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 3 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2ACB the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSACB.
Additional memory allocation for FAC and option value
restoration are done automatically in LSACB. Users directly
calling L2ACB can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSACB or L2ACB. Default values
for the option are IVAL(*) = 1,16,0,1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSACB temporarily replaces
IVAL(2) by IVAL(1). The routine L2CCB computes the
condition number if IVAL(2) = 2. Otherwise L2CCB skips this
computation. LSACB restores the option. Default values for the
option are IVAL(*) = 1,2.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 161

Algorithm

Routine LSACB solves a system of linear algebraic equations having a complex
banded coefficient matrix. It first uses the routine LFCCB, page 164, to compute
an LU factorization of the coefficient matrix and to estimate the condition number
of the matrix. The solution of the linear system is then found using the iterative
refinement routine LFICB, page 172.

LSACB fails if U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSACB solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of four linear equations is solved. The coefficient matrix has complex
banded form with one upper and one lower codiagonal. The right-hand-side
vector b has four elements.

C Declare variables
 INTEGER IPATH, LDA, N, NLCA, NUCA
 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)
 COMPLEX A(LDA,N), B(N), X(N)
C
C Set values for A in band form, and B
C
C A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
C (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
C (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
C
C B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)
C
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
 & (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
 & (1.0,-1.0), (0.0,0.0)/
 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/
C Solve A*X = B
 IPATH = 1
 CALL LSACB (N, A, LDA, NLCA, NUCA, B, IPATH, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

162 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSLCB/DLSLCB (Single/Double precision)
Solve a complex system of linear equations in band storage mode without
iterative refinement.

Usage
CALL LSLCB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — Complex NLCA + NUCA + 1 by N array containing the N by N banded
coefficient matrix in band storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A+X = B is solved.

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, then B and X may share the same storage locations.

Comments

1. Automatic workspace usage is

LSLCB 2N(2 * NLCA + NUCA + 1) + 3N units, or
DLSLCB 4N(2 * NLCA + NUCA + 1) + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2LCB/DL2LCB The reference is

CALL L2LCB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FAC,
 IPVT, WK)

The additional arguments are as follows:

FAC — Complex work vector of length (2 * NLCA + NUCA + 1) * N
containing the LU factorization of A on output. If A is not needed, A can
share the first (NLCA + NUCA + 1) * N locations with FAC.

IPVT — Integer work vector of length N containing the pivoting
information for the LU factorization of A on output.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 163

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 3 The input matrix is too ill-conditioned. The solution

might not be accurate.
 4 2 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LCB the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSLCB.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLCB. Users directly
calling L2LCB can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLCB or L2LCB. Default values
for the option are IVAL(*) = 1,16,0,1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLCB temporarily replaces
IVAL(2) by IVAL(1). The routine L2CCB computes the
condition number if IVAL(2) = 2. Otherwise L2CCB skips this
computation. LSLCB restores the option. Default values for the
option are IVAL(*) = 1,2.

Algorithm

Routine LSLCB solves a system of linear algebraic equations having a complex
banded coefficient matrix. It first uses the routine LFCCB, page 164, to compute
an LU factorization of the coefficient matrix and to estimate the condition number
of the matrix. The solution of the linear system is then found using LFSCB, page
170.

LSLCB fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This occurs only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A

can cause very large changes in the solution x. If the coefficient matrix is ill-
conditioned or poorly scaled, it is recommended that LSACB, page 159, be used.

164 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example

A system of four linear equations is solved. The coefficient matrix has complex
banded form with one upper and one lower codiagonal. The right-hand-side
vector b has four elements.

C Declare variables
 INTEGER IPATH, LDA, N, NLCA, NUCA
 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)
 COMPLEX A(LDA,N), B(N), X(N)
C
C Set values for A in band form, and B
C
C A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
C (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
C (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
C
C B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)
C
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
 & (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
 & (1.0,-1.0), (0.0,0.0)/
 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/
C Solve A*X = B
 IPATH = 1
 CALL LSLCB (N, A, LDA, NLCA, NUCA, B, IPATH, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

LFCCB/DLFCCB (Single/Double precision)
Compute the LU factorization of a complex matrix in band storage mode and
estimate its L1 condition number.

Usage
CALL LFCCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RCOND)

Arguments

N — Order of the matrix. (Input)

A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band
storage mode to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 165

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FAC — Complex 2 * NLCA + NUCA + 1 by N array containing the LU
factorization of the matrix A. (Output)
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FAC
.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCCB 2N units, or
DLFCCB 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CCB/DL2CCB. The reference is

CALL L2CCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC,
 IPVT, RCOND, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 4 2 The input matrix is singular.

Algorithm

Routine LFCCB performs an LU factorization of a complex banded coefficient
matrix. It also estimates the condition number of the matrix. The LU factorization
is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to
have the same ∞-norm.

The L1 condition number of the matrix A is defined to be κ(A) = ||A||1||A-1||1. Since

it is expensive to compute ||A-1||1, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

166 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCCB fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with IMSL routines
LFICB, page 172, LFSCB, page 170, and LFDCB, page 175. To solve systems of
equations with multiple right-hand-side vectors, use LFCCB followed by either
LFICB or LFSCB called once for each right-hand side. The routine LFDCB can be
called to compute the determinant of the coefficient matrix after LFCCB has
performed the factorization.

Let F be the matrix FAC, let mO�= NLCA and let mX = NUCA. The first mO� + mX + 1
rows of F contain the triangular matrix U in band storage form. The lower mO

rows of F contain the multipliers needed to reconstruct L-1.

LFCCB is based on the LINPACK routine CGBCO; see Dongarra et al. (1979).
CGBCO uses unscaled partial pivoting.

Example

The inverse of a 4 × 4 band matrix with one upper and one lower codiagonal is
computed. LFCCB is called to factor the matrix and to check for singularity or ill-
conditioning. LFICB is called to determine the columns of the inverse.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA, NOUT
 PARAMETER (IPATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL RCOND
 COMPLEX A(LDA,N), AINV(N,N), FAC(LDFAC,N), RJ(N), RES(N)
C
C Set values for A in band form
C
C A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
C (0.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
C (6.0+1.0i 4.0+1.0i 0.0+2.0i 0.0+0.0i)
C
 DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
 & (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
 & (1.0,-1.0), (0.0,0.0)/
C
 CALL LFCCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RCOND)
C Print the reciprocal condition number
C and the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0E0,0.0E0), RJ, 1)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 167

 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
C RJ is the J-th column of the identity
C matrix so the following LFICB
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFICB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RJ, IPATH,
 & AINV(1,J), RES)
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
C Print results
 CALL WRCRN (’AINV’, N, N, AINV, N, 0)
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 condition number = ’,F6.3)
 END

Output
RCOND = 0.022
L1 condition number = 45.933
 AINV
 1 2 3 4
 1 (0.562, 0.170) (0.125, 0.260) (-0.385,-0.135) (-0.239,-1.165)
 2 (0.122, 0.421) (-0.195, 0.094) (0.101,-0.289) (0.874,-0.179)
 3 (0.034, 0.904) (-0.437, 0.090) (-0.153,-0.527) (1.087,-1.172)
 4 (0.938, 0.870) (-0.347, 0.527) (-0.679,-0.374) (0.415,-1.759)

LFTCB/DLFTCB (Single/Double precision)
Compute the LU factorization of a complex matrix in band storage mode.

Usage
CALL LFTCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)

Arguments

N — Order of the matrix. (Input)

A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band
storage mode to be factored. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FAC — Complex 2 * NLCA + NUCA + 1 by N array containing the LU
factorization of the matrix A. (Output)
If A is not needed, A can share the first (NLCA + NUCA + 1) ∗ N locations with FAC.

168 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Integer vector of length N containing the pivoting information for the LU
factorization. (Output)

Comments

1. Automatic workspace usage is

LFTCB 2N units, or
DLFTCB 4N units.

Workspace may be explicitly provided, if desired, by use of
L2TCB/DL2TCB The reference is

CALL L2TCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT,
 WK)

The additional argument is

WK — Complex work vector of length N used for scaling.

2. Informational error
Type Code
 4 2 The input matrix is singular.

Algorithm

Routine LFTCB performs an LU factorization of a complex banded coefficient
matrix. The LU factorization is done using scaled partial pivoting. Scaled partial
pivoting differs from partial pivoting in that the pivoting strategy is the same as if
each row were scaled to have the same ∞-norm.

LFTCB fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFICB,
page 172, LFSCB, page 170, and LFDCB, page 175. To solve systems of equations
with multiple right-hand-side vectors, use LFTCB followed by either LFICB or
LFSCB called once for each right-hand side. The routine LFDCB can be called to
compute the determinant of the coefficient matrix after LFTCB has performed the
factorization.

Let F be the matrix FAC, let mO = NLCA and let mX = NUCA. The first mO + mX + 1
rows of F contain the triangular matrix U in band storage form. The lower mO

rows of F contain the multipliers needed to reconstruct L-1. LFTCB is based on the
LINPACK routine CGBFA; see Dongarra et al. (1979). CGBFA uses unscaled
partial pivoting.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 169

Example

A linear system with multiple right-hand sides is solved. LFTCB is called to factor
the coefficient matrix. LFSCB (page 170) is called to compute the two solutions
for the two right-hand sides. In this case the coefficient matrix is assumed to be
well-conditioned and correctly scaled. Otherwise, it would be better to call LFCCB
(page 164) to perform the factorization, and LFICB (page 172) to compute the
solutions.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA
 PARAMETER (IPATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 COMPLEX A(LDA,N), B(N,2), FAC(LDFAC,N), X(N,2)
C
C Set values for A in band form, and B
C
C A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
C (0.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
C (6.0+1.0i 4.0+1.0i 0.0+2.0i 0.0+0.0i)
C
C B = (-4.0-5.0i 16.0-4.0i)
C (9.5+5.5i -9.5+19.5i)
C (9.0-9.0i 12.0+12.0i)
C (0.0+8.0i -8.0-2.0i)
C
 DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
 & (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
 & (1.0,-1.0), (0.0,0.0)/
 DATA B/(-4.0,-5.0), (9.5,5.5), (9.0,-9.0), (0.0,8.0),
 & (16.0,-4.0), (-9.5,19.5), (12.0,12.0), (-8.0,-2.0)/
C
 CALL LFTCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)
C Solve for the two right-hand sides
 DO 10 J=1, 2
 CALL LFSCB (N, FAC, LDFAC, NLCA, NUCA, IPVT, B(1,J), IPATH,
 & X(1,J))
 10 CONTINUE
C Print results
 CALL WRCRN (’X’, N, 2, X, N, 0)
C
 END

Output
 X
 1 2
1 (3.000, 0.000) (0.000, 4.000)
2 (-1.000, 1.000) (1.000,-1.000)
3 (3.000, 0.000) (0.000, 4.000)
4 (-1.000, 1.000) (1.000,-1.000)

170 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFSCB/DLFSCB (Single/Double precision)
Solve a complex system of linear equations given the LU factorization of the
coefficient matrix in band storage mode.

Usage
CALL LFSCB (N, FAC, LDFAC, NLCA, NUCA, IPVT, B, IPATH, X)

Arguments

N — Number of equations. (Input)

FAC — Complex 2 * NLCA + NUCA + 1 by N array containing the LU
factorization of the coefficient matrix A as output from subroutine LFCCB/DLFCCB
or LFTCB/DLFTCB. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization of A as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB.
(Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A+X = B is solved.

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, B and X can share the same storage locations.

Algorithm

Routine LFSCB computes the solution of a system of linear algebraic equations
having a complex banded coefficient matrix. To compute the solution, the
coefficient matrix must first undergo an LU factorization. This may be done by
calling either LFCCB, page 164, or LFTCB, page 167. The solution to Ax = b is
found by solving the banded triangular systems Ly = b and Ux = y. The forward
elimination step consists of solving the system Ly = b by applying the same
permutations and elimination operations to b that were applied to the columns of
A in the factorization routine. The backward substitution step consists of solving
the banded triangular system Ux = y for x.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 171

LFSCB and LFICB, page 172, both solve a linear system given its LU
factorization. LFICB generally takes more time and produces a more accurate
answer than LFSCB. Each iteration of the iterative refinement algorithm used by
LFICB calls LFSCB.

LFSCB is based on the LINPACK routine CGBSL; see Dongarra et al. (1979).

Example

The inverse is computed for a real banded 4 × 4 matrix with one upper and one
lower codiagonal. The input matrix is assumed to be well-conditioned; hence
LFTCB (page 167) is used rather than LFCCB.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA
 PARAMETER (LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 COMPLEX A(LDA,N), AINV(N,N), FAC(LDFAC,N), RJ(N)
C
C Set values for A in band form
C
C A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
C (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
C (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
C
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
 & (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
 & (1.0,-1.0), (0.0,0.0)/
C
 CALL LFTCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0E0,0.0E0), RJ, 1)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
C RJ is the J-th column of the identity
C matrix so the following LFSCB
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 IPATH = 1
 CALL LFSCB (N, FAC, LDFAC, NLCA, NUCA, IPVT, RJ, IPATH,
 & AINV(1,J))
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
C Print results
 CALL WRCRN (’AINV’, N, N, AINV, N, 0)
C
 END

172 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output
 AINV
 1 2 3 4
1 (0.165,-0.341) (0.376,-0.094) (-0.282, 0.471) (-1.600, 0.000)
2 (0.588,-0.047) (0.259, 0.235) (-0.494, 0.024) (-0.800,-1.200)
3 (0.318, 0.271) (0.012, 0.247) (-0.759,-0.235) (-0.550,-2.250)
4 (0.588,-0.047) (0.259, 0.235) (-0.994, 0.524) (-2.300,-1.200)

LFICB/DLFICB (Single/Double precision)
Use iterative refinement to improve the solution of a complex system of linear
equations in band storage mode.

Usage
CALL LFICB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, B,
 IPATH,X, RES)

Arguments

N — Number of equations. (Input)

A — Complex NLCA + NUCA + 1 by N array containing the N by N coefficient
matrix in band storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FAC — Complex 2 * NLCA + NUCA + 1 by N array containing the LU
factorization of the matrix A as output from routine LFCCB/DLFCCB or
LFTCB/DLFTCB. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization of A as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB.
(Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system A+X = B is solved.

X — Complex vector of length N containing the solution. (Output)

RES — Complex vector of length N containing the residual vector at the
improved solution. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 173

Comments

Informational error
Type Code
 3 3 The input matrix is too ill-conditioned for iterative refinement

be effective.

Algorithm

Routine LFICB computes the solution of a system of linear algebraic equations
having a complex banded coefficient matrix. Iterative refinement is performed on
the solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU
factorization. This may be done by calling either LFCCB, page 164, or LFTCB,
page 167.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFICB and LFSCB, page 170, both solve a linear system given its LU
factorization. LFICB generally takes more time and produces a more accurate
answer than LFSCB. Each iteration of the iterative refinement algorithm used by
LFICB calls LFSCB.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding (1 + i)/2
to the second element.

C Declare variables
 INTEGER IPATH, LDA, LDFAC, N, NLCA, NUCA, NOUT
 PARAMETER (IPATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL RCOND
 COMPLEX A(LDA,N), B(N), FAC(LDFAC,N), RES(N), X(N)
C
C Set values for A in band form, and B
C
C A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
C (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
C (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
C
C B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)
C
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
 & (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
 & (1.0,-1.0), (0.0,0.0)/
 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/
C
 CALL LFCCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RCOND)
C Print the reciprocal condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND

174 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C Solve the three systems
 DO 10 J=1, 3
 CALL LFICB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, B,
 & IPATH, X, RES)
C Print results
 WRITE (NOUT, 99999) J
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 CALL WRCRN (’RES’, 1, N, RES, 1, 0)
C Perturb B by adding 0.5+0.5i to B(2)
 B(2) = B(2) + (0.5E0,0.5E0)
 10 CONTINUE
C
99998 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
99999 FORMAT (//,’ For system ’,I1)
 END

Output
RCOND = 0.014
L1 Condition number = 72.414

For system 1
 X
 1 2 3 4
(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

 RES
 1 2 3
(0.000E+00, 0.000E+00) (0.000E+00, 0.000E+00) (0.000E+00, 5.684E-14)
 4
(3.494E-22,-6.698E-22)

For system 2
 X
 1 2 3 4
(3.235, 0.141) (-0.988, 1.247) (2.882, 0.129) (-0.988, 1.247)

 RES
 1 2 3
(-1.402E-08, 6.486E-09) (-7.012E-10, 4.488E-08) (-1.122E-07, 7.188E-09)
 4
(-7.012E-10, 4.488E-08)

For system 3
 X
 1 2 3 4
(3.471, 0.282) (-0.976, 1.494) (2.765, 0.259) (-0.976, 1.494)

 RES
 1 2 3
(-2.805E-08, 1.297E-08) (-1.402E-09,-2.945E-08) (1.402E-08, 1.438E-08)
 4
(-1.402E-09,-2.945E-08)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 175

LFDCB/DLFDCB (Single/Double precision)
Compute the determinant of a complex matrix given the LU factorization of the
matrix in band storage mode.

Usage
CALL LFDCB (N, FAC, LDFAC, NLCA, NUCA, IPVT, DET1, DET2)

Arguments

N — Order of the matrix. (Input)

FAC — Complex (2 * NLCA + NUCA + 1) by N array containing the LU
factorization of the matrix A as output from routine LFTCB/DLFTCB or
LFCCB/DLFCCB. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

NLCA — Number of lower codiagonals in matrix A. (Input)

NUCA — Number of upper codiagonals in matrix A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU
factorization as output from routine LFTCB/DLFTCB or LFCCB/DLFCCB. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1 | < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det (A) = DET1 * 10DET2.

Algorithm

Routine LFDCB computes the determinant of a complex banded coefficient
matrix. To compute the determinant, the coefficient matrix must first undergo an
LU factorization. This may be done by calling either LFCCB, page 164, or LFTCB,
page 167. The formula det A = det L det U is used to compute the determinant.
Since the determinant of a triangular matrix is the product of the diagonal
elements,

detU Uiii

N= =∏ 1

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FAC as a banded
matrix.) Since L is the product of triangular matrices with unit diagonals and of

permutation matrices, det L = (−1)N, where k is the number of pivoting
interchanges.

LFDCB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979).

176 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example

The determinant is computed for a complex banded 4 × 4 matrix with one upper
and one lower codiagonal.

C Declare variables
 INTEGER LDA, LDFAC, N, NLCA, NUCA, NOUT
 PARAMETER (LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL DET2
 COMPLEX A(LDA,N), DET1, FAC(LDFAC,N)
C
C Set values for A in band form
C
C A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
C (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
C (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
C
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
 & (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
 & (1.0,-1.0), (0.0,0.0)/
C
 CALL LFTCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)
C Compute the determinant
 CALL LFDCB (N, FAC, LDFAC, NLCA, NUCA, IPVT, DET1, DET2)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
C
99999 FORMAT (’ The determinant of A is (’, F6.3, ’,’, F6.3, ’) * 10**’,
 & F2.0)
 END

Output
The determinant of A is (2.500,-1.500) * 10**1.

LSAQH/DLSAQH (Single/Double precision)
Solve a complex Hermitian positive definite system of linear equations in band
Hermitian storage mode with iterative refinement.

Usage
CALL LSAQH (N, A, LDA, NCODA, B, X)

Arguments

N — Number of equations. (Input)

A — Complex NCODA + 1 by N array containing the N by N positive definite band
Hermitian coefficient matrix in band Hermitian storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 177

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution to the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSAQH 2N(NCODA + 2) units, or
DLSAQH 4N(NCODA + 2) units.

Workspace may be explicitly provided, if desired, by use of
L2AQH/DL2AQH The reference is

CALL L2AQH (N, A, LDA, NCODA, B, X, FAC, WK)

The additional arguments are as follows:

FAC — Complex work vector of length (NCODA + 1) * N containing the

R+ R factorization of A in band Hermitian storage form on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 3 The input matrix is too ill-conditioned. The solution

might not be accurate.
 3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.
 4 2 The input matrix is not positive definite.
 4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2AQH the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSAQH.
Additional memory allocation for FAC and option value
restoration are done automatically in LSAQH. Users directly
calling L2AQH can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSAQH or L2AQH. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

178 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSAQH temporarily replaces
IVAL(2) by IVAL(1). The routine L2CQH computes the
condition number if IVAL(2) = 2. Otherwise L2CQH skips this
computation. LSAQH restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSAQH solves a system of linear algebraic equations having a complex
Hermitian positive definite band coefficient matrix. It first uses the IMSL routine

LFCQH, page 184, to compute an R+ R Cholesky factorization of the coefficient
matrix and to estimate the condition number of the matrix. R is an upper
triangular band matrix. The solution of the linear system is then found using the
iterative refinement IMSL routine LFIQH, page 191.

LSAQH fails if any submatrix of R is not positive definite, if R has a zero diagonal
element, or if the iterative refinement agorithm fails to converge. These errors
occur only if the matrix A either is very close to a singular matrix or is a matrix
that is not positive definite.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSAQH solves the problem that is represented
in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of five linear equations is solved. The coefficient matrix has complex
Hermitian positive definite band form with one codiagonal and the right-hand-
side vector b has five elements.

C Declare variables
 INTEGER LDA, N, NCODA
 PARAMETER (LDA=2, N=5, NCODA=1)
 COMPLEX A(LDA,N), B(N), X(N)
C
C Set values for A in band Hermitian form, and B
C
C A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
C (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
C
C B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)
C
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
 & (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),
 & (25.0,16.0)/
C Solve A*X = B
 CALL LSAQH (N, A, LDA, NCODA, B, X)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 179

C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
 5
(3.000, 2.000)

LSLQH/DLSLQH (Single/Double precision)
Solve a complex Hermitian positive definite system of linear equations in band
Hermitian storage mode without iterative refinement.

Usage
CALL LSLQH (N, A, LDA, NCODA, B, X)

Arguments

N — Number of equations. (Input)

A — Complex NCODA + 1 by N array containing the N by N positive definite band
Hermitian coefficient matrix in band Hermitian storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution to the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSLQH 2N(NCODA + 2) units, or
DLSLQH 4N(NCODA + 2) units.

Workspace may be explicitly provided, if desired, by use of
L2LQH/DL2LQH The reference is

CALL L2LQH (N, A, LDA, NCODA, B, X, FAC, WK)

The additional arguments are as follows:

180 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

FAC — Complex work vector of length (NCODA + 1) * N containing the

R+ R factorization of A in band Hermitian storage form on output. If A is
not needed, A and FAC can share the same storage locations.

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 3 The input matrix is too ill-conditioned. The solution

might not be accurate.
 3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.
 4 2 The input matrix is not positive definite.
 4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LQH the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSLQH.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLQH. Users directly
calling L2LQH can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLQH or L2LQH. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSLQH temporarily replaces
IVAL(2) by IVAL(1). The routine L2CQH computes the
condition number if IVAL(2) = 2. Otherwise L2CQH skips this
computation. LSLQH restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSLQH solves a system of linear algebraic equations having a complex
Hermitian positive definite band coefficient matrix. It first uses the routine

LFCQH, page 184, to compute an R+ R Cholesky factorization of the coefficient
matrix and to estimate the condition number of the matrix. R is an upper
triangular band matrix. The solution of the linear system is then found using the
routine LFSQH, page 189.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 181

LSLQH fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A either is very close to a singular
matrix or is a matrix that is not positive definite.

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. If the coefficient matrix is ill-
conditioned or poorly sealed, it is recommended that LSAQH, page 176, be used.

Example

A system of five linear equations is solved. The coefficient matrix has complex
Hermitian positive definite band form with one codiagonal and the right-hand-
side vector b has five elements.

C Declare variables
 INTEGER N, NCODA, LDA
 PARAMETER (N=5, NCODA=1, LDA=NCODA+1)
 COMPLEX A(LDA,N), B(N), X(N)
C
C Set values for A in band Hermitian form, and B
C
C A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
C (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
C
C B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)
C
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
 & (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),
 & (25.0,16.0)/
C Solve A*X = B
 CALL LSLQH (N, A, LDA, NCODA, B, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)

 5
(3.000, 2.000)

182 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSLQB/DLSLQB (Single/Double precision)
Compute the R+ DR Cholesky factorization of a complex Hermitian positive-
definite matrix A in codiagonal band Hermitian storage mode. Solve a
system Ax = b.

Usage
CALL LSLQB (N, A, LDA, NCODA, IJOB, U)

Arguments

N — Order of the matrix. (Input)
Must satisfy N > 0.

A — Array containing the N by N positive-definite band coefficient matrix and the
right hand side in codiagonal band Hermitian storage mode. (Input/Output)
The number of array columns must be at least 2 * NCODA + 3. The number of
columns is not an input to this subprogram.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)
Must satisfy LDA ≥ N + NCODA.

NCODA — Number of upper codiagonals of matrix A. (Input)
Must satisfy NCODA ≥ 0 and NCODA < N.

IJOB — flag to direct the desired factorization or solving step. (Input)

IJOB Meaning

1 factor the matrix A and solve the system Ax = b; where the real part of b
is stored in column 2 * NCODA + 2 and the imaginary part of b is stored
in column 2 * NCODA + 3 of array A. The real and imaginary parts of b
are overwritten by the real and imaginary parts of x.

2 solve step only. Use the real part of b as column 2 * NCODA + 2 and the
imaginary part of b as column 2 * NCODA + 3 of A. (The factorization
step has already been done.) The real and imaginary parts of b are
overwritten by the real and imaginary parts of x.

3 factor the matrix A but do not solve a system.

4,5,6 same meaning as with the value IJOB = 3. For efficiency, no error
checking is done on values LDA, N, NCODA, and U(*).

U — Array of flags that indicate any singularities of A, namely loss of positive-
definiteness of a leading minor. (Output)
A value U(I) = 0. means that the leading minor of dimension I is not positive-
definite. Otherwise, U(I) = 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 183

Comments

1. Automatic workspace usage is

LSLQB 2 * NCODA units, or
DLSLQB 4 * NCODA units.

Workspace may be explicitly provided, if desired, by use of
L2LQB/DL2LQB The reference is

CALL L2LQB (N, A, LDA, NCODA, IJOB, U, WK1, WK2)

The additional arguments are as follows:

WK1 — Work vector of length NCODA.

WK2 — Work vector of length NCODA.

2. Informational error
Type Code
 4 2 The input matrix is not positive definite.

Algorithm

Routine LSLQB factors and solves the Hermitian positive definite banded linear

system Ax = b. The matrix is factored so that A = R+ DR, where R is unit upper
triangular and D is diagonal and real. The reciprocals of the diagonal entries of D
are computed and saved to make the solving step more efficient. Errors will occur
if D has a nonpositive diagonal element. Such events occur only if A is very close
to a singular matrix or is not positive definite.

LSLQB is efficient for problems with a small band width. The particular cases
NCODA = 0, 1 are done with special loops within the code. These cases will give
good performance. See Hanson (1989) for more on the algorithm. When solving
tridiagonal systems, NCODA = 1, the cyclic reduction code LSLCQ (page 156)
should be considered as an alternative. The expectation is that LSLCQ will
outperform LSLQB on vector or parallel computers. It may be inferior on scalar
computers or even parallel computers with non-optimizing compilers.

Example

A system of five linear equations is solved. The coefficient matrix has real
positive definite codiagonal Hermitian band form and the right-hand-side vector b
has five elements.

 INTEGER LDA, N, NCODA
 PARAMETER (N=5, NCODA=1, LDA=N+NCODA)
C
 INTEGER I, IJOB, J
 REAL A(LDA,2*NCODA+3), U(N)
 EXTERNAL LSLQB, WRRRN
C
C Set values for A and right hand side
C in codiagonal band Hermitian form:
C

184 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C (* * * * *)
C (2.0 * * 1.0 5.0)
C A = (4.0 -1.0 1.0 12.0 -6.0)
C (10.0 1.0 2.0 1.0 -16.0)
C (6.0 0.0 4.0 -3.0 -3.0)
C (9.0 1.0 1.0 25.0 16.0)
C
 DATA ((A(I+NCODA,J),I=1,N),J=1,2*NCODA+3)/2.0, 4.0, 10.0, 6.0,
 & 9.0, 0.0, -1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 2.0, 4.0, 1.0,
 & 1.0, 12.0, 1.0, -3.0, 25.0, 5.0, -6.0, -16.0, -3.0, 16.0/
C
C Factor and solve A*x = b.
C
 IJOB = 1
 CALL LSLQB (N, A, LDA, NCODA, IJOB, U)
C
C Print results
C
 CALL WRRRN (’REAL(X)’, 1, N, A(NCODA+1,2*NCODA+2), 1, 0)
 CALL WRRRN (’IMAG(X)’, 1, N, A(NCODA+1,2*NCODA+3), 1, 0)
 END

Output
 REAL(X)
 1 2 3 4 5
2.000 3.000 -1.000 0.000 3.000

 IMAG(X)
 1 2 3 4 5
1.000 0.000 -1.000 -2.000 2.000

LFCQH/DLFCQH (Single/Double precision)
Compute the R+ R factorization of a complex Hermitian positive definite matrix
in band Hermitian storage mode and estimate its L1 condition number.

Usage
CALL LFCQH (N, A, LDA, NCODA, FAC, LDFAC, RCOND)

Arguments

N — Order of the matrix. (Input)

A — Complex NCODA + 1 by N array containing the N by N positive definite band
Hermitian matrix to be factored in band Hermitian storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 185

FAC — Complex NCODA + 1 by N array containing the R+ R factorization of the
matrix A. (Output)
If A is not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

RCOND — Scalar containing an estimate of the reciprocal of the L1 condition
number of A. (Output)

Comments

1. Automatic workspace usage is

LFCQH 2N units, or
DLFCQH 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CQH/DL2CQH. The reference is

CALL L2CQH (N, A, LDA, NCODA, FAC, LDFAC, RCOND, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational errors
Type Code
 3 1 The input matrix is algorithmically singular.
 3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.
 4 2 The input matrix is not positive definite.
 4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.

Algorithm

Routine LFCQH computes an R+ R Cholesky factorization and estimates the
condition number of a complex Hermitian positive definite band coefficient
matrix. R is an upper triangular band matrix.

The L1 condition number of the matrix A is defined to be κ(A) = ||A ||1||A-1||1.
Since it is expensive to compute ||A-1||1, the condition number is only estimated.
The estimation algorithm is the same as used by LINPACK and is described by
Cline et al. (1979).

If the estimated condition number is greater than 1/ε (where ε is machine
precision), a warning error is issued. This indicates that very small changes in A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

186 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFCQH fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A either is very close to a singular
matrix or is a matrix which is not positive definite.

The R+ R factors are returned in a form that is compatible with routines LFIQH,
page 191, LFSQH, page 189, and LFDQH, page 193. To solve systems of equations
with multiple right-hand-side vectors, use LFCQH followed by either LFIQH or
LFSQH called once for each right-hand side. The routine LFDQH can be called to
compute the determinant of the coefficient matrix after LFCQH has performed the
factorization.

LFCQH is based on the LINPACK routine CPBCO; see Dongarra et al. (1979).

Example

The inverse of a 5 × 5 band Hermitian matrix with one codiagonal is computed.
LFCQH is called to factor the matrix and to check for nonpositive definiteness or
ill-conditioning. LFIQH (page 191) is called to determine the columns of the
inverse.

C Declare variables
 INTEGER N, NCODA, LDA, LDFAC, NOUT
 PARAMETER (N=5, NCODA=1, LDA=NCODA+1, LDFAC=LDA)
 REAL RCOND
 COMPLEX A(LDA,N), AINV(N,N), FAC(LDFAC,N), RES(N), RJ(N)
C
C Set values for A in band Hermitian form
C
C A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
C (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
C
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
 & (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
C Factor the matrix A
 CALL LFCQH (N, A, LDA, NCODA, FAC, LDFAC, RCOND)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0E0,0.0E0), RJ, 1)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
C RJ is the J-th column of the identity
C matrix so the following LFIQH
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFIQH (N, A, LDA, NCODA, FAC, LDFAC, RJ, AINV(1,J), RES)
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
 CALL WRCRN (’AINV’, N, N, AINV, N, 0)
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 187

Output
RCOND = 0.067
L1 Condition number = 14.961

 AINV
 1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)
4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)
5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
 5
1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

LFTQH/DLFTQH (Single/Double precision)
Compute the R+ R factorization of a complex Hermitian positive definite matrix
in band Hermitian storage mode.

Usage
CALL LFTQH (N, A, LDA, NCODA, FAC, LDFAC)

Arguments

N — Order of the matrix. (Input)

A — Complex NCODA + 1 by N array containing the N by N positive definite band
Hermitian matrix to be factored in band Hermitian storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

FAC — Complex NCODA + 1 by N array containing the R+ R factorization of the
matrix A. (Output)
If A is not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

Informational errors
Type Code
 3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.
 4 2 The input matrix is not positive definite.

188 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 4 4 The input matrix is not Hermitian. It has a diagonal entry with
an imaginary part.

Algorithm

Routine LFTQH computes an R+R Cholesky factorization of a complex Hermitian
positive definite band coefficient matrix. R is an upper triangular band matrix.

LFTQH fails if any submatrix of R is not positive definite or if R has a zero
diagonal element. These errors occur only if A either is very close to a singular
matrix or is a matrix which is not positive definite.

The R+ R factors are returned in a form that is compatible with routines LFIQH,
page 191, LFSQH, page 189, and LFDQH, page 193. To solve systems of equations
with multiple right-hand-side vectors, use LFTQH followed by either LFIQH or
LFSQH called once for each right-hand side. The routine LFDQH can be called to
compute the determinant of the coefficient matrix after LFTQH has performed the
factorization.

LFTQH is based on the LINPACK routine SPBFA; see Dongarra et al. (1979).

Example

The inverse of a 5 × 5 band Hermitian matrix with one codiagonal is computed.
LFTQH is called to factor the matrix and to check for nonpositive definiteness.
LFSQH is called to determine the columns of the inverse.

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA
 PARAMETER (LDA=2, LDFAC=2, N=5, NCODA=1)
 COMPLEX A(LDA,N), AINV(N,N), FAC(LDFAC,N), RJ(N)
C
C Set values for A in band Hermitian form
C
C A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
C (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
C
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
 & (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
C Factor the matrix A
 CALL LFTQH (N, A, LDA, NCODA, FAC, LDFAC)
C Set up the columns of the identity
C matrix one at a time in RJ
 CALL CSET (N, (0.0E0,0.0E0), RJ, 1)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
C RJ is the J-th column of the identity
C matrix so the following LFSQH
C reference places the J-th column of
C the inverse of A in the J-th column
C of AINV
 CALL LFSQH (N, FAC, LDFAC, NCODA, RJ, AINV(1,J))
 RJ(J) = (0.0E0,0.0E0)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 189

 10 CONTINUE
C Print the results
 CALL WRCRN (’AINV’, N, N, AINV, N, 0)
C
 END

Output
 AINV
 1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)
4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)
5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
 5
1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

LFSQH/DLFSQH (Single/Double precision)
Solve a complex Hermitian positive definite system of linear equations given the
factorization of the coefficient matrix in band Hermitian storage mode.

Usage
CALL LFSQH (N, FAC, LDFAC, NCODA, B, X)

Arguments

N — Number of equations. (Input)

FAC — Complex NCODA + 1 by N array containing the R+ R factorization of the
Hermitian positive definite band matrix A. (Input)
FAC is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH .

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand-side of the linear
system. (Input)

X — Complex vector of length N containing the solution to the linear system.
(Output)
If B is not needed, B and X can share the same storage locations.

190 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

Informational error
Type Code
 4 1 The factored matrix has a diagonal element close to zero.

Algorithm

This routine computes the solution for a system of linear algebraic equations
having a complex Hermitian positive definite band coefficient matrix. To

compute the solution, the coefficient matrix must first undergo an R+ R
factorization. This may be done by calling either IMSL routine LFCQH, page 184,
or LFTQH, page 187. R is an upper triangular band matrix.

The solution to Ax = b is found by solving the triangular systems R+ y = b and Rx
= y.

LFSQH and LFIQH, page 191, both solve a linear system given its R+ R
factorization. LFIQH generally takes more time and produces a more accurate
answer than LFSQH. Each iteration of the iterative refinement algorithm used by
LFIQH calls LFSQH.

LFSQH is based on the LINPACK routine CPBSL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successively. LFTQH, page 187, is called to factor
the coefficient matrix. LFSQH is called to compute the three solutions for the three
right-hand sides. In this case the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better to call LFCQH,
page 184, to perform the factorization, and LFIQH, page 191, to compute the
solutions.

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA
 PARAMETER (LDA=2, LDFAC=2, N=5, NCODA=1)
 COMPLEX A(LDA,N), B(N,3), FAC(LDFAC,N), X(N,3)
C
C Set values for A in band Hermitian form, and B
C
C A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
C (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
C
C B = (3.0+3.0i 4.0+0.0i 29.0-9.0i)
C (5.0-5.0i 15.0-10.0i -36.0-17.0i)
C (5.0+4.0i -12.0-56.0i -15.0-24.0i)
C (9.0+7.0i -12.0+10.0i -23.0-15.0i)
C (-22.0+1.0i 3.0-1.0i -23.0-28.0i)
C
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
 & (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),
 & (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 191

 & (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),
 & (-23.0,-15.0), (-23.0,-28.0)/
C Factor the matrix A
 CALL LFTQH (N, A, LDA, NCODA, FAC, LDFAC)
C Compute the solutions
 DO 10 I=1, 3
 CALL LFSQH (N, FAC, LDFAC, NCODA, B(1,I), X(1,I))
 10 CONTINUE
C Print solutions
 CALL WRCRN (’X’, N, 3, X, N, 0)
 END

Output
 X
 1 2 3
1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)
2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)
3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)
4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)
5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

LFIQH/DLFIQH (Single/Double precision)
Use iterative refinement to improve the solution of a complex Hermitian positive
definite system of linear equations in band Hermitian storage mode.

Usage
CALL LFIQH (N, A, LDA, NCODA, FAC, LDFAC, B, X, RES)

Arguments

N — Number of equations. (Input)

A — Complex NCODA + 1 by N array containing the N by N positive definite band
Hermitian coefficient matrix in band Hermitian storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

FAC — Complex NCODA + 1 by N array containing the R+ R factorization of the
matrix A as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH. (Input)

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

X — Complex vector of length N containing the solution to the linear system.
(Output)

192 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

RES — Complex vector of length N containing the residual vector at the
improved solution. (Output)

Comments

Informational error
Type Code
 3 3 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

Routine LFIQH computes the solution of a system of linear algebraic equations
having a complex Hermitian positive definite band coefficient matrix. Iterative
refinement is performed on the solution vector to improve the accuracy. Usually
almost all of the digits in the solution are accurate, even if the matrix is somewhat
ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an R+ R
factorization. This may be done by calling either LFCQH, page 184, or LFTQH,
page 187.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIQH and LFSQH, page 189, both solve a linear system given its R+ R
factorization. LFIQH generally takes more time and produces a more accurate
answer than LFSQH. Each iteration of the iterative refinement algorithm used by
LFIQH calls LFSQH.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding (1 + i)/2
to the second element.

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA, NOUT
 PARAMETER (LDA=2, LDFAC=2, N=5, NCODA=1)
 REAL RCOND
 COMPLEX A(LDA,N), B(N), FAC(LDFAC,N), RES(N,3), X(N,3)
C
C Set values for A in band Hermitian form, and B
C
C A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
C (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
C
C B = (3.0+3.0i 5.0-5.0i 5.0+4.0i 9.0+7.0i -22.0+1.0i)
C
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
 & (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/
C Factor the matrix A
 CALL LFCQH (N, A, LDA, NCODA, FAC, LDFAC, RCOND)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 193

C Print the estimated condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
C Compute the solutions
 DO 10 I=1, 3
 CALL LFIQH (N, A, LDA, NCODA, FAC, LDFAC, B, X(1,I), RES(1,I))
 B(2) = B(2) + (0.5E0,0.5E0)
 10 CONTINUE
C Print solutions and residuals
 CALL WRCRN (’X’, N, 3, X, N, 0)
 CALL WRCRN (’RES’, N, 3, RES, N, 0)
C
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output
RCOND = 0.067
L1 Condition number = 14.961

 X
 1 2 3
1 (1.000, 0.000) (1.217, 0.000) (1.433, 0.000)
2 (1.000,-2.000) (1.217,-1.783) (1.433,-1.567)
3 (2.000, 0.000) (1.910, 0.030) (1.820, 0.060)
4 (2.000, 3.000) (1.979, 2.938) (1.959, 2.876)
5 (-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)

 RES
 1 2 3
1 (1.192E-07, 0.000E+00) (6.592E-08, 1.686E-07) (1.318E-07, 2.010E-14)
2 (1.192E-07,-2.384E-07) (-5.329E-08,-5.329E-08) (1.318E-07,-2.258E-07)
3 (2.384E-07, 8.259E-08) (2.390E-07,-3.309E-08) (2.395E-07, 1.015E-07)
4 (-2.384E-07, 2.814E-14) (-8.240E-08,-8.790E-09) (-1.648E-07,-1.758E-08)
5 (-2.384E-07,-1.401E-08) (-2.813E-07, 6.981E-09) (-3.241E-07,-2.795E-08)

LFDQH/DLFDQH (Single/Double precision)
Compute the determinant of a complex Hermitian positive definite matrix given

the R7 R Cholesky factorization in band Hermitian storage mode.

Usage
CALL LFDQH (N, FAC, LDFAC, NCODA, DET1, DET2)

Arguments

N — Number of equations. (Input)

FAC — Complex NCODA + 1 by N array containing the R+ R factorization of the
Hermitian positive definite band matrix A. (Input)
FAC is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

194 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

NCODA — Number of upper or lower codiagonals of A. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 ≤ |DET1 | < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det (A) = DET1 * 10DET2.

Algorithm

Routine LFDQH computes the determinant of a complex Hermitian positive
definite band coefficient matrix. To compute the determinant, the coefficient

matrix must first undergo an R+ R factorization. This may be done by calling

either LFCQH, page 184, or LFTQH, page 187. The formula det A = det R+ det R =

(det R)2 is used to compute the determinant. Since the determinant of a triangular
matrix is the product of the diagonal elements,

det R Riii

N= =∏ 1

LFDQH is based on the LINPACK routine CPBDI; see Dongarra et al. (1979).

Example

The determinant is computed for a 5 × 5 complex Hermitian positive definite
band matrix with one codiagonal.

C Declare variables
 INTEGER LDA, LDFAC, N, NCODA, NOUT
 PARAMETER (LDA=2, N=5, LDFAC=2, NCODA=1)
 REAL DET1, DET2
 COMPLEX A(LDA,N), FAC(LDFAC,N)
C
C Set values for A in band Hermitian form
C
C A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
C (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
C
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
 & (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
C Factor the matrix
 CALL LFTQH (N, A, LDA, NCODA, FAC, LDFAC)
C Compute the determinant
 CALL LFDQH (N, FAC, LDFAC, NCODA, DET1, DET2)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
C
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
 END

Output
The determinant of A is 1.736 * 10**3.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 195

LSLXG/DLSLXG (Single/Double precision)
Solve a sparse system of linear algebraic equations by Gaussian elimination.

Usage
CALL LSLXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM,
 X)

Arguments

N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the linear system. (Input)

A — Vector of length NZ containing the nonzero coefficients of the linear system.
(Input)

IROW — Vector of length NZ containing the row numbers of the corresponding
elements in A. (Input)

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in A. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system Ax = b is solved.

IPATH = 2 means the system A7x = b is solved.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM.
See Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is at least

LSLXG 19N + 5 * MAXNZ units, or
DLSLXG 21N + 6 * MAXNZ units.

MAXNZ is the maximal number of nonzero elements at any stage of the
Gaussian elimination. In the absence of other information, setting MAXNZ

equal to 3 * NZ is recommended. Higher or lower values may be used
depending on fill-in, see IPARAM(5) in Comment 3.

Workspace may be explicitly provided, if desired, by use of
L2LXG/DL2LXG. The reference is

196 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

CALL L2LXG (N, NZ, A, IROW, JCOL, B, IPATH,
 IPARAM,RPARAM, X, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK-2N, INT(0.25(LIWK-17N)))

2. Informational errors
Type Code
 3 1 The coefficient matrix is numerically singular.
 3 2 The growth factor is too large to continue.
 3 3 The matrix is too ill-conditioned for iterative

refinement.

3. If the default parameters are desired for LSLXG, then set IPARAM(1) to
zero and call the routine LSLXG. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM. then the following steps should be
taken before calling LSLXG.

CALL L4LXG (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LXG will set IPARAM and RPARAM to their default
values, so only nondefault values need to be set above.

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy
IPARAM(2) Action
1 Markowitz row search
2 Markowitz column search
3 Symmetric Markowitz search
Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero
elements that will be searched for a pivotal element.
Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage
of the Gaussian elimination. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 197

IPARAM(5) = The workspace limit.
IPARAM(5) Action
0 Default limit, see Comment 1.
integer This integer value replaces the default workspace

limit.
When L2LXG is called, the values of LWK and LIWK are
used instead of IPARAM(5).

Default: 0.

IPARAM(6) = Iterative refinement is done when this is nonzero.
Default: 0.

RPARAM — Real vector of length 5.
RPARAM(1) = The upper limit on the growth factor. The computation
stops when the growth factor exceeds the limit.

Default: 1016.

RPARAM(2) = The stability factor. The absolute value of the pivotal
element must be bigger than the largest element in absolute value in its
row divided by RPARAM(2).
Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor
L will be removed if its absolute value becomes smaller than the drop-
tolerance at any stage of the Gaussian elimination.
Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in
absolute value in A at any stage of the Gaussian elimination divided by
the largest element in absolute value in the original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in
the computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value.
(Output)

If double precision is required, then DL4LXG is called and RPARAM is
declared double precision.

Algorithm

Consider the linear equation

Ax = b

where A is a n × n sparse matrix. The sparse coordinate format for the matrix A
requires one real and two integer vectors. The real array a contains all the
nonzeros in A. Let the number of nonzeros be nz. The two integer arrays irow
and jcol, each of length nz, contain the row and column numbers for these
entries in A. That is

198 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Airow(L)�icol(L) = a(i), i = 1, …, nz

with all other entries in A zero.

The routine LSLXG solves a system of linear algebraic equations having a real
sparse coefficient matrix. It first uses the routine LFTXG (page 199) to perform an
LU factorization of the coefficient matrix. The solution of the linear system is
then found using LFSXG (page 204).

The routine LFTXG by default uses a symmetric Markowitz strategy (Crowe et al.
1990) to choose pivots that most likely would reduce fill-ins while maintaining
numerical stability. Different strategies are also provided as options for row
oriented or column oriented problems. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively.

Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

Example

As an example consider the 6 × 6 linear system:

A =

− −

− −
− − −
− −

�

!

"

$

#######

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

Let x7 = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33,−34, 31)7. The number of
nonzeros in A is nz = 15. The sparse coordinate form for A is given by:

irow

jcol

a

6 2 3 2 4 4 5 5 5 5 1 6 6 2 4

6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

6 10 15 3 10 1 1 3 5 1 10 1 2 1 2− − − − − − − − −
 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
C
 INTEGER IPARAM(6), IPATH, IROW(NZ), JCOL(NZ)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 199

 REAL A(NZ), B(N), RPARAM(5), X(N)
 EXTERNAL L4LXG, LSLXG, WRRRN
C
 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,
 & -2., -1., -2./
 DATA B/10., 7., 45., 33., -34., 31./
 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
C
 IPATH = 1
C Change a default parameter
 CALL L4LXG (IPARAM, RPARAM)
 IPARAM(5) = 203
C Solve for X
 CALL LSLXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X)
C
 CALL WRRRN (’ x ’, 1, N, X, 1, 0)
 END

Output
 x
 1 2 3 4 5 6
1.000 2.000 3.000 4.000 5.000 6.000

LFTXG/DLFTXG (Single/Double precision)
Compute the LU factorization of a real general sparse matrix.

Usage
CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL,
 FAC, IRFAC, JCFAC, IPVT, JPVT)

Arguments

N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the linear system. (Input)

A — Vector of length NZ containing the nonzero coefficients of the linear system.
(Input)

IROW — Vector of length NZ containing the row numbers of the corresponding
elements in A. (Input)

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in A. (Input)

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

200 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

NFAC — On input, the dimension of vector FAC. (Input/Output)
On output, the number of nonzero coefficients in the triangular matrix L and U.

NL — The number of nonzero coefficients in the triangular matrix L excluding
the diagonal elements. (Output)

FAC — Vector of length NFAC containing the nonzero elements of L (excluding
the diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to
NFAC locations. (Output)

IRFAC — Vector of length NFAC containing the row numbers of the
corresponding elements in FAC. (Output)

JCFAC — Vector of length NFAC containing the column numbers of the
corresponding elements in FAC. (Output)

IPVT — Vector of length N containing the row pivoting information for the LU
factorization. (Output)

JPVT — Vector of length N containing the column pivoting information for the
LU factorization. (Output)

Comments

1. Automatic workspace usage is

LFTXG 15N + 5 * MAXNZ units, or
DLFTXG 15N + 6 MAXNZ units.

MAXNZ is the maximal number of nonzero elements at any stage of the
Gaussian elimination. In the absence of other information, setting MAXNZ

equal to 3NZ is recommended. Higher or lower values may be used
depending on fill-in, see IPARAM(5) in Comment 3.

Workspace may be explicitly provided, if desired, by use of
L2TXG/DL2TXG. The reference is

CALL L2TXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM,
 NFAC, NL, FAC, IRFAC, JCFAC, IPVT, JPVT,
 WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 4 ∗ MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N)))

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 201

2. Informational errors
Type Code
 3 1 The coefficient matrix is numerically singular.
 3 2 The growth factor is too large to continue.

3. If the default parameters are desired for LFTXG, then set IPARAM(1) to
zero and call the routine LFTXG. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling LFTXG.

CALL L4LXG (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LXG will set IPARAM and RPARAM to their default
values, so only nondefault values need to be set above.

The arguments are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy.
IPARAM(2) Action
1 Markowitz row search
2 Markowitz column search
3 Symmetric Markowitz search
Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero
elements that will be searched for a pivotal element.
Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage
of the Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.
IPARAM(5) Action
0 Default limit, see Comment 1.
integer This integer value replaces the default workspace

limit.
When L2TXG is called, the values of LWK and LIWK are
used instead of IPARAM(5).

IPARAM(6) = Not used in LFTXG.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation
stops when the growth factor exceeds the limit.

Default: 1016.

202 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

RPARAM(2) = The stability factor. The absolute value of the pivotal
element must be bigger than the largest element in absolute value in its
row divided by RPARAM(2).
Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor
L will be removed if its absolute value becomes smaller than the drop-
tolerance at any stage of the Gaussian elimination.
Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in
absolute value in A at any stage of the Gaussian elimination divided by
the largest element in absolute value in the original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in
the computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value.
(Output)

If double precision is required, then DL4LXG is called and RPARAM is
declared double precision.

Algorithm

Consider the linear equation

Ax = b

where A is a n × n sparse matrix. The sparse coordinate format for the matrix A
requires one real and two integer vectors. The real array a contains all the
nonzeros in A. Let the number of nonzeros be nz. The two integer arrays irow
and jcol, each of length nz, contain the row and column numbers for these
entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

with all other entries in A zero.

The routine LFTXG performs an LU factorization of the coefficient matrix A. It by
default uses a symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots
that most likely would reduce fillins while maintaining numerical stability.
Different strategies are also provided as options for row oriented or column
oriented problems. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 203

Finally, the solution x is obtained using LFSXG (page 204) by the following
calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

Example

As an example, consider the 6 × 6 matrix of a linear system:

A =

− −

− −
− − −
− −

�

!

"

$

#######

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

The sparse coordinate form for A is given by:

irow 6

jcol

a

2 3 2 4 4 5 5 5 5 1 6 6 2 4

6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

6 10 15 3 10 1 1 3 5 1 10 1 2 1 2− − − − − − − − −
 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
 INTEGER IPARAM(6), IROW(NZ), JCOL(NZ), NFAC, NL,
 & IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N)
 REAL RPARAM(5), A(NZ), FAC(3*NZ)
C
 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,
 & -2., -1., -2./
 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
C
 NFAC = 3*NZ
C Use default options
 IPARAM(1) = 0
 CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL,
 & FAC, IRFAC, JCFAC, IPVT, JPVT)
C
 CALL WRRRN (’ fac ’, 1, NFAC, FAC, 1, 0)
 CALL WRIRN (’ irfac ’, 1, NFAC, IRFAC, 1, 0)
 CALL WRIRN (’ jcfac ’, 1, NFAC, JCFAC, 1, 0)
 CALL WRIRN (’ p ’, 1, N, IPVT, 1, 0)
 CALL WRIRN (’ q ’, 1, N, JPVT, 1, 0)
C
 END

204 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output
 fac
 1 2 3 4 5 6 7 8 9 10
-0.10 -5.00 -0.20 -0.10 -0.10 -1.00 -0.20 4.90 -5.10 1.00
 11 12 13 14 15 16
-1.00 30.00 6.00 -2.00 10.00 15.00

 irfac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 4 4 5 5 6 6 6 5 5 4 4 3 3 2 1

 jcfac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 1 4 2 5 2 6 6 5 6 4 4 3 2 1

 p
1 2 3 4 5 6
3 1 6 2 5 4

 q
1 2 3 4 5 6
3 1 2 6 5 4

LFSXG/DLFSXG (Single/Double precision)
Solve a sparse system of linear equations given the LU factorization of the
coefficient matrix.

Usage
CALL LFSXG (N, NFAC, NL, FAC, IRFAC, JCFAC, IPVT, JPVT, B,
 IPATH, X)

Arguments

N — Number of equations. (Input)

NFAC — The number of nonzero coefficients in FAC as output from subroutine
LFTXG/DLFTXG. (Input)

NL — The number of nonzero coefficients in the triangular matrix L excluding
the diagonal elements as output from subroutine LFTXG/DLFTXG. (Input)

FAC — Vector of length NFAC containing the nonzero elements of L (excluding
the diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to
NFAC locations as output from subroutine LFTXG/DLFTXG. (Input)

IRFAC — Vector of length NFAC containing the row numbers of the
corresponding elements in FAC as output from subroutine LFTXG/DLFTXG.
(Input)

JCFAC — Vector of length NFAC containing the column numbers of the
corresponding elements in FAC as output from subroutine LFTXG/DLFTXG.
(Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 205

IPVT — Vector of length N containing the row pivoting information for the LU
factorization as output from subroutine LFTXG/DLFTXG. (Input)

JPVT — Vector of length N containing the column pivoting information for the
LU factorization as output from subroutine LFTXG/DLFTXG. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system Ax = B is solved.

IPATH = 2 means the system A7x = B is solved,

X — Vector of length N containing the solution to the linear system. (Output)

Algorithm

Consider the linear equation

Ax = b

where A is a n × n sparse matrix. The sparse coordinate format for the matrix A
requires one real and two integer vectors. The real array a contains all the
nonzeros in A. Let the number of nonzeros be nz. The two integer arrays irow
and jcol, each of length nz, contain the row and column numbers for these
entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

with all other entries in A zero. The routine LFSXG computes the solution of the
linear equation given its LU factorization. The factorization is performed by
calling LFTXG (page 199). The solution of the linear system is then found by the
forward and backward substitution. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively. Finally, the solution x is obtained by the following
calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

For more details, see Crowe et al. (1990).

Example

As an example, consider the 6 × 6 linear system:

206 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

A =

− −

− −
− − −
− −

�

!

"

$

#######

10 0 0 0 0 0

0 10 3 1 0 0

0 0 15 0 0 0

2 0 0 10 1 0

1 0 0 5 1 3

1 2 0 0 0 6

Let

xT
1 1 2 3 4 5 6= , , , , ,0 5

so that Ax1 = (10, 7, 45, 33,−34, 31)7, and

xT
2 6 5 4 3 2 1= , , , , ,0 5

so that Ax2 = (60, 35, 60, 16, −22, 10)7. The sparse coordinate form for A is
given by:

irow

jcol

a

6 2 3 2 4 4 5 5 5 5 1 6 6 2 4

6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

6 10 15 3 10 1 1 3 5 1 10 1 2 1 2− − − − − − − − −
 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
 INTEGER IPARAM(8), IPATH, IROW(NZ), JCOL(NZ), NFAC,
 & NL, IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N)
 REAL RPARAM(10), X(N), A(NZ), B(N,2), FAC(3*NZ)
 CHARACTER TITLE(2)*2
C
 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,
 & -2., -1., -2./
 DATA B/10., 7., 45., 33., -34., 31.,
 & 60., 35., 60., 16., -22., -10./
 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
 DATA TITLE/’x1’, ’x2’/
C
 NFAC = 3*NZ
C Use default options
 IPARAM(1) = 0
C Perform LU factorization
 CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL,
 & FAC, IRFAC, JCFAC, IPVT, JPVT)
C
 IPATH = 1
 DO 10 I = 1, 2
C Solve A * X(i) = B(i)
 CALL LFSXG (N, NFAC, NL, FAC, IRFAC, JCFAC, IPVT, JPVT,
 & B(1,I), IPATH, X)
C

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 207

 CALL WRRRL (TITLE(I), 1, N, X, 1, 0, ’(f4.1)’, ’NONE’,
 & ’NUMBER’)
 10 CONTINUE
 END

Output
 x1
 1 2 3 4 5 6
1.0 2.0 3.0 4.0 5.0 6.0

 x2
 1 2 3 4 5 6
6.0 5.0 4.0 3.0 2.0 1.0

LSLZG/DLSLZG (Single/Double precision)
Solve a complex sparse system of linear equations by Gaussian elimination.

Usage
CALL LSLZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM,
 X)

Arguments

N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the linear system. (Input)

A — Complex vector of length NZ containing the nonzero coefficients of the
linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding
elements in A. (Input)

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in A. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
IPATH = 1 means the system Ax = b is solved.

IPATH = 2 means the system A+ x = b is solved.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

X — Complex vector of length N containing the solution to the linear system.
(Output)

208 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is at least

LSLZG 21N + 6 * MAXNZ units, or
DLSLZG 23N + 8 * MAXNZ units.

MAXNZ is the maximal number of nonzero elements at any stage of the
Gaussian elimination. In the absence of other information, setting MAXNZ
equal to 3NZ is recommended. Higher or lower values may be used
depending on fill-in, see IPARAM(5) in Comment 3.

Workspace may be explicitly provided, if desired, by use of
L2LZG/DL2LZG. The reference is

CALL L2LZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM,
 RPARAM, X, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N+ MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK-2N, INT(0.25(LIWK-17N)))

2. Informational errors
Type Code
 3 1 The coefficient matrix is numerically singular.
 3 2 The growth factor is too large to continue.
 3 3 The matrix is too ill-conditioned for iterative

refinement.

3. If the default parameters are desired for LSLZG, then set IPARAM(1) to
zero and call the routine LSLZG. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM. then the following steps should be
taken before calling LSLZG.

CALL L4LZG (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZG will set IPARAM and RPARAM to their default
values, so only nondefault values need to be set above. The arguments
are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 209

IPARAM(2) = The pivoting strategy.
IPARAM(2) Action
1 Markowitz row search
2 Markowitz column search
3 Symmetric Markowitz search
Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero
elements that will be searched for a pivotal element.
Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage
of the Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.

IPARAM(5) Action
0 Default limit, see Comment 1.
integer This integer value replaces the default workspace

limit.
When L2LZG is called, the values of LWK and LIWK are
used instead of IPARAM(5).

Default: 0.

IPARAM(6) = Iterative refinement is done when this is nonzero.
Default: 0.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation
stops when the growth factor exceeds the limit.

Default: 1016.

RPARAM(2) = The stability factor. The absolute value of the pivotal
element must be bigger than the largest element in absolute value in its
row divided by RPARAM(2).
Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in A will be removed if its
absolute value becomes smaller than the drop-tolerance at any stage of
the Gaussian elimination.
Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in
absolute value in A at any stage of the Gaussian elimination divided by
the largest element in absolute value in the original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in
the computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value.
(Output)

210 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

If double precision is required, then DL4LZG is called and RPARAM is
declared double precision.

Algorithm

Consider the linear equation

Ax = b

where A is a n × n complex sparse matrix. The sparse coordinate format for the
matrix A requires one complex and two integer vectors. The complex array a
contains all the nonzeros in A. Let the number of nonzeros be nz. The two integer
arrays irow and jcol, each of length nz, contain the row and column numbers
for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

with all other entries in A zero.

The subroutine LSLZG solves a system of linear algebraic equations having a
complex sparse coefficient matrix. It first uses the routine LFTZG (page 212) to
perform an LU factorization of the coefficient matrix. The solution of the linear
system is then found using LFSZG (page 217). The routine LFTZG by default uses
a symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most
likely would reduce fill-ins while maintaining numerical stability. Different
strategies are also provided as options for row oriented or column oriented
problems. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively. Finally, the solution x is obtained by the following
calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

Example

As an example, consider the 6 × 6 linear system:

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 211

A

i

i i i

i

i i i

i i i i

i i i

=

+
+ − + − +

+
− − + − +
− + − + + − +

− + − + +

�

!

"

$

#######

10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

Let

x7 = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)

so that

Ax = (3 + 17i, −19 + 5i, 6 + 18i, −38 + 32i, −63 + 49i, −57 + 83i)7

The number of nonzeros in A is nz = 15. The sparse coordinate form for A is
given by:

irow

jcol

6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

6 2 3 5 3 1 1 4 1 4 5 2 1 4 6
 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
C
 INTEGER IPARAM(6), IPATH, IROW(NZ), JCOL(NZ)
 REAL RPARAM(5)
 COMPLEX A(NZ), B(N), X(N)
 EXTERNAL LSLZG, WRCRN
C
 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),
 & (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),
 & (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/
 DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),
 & (-63.0,49.0), (-57.0,83.0)/
 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/
 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/
C
 IPATH = 1
C Use default options
 IPARAM(1) = 0
 CALL LSLZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X)
C
 CALL WRCRN (’X’, N, 1, X, N, 0)
 END

Output
 X
1 (1.000, 1.000)
2 (2.000, 2.000)
3 (3.000, 3.000)
4 (4.000, 4.000)

212 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

5 (5.000, 5.000)
6 (6.000, 6.000)

LFTZG/DLFTZG (Single/Double precision)
Compute the LU factorization of a complex general sparse matrix.

Usage
CALL LFTZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL,
 FAC, IRFAC, JCFAC, IPVT, JPVT)

Arguments

N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the linear system. (Input)

A — Complex vector of length NZ containing the nonzero coefficients of the
linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding
elements in A. (Input)

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in A. (Input)

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

NFAC — On input, the dimension of vector FAC. (Input/Output)
On output, the number of nonzero coefficients in the triangular matrix L and U.

NL — The number of nonzero coefficients in the triangular matrix L excluding
the diagonal elements. (Output)

FAC — Complex vector of length NFAC containing the nonzero elements of L
(excluding the diagonals) in the first NL locations and the nonzero elements of U
in NL + 1 to NFAC locations. (Output)

IRFAC — Vector of length NFAC containing the row numbers of the
corresponding elements in FAC. (Output)

JCFAC — Vector of length NFAC containing the column numbers of the
corresponding elements in FAC. (Output)

IPVT — Vector of length N containing the row pivoting information for the LU
factorization. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 213

JPVT — Vector of length N containing the column pivoting information for the
LU factorization. (Output)

Comments

1. Automatic workspace usage is

LFTZG 15N + 6 * MAXNZ units, or
DLFTZG 15N + 8 * MAXNZ units.

MAXNZ is the maximal number of nonzero elements at any stage of the
Gaussian elimination. In the absence of other information, setting MAXNZ

equal to 3 ∗ NZ is recommended. Higher or lower values may be used
depending on fill-in, see IPARAM(5) in Comment 3.

Workspace may be explicitly provided, if desired, by use of
L2TZG/DL2TZG. The reference is

CALL L2TZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM,
 NFAC, NL, FAC, IRFAC, JCFAC, IPVT, JPVT,
 WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N)))

2. Informational errors
Type Code
 3 1 The coefficient matrix is numerically singular.
 3 2 The growth factor is too large to continue.

3. If the default parameters are desired for LFTZG, then set IPARAM(1) to
zero and call the routine LFTZG. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM. then the following steps should be
taken before calling LFTZG:

CALL L4LZG (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZG will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above. The arguments
are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

214 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPARAM(2) = The pivoting strategy.
IPARAM(2) Action
1 Markowitz row search
2 Markowitz column search
3 Symmetric Markowitz search
Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero
elements that will be searched for a pivotal element.
Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any
stage of the Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.
IPARAM(5) Action
0 Default limit, see Comment 1.
integer This integer value replaces the default workspace

limit.
When L2TZG is called, the values of LWK and LIWK are
used instead of IPARAM(5).

Default: 0.

IPARAM(6) = Not used in LFTZG.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation
stops when the growth factor exceeds the limit.

Default: 1016.

RPARAM(2) = The stability factor. The absolute value of the pivotal
element must be bigger than the largest element in absolute value in its
row divided by RPARAM(2).
Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor
L will be removed if its absolute value becomes smaller than the drop-
tolerance at any stage of the Gaussian elimination.
Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in
absolute value in A at any stage of the Gaussian elimination divided by
the largest element in absolute value in the original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in
the computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value.
(Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 215

If double precision is required, then DL4LZG is called and RPARAM is
declared double precision.

Algorithm

Consider the linear equation

Ax = b

where A is a complex n × n sparse matrix. The sparse coordinate format for the
matrix A requires one complex and two integer vectors. The complex array a
contains all the nonzeros in A. Let the number of nonzeros be nz. The two integer
arrays irow and jcol, each of length nz, contain the row and column indices for
these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

with all other entries in A zero.

The routine LFTZG performs an LU factorization of the coefficient matrix A. It
uses by default a symmetric Markowitz strategy (Crowe et al. 1990) to choose
pivots that most likely would reduce fill-ins while maintaining numerical stability.
Different strategies are also provided as options for row oriented or column
oriented problems. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively.

Finally, the solution x is obtained using LFSZG (page 217) by the following
calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

Example

As an example, the following 6 × 6 matrix is factorized, and the outcome is
printed:

A

i

i i i

i

i i i

i i i i

i i i

=

+
+ − + − +

+
− − + − +
− + − + + − +

− + − + +

�

!

"

$

#######

10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

216 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

The sparse coordinate form for A is given by:

irow

jcol

6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

6 2 3 5 3 1 1 4 1 4 5 2 1 4 6
 INTEGER N, NFAC, NZ
 PARAMETER (N=6, NZ=15, NFAC=3*NZ)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IPARAM(6), IPVT(N), IRFAC(NFAC), IROW(NZ), JCFAC(NFAC),
 & JCOL(NZ), JPVT(N), NL
 REAL RPARAM(5)
 COMPLEX A(NZ), FAC(NFAC)
C
 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),
 & (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),
 & (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/
 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/
 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/
C
 IPARAM(1) = 0
C Use default options
 CALL LFTZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FAC,
 & IRFAC, JCFAC, IPVT, JPVT)
C
 CALL WRCRN (’fac’,NFAC,1,FAC,NFAC,0)
 CALL WRIRN (’ irfac ’, 1, NFAC, IRFAC, 1, 0)
 CALL WRIRN (’ jcfac ’, 1, NFAC, JCFAC, 1, 0)
 CALL WRIRN (’ p ’, 1, N, IPVT, 1, 0)
 CALL WRIRN (’ q ’, 1, N, JPVT, 1, 0)
C
 END

Output
 fac
 1 (0.50, 0.85)
 2 (0.15, -0.41)
 3 (-0.60, 0.30)
 4 (2.23, -1.97)
 5 (-0.15, 0.50)
 6 (-0.04, 0.26)
 7 (-0.32, -0.17)
 8 (-0.92, 7.46)
 9 (-6.71, -6.42)
10 (12.00, 2.00)
11 (-1.00, 2.00)
12 (-3.32, 0.21)
13 (3.00, 7.00)
14 (-2.00, 8.00)
15 (10.00, 7.00)
16 (4.00, 2.00)

 irfac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 4 4 5 5 6 6 6 5 5 4 4 3 3 2 1

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 217

 jcfac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 1 4 2 5 2 6 6 5 6 4 4 3 2 1

 p
1 2 3 4 5 6
3 1 6 2 5 4

 q
1 2 3 4 5 6
3 1 2 6 5 4

LFSZG/DLFSZG (Single/Double precision)
Solve a complex sparse system of linear equations given the LU factorization of
the coefficient matrix.

Usage
CALL LFSZG (N, NFAC, NL, FAC, IRFAC, JCFAC, IPVT, JPVT, B,
 IPATH, X)

Arguments

N — Number of equations. (Input)

NFAC — The number of nonzero coefficients in FAC as output from subroutine
LFTZG/DLFTZG. (Input)

NL — The number of nonzero coefficients in the triangular matrix L excluding
the diagonal elements as output from subroutine LFTZG/DLFTZG. (Input)

FAC — Complex vector of length NFAC containing the nonzero elements of L
(excluding the diagonals) in the first NL locations and the nonzero elements of U
in NL+ 1 to NFAC locations as output from subroutine LFTZG/DLFTZG. (Input)

IRFAC — Vector of length NFAC containing the row numbers of the
corresponding elements in FAC as output from subroutine LFTZG/DLFTZG.
(Input)

JCFAC — Vector of length NFAC containing the column numbers of the
corresponding elements in FAC as output from subroutine LFTZG/DLFTZG.
(Input)

IPVT — Vector of length N containing the row pivoting information for the LU
factorization as output from subroutine LFTZG/DLFTZG. (Input)

JPVT — Vector of length N containing the column pivoting information for the
LU factorization as output from subroutine LFTZG/DLFTZG. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

218 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPATH — Path indicator. (Input)
IPATH = 1 means the system Ax = b is solved.

IPATH = 2 means the system A+ x = b is solved .

X — Complex vector of length N containing the solution to the linear system.
(Output)

Algorithm

Consider the linear equation

Ax = b

where A is a complex n × n sparse matrix. The sparse coordinate format for the
matrix A requires one complex and two integer vectors. The complex array a

contains all the nonzeros in A. Let the number of nonzeros be nz. The two integer
arrays irow and jcol, each of length nz, contain the row and column numbers
for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

with all other entries in A zero.

The routine LFSZG computes the solution of the linear equation given its LU
factorization. The factorization is performed by calling LFTZG (page 212). The
solution of the linear system is then found by the forward and backward
substitution. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively.

Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

For more details, see Crowe et al. (1990).

Example

As an example, consider the 6 × 6 linear system:

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 219

A

i

i i i

i

i i i

i i i i

i i i

=

+
+ − + − +

+
− − + − +
− + − + + − +

− + − + +

�

!

"

$

#######

10 7 0 0 0 0 0

0 3 2 3 0 1 2 0 0

0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0

5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

Let

x i i i i i iT
1 1 2 2 3 3 4 4 5 5 6 6= + + + + + +, , , , ,0 5

so that

Ax1 = (3 + 17i, −19 + 5i, 6 + 18i, −38 + 32i, −63 + 49i, −57 + 83i)7

and

x i i i i i iT
2 6 6 5 5 4 4 3 3 2 2 1= + + + + + +, , , , ,0 5

so that

Ax2 = (18 + 102i, −16 + 16i, 8 + 24i, −11 −11i, −63 + 7i, −132 + 106i)7

The sparse coordinate form for A is given by:

irow

jcol

6 2 2 4 3 1 5 4 6 5 5 6 4 2 5

6 2 3 5 3 1 1 4 1 4 5 2 1 4 6
 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
C
 INTEGER IPARAM(6), IPATH, IPVT(N), IRFAC(3*NZ), IROW(NZ),
 & JCFAC(3*NZ), JCOL(NZ), JPVT(N), NFAC, NL
 REAL RPARAM(5)
 COMPLEX A(NZ), B(N,2), FAC(3*NZ), X(N)
 CHARACTER TITLE(2)*2
C
 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),
 & (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),
 & (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/
 DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),
 & (-63.0,49.0), (-57.0,83.0), (18.0,102.0), (-16.0,16.0),
 & (8.0,24.0), (-11.0,-11.0), (-63.0,7.0), (-132.0,106.0)/
 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/
 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/
 DATA TITLE/’x1’,’x2’/
C
 NFAC = 3*NZ
C Use default options
 IPARAM(1) = 0
C Perform LU factorization
 CALL LFTZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FAC,

220 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 & IRFAC, JCFAC, IPVT, JPVT)
C
 IPATH = 1
 DO 10 I = 1,2
C Solve A * X(i) = B(i)
 CALL LFSZG (N, NFAC, NL, FAC, IRFAC, JCFAC, IPVT, JPVT,
 & B(1,I), IPATH, X)
 CALL WRCRN (TITLE(I), N, 1, X, N, 0)
 10 CONTINUE
C
 END

Output
 x1
1 (1.000, 1.000)
2 (2.000, 2.000)
3 (3.000, 3.000)
4 (4.000, 4.000)
5 (5.000, 5.000)
6 (6.000, 6.000)

 x2
1 (6.000, 6.000)
2 (5.000, 5.000)
3 (4.000, 4.000)
4 (3.000, 3.000)
5 (2.000, 2.000)
6 (1.000, 1.000)

LSLXD/DLSLXD (Single/Double precision)
Solve a sparse system of symmetric positive definite linear algebraic equations by
Gaussian elimination.

Usage
CALL LSLXD (N, NZ, A, IROW, JCOL, B, ITWKSP, X)

Arguments

N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the lower triangle of the linear
system. (Input)

A — Vector of length NZ containing the nonzero coefficients in the lower triangle
of the linear system. (Input)
The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to
NZ, and at this location the sparse matrix has value A(i).

IROW — Vector of length NZ containing the row numbers of the corresponding
elements in the lower triangle of A. (Input)
Note IROW(i) ≥ JCOL(i), since we are only indexing the lower triangle.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 221

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in the lower triangle of A. (Input)

B — Vector of length N containing the right-hand side of the linear system.
(Input)

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero. See Comment 1 for the default.

X — Vector of length N containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is

LSLXD 18N + 21NZ + 9 units, or

DLSLXD 20N + 27NZ + 9 units. This is the default if ITWKSP is zero. If
the value is positive, ITWKSP units are automatically allocated.

Workspace may be explicitly provided, if desired, by use of
L2LXD/DL2LXD. The reference is

CALL L2LXD (N, NZ, A, IROW, JCOL, B, X, IPER,
 IPARAM, RPARAM, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

IPER — Vector of length N containing the ordering.

IPARAM — Integer vector of length 4. See Comment 3.

RPARAM — Real vector of length 2. See Comment 3.

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + 6NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors
Type Code
 4 1 The coefficient matrix is not positive definite.
 4 2 A column without nonzero elements has been found in

the coefficient matrix.

3. If the default parameters are desired for L2LXD, then set IPARAM(1) to
zero and call the routine L2LXD. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling L2LXD.

CALL L4LXD (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

222 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Note that the call to L4LXD will set IPARAM and RPARAM to their default
values, so only nondefault values need to be set above. The arguments
are as follows:

IPARAM — Integer vector of length 4.

IPARAM(1) = Initialization flag.

IPARAM(2) = The numerical factorization method.
IPARAM(2) Action
0 Multifrontal
1 Sparse column
Default: 0.

IPARAM(3) = The ordering option.
IPARAM(3) Action
0 Minimum degree ordering
1 User’s ordering specified in IPER
Default: 0.

IPARAM(4) = The total number of nonzeros in the factorization matrix.

RPARAM — Real vector of length 2.

RPARAM(1) = The value of the largest diagonal element in the Cholesky
factorization.

RPARAM(2) = The value of the smallest diagonal element in the Cholesky
factorization.

If double precision is required, then DL4LXD is called and RPARAM is
declared double precision.

Algorithm

Consider the linear equation

Ax = b

where A is sparse, positive definite and symmetric. The sparse coordinate format
for the matrix A requires one real and two integer vectors. The real array a

contains all the nonzeros in the lower triangle of A including the diagonal. Let the
number of nonzeros be nz. The two integer arrays irow and jcol, each of length
nz, contain the row and column indices for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

irow(i) ≥ jcol(i) i = 1, …, nz

with all other entries in the lower triangle of A zero.

The subroutine LSLXD solves a system of linear algebraic equations having a real,
sparse and positive definite coefficient matrix. It first uses the routine LSCXD

(page 224) to compute a symbolic factorization of a permutation of the

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 223

coefficient matrix. It then calls LNFXD (page 228) to perform the numerical
factorization. The solution of the linear system is then found using LFSXD
(page 232).

The routine LSCXD computes a minimum degree ordering or uses a user-supplied
ordering to set up the sparse data structure for the Cholesky factor, L. Then the
routine LNFXD produces the numerical entries in L so that we have

P AP7= LL7

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routines in Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse
compressed storage scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly1 = Pb

2) L7y2 = y1

3) x = P7y2

The routine LFSXD accepts b and the permutation vector which determines P. It
then returns x.

Example

As an example consider the 5 × 5 linear system:

A =

�

!

"

$

######

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

Let x7 = (1, 2, 3, 4, 5) so that Ax = (23, 55, 107, 197, 278)7. The number of
nonzeros in the lower triangle of A is nz = 10. The sparse coordinate form for the
lower triangle of A is given by:

224 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

irow

jcol

a

1 2 3 3 4 4 5 5 5 5

1 2 1 3 3 4 1 2 4 5

10 20 1 30 4 40 2 3 5 50

or equivalently by

irow

jcol

a

4 5 5 5 1 2 3 3 4 5

4 1 2 4 1 2 1 3 3 5

40 2 3 5 10 20 1 30 4 50
 INTEGER N, NZ
 PARAMETER (N=5, NZ=10)
C
 INTEGER IROW(NZ), JCOL(NZ), ITWKSP
 REAL A(NZ), B(N), X(N)
 EXTERNAL LSLXD, WRRRN
C
 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./
 DATA B/23., 55., 107., 197., 278./
 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/
 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
C Use default workspace
 ITWKSP = 0
C Solve A * X = B
 CALL LSLXD (N, NZ, A, IROW, JCOL, B, ITWKSP, X)
C Print results
 CALL WRRRN (’ x ’, 1, N, X, 1, 0)
 END

Output
 x
 1 2 3 4 5
1.000 2.000 3.000 4.000 5.000

LSCXD/DLSCXD (Single/Double precision)
Perform the symbolic Cholesky factorization for a sparse symmetric matrix using
a minimum degree ordering or a user-specified ordering, and set up the data
structure for the numerical Cholesky factorization.

Usage
CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB,
 INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE)

Arguments

N — Number of equations. (Input)

NZ — Total number of the nonzeros in the lower triangular part of the symmetric
matrix, including the nonzeros on the diagonal. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 225

IROW — Vector of length NZ containing the row subscripts of the nonzeros in
the lower triangular part of the matrix including the nonzeros on the diagonal.
(Input)

JCOL — Vector of length NZ containing the column subscripts of the nonzeros in
the lower triangular part of the matrix including the nonzeros on the diagonal.
(Input)
(IROW (K), JCOL(K)) gives the row and column indices of the k-th nonzero
element of the matrix stored in coordinate form. Note, IROW(K) ≥ JCOL(K).

IJOB — Integer parameter selecting an ordering to permute the matrix
symmetrically. (Input)
IJOB = 0 selects the user ordering specified in IPER and reorders it so that the
multifrontal method can be used in the numerical factorization.
IJOB = 1 selects the user ordering specified in IPER.
IJOB = 2 selects a minimum degree ordering.
IJOB = 3 selects a minimum degree ordering suitable for the multifrontal method
in the numerical factorization.

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero. See Comment 1 for the default.

MAXSUB — Number of subscripts contained in array NZSUB. (Input/Output)
On input, MAXSUB gives the size of the array NZSUB.
Note that when default workspace (ITWKSP = 0) is used, set MAXSUB = 3 * NZ.
Otherwise (ITWKSP > 0), set MAXSUB = (ITWKSP − 10 * N − 7) / 4. On output,
MAXSUB gives the number of subscripts used by the compressed subscript format.

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-
diagonal nonzeros in the Cholesky factor in compressed format. (Output)

INZSUB — Vector of length N + 1 containing pointers for NZSUB. The row
subscripts for the off-diagonal nonzeros in column J are stored in NZSUB from
location INZSUB (J) to INZSUB(J + 1) − 1. (Output)

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor.
(Output)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor. The
off-diagonal nonzeros in column J of the factor are stored from location ILNZ (J)
to ILNZ(J + 1) − 1. (Output)
(ILNZ, NZSUB, INZSUB) sets up the data structure for the off-diagonal nonzeros
of the Cholesky factor in column ordered form using compressed subscript
format.

IPER — Vector of length N containing the ordering specified by IJOB.
(Input/Output)
IPER (I) = K indicates that the original row K is the new row I.

INVPER — Vector of length N containing the inverse permutation. (Output)
INVPER (K) = I indicates that the original row K is the new row I.

226 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

ISPACE — The storage space needed for stack of frontal matrices. (Output)

Comments

1. Automatic workspace usage is

LSCXD 10N + 12NZ + 7 units. This is the default if ITWKSP is zero. If
the value is positive, ITWKSP units are automatically allocated.

Workspace may be explicitly provided, if desired, by use of L2CXD. The
reference is

CALL L2CXD (N, NZ, IROW, JCOL, IJOB, MAXSUB, NZSUB,
 INZSUB, MAXNZ, ILNZ, IPER, INVPER,
 ISPACE, LIWK, IWK)

The additional arguments are as follows:

LIWK — The length of IWK, LIWK should be at least 10N + 12NZ + 7.
Note that the argument MAXSUB should be set to (LIWK − 10N − 7)/4.

IWK — Integer work vector of length LIWK.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors
Type Code
 4 1 The matrix is structurally singular.

Algorithm

Consider the linear equation

Ax = b

where A is sparse, positive definite and symmetric. The sparse coordinate format
for the matrix A requires one real and two integer vectors. The real array a

contains all the nonzeros in the lower triangle of A including the diagonal. Let the
number of nonzeros be nz. The two integer arrays irow and jcol, each of length
nz, contain the row and column indices for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

irow(i) ≥ jcol(i) i = 1, …, nz

with all other entries in the lower triangle of A zero.

The routine LSCXD computes a minimum degree ordering or uses a user-supplied
ordering to set up the sparse data structure for the Cholesky factor, L. Then the
routine LNFXD (page 228) produces the numerical entries in L so that we have

P AP7= LL7

Here, P is the permutation matrix determined by the ordering.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 227

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routines in Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse
compressed storage scheme.

Example

As an example, the following matrix is symbolically factorized, and the result is
printed:

A =

�

!

"

$

######

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

The number of nonzeros in the lower triangle of A is nz= 10. The sparse
coordinate form for the lower triangle of A is given by:

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

or equivalently by

irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5
 INTEGER N, NZ
 PARAMETER (N=5, NZ=10)
C
 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),
 & IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,
 & NZSUB(3*NZ)
 EXTERNAL LSCXD, WRIRN
C
 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/
 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
C Select minimum degree ordering
C for multifrontal method
 IJOB = 3
C Use default workspace
 ITWKSP = 0
 MAXSUB = 3*NZ
 CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB,
 & INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE)

228 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C Print results
 CALL WRIRN (’ iper ’, 1, N, IPER, 1, 0)
 CALL WRIRN (’ invper ’, 1, N, INVPER, 1, 0)
 CALL WRIRN (’ nzsub ’, 1, MAXSUB, NZSUB, 1, 0)
 CALL WRIRN (’ inzsub ’, 1, N+1, INZSUB, 1, 0)
 CALL WRIRN (’ ilnz ’, 1, N+1, ILNZ, 1, 0)
 END

Output
 iper
1 2 3 4 5
2 1 5 4 3

 invper
1 2 3 4 5
2 1 5 4 3

 nzsub
1 2 3 4
3 5 4 5

 inzsub
1 2 3 4 5 6
1 1 3 4 4 4

 ilnz
1 2 3 4 5 6
1 2 4 6 7 7

LNFXD/DLNFXD (Single/Double precision)
Compute the numerical Cholesky factorization of a sparse symmetrical matrix A.

Usage
CALL LNFXD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB,
 INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE,
 ITWKSP, DIAG, RLNZ, RPARAM)

Arguments

N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the linear system. (Input)

A — Vector of length NZ containing the nonzero coefficients of the lower triangle
of the linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding
elements in the lower triangle of A. (Input)

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in the lower triangle of A. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 229

IJOB — Integer parameter selecting factorization method. (Input)
IJOB = 1 yields factorization in sparse column format.
IJOB = 2 yields factorization using multifrontal method.

MAXSUB — Number of subscripts contained in array NZSUB as output from
subroutine LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the
nonzeros in the Cholesky factor in compressed format as output from subroutine
LSCXD/DLSCXD. (Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from
subroutine LSCXD/DLSCXD. (Input)
The row subscripts for the nonzeros in column J are stored from location INZSUB
(J) to INZSUB(J + 1) − 1.

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD. (Input)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as
output from subroutine LSCXD/DLSCXD. (Input)
The row subscripts for the nonzeros in column J of the factor are stored from
location ILNZ(J) to ILNZ(J + 1) − 1. (ILNZ, NZSUB, INZSUB) sets up the
compressed data structure in column ordered form for the Cholesky factor.

IPER — Vector of length N containing the permutation as output from subroutine
LSCXD/DLSCXD. (Input)

INVPER — Vector of length N containing the inverse permutation as output from
subroutine LSCXD/DLSCXD. (Input)

ISPACE — The storage space needed for the stack of frontal matrices as output
from subroutine LSCXD/DLSCXD. (Input)

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero. See Comment 1 for the default.

DIAG — Vector of length N containing the diagonal of the factor. (Output)

RLNZ — Vector of length MAXNZ containing the strictly lower triangle nonzeros
of the Cholesky factor. (Output)

RPARAM — Parameter vector containing factorization information. (Output)
RPARAM(1) = smallest diagonal element.
RPARAM(2) = largest diagonal element.

Comments

1. Automatic workspace usage is

LNFXD 3N + 3NZ units, or

DLNFXD 4N + 6NZ units. This is the default if ITWKSP is zero. If the
value is positive, ITWKSP units are automatically allocated.

230 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Workspace may be explicitly provided by use of L2FXD/DL2FXD . The
reference is

CALL L2FXD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB,
 NZSUB,INZSUB, MAXNZ, ILNZ, IPER, INVPER,
 ISPACE,DIAG, RLNZ, RPARAM, WK, LWK, IWK,
 LIWK)

The additional arguments are as follows:

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least N + 3NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 2N.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors
Type Code
 4 1 The coefficient matrix is not positive definite.
 4 2 A column without nonzero elements has been found in

the coefficient matrix.

Algorithm

Consider the linear equation

Ax = b

where A is sparse, positive definite and symmetric. The sparse coordinate format
for the matrix A requires one real and two integer vectors. The real array a

contains all the nonzeros in the lower triangle of A including the diagonal. Let the
number of nonzeros be nz. The two integer arrays irow and jcol, each of length
nz, contain the row and column indices for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

irow(i) ≥ jcol(i) i = 1, …, nz

with all other entries in the lower triangle of A zero. The routine LNFXD produces

the Cholesky factorization of P AP7given the symbolic factorization of A which
is computed by LSCXD (page 224). That is, this routine computes L which
satisfies

P AP7= LL7

The diagonal of L is stored in DIAG and the strictly lower triangular part of L is
stored in compressed subscript form in R = RLNZ as follows. The nonzeros in the
j-th column of L are stored in locations R(i), …, R(i + k) where i = ILNZ(j) and k
= ILNZ(j + 1) − ILNZ(j) − 1. The row subscripts are stored in the vector NZSUB

from locations INZSUB(j) to INZSUB(j + 1) − 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 231

The numerical computations can be carried out in one of two ways. The first
method (when IJOB = 2) performs the factorization using a multifrontal
technique. This option requires more storage but in certain cases will be faster.
The multifrontal method is based on the routines in Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984),
Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method
(when IJOB = 1) is fully described in George and Liu (1981). This is just the
standard factorization method based on the sparse compressed storage scheme.

Example

As an example, consider the 5 × 5 linear system:

A =

�

!

"

$

######

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

The number of nonzeros in the lower triangle of A is nz = 10. The sparse
coordinate form for the lower triangle of A is given by:

irow

jcol

a

1 2 3 3 4 4 5 5 5 5

1 2 1 3 3 4 1 2 4 5

10 20 1 30 4 40 2 3 5 50

or equivalently by

irow

jcol

a

4 5 5 5 1 2 3 3 4 5

4 1 2 4 1 2 1 3 3 5

40 2 3 5 10 20 1 30 4 50

We first call LSCXD, page 224, to produce the symbolic information needed to
pass on to LNFXD. Then call LNFXD to factor this matrix. The results are displayed
below.

 INTEGER N, NZ, NRLNZ
 PARAMETER (N=5, NZ=10, NRLNZ=10)
C
 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),
 & IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,
 & NZSUB(3*NZ)
 REAL A(NZ), DIAG(N), RLNZ(NRLNZ), RPARAM(2)
 EXTERNAL LNFXD, LSCXD, WRRRN
C
 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./
 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/
 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/

232 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C Select minimum degree ordering
C for multifrontal method
 IJOB = 3
C Use default workspace
 ITWKSP = 0
 MAXSUB = 3*NZ
 CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB,
 & INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE)
C Check if NRLNZ is large enough
 IF (NRLNZ .GE. MAXNZ) THEN
C Choose multifrontal method
 IJOB = 2
 CALL LNFXD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB,
 & MAXNZ, ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAG,
 & RLNZ, RPARAM)
C Print results
 CALL WRRRN (’ diag ’, 1, N, DIAG, 1, 0)
 CALL WRRRN (’ rlnz ’, 1, MAXNZ, RLNZ, 1, 0)
 END IF
C
 END

Output
 diag
 1 2 3 4 5
4.472 3.162 7.011 6.284 5.430

 rlnz
 1 2 3 4 5 6
0.6708 0.6325 0.3162 0.7132 -0.0285 0.6398

LFSXD/DLFSXD (Single/Double precision)
Solve a real sparse symmetric positive definite system of linear equations, given
the Cholesky factorization of the coefficient matrix.

Usage
CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ,
 DIAG, IPER, B, X)

Arguments

N — Number of equations. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from
subroutine LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-
diagonal nonzeros in the factor as output from subroutine LSCXD/DLSCXD.
(Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from
subroutine LSCXD/DLSCXD. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 233

The row subscripts of column J are stored from location INZSUB(J) to INZSUB(J
+ 1) − 1.

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as
output from subroutine LSCXD/DLSCXD. (Input)

RLNZ — Vector of length MAXNZ containing the off-diagonal nonzeros in the
factor in column ordered format as output from subroutine LNFXD/DLNFXD.
(Input)

ILNZ — Vector of length N + 1 containing pointers to RLNZ as output from
subroutine LSCXD/DLSCXD. The nonzeros in column J of the factor are stored
from location ILNZ(J) to ILNZ(J + 1) − 1. (Input)
The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the
factor in a compressed subscript data format.

DIAG — Vector of length N containing the diagonals of the Cholesky factor as
output from subroutine LNFXD/DLNFXD. (Input)

IPER — Vector of length N containing the ordering as output from subroutine
LSCXD/DLSCXD. (Input)
IPER(I) = K indicates that the original row K is the new row I.

B — Vector of length N containing the right-hand side. (Input)

X — Vector of length N containing the solution. (Output)

Comments

Informational error
Type Code
 4 1 The input matrix is numerically singular.

Algorithm

Consider the linear equation

Ax = b

where A is sparse, positive definite and symmetric. The sparse coordinate format
for the matrix A requires one real and two integer vectors. The real array a

contains all the nonzeros in the lower triangle of A including the diagonal. Let the
number of nonzeros be nz. The two integer arrays irow and jcol, each of length
nz, contain the row and column indices for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

irow(i) ≥ jcol(i) i = 1, …, nz

with all other entries in the lower triangle of A zero.

The routine LFSXD computes the solution of the linear system given its Cholesky
factorization. The factorization is performed by calling LSCXD (page 224)
followed by LNFXD (page 228). The routine LSCXD computes a minimum degree

234 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

ordering or uses a user-supplied ordering to set up the sparse data structure for the
Cholesky factor, L. Then the routine LNFXD produces the numerical entries in L
so that we have

P AP7= LL7

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routines in Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse
compressed storage scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly1 = Pb

2) L7y2 = y1

3) x = P7y2

Example

As an example, consider the 5 × 5 linear system:

A =

�

!

"

$

######

10 0 1 0 2

0 20 0 0 3

1 0 30 4 0

0 0 4 40 5

2 3 0 5 50

Let

xT
1 1 2 3 4 5= , , , ,0 5

so that Ax1 = (23, 55, 107, 197, 278)7, and

xT
2 5 4 3 2 1= , , , ,0 5

so that Ax2 = (55, 83, 103, 97, 82)7. The number of nonzeros in the lower triangle
of A is nz = 10. The sparse coordinate form for the lower triangle of A is given
by:

irow

jcol

a

1 2 3 3 4 4 5 5 5 5

1 2 1 3 3 4 1 2 4 5

10 20 1 30 4 40 2 3 5 50

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 235

or equivalently by

irow

jcol

a

4 5 5 5 1 2 3 3 4 5

4 1 2 4 1 2 1 3 3 5

40 2 3 5 10 20 1 30 4 50
 INTEGER N, NZ, NRLNZ
 PARAMETER (N=5, NZ=10, NRLNZ=10)
C
 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),
 & IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,
 & NZSUB(3*NZ)
 REAL A(NZ), B1(N), B2(N), DIAG(N), RLNZ(NRLNZ), RPARAM(2),
 & X(N)
 EXTERNAL LFSXD, LNFXD, LSCXD, WRRRN
C
 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./
 DATA B1/23., 55., 107., 197., 278./
 DATA B2/55., 83., 103., 97., 82./
 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/
 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
C Select minimum degree ordering
C for multifrontal method
 IJOB = 3
C Use default workspace
 ITWKSP = 0
 MAXSUB = 3*NZ
 CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB,
 & INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE)
C Check if NRLNZ is large enough
 IF (NRLNZ .GE. MAXNZ) THEN
C Choose multifrontal method
 IJOB = 2
 CALL LNFXD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB,
 & MAXNZ, ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAG,
 & RLNZ, RPARAM)
C Solve A * X1 = B1
 CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAG,
 & IPER, B1, X)
C Print X1
 CALL WRRRN (’ x1 ’, 1, N, X, 1, 0)
C Solve A * X2 = B2
 CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAG,
 & IPER, B2, X)
C Print X2
 CALL WRRRN (’ x2 ’, 1, N, X, 1, 0)
 END IF
C
 END

236 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output
 x1
 1 2 3 4 5
1.000 2.000 3.000 4.000 5.000

 x2
 1 2 3 4 5
5.000 4.000 3.000 2.000 1.000

LSLZD/DLSLZD (Single/Double precision)
Solve a complex sparse Hermitian positive definite system of linear equations by
Gaussian elimination.

Usage
CALL LSLZD (N, NZ, A, IROW, JCOL, B, ITWKSP, X)

Arguments

N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the lower triangle of the linear
system. (Input)

A — Complex vector of length NZ containing the nonzero coefficients in the
lower triangle of the linear system. (Input)
The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to
NZ, and at this location the sparse matrix has value A(i).

IROW — Vector of length NZ containing the row numbers of the corresponding
elements in the lower triangle of A. (Input)
Note IROW(i) ≥ JCOL(i), since we are only indexing the lower triangle.

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in the lower triangle of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero. See Comment 1 for the default.

X — Complex vector of length N containing the solution to the linear system.
(Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 237

Comments

1. Automatic workspace usage is

LSLZD 20N + 27NZ + 9 units, or

DLSLZD 24N + 39NZ + 9 units. This is the default if ITWKSP is zero. If
this value is positive, ITWKSP units are automatically allocated.

Workspace may be explicitly provided, if desired, by use of
L2LZD/DL2LZD. The reference is

CALL L2LZD (N, NZ, A, IROW, JCOL, B, X, IPER,

 IPARAM, RPARAM, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

IPER — Vector of length N containing the ordering.

IPARAM — Integer vector of length 4. See Comment 3.

RPARAM — Real vector of length 2. See Comment 3.

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + 6NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9.

Note that the parameter ITWKSP is not an argument for this routine.

2. Informational errors
Type Code
 4 1 The coefficient matrix is not positive definite.
 4 2 A column without nonzero elements has been found in

the coefficient matrix.

3. If the default parameters are desired for L2LZD, then set IPARAM(1) to
zero and call the routine L2LZD. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling L2LZD.

CALL L4LZD (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZD will set IPARAM and RPARAM to their default
values, so only nondefault values need to be set above. The arguments
are as follows:

IPARAM — Integer vector of length 4.
IPARAM(1) = Initialization flag.

238 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPARAM(2) = The numerical factorization method.
IPARAM(2) Action
0 Multifrontal
1 Sparse column
Default: 0.

IPARAM(3) = The ordering option.
IPARAM(3) Action
0 Minimum degree ordering
1 User’s ordering specified in IPER
Default: 0.

IPARAM(4) = The total number of nonzeros in the factorization matrix.

RPARAM — Real vector of length 2.
RPARAM(1) = The absolute value of the largest diagonal element in the
Cholesky factorization.
RPARAM(2) = The absolute value of the smallest diagonal element in the
Cholesky factorization.

If double precision is required, then DL4LZD is called and RPARAM is
declared double precision.

Algorithm

Consider the linear equation

Ax = b

where A is sparse, positive definite and Hermitian. The sparse coordinate format
for the matrix A requires one complex and two integer vectors. The complex array
a contains all the nonzeros in the lower triangle of A including the diagonal. Let
the number of nonzeros be nz. The two integer arrays irow and jcol, each of
length nz, contain the row and column indices for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

irow(i) ≥ jcol(i) i = 1, …, nz

with all other entries in the lower triangle of A zero.

The routine LSLZD solves a system of linear algebraic equations having a
complex, sparse, Hermitian and positive definite coefficient matrix. It first uses
the routine LSCXD (page 224) to compute a symbolic factorization of a
permutation of the coefficient matrix. It then calls LNFZD (page 240) to perform
the numerical factorization. The solution of the linear system is then found using
LFSZD (page 244).

The routine LSCXD computes a minimum degree ordering or uses a user-supplied
ordering to set up the sparse data structure for the Cholesky factor, L. Then the
routine LNFZD produces the numerical entries in L so that we have

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 239

P AP7= LL+

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routines in Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse
compressed storage scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly1 = Pb

2) L+ y2 = y1

3) x = P7�y2

The routine LFSZD accepts b and the permutation vector which determines P . It
then returns x.

Example

As an example, consider the 3 × 3 linear system:

A

i i

i i i

i i

=
+ − +

− − + +
− +

�

!

"

$
###

2 0 1 0

1 4 0 1 2

0 1 2 10 0

Let x7 = (1 + i, 2 + 2i, 3 + 3i) so that Ax = (−2 + 2i, 5 + 15i, 36 + 28i)7� The
number of nonzeros in the lower triangle of A is nz = 5. The sparse coordinate
form for the lower triangle of A is given by:

irow

jcol

a

1 2 3 2 3

1 2 3 1 2

2 0 4 0 10 0 1 1 2+ + + − − −i i i i i

or equivalently by

irow

jcol

a

3 2 3 1 2

3 1 2 1 2

10 0 1 1 2 2 0 4 0+ − − − + +i i i i i
 INTEGER N, NZ
 PARAMETER (N=3, NZ=5)
C

240 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 INTEGER IROW(NZ), JCOL(NZ), ITWKSP
 COMPLEX A(NZ), B(N), X(N)
 EXTERNAL LSLZD, WRCRN
C
 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
 DATA B/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/
 DATA IROW/1, 2, 3, 2, 3/
 DATA JCOL/1, 2, 3, 1, 2/
C Use default workspace
 ITWKSP = 0
C Solve A * X = B
 CALL LSLZD (N, NZ, A, IROW, JCOL, B, ITWKSP, X)
C Print results
 CALL WRCRN (’ x ’, 1, N, X, 1, 0)
 END

Output
 x
 1 2 3
(1.000, 1.000) (2.000, 2.000) (3.000, 3.000)

LNFZD/DLNFZD (Single/Double precision)
Compute the numerical Cholesky factorization of a sparse Hermitian matrix A.

Usage
CALL LNFZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB,
 INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE,
 ITWKSP, DIAG, RLNZ, RPARAM)

Arguments

N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the linear system. (Input)

A — Complex vector of length NZ containing the nonzero coefficients of the
lower triangle of the linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding
elements in the lower triangle of A. (Input)

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in the lower triangle of A. (Input)

IJOB — Integer parameter selecting factorization method. (Input)
IJOB = 1 yields factorization in sparse column format.
IJOB = 2 yields factorization using multifrontal method.

MAXSUB — Number of subscripts contained in array NZSUB as output from
subroutine LSCXD/DLSCXD. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 241

NZSUB — Vector of length MAXSUB containing the row subscripts for the
nonzeros in the Cholesky factor in compressed format as output from subroutine
LSCXD/DLSCXD. (Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from
subroutine LSCXD/DLSCXD. (Input)
The row subscripts for the nonzeros in column J are stored from location
INZSUB(J) to INZSUB(J + 1) − 1.

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD. (Input)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as
output from subroutine LSCXD/DLSCXD. (Input)
The row subscripts for the nonzeros in column J of the factor are stored from
location ILNZ(J) to ILNZ(J + 1) − 1.
(ILNZ , NZSUB, INZSUB) sets up the compressed data structure in column ordered
form for the Cholesky factor.

IPER — Vector of length N containing the permutation as output from subroutine
LSCXD/DLSCXD. (Input)

INVPER — Vector of length N containing the inverse permutation as output from
subroutine LSCXD/DLSCXD. (Input)

ISPACE — The storage space needed for the stack of frontal matrices as output
from subroutine LSCXD/DLSCXD. (Input)

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero. See Comment 1 for the default.

DIAG — Complex vector of length N containing the diagonal of the factor.
(Output)

RLNZ — Complex vector of length MAXNZ containing the strictly lower triangle
nonzeros of the Cholesky factor. (Output)

RPARAM — Parameter vector containing factorization information. (Output)
RPARAM (1) = smallest diagonal element in absolute value.
RPARAM (2) = largest diagonal element in absolute value.

Comments

1. Automatic workspace usage is

LNFZD 4N + 6NZ units, or

DLNFZD 6N + 12NZ units. This is the default if ITWKSP is zero. If the
value is positive, ITWKSP units are automatically allocated.

Workspace may be explicitly provided by use of L2FZD/DL2FZD. The
reference is

242 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

CALL L2FZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB,
 NZSUB, INZSUB, MAXNZ, ILNZ, IPER,
 INVPER, ISPACE, DIAG, RLNZ, RPARAM, WK,
 LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least N + 3NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 2N.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors
Type Code
 4 1 The coefficient matrix is not positive definite.
 4 2 A column without nonzero elements has been found in

the coefficient matrix.

Algorithm

Consider the linear equation

Ax = b

where A is sparse, positive definite and Hermitian. The sparse coordinate format
for the matrix A requires one complex and two integer vectors. The complex array
a contains all the nonzeros in the lower triangle of A including the diagonal. Let
the number of nonzeros be nz. The two integer arrays irow and jcol, each of
length nz, contain the row and column indices for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

irow(i) ≥ jcol(i) i = 1, …, nz

with all other entries in the lower triangle of A zero.

The routine LNFZD produces the Cholesky factorization of P AP7�given the
symbolic factorization of A which is computed by LSCXD (page 224). That is, this
routine computes L which satisfies

P AP7= LL+

The diagonal of L is stored in DIAG and the strictly lower triangular part of L is
stored in compressed subscript form in R = RLNZ as follows. The nonzeros in the
jth column of L are stored in locations R(i), …, R(i + k) where i = ILNZ(j) and k =
ILNZ(j + 1) − ILNZ(j) − 1. The row subscripts are stored in the vector NZSUB

from locations INZSUB(j) to INZSUB(j + 1) − 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 243

The numerical computations can be carried out in one of two ways. The first
method (when IJOB = 2) performs the factorization using a multifrontal
technique. This option requires more storage but in certain cases will be faster.
The multifrontal method is based on the routines in Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984),
Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method
(when IJOB = 1) is fully described in George and Liu (1981). This is just the
standard factorization method based on the sparse compressed storage scheme.

Example

As an example, consider the 3 × 3 linear system:

A

i i

i i i

i i

=
+ − +

− − + +
− +

�

!

"

$
###

2 0 1 0

1 4 0 1 2

0 1 2 10 0

The number of nonzeros in the lower triangle of A is nz = 5. The sparse
coordinate form for the lower triangle of A is given by:

irow

jcol

a

1 2 3 2 3

1 2 3 1 2

2 0 4 0 10 0 1 1 2+ + + − − −i i i i i

or equivalently by

irow

jcol

a

3 2 3 1 2

3 1 2 1 2

10 0 1 1 2 2 0 4 0+ − − − + +i i i i i

We first call LSCXD to produce the symbolic information needed to pass on to
LNFZD. Then call LNFZD to factor this matrix. The results are displayed below.

 INTEGER N, NZ, NRLNZ
 PARAMETER (N=3, NZ=5, NRLNZ=5)
C
 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),
 & IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,
 & NZSUB(3*NZ)
 REAL RPARAM(2)
 COMPLEX A(NZ), DIAG(N), RLNZ(NRLNZ)
 EXTERNAL LNFZD, LSCXD, WRCRN
C
 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
 DATA IROW/1, 2, 3, 2, 3/
 DATA JCOL/1, 2, 3, 1, 2/
C Select minimum degree ordering
C for multifrontal method
 IJOB = 3
C Use default workspace
 ITWKSP = 0

244 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 MAXSUB = 3*NZ
 CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB,
 & INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE)
C Check if NRLNZ is large enough
 IF (NRLNZ .GE. MAXNZ) THEN
C Choose multifrontal method
 IJOB = 2
 CALL LNFZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB,
 & MAXNZ, ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAG,
 & RLNZ, RPARAM)
C Print results
 CALL WRCRN (’ diag ’, 1, N, DIAG, 1, 0)
 CALL WRCRN (’ rlnz ’, 1, MAXNZ, RLNZ, 1, 0)
 END IF
C
 END

Output
 diag
 1 2 3
(1.414, 0.000) (1.732, 0.000) (2.887, 0.000)

 rlnz
 1 2
(-0.707,-0.707) (0.577,-1.155)

LFSZD/DLFSZD (Single/Double precision)
Solve a complex sparse Hermitian positive definite system of linear equations,
given the Cholesky factorization of the coefficient matrix.

Usage
CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ,
 DIAG,IPER, B, X)

Arguments

N — Number of equations. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from
subroutine LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-
diagonal nonzeros in the factor as output from subroutine LSCXD/DLSCXD.
(Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from
subroutine LSCXD/DLSCXD. (Input)
The row subscripts of column J are stored from location INZSUB(J) to INZSUB
(J + 1) − 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 245

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as
output from subroutine LSCXD/DLSCXD. (Input)

RLNZ — Complex vector of length MAXNZ containing the off-diagonal nonzeros
in the factor in column ordered format as output from subroutine LNFZD/DLNFZD.
(Input)

ILNZ — Vector of length N +1 containing pointers to RLNZ as output from
subroutine LSCXD/DLSCXD. The nonzeros in column J of the factor are stored
from location ILNZ(J) to ILNZ(J + 1) − 1. (Input)
The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the
factor in a compressed subscript data format.

DIAG — Complex vector of length N containing the diagonals of the Cholesky
factor as output from subroutine LNFZD/DLNFZD. (Input)

IPER — Vector of length N containing the ordering as output from subroutine
LSCXD/DLSCXD. (Input)
IPER(I) = K indicates that the original row K is the new row I.

B — Complex vector of length N containing the right-hand side. (Input)

X — Complex vector of length N containing the solution. (Output)

Comments

Informational error
Type Code
 4 1 The input matrix is numerically singular.

Algorithm

Consider the linear equation

Ax = b

where A is sparse, positive definite and Hermitian. The sparse coordinate format
for the matrix A requires one complex and two integer vectors. The complex array
a contains all the nonzeros in the lower triangle of A including the diagonal. Let
the number of nonzeros be nz. The two integer arrays irow and jcol, each of
length nz, contain the row and column indices for these entries in A. That is

Airow(L)�icol(L) = a(i), i = 1, …, nz

irow(i) ≥ jcol(i) i = 1, …, nz

with all other entries in the lower triangle of A zero.

The routine LFSZD computes the solution of the linear system given its Cholesky
factorization. The factorization is performed by calling LSCXD (page 224)
followed by LNFZD (page 240). The routine LSCXD computes a minimum degree
ordering or uses a user-supplied ordering to set up the sparse data structure for

246 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

the Cholesky factor, L. Then the routine LNFZD produces the numerical entries in
L so that we have

P AP7�= LL+

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routines in Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse
compressed storage scheme. Finally, the solution x is obtained by the following
calculations:

1) Ly1 = Pb

 2) L+�y2 = y1

3) x = P7�y2

Example

As an example, consider the 3 × 3 linear system:

A

i i

i i i

i i

=
+ − +

− − + +
− +

�

!

"

$
###

2 0 1 0

1 4 0 1 2

0 1 2 10 0

Let

x i i iT
1 1 2 2 3 3= + + +, ,0 5

so that Ax1 = (−2 + 2i, 5 + 15i, 36 + 28i)7, and

x i i iT
2 3 3 2 2 1 1= + + +, ,0 5

so that Ax2 = (2 + 6i, 7 − 5i, 16 + 8i)7. The number of nonzeros in the lower
triangle of A is nz = 5. The sparse coordinate form for the lower triangle of A is
given by:

irow

jcol

a

1 2 3 2 3

1 2 3 1 2

2 0 4 0 10 0 1 1 2+ + + − − −i i i i i

or equivalently by

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 247

irow

jcol

a

3 2 3 1 2

3 1 2 1 2

10 0 1 1 2 2 0 4 0+ − − − + +i i i i i
 INTEGER N, NZ, NRLNZ
 PARAMETER (N=3, NZ=5, NRLNZ=5)
C
 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),
 & IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,
 & NZSUB(3*NZ)
 COMPLEX A(NZ), B1(N), B2(N), DIAG(N), RLNZ(NRLNZ), X(N)
 REAL RPARAM(2)
 EXTERNAL LFSZD, LNFZD, LSCXD, WRCRN
C
 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
 DATA B1/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/
 DATA B2/(2.0,6.0), (7.0,5.0), (16.0,8.0)/
 DATA IROW/1, 2, 3, 2, 3/
 DATA JCOL/1, 2, 3, 1, 2/
C Select minimum degree ordering
C for multifrontal method
 IJOB = 3
C Use default workspace
 ITWKSP = 0
 MAXSUB = 3*NZ
 CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB,
 & INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE)
C Check if NRLNZ is large enough
 IF (NRLNZ .GE. MAXNZ) THEN
C Choose multifrontal method
 IJOB = 2
 CALL LNFZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB,
 & MAXNZ, ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAG,
 & RLNZ, RPARAM)
C Solve A * X1 = B1
 CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAG,
 & IPER, B1, X)
C Print X1
 CALL WRCRN (’ x1 ’, 1, N, X, 1, 0)
C Solve A * X2 = B2
 CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAG,
 & IPER, B2, X)
C Print X2
 CALL WRCRN (’ x2 ’, 1, N, X, 1, 0)
 END IF
C
 END

Output
 x1
 1 2 3
(1.000, 1.000) (2.000, 2.000) (3.000, 3.000)

 x2
 1 2 3
(3.000, 3.000) (2.000, 2.000) (1.000, 1.000)

248 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSLTO/DLSLTO (Single/Double precision)
Solve a real Toeplitz linear system.

Usage
CALL LSLTO (N, A, B, IPATH, X)

Arguments

N — Order of the matrix represented by A. (Input)

A — Real vector of length 2N − 1 containing the first row of the coefficient
matrix followed by its first column beginning with the second element. (Input)
See Comment 2.

B — Real vector of length N containing the right-hand side of the linear system.
(Input)

IPATH — Integer flag. (Input)
IPATH = 1 means the system Ax = B is solved.

IPATH = 2 means the system A7�x = B is solved.

X — Real vector of length N containing the solution of the linear system.
(Output)
If B is not needed then B and X may share the same storage locations.

Comments

1. Automatic workspace usage is

LSLTO 2N − 2 units, or
DLSLTO 4N − 4 units.

Workspace may be explicitly provided, if desired, by use of
L2LTO/DL2LTO. The reference is

CALL L2LTO (N, A, B, IPATH, X, WK)

The additional argument is

WK — Work vector of length 2N − 2.

2. Because of the special structure of Toeplitz matrices, the first row and
the first column of a Toeplitz matrix completely characterize the matrix.
Hence, only the elements A(1, 1), …, A(1, N), A(2, 1), …, A(N, 1) need to
be stored.

Algorithm

Toeplitz matrices have entries that are constant along each diagonal, for example,

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 249

A

p p p p

p p p p

p p p p

p p p p

=

�

!

"

$

####
−

− −

− − −

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

The routine LSLTO is based on the routine TSLS in the TOEPLITZ package, see
Arushanian et al. (1983). It is based on an algorithm of Trench (1964). This
algorithm is also described by Golub and van Loan (1983), pages 125−133.

Example

A system of four linear equations is solved. Note that only the first row and
column of the matrix A are entered.

C Declare variables
 INTEGER IPATH, N
 PARAMETER (N=4)
 REAL A(2*N-1), B(N), X(N)
C Set values for A, and B
C
C A = (2 -3 -1 6)
C (1 2 -3 -1)
C (4 1 2 -3)
C (3 4 1 2)
C
C B = (16 -29 -7 5)
C
 DATA A/2.0, -3.0, -1.0, 6.0, 1.0, 4.0, 3.0/
 DATA B/16.0, -29.0, -7.0, 5.0/
C Solve AX = B
 IPATH = 1
 CALL LSLTO (N, A, B, IPATH, X)
C Print results
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3 4
-2.000 -1.000 7.000 4.000

LSLTC/DLSLTC (Single/Double precision)
Solve a complex Toeplitz linear system.

Usage
CALL LSLTC (N, A, B, IPATH, X)

Arguments

N — Order of the matrix represented by A. (Input)

250 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

A — Complex vector of length 2N − 1 containing the first row of the coefficient
matrix followed by its first column beginning with the second element. (Input)
See Comment 2.

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Integer flag. (Input)
IPATH = 1 means the system Ax = B is solved.

IPATH = 2 means the system A7x = B is solved.

X — Complex vector of length N containing the solution of the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSLTC 4N − 4 units, or
DLSLTC 8N − 8 units.

Workspace may be explicitly provided, if desired, by use of
L2LTC/DL2LTC. The reference is

CALL L2LTC (N, A, B, IPATH, X, WK)

The additional argument is

WK — Complex work vector of length 2N − 2.

2. Because of the special structure of Toeplitz matrices, the first row and
the first column of a Toeplitz matrix completely characterize the matrix.
Hence, only the elements A(1, 1), …, A(1, N), A(2, 1), …, A(N, 1) need to
be stored.

Algorithm

Toeplitz matrices have entries which are constant along each diagonal, for
example,

A

p p p p

p p p p

p p p p

p p p p

=

�

!

"

$

####
−

− −

− − −

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

The routine LSLTC is based on the routine TSLC in the TOEPLITZ package, see
Arushanian et al. (1983). It is based on an algorithm of Trench (1964). This
algorithm is also described by Golub and van Loan (1983), pages 125−133.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 251

Example

A system of four complex linear equations is solved. Note that only the first row
and column of the matrix A are entered.

C Declare variables
 PARAMETER (N=4)
 COMPLEX A(2*N-1), B(N), X(N)
C Set values for A and B
C
C A = (2+2i -3 1+4i 6-2i)
C (i 2+2i -3 1+4i)
C (4+2i i 2+2i -3)
C (3-4i 4+2i i 2+2i)
C
C B = (6+65i -29-16i 7+i -10+i)
C
 DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0), (0.0,1.0),
 & (4.0,2.0), (3.0,-4.0)/
 DATA B/(6.0,65.0), (-29.0,-16.0), (7.0,1.0), (-10.0,1.0)/
C Solve AX = B
 IPATH = 1
 CALL LSLTC (N, A, B, IPATH, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 END

Output
 X
 1 2 3 4
(-2.000, 0.000) (-1.000,-5.000) (7.000, 2.000) (0.000, 4.000)

LSLCC/DLSLCC (Single/Double precision)
Solve a complex circulant linear system.

Usage
CALL LSLCC (N, A, B, IPATH, X)

Arguments

N — Order of the matrix represented by A. (Input)

A — Complex vector of length N containing the first row of the coefficient
matrix. (Input)

B — Complex vector of length N containing the right-hand side of the linear
system. (Input)

IPATH — Integer flag. (Input)
IPATH = 1 means the system Ax = B is solved.

IPATH = 2 means the system A7x = B is solved.

252 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

X — Complex vector of length N containing the solution of the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSLCC 8N + 15 units, or
DLSLCC 16N + 30 units.

Workspace may be explicitly provided, if desired, by use of
L2LCC/DL2LCC. The reference is

CALL L2LCC (N, A, B, IPATH, X, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Complex work vector of length N. If A is not needed, then A

and ACOPY may be the same.

WK — Work vector of length 6N + 15.

2. Informational error
Type Code
 4 2 The input matrix is singular.

3. Because of the special structure of circulant matrices, the first row of a
circulant matrix completely characterizes the matrix. Hence, only the
elements A(1, 1), …, A(1, N) need to be stored.

Algorithm

Circulant matrices have the property that each row is obtained by shifting the row
above it one place to the right. Entries that are shifted off at the right re-enter at
the left. For example,

A

p p p p

p p p p

p p p p

p p p p

=

�

!

"

$

####

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

If qN = p-N and the subscripts on p and q are interpreted modulo N, then

() ()Ax p x q x q xj i j i
i

N

j i
i

N

i i= = = ∗− +
=

− +
=

∑ ∑1
1

1
1

where q * x is the convolution of q and x. By the convolution theorem, if
q * x = b, then

$ $ $, $q x b q⊗ = where

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 253

is the discrete Fourier transform of q as computed by the IMSL routine FFTCF
and ⊗ denotes elementwise multiplication. By division,

$ $ $x b q= ∅

where ∅ denotes elementwise division. The vector x is recovered from

$x

through the use of IMSL routine FFTCB.

To solve A7�x = b, use the vector p instead of q in the above algorithm.

Example

A system of four linear equations is solved. Note that only the first row of the
matrix A is entered.

C Declare variables
 INTEGER IPATH, N
 PARAMETER (N=4)
 COMPLEX A(N), B(N), X(N)
C Set values for A, and B
C
C A = (2+2i -3+0i 1+4i 6-2i)
C
C B = (6+65i -41-10i -8-30i 63-3i)
C
 DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0)/
 DATA B/(6.0,65.0), (-41.0,-10.0), (-8.0,-30.0), (63.0,-3.0)/
C Solve AX = B (IPATH = 1)
 IPATH = 1
 CALL LSLCC (N, A, B, IPATH, X)
C Print results
 CALL WRCRN (’X’, 1, N, X, 1, 0)
 END

Output
 1 2 3 4
(-2.000, 0.000) (-1.000,-5.000) (7.000, 2.000) (0.000, 4.000)

PCGRC/DPCGRC (Single/Double precision)
Solve a real symmetric definite linear system using a preconditioned conjugate
gradient method with reverse communication.

Usage
CALL PCGRC (IDO, N, X, P, R, Z, RELERR, ITMAX)

Arguments

IDO — Flag indicating task to be done. (Input/Output)
On the initial call IDO must be 0. If the routine returns with IDO = 1, then set

254 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Z = AP, where A is the matrix, and call PCGRC again. If the routine returns with
IDO = 2, then set Z to the solution of the system MZ = R, where M is the
preconditioning matrix, and call PCGRC again. If the routine returns with IDO = 3,
then the iteration has converged and X contains the solution.

N — Order of the linear system. (Input)

X — Array of length N containing the solution. (Input/Output)
On input, X contains the initial guess of the solution. On output, X contains the
solution to the system.

P — Array of length N. (Output)
Its use is described under IDO.

R — Array of length N. (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residual.

Z — Array of length N. (Input)
When IDO = 1, it contains AP, where A is the linear system. When IDO = 2, it
contains the solution of MZ = R, where M is the preconditioning matrix. When
IDO = 0, it is ignored. Its use is described under IDO.

RELERR — Relative error desired. (Input)

ITMAX — Maximum number of iterations allowed. (Input)

Comments

1. Automatic workspace usage is

PCGRC 8 * ITMAX units, or
DPCGRC 15 * ITMAX units.

Workspace may be explicitly provided, if desired, by use of
P2GRC/DP2GRC. The reference is

CALL P2GRC (IDO, N, X, P, R, Z, RELERR, ITMAX, TRI,
 WK, IWK)

The additional arguments are as follows:

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix
(in band symmetric form) whose largest eigenvalue is approximately the
same as the largest eigenvalue of the iteration matrix. The workspace
arrays TRI, WK and IWK should not be changed between the initial call
with IDO = 0 and PCGRC/DPCGRC returning with IDO = 3.

WK — Workspace of length 5 * ITMAX.

IWK — Workspace of length ITMAX.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 255

2. Informational errors
Type Code
 4 1 The preconditioning matrix is singular.
 4 2 The preconditioning matrix is not definite.
 4 3 The linear system is not definite.
 4 4 The linear system is singular.
 4 5 No convergence after ITMAX iterations.

Algorithm

Routine PCGRC solves the symmetric definite linear system Ax = b using the
preconditioned conjugate gradient method. This method is described in detail by
Golub and Van Loan (1983, Chapter 10), and in Hageman and Young (1981,
Chapter 7).

The preconditioning matrix, M, is a matrix that approximates A, and for which
the linear system Mz = r is easy to solve. These two properties are in conflict;
balancing them is a topic of much current research.

The number of iterations needed depends on the matrix and the error tolerance

RELERR. As a rough guide, ITMAX = N1/2 is often sufficient when N >> 1. See the
references for further information.

Let M be the preconditioning matrix, let b, p, r, x and z be vectors and let τ be the
desired relative error. Then the algorithm used is as follows.

λ = −1

p0 = x0

r1 = b − Ap

For k = 1, …, itmax

zN = M-1rN

If k = 1 then
βN = 1
pN = zN

Else

βk k
T

k k
T

kz r z r= − −/ 1 1
p z pk k k k= + β

End if
z Ap

z r z p

x x p

r r z

k

k k
T

k k
T

k

k k k k

k k k k

=

=
= +
= −

− −α
α

α

1 1 /

If (||zN||2 ≤ τ(1 − λ)||xN||2) Then

Recompute λ

256 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

If (||zN||2 ≤ τ(1 − λ)||xN||2) Exit

End if

end loop

Here λ is an estimate of λ"(G), the largest eigenvalue of the iteration matrix G

= I − M-1 A. The stopping criterion is based on the result (Hageman and Young,
1981, pages 148−151)

x x

x G

z

x
k M

M

k M

k M

−
≤

−
1

1 λmax()

Where

x x MxM
T2 =

It is known that

λ λ λmax max maxT T G1 2 11 6 1 6 0 5≤ ≤ ≤ <L

where the TQ are the symmetric, tridiagonal matrices

Tn =

�

!

"

$

####

µ ω
ω µ ω

ω µ ω

1 2

2 2 3

3 3 4

O O O

with

µ β α α µ αk k k k= − − = −−1 1 1 11 1 1/ / , /

and

ω β αk k k= −/ 1

The largest eigenvalue of TN is found using the routine EVASB. Usually this
eigenvalue computation is needed for only a few of the iterations.

Example 1

In this example, the solution to a linear system is found. The coefficient matrix A
is stored as a full matrix. The preconditioning matrix is the diagonal of A. This is
called the Jacobi preconditioner. It is also used by the IMSL routine JCGRC on
page 259.

 INTEGER LDA, N
 PARAMETER (N=3, LDA=N)
C
 INTEGER IDO, ITMAX, J
 REAL A(LDA,N), B(N), P(N), R(N), RELERR, X(N), Z(N)
 EXTERNAL MURRV, PCGRC, SCOPY, WRRRN
C (1, -3, 2)
C A = (-3, 10, -5)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 257

C (2, -5, 6)
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C B = (27.0, -78.0, 64.0)
 DATA B/27.0, -78.0, 64.0/
C Set R to right side
 CALL SCOPY (N, B, 1, R, 1)
C Initial guess for X is B
 CALL SCOPY (N, B, 1, X, 1)
C
 ITMAX = 100
 RELERR = 1.0E-5
 IDO = 0
 10 CALL PCGRC (IDO, N, X, P, R, Z, RELERR, ITMAX)
 IF (IDO .EQ. 1) THEN
C Set z = Ap
 CALL MURRV (N, N, A, LDA, N, P, 1, N, Z)
 GO TO 10
 ELSE IF (IDO .EQ. 2) THEN
C Use diagonal of A as the
C preconditioning matrix M
C and set z = inv(M)*r
 DO 20 J=1, N
 Z(J) = R(J)/A(J,J)
 20 CONTINUE
 GO TO 10
 END IF
C Print the solution
 CALL WRRRN (’Solution’, N, 1, X, N, 0)
C
 END

Output
Solution
1 1.001
2 -4.000
3 7.000

Example 2

In this example, a more complicated preconditioner is used to find the solution of
a linear system which occurs in a finite-difference solution of Laplace’s equation
on a 4 × 4 grid. The matrix is

258 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

A =

− −
− − −

− − −
− − − −

− − − −
− − − −

− − −
− − −

− −

�

!

"

$

############

4 1 0 1

1 4 1 0 1

0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0 1

1 0 1 4 1 0

1 0 1 4 1

1 0 1 4

The preconditioning matrix M is the symmetric tridiagonal part of A,

M =

−
− −

− −
− −

− −
− −

− −
− −

−

�

!

"

$

############

4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4 1

1 4

Note that M, called PRECND in the program, is factored once.
 INTEGER LDA, LDPRE, N, NCODA, NCOPRE
 PARAMETER (N=9, NCODA=3, NCOPRE=1, LDA=2*NCODA+1,
 & LDPRE=NCOPRE+1)
C
 INTEGER IDO, ITMAX
 REAL A(LDA,N), P(N), PRECND(LDPRE,N), PREFAC(LDPRE,N),
 & R(N), RCOND, RELERR, X(N), Z(N)
 EXTERNAL LFCQS, LSLQS, MURBV, PCGRC, SSET, WRRRN
C Set A in band form
 DATA A/3*0.0, 4.0, -1.0, 0.0, -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0,
 & -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0,
 & 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0,

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 259

 & -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0,
 & -1.0, 4.0, -1.0, 2*0.0, -1.0, 0.0, -1.0, 4.0, -1.0, 2*0.0,
 & -1.0, 0.0, -1.0, 4.0, 3*0.0/
C Set PRECND in band symmetric form
 DATA PRECND/0.0, 4.0, -1.0, 4.0, -1.0, 4.0, 0.0, 4.0, -1.0, 4.0,
 & 0.0, 4.0, 0.0, 4.0, -1.0, 4.0, 0.0, 4.0/
C Right side is (1, ..., 1)
 CALL SSET (N, 1.0, R, 1)
C Initial guess for X is 0
 CALL SSET (N, 0.0, X, 1)
C Factor the preconditioning matrix
 CALL LFCQS (N, PRECND, LDPRE, NCOPRE, PREFAC, LDPRE, RCOND)
C
 ITMAX = 100
 RELERR = 1.0E-4
 IDO = 0
 10 CALL PCGRC (IDO, N, X, P, R, Z, RELERR, ITMAX)
 IF (IDO .EQ. 1) THEN
C Set z = Ap
 CALL MURBV (N, A, LDA, NCODA, NCODA, N, P, 1, N, Z)
 GO TO 10
 ELSE IF (IDO .EQ. 2) THEN
C Solve PRECND*z = r for r
 CALL LSLQS (N, PREFAC, LDPRE, NCOPRE, R, Z)
 GO TO 10
 END IF
C Print the solution
 CALL WRRRN (’Solution’, N, 1, X, N, 0)
C
 END

Output
Solution
1 0.955
2 1.241
3 1.349
4 1.578
5 1.660
6 1.578
7 1.349
8 1.241
9 0.955

JCGRC/DJCGRC (Single/Double precision)
Solve a real symmetric definite linear system using the Jacobi-preconditioned
conjugate gradient method with reverse communication.

Usage
CALL JCGRC (IDO, N, DIAG, X, P, R, Z, RELERR, ITMAX)

260 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Arguments

IDO — Flag indicating task to be done. (Input/Output)
On the initial call IDO must be 0. If the routine returns with IDO = 1, then set
Z = A ∗ P, where A is the matrix, and call JCGRC again. If the routine returns with
IDO = 2, then the iteration has converged and X contains the solution.

N — Order of the linear system. (Input)

DIAG — Vector of length N containing the diagonal of the matrix. (Input)
Its elements must be all strictly positive or all strictly negative.

X — Array of length N containing the solution. (Input/Output)
On input, X contains the initial guess of the solution. On output, X contains the
solution to the system.

P — Array of length N. (Output)
Its use is described under IDO.

R — Array of length N. (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residual.

Z — Array of length N. (Input)
When IDO = 1, it contains AP, where A is the linear system. When IDO = 0, it is
ignored. Its use is described under IDO.

RELERR — Relative error desired. (Input)

ITMAX — Maximum number of iterations allowed. (Input)

Comments

1. Automatic workspace usage is

JCGRC 8 * ITMAX units, or
DJCGRC 15 * ITMAX units.

Workspace may be explicitly provided, if desired, by use of
J2GRC/DJ2GRC. The reference is

CALL J2GRC (IDO, N, DIAG, X, P, R, Z, RELERR, ITMAX,
 TRI, WK, IWK)

The additional arguments are as follows:

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix
(in band symmetric form) whose largest eigenvalue is approximately the
same as the largest eigenvalue of the iteration matrix. The workspace
arrays TRI, WK and IWK should not be changed between the initial call
with IDO = 0 and JCGRC/DJCGRC returning with IDO = 2.

WK — Workspace of length 5 * ITMAX.

IWK — Workspace of length ITMAX.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 261

2. Informational errors
Type Code
 4 1 The diagonal contains a zero.
 4 2 The diagonal elements have different signs.
 4 3 No convergence after ITMAX iterations.
 4 4 The linear system is not definite.
 4 5 The linear system is singular.

Algorithm

Routine JCGRC solves the symmetric definite linear system Ax = b using the
Jacobi conjugate gradient method. This method is described in detail by Golub
and Van Loan (1983, Chapter 10), and in Hageman and Young (1981, Chapter 7).

This routine is a special case of the routine PCGRC, with the diagonal of the
matrix A used as the preconditioning matrix. For details of the algorithm see
PCGRC, page 253.

The number of iterations needed depends on the matrix and the error tolerance

RELERR. As a rough guide, ITMAX = N1/2 is often sufficient when N » 1. See the
references for further information.

Example

In this example, the solution to a linear system is found. The coefficient matrix A
is stored as a full matrix.

 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
C
 INTEGER IDO, ITMAX
 REAL A(LDA,N), B(N), DIAG(N), P(N), R(N), RELERR, X(N),
 & Z(N)
 EXTERNAL JCGRC, MURRV, SCOPY, WRRRN
C (1, -3, 2)
C A = (-3, 10, -5)
C (2, -5, 6)
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C B = (27.0, -78.0, 64.0)
 DATA B/27.0, -78.0, 64.0/
C Set R to right side
 CALL SCOPY (N, B, 1, R, 1)
C Initial guess for X is B
 CALL SCOPY (N, B, 1, X, 1)
C Copy diagonal of A to DIAG
 CALL SCOPY (N, A, LDA+1, DIAG, 1)
C Set parameters
 ITMAX = 100
 RELERR = 1.0E-5
 IDO = 0
 10 CALL JCGRC (IDO, N, DIAG, X, P, R, Z, RELERR, ITMAX)
 IF (IDO .EQ. 1) THEN
C Set z = Ap

262 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL MURRV (N, N, A, LDA, N, P, 1, N, Z)
 GO TO 10
 END IF
C Print the solution
 CALL WRRRN (’Solution’, N, 1, X, N, 0)
C
 END

Output
Solution
1 1.001
2 -4.000
3 7.000

GMRES/DGMRES (Single/Double precision)
Use GMRES with reverse communication to generate an approximate solution of
Ax = b.

Usage
CALL GMRES (IDO, N, X, P, R, Z, TOL)

Arguments

IDO — Flag indicating task to be done. (Input/Output)
On the initial call IDO must be 0. If the routine returns with IDO = 1, then set
Z = AP, where A is the matrix, and call GMRES again. If the routine returns with
IDO = 2, then set Z to the solution of the system MZ = P, where M is the
preconditioning matrix, and call GMRES again. If the routine returns with IDO = 3,

set Z = AM��P, and call GMRES again. If the routine returns with IDO = 4, the
iteration has converged, and X contains the approximate solution to the linear
system.

N — Order of the linear system. (Input)

X — Array of length N containing an approximate solution. (Input/Output)
On input, X contains an initial guess of the solution. On output, X contains the
approximate solution.

P — Array of length N. (Output)
Its use is described under IDO.

R — Array of length N. (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residual, b − Ax.

Z — Array of length N. (Input)
When IDO = 1, it contains AP, where A is the coefficient matrix. When IDO = 2,

it contains M��P. When IDO = 3, it contains AM��P. When IDO = 0, it is ignored.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 263

TOL — Stopping tolerance. (Input/Output)
The algorithm attempts to generate a solution x such that |b − Ax| ≤ TOL*|b|. On
output, TOL contains the final residual norm.

Comments

1. Automatic workspace usage is

GMRES N(KDMAX + 2) + KDMAX� + 3KDMAX + 2 units, or

DGMRES 2N(KDMAX + 2) + 2KDMAX� + 6KDMAX + 4 where
KDMAX = MIN(N, 20) units.

Workspace may be explicitly provided, if desired, by use of
G2RES/DG2RES. The reference is

CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, USRNPR,
 USRNRM, WORK)

The additional arguments are as follows:

INFO — Integer vector of length 10 used to change parameters of
GMRES. (Input/Output).

For any components INFO(1) ... INFO(7) with value zero on input, the
default value is used.
INFO(1) = IMP, the flag indicating the desired implementation.

IMP Action
1 first Gram-Schmidt implementation
2 second Gram-Schmidt implementation
3 first Householder implementation
4 second Householder implementation
Default: IMP = 1

INFO(2) = KDMAX, the maximum Krylor subspace dimension, i.e., the
maximum allowable number of GMRES iterations before restarting. It
must satisfy 1 ≤ KDMAX ≤ N.
Default: KDMAX = min(N, 20)

INFO(3) = ITMAX, the maximum number of GMRES iterations allowed.
Default: ITMAX = 1000

INFO(4) = IRP, the flag indicating whether right preconditioning is
used.
If IRP = 0, no right preconditioning is performed. If IRP = 1, right
preconditioning is performed. If IRP = 0, then IDO = 2 or 3 will not
occur.
Default: IRP = 0

INFO(5) = IRESUP, the flag that indicates the desired residual vector
updating prior to restarting or on termination.

264 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

IRESUP Action
1 update by linear combination, restarting only
2 update by linear combination, restarting and termination
3 update by direct evaluation, restarting only
4 update by direct evaluation, restarting and termination

Updating by direct evaluation requires an otherwise unnecessary matrix-
vector product. The alternative is to update by forming a linear
combination of various available vectors. This may or may not be
cheaper and may be less reliable if the residual vector has been greatly
reduced. If IRESUP = 2 or 4, then the residual vector is returned in
WORK(1), ..., WORK(N). This is useful in some applications but costs
another unnecessary residual update. It is recommended that IRESUP = 1
or 2 be used, unless matrix-vector products are inexpensive or great
residual reduction is required. In this case use IRESUP = 3 or 4. The
meaning of “inexpensive” varies with IMP as follows:
IMP ≤
1 (KDMAX + 1) *N flops
2 N flops
3 (2*KDMAX + 1) *N flops
4 (2*KDMAX + 1) *N flops

“Great residual reduction” means that TOL is only a few orders of
magnitude larger than machine epsilon.
Default: IRESUP = 1

INFO(6) = flag for indicating the inner product and norm used in the
Gram-Schmidt implementations. If INFO(6) = 0, sdot and snrm2,
from BLAS, are used. If INFO(6) = 1, the user must provide the
routines, as specified under arguments USRNPR and USRNRM.
Default: INFO(6) = 0

INFO(7) = IPRINT, the print flag. If IPRINT = 0, no printing is
performed. If IPRINT = 1, print the iteration numbers and residuals.
Default: IPRINT = 0

INFO(8) = the total number of GMRES iterations on output.

INFO(9) = the total number of matrix-vector products in GMRES on
output.

INFO(10) = the total number of right preconditioner solves in GMRES on
output if IRP = 1.

USRNPR — User-supplied FUNCTION to use as the inner product in the
Gram-Schmidt implementation, if INFO(6) = 1. If INFO(6) = 0, the
dummy function G8RES/DG8RES may be used. The usage is

REAL FUNCTION USRNPR (N, SX, INCX, SY, INCY)

N — Length of vectors X and Y. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 265

SX — Real vector of length MAX(N*IABS(INCX),1). (Input)

INCX — Displacement between elements of SX. (Input)
X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or
SX(1+(I-N)*INCX) if INCX is less than 0.

SY — Real vector of length MAX(N*IABS(INXY),1). (Input)

INCY — Displacement between elements of SY. (Input)
Y(I) is defined to be SY(1+(I-1)*INCY) if INCY is greater than 0, or
SY(1+(I-N)*INCY) if INCY is less than zero.
USRNPR must be declared EXTERNAL in the calling program.

USRNRM — User-supplied FUNCTION to use as the norm ||X|| in the
Gram-Schmidt implementation, if INFO(6) = 1. If INFO(6) = 0, the
dummy function G9RES/DG9RES may be used.The usage is

REAL FUNCTION USRNRM (N, SX, INCX)

N — Length of vectors X and Y. (Input)

SX — Real vector of length MAX(N*IABS(INCX),1). (Input)

INCX — Displacement between elements of SX. (Input)
X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or
SX(1+(I-N)*INCX) if INCX is less than 0.
USRNRM must be declared EXTERNAL in the calling program.

WORK — Work array whose length is dependent on the chosen
implementation.

IMP length of WORK
1 N*(KDMAX + 2) + KDMAX**2 + 3 *KDMAX + 2
2 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 1
3 N*(KDMAX + 2) + 3 *KDMAX + 2
4 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 2

Algorithm

The routine GMRES implements restarted GMRES with reverse communication to
generate an approximate solution to Ax = b. It is based on GMRESD by Homer
Walker.

There are four distinct GMRES implementations, selectable through the parameter
vector INFO. The first Gram-Schmidt implementation, INFO(1) = 1, is
essentially the original algorithm by Saad and Schultz (1986). The second Gram-
Schmidt implementation, developed by Homer Walker and Lou Zhou, is simpler
than the first implementation. The least squares problem is constructed in upper-
triangular form and the residual vector updating at the end of a GMRES cycle is
cheaper. The first Householder implementation is algorithm 2.2 of Walker
(1988), but with more efficient correction accumulation at the end of each GMRES

cycle. The second Householder implementation is algorithm 3.1 of
Walker (1988). The products of Householder transformations are expanded as

266 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

sums, allowing most work to be formulated as large scale matrix-vector
operations. Although BLAS are used wherever possible, extensive use of Level 2
BLAS in the second Householder implementation may yield a performance
advantage on certain computing environments.

The Gram-Schmidt implementations are less expensive than the Householder, the
latter requiring about twice as much arithmetic beyond the coefficient
matrix/vector products. However, the Householder implementations may be more
reliable near the limits of residual reduction. See Walker (1988) for details. Issues
such as the cost of coefficient matrix/vector products, availability of effective
preconditioners, and features of particular computing environments may serve to
mitigate the extra expense of the Householder implementations.

Example 1

This is a simple example of GMRES usage. A solution to a small linear system is
found. The coefficient matrix A is stored as a full matrix, and no preconditioning
is used. Typically, preconditioning is required to achieve convergence in a
reasonable number of iterations.

c Declare variables
 INTEGER LDA, N
 PARAMETER (N=3, LDA=N)
c Specifications for local variables
 INTEGER IDO, NOUT
 REAL P(N), TOL, X(N), Z(N)
 REAL A(LDA,N), R(N)
 SAVE A, R
c Specifications for intrinsics
 INTRINSIC SQRT
 REAL SQRT
c Specifications for subroutines
 EXTERNAL GMRES, MURRV, SSET, UMACH, WRRRN
c Specifications for functions
 EXTERNAL AMACH
 REAL AMACH
c (33.0 16.0 72.0)
c A = (-24.0 -10.0 -57.0)
c (18.0 -11.0 7.0)
c
c B = (129.0 -96.0 8.5)
c
 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
 DATA R/129.0, -96.0, 8.5/
c
 CALL UMACH (2, NOUT)
c
c Initial guess = (0 ... 0)
c
 CALL SSET (N, 0.0, X, 1)
c Set stopping tolerance to
c square root of machine epsilon
 TOL = SQRT(AMACH(4))
 IDO = 0
 10 CONTINUE

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 267

 CALL GMRES (IDO, N, X, P, R, Z, TOL)
 IF (IDO .EQ. 1) THEN
c Set z = A*p
 CALL MURRV (N, N, A, LDA, N, P, 1, N, Z)
 GO TO 10
 END IF
c
 CALL WRRRN (’Solution’, 1, N, X, 1, 0)

 WRITE (NOUT,’(A11, E15.5)’) ’Residual = ’, TOL

 END

Output
 Solution
 1 2 3
1.000 1.500 1.000
Residual = 0.29746E-05

Example 2

This example solves a linear system with a coefficient matrix stored in coordinate
form, the same problem as in the document example for LSLXG, page 195. Jacobi
preconditioning is used, i.e. the preconditioning matrix M is the diagonal matrix
with MLL = ALL, for i = 1, …, n.

 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
c Specifications for local variables
 INTEGER IDO, INFO(10), NOUT
 REAL P(N), TOL, WORK(1000), X(N), Z(N)
 REAL DIAGIN(N), R(N)
c Specifications for intrinsics
 INTRINSIC SQRT
 REAL SQRT
c Specifications for subroutines
 EXTERNAL AMULTP, G2RES, ISET, SCOPY, SHPROD, SSET, UMACH, WRRRN
c Specifications for functions
 EXTERNAL AMACH, G8RES, G9RES
 REAL AMACH
c
 DATA DIAGIN/0.1, 0.1, 0.0666667, 0.1, 1.0, 0.16666667/
 DATA R/10.0, 7.0, 45.0, 33.0, -34.0, 31.0/
c
 CALL UMACH (2, NOUT)
c Initial guess = (1 ... 1)
 CALL SSET (N, 1.0, X, 1)
c Set up the options vector INFO
c to use preconditioning
 CALL ISET (10, 0, INFO, 1)
 INFO(4) = 1
c Set stopping tolerance to
c square root of machine epsilon
 TOL = SQRT(AMACH(4))
 IDO = 0
 10 CONTINUE
 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)
 IF (IDO .EQ. 1) THEN

268 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

c Set z = A*p
 CALL AMULTP (P, Z)
 GO TO 10
 ELSE IF (IDO .EQ. 2) THEN
c
c Set z = inv(M)*p
c The diagonal of inv(M) is stored
c in DIAGIN
c
 CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1)
 GO TO 10
 ELSE IF (IDO .EQ. 3) THEN
c
c Set z = A*inv(M)*p
c
 CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1)
 CALL SCOPY (N, Z, 1, P, 1)
 CALL AMULTP (P, Z)
 GO TO 10
 END IF
c
 CALL WRRRN (’Solution’, N, 1, X, N, 0)
 WRITE (NOUT,’(A11, E15.5)’) ’Residual = ’, TOL
 END
c
 SUBROUTINE AMULTP (P, Z)
 INTEGER NZ
 PARAMETER (NZ=15)
c SPECIFICATIONS FOR ARGUMENTS
 REAL P(*), Z(*)
c SPECIFICATIONS FOR PARAMETERS
 INTEGER N
 PARAMETER (N=6)
c SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I
 INTEGER IROW(NZ), JCOL(NZ)
 REAL A(NZ)
 SAVE A, IROW, JCOL
c SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSET
c Define the matrix A
c
 DATA A/6.0, 10.0, 15.0, -3.0, 10.0, -1.0, -1.0, -3.0, -5.0, 1.0,
 & 10.0, -1.0, -2.0, -1.0, -2.0/
 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
c
 CALL SSET (N, 0.0, Z, 1)
c Accumulate the product A*p in z
 DO 10 I=1, NZ
 Z(IROW(I)) = Z(IROW(I)) + A(I)*P(JCOL(I))
 10 CONTINUE
 RETURN
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 269

Output
 Solution
1 1.000
2 2.000
3 3.000
4 4.000
5 5.000
6 6.000
Residual = 0.25882E-05

Example 3

The coefficient matrix in this example corresponds to the five-point discretization
of the 2-d Poisson equation with the Dirichlet boundary condition. Assuming the
natural ordering of the unknowns, and moving all boundary terms to the right
hand side, we obtain the block tridiagonal matrix

A

T I

I

I

I T

=

−
−

−
−

�

!

"

$

####
O O

O O

where

T =

−
−

−
−

�

!

"

$

####

4 1

1

1

1 4

O O

O O

and I is the identity matrix. Discretizing on a k × k grid implies that T and I are

both k × k, and thus the coefficient matrix A is k� × k�.

The problem is solved twice, with discretization on a 50 × 50 grid. During both
solutions, use the second Householder implementation to take advantage of the
large scale matrix/vector operations done in Level 2 BLAS. Also choose to
update the residual vector by direct evaluation since the small tolerance will
require large residual reduction.

The first solution uses no preconditioning. For the second solution, we construct a
block diagonal preconditioning matrix

M

T

T

=
�

!

"

$
###

O

M is factored once, and these factors are used in the forward solves and back
substitutions necessary when GMRES returns with IDO = 2 or 3.

270 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Timings are obtained for both solutions, and the ratio of the time for the solution
with no preconditioning to the time for the solution with preconditioning is
printed. Though the exact results are machine dependent, we see that the savings
realized by faster convergence from using a preconditioner exceed the cost of
factoring M and performing repeated forward and back solves.

 INTEGER K, N
 PARAMETER (K=50, N=K*K)
c Specifications for local variables
 INTEGER IDO, INFO(10), IR(20), IS(20), NOUT
 REAL A(2*N), B(2*N), C(2*N), G8RES, G9RES, P(2*N), R(N),
 & TNOPRE, TOL, TPRE, U(2*N), WORK(100000), X(N),
 & Y(2*N), Z(2*N)
c Specifications for subroutines
 EXTERNAL AMULTP, G2RES, ISET, LSLCR, SCOPY, SSET, UMACH
c Specifications for functions
 EXTERNAL AMACH, CPSEC
 REAL AMACH, CPSEC
c
 CALL UMACH (2, NOUT)
c Right hand side and initial guess
c to (1 ... 1)
 CALL SSET (N, 1.0, R, 1)
 CALL SSET (N, 1.0, X, 1)
c Use the 2nd Householder
c implementation and update the
c residual by direct evaluation
 CALL ISET (10, 0, INFO, 1)
 INFO(1) = 4
 INFO(5) = 3
 TOL = 100.0*AMACH(4)
 IDO = 0
c Time the solution with no
c preconditioning
 TNOPRE = CPSEC()
 10 CONTINUE
 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)
 IF (IDO .EQ. 1) THEN
c
c Set z = A*p
c
 CALL AMULTP (K, P, Z)
 GO TO 10
 END IF
 TNOPRE = CPSEC() - TNOPRE
c
 WRITE (NOUT,’(A32, I4)’) ’Iterations, no preconditioner = ’,
 & INFO(8)
c
c Solve again using the diagonal blocks
c of A as the preconditioning matrix M
 CALL SSET (N, 1.0, R, 1)
 CALL SSET (N, 1.0, X, 1)
c Define M
 CALL SSET (N-1, -1.0, B, 1)
 CALL SSET (N-1, -1.0, C, 1)
 CALL SSET (N, 4.0, A, 1)
 INFO(4) = 1

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 271

 TOL = 100.0*AMACH(4)
 IDO = 0
 TPRE = CPSEC()
c Compute the LDU factorization of M
c
 CALL LSLCR (N, C, A, B, 6, Y, U, IR, IS)
 20 CONTINUE
 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO)
 IF (IDO .EQ. 1) THEN
c
c Set z = A*p
c
 CALL AMULTP (K, P, Z)
 GO TO 20
 ELSE IF (IDO .EQ. 2) THEN
c
c Set z = inv(M)*p
c
 CALL SCOPY (N, P, 1, Z, 1)
 CALL LSLCR (N, C, A, B, 5, Z, U, IR, IS)
 GO TO 20
 ELSE IF (IDO .EQ. 3) THEN
c
c Set z = A*inv(M)*p
c
 CALL LSLCR (N, C, A, B, 5, P, U, IR, IS)
 CALL AMULTP (K, P, Z)
 GO TO 20
 END IF
 TPRE = CPSEC() - TPRE
 WRITE (NOUT,’(A35, I4)’) ’Iterations, with preconditioning = ’,
 & INFO(8)
 WRITE (NOUT,’(A45, F10.5)’) ’(Precondition time)/(No ’//
 & ’precondition time) = ’, TPRE/TNOPRE
c
 END
c
 SUBROUTINE AMULTP (K, P, Z)
c Specifications for arguments
 INTEGER K
 REAL P(*), Z(*)
c Specifications for local variables
 INTEGER I, N
c Specifications for subroutines
 EXTERNAL SAXPY, SVCAL
c
 N = K*K
c Multiply by diagonal blocks
c
 CALL SVCAL (N, 4.0, P, 1, Z, 1)
 CALL SAXPY (N-1, -1.0, P(2), 1, Z, 1)
 CALL SAXPY (N-1, -1.0, P, 1, Z(2), 1)
c
c Correct for terms not properly in
c block diagonal
 DO 10 I=K, N - K, K
 Z(I) = Z(I) + P(I+1)
 Z(I+1) = Z(I+1) + P(I)

272 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

10 CONTINUE
c Do the super and subdiagonal blocks,
c the -I’s
c
 CALL SAXPY (N-K, -1.0, P(K+1), 1, Z, 1)
 CALL SAXPY (N-K, -1.0, P, 1, Z(K+1), 1)
c
 RETURN
 END

Output
Iterations, no preconditioner = 329
Iterations, with preconditioning = 192
(Precondition time)/(No precondition time) = 0.66278

LSQRR/DLSQRR (Single/Double precision)
Solve a linear least-squares problem without iterative refinement.

Usage
CALL LSQRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — NRA by NCA matrix containing the coefficient matrix of the least-squares
system to be solved. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length NRA containing the right-hand side of the least-squares
system. (Input)

TOL — Scalar containing the nonnegative tolerance used to determine the subset
of columns of A to be included in the solution. (Input)
If TOL is zero, a full complement of min(NRA, NCA) columns is used. See
Comments.

X — Vector of length NCA containing the solution vector with components
corresponding to the columns not used set to zero. (Output)

RES — Vector of length NRA containing the residual vector B − A * X. (Output)

KBASIS — Scalar containing the number of columns used in the solution.
(Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 273

Comments

1. Automatic workspace usage is

LSQRR (NRA + 4) * NCA − 1 units, or
DLSQRR (2 * NRA + 7) * NCA − 2 units.

Workspace may be explicitly provided, if desired, by use of
L2QRR/DL2QRR. The reference is

CALL L2QRR (NRA, NCA, A, LDA, B, TOL, X, RES,
 KBASIS, QR, QRAUX, IPVT, WORK)

The additional arguments are as follows:

QR — Work vector of length NRA * NCA representing an NRA by NCA
matrix that contains information from the QR factorization of A. If A is
not needed, QR can share the same storage locations as A.

QRAUX — Work vector of length NCA containing information about the
orthogonal factor of the QR factorization of A.

IPVT — Integer work vector of length NCA containing the pivoting
information for the QR factorization of A.

WORK — Work vector of length 2 * NCA − 1.

2. Routine LSQRR calculates the QR decomposition with pivoting of a
matrix A and tests the diagonal elements against a user-supplied
tolerance TOL. The first integer KBASIS = k is determined for which

r rk k+ + ≤1 1 11, TOL *

In effect, this condition implies that a set of columns with a condition
number approximately bounded by 1.0/TOL is used. Then, LQRSL
performs a truncated fit of the first KBASIS columns of the permuted A

to an input vector B. The coefficient of this fit is unscrambled to
correspond to the original columns of A, and the coefficients
corresponding to unused columns are set to zero. It may be helpful to
scale the rows and columns of A so that the error estimates in the
elements of the scaled matrix are roughly equal to TOL.

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2QRR the leading
dimension of FAC is increased by IVAL(3) when N is a
multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in
LSQRR. Additional memory allocation for FAC and option value
restoration are done automatically in LSQRR. Users
directly calling L2QRR can allocate additional space for FAC

and set IVAL(3) and IVAL(4) so that memory bank conflicts

274 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

no longer cause inefficiencies. There is no requirement that
users change existing applications that use LSQRR or L2QRR.
Default values for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSQRR temporarily replaces
IVAL(2) by IVAL(1). The routine L2CRG computes the
condition number if IVAL(2) = 2. Otherwise L2CRG skips this
computation. LSQRR restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSQRR solves the linear least-squares problem. The routine LQRRR, page
286, is first used to compute the QR decomposition of A. Pivoting, with all rows
free, is used. Column k is in the basis if

R Rkk ≤ τ 11

with τ = TOL. The truncated least-squares problem is then solved using IMSL
routine LQRSL, page 292. Finally, the components in the solution, with the same
index as columns that are not in the basis, are set to zero; and then, the
permutation determined by the pivoting in IMSL routine LQRRR is applied.

Example

Consider the problem of finding the coefficients cL�in

f(x) = c0 + c1x + c2x2

given data at x = 1, 2, 3 and 4, using the method of least squares. The row of the

matrix A contains the value of 1, x and x2 at the data points. The vector b contains
the data, chosen such that c0 ≈ 1, c1 ≈ 2 and c2 ≈ 0. The routine LSQRR solves this
least-squares problem.

C Declare variables
 PARAMETER (NRA=4, NCA=3, LDA=NRA)
 REAL A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL
C
C Set values for A
C
C A = (1 2 4)
C (1 4 16)
C (1 6 36)
C (1 8 64)
C
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
C
C Set values for B
C
 DATA B/ 4.999, 9.001, 12.999, 17.001 /
C
C Solve the least squares problem

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 275

 TOL = 1.0E-4
 CALL LSQRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’KBASIS = ’, KBASIS
 CALL WRRRN (’X’, 1, NCA, X, 1, 0)
 CALL WRRRN (’RES’, 1, NRA, RES, 1, 0)
C
 END

Output
KBASIS = 3

 X
 1 2 3
0.999 2.000 0.000

 RES
 1 2 3 4
-0.000400 0.001200 -0.001200 0.000400

LQRRV/DLQRRV (Single/Double precision)
Compute the least-squares solution using Householder transformations applied in
blocked form.

Usage
CALL LQRRV (NRA, NCA, NUMEXC, A, LDA, X, LDX)

Arguments

NRA — Number of rows in the matrix. (Input)

NCA — Number of columns in the matrix. (Input)

NUMEXC — Number of right-hand sides. (Input)

A — Real LDA by (NCA + NUMEXC) array containing the matrix and right-hand
sides. (Input)
The right-hand sides are input in A(1 : NRA, NCA + j), j = 1, …, NUMEXC. The
array A is preserved upon output. The Householder factorization of the matrix is
computed and used to solve the systems.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

X — Real LDX by NUMEXC array containing the solution. (Output)

LDX — Leading dimension of the solution array X exactly as specified in the
dimension statement of the calling program. (Input)

276 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

LQRRV LDA * (NCA + NUMEXC) + (NCA + NUMEXC + 1) * (NB + 1) units,
or

DLQRRV 2(LDA * (NCA + NUMEXC) + (NCA + NUMEXC + 1) * (NB + 1))
units.

where NB is the block size. The default value is NB = 1. This value can
be reset. See Comment 3 below.

Workspace may be explicitly provided, if desired, by use of
L2RRV/DL2RRV. The reference is

CALL L2RRV (NRA, NCA, NUMEXC, A, LDA, X, LDX, FAC,
 LDFAC, WK)

The additional arguments are as follows:

FAC — Work vector of length LDFAC * (NCA + NUMEXC) containing the
Householder factorization of the matrix on output. If the input data is not
needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of the array FAC exactly as specified in
the dimension statement of the calling program. (Input)
If A and FAC are sharing the same storage, then LDA = LDFAC is required.

WK — Work vector of length (NCA + NUMEXC + 1) * (NB + 1) . The
default value is NB = 1. This value can be reset. See item 3 below.

2. Informational errors
Type Code
 4 1 The input matrix is singular.

3. Integer Options with Chapter 10 Options Manager

5 This option allows the user to reset the blocking factor used in
computing the factorization. On some computers, changing
IVAL(*) to a value larger than 1 will result in greater efficiency.
The value IVAL(*) is the maximum value to use. (The software
is specialized so that IVAL(*) is reset to an “optimal” used
value within routine L2RRV.) The user can control the blocking
by resetting IVAL(*) to a smaller value than the default. Default
values are IVAL(*) = 1, IMACH(5).

6 This option is the vector dimension where a shift is made from
in-line level-2 loops to the use of level-2 BLAS in forming the
partial product of Householder transformations. Default value
is IVAL(*) = IMACH(5).

10 This option allows the user to control the factorization step. If
the value is 1 the Householder factorization will be computed.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 277

If the value is 2, the factorization will not be computed. In this
latter case the decomposition has already been computed.
Default value is IVAL(*) = 1.

11 This option allows the user to control the solving steps. The
rules for IVAL(*) are:

1. Compute b ← Q7b, and x ← R+b.

2. Compute b ← Q7b.
3. Compute b ← Qb.

4. Compute x ← R+b.
Default value is IVAL (*) = 1. Note that IVAL (*) = 2 or 3 may
only be set when calling L2RRV/DL2RRV.

Algorithm

The routine LQRRV computes the QR decomposition of a matrix A using blocked
Householder transformations. It is based on the storage-efficient WY
representation for products of Householder transformations. See Schreiber and
Van Loan (1989).

The routine LQRRV determines an orthogonal matrix Q and an upper triangular
matrix R such that A = QR. The QR factorization of a matrix A having NRA rows
and NCA columns is as follows:

Initialize A1 ← A
For k = 1, min(NRA - 1, NCA)
 Determine a Householder transformation for column k of AN having the form

H Ik k k k
T= − τ µ µ

 where uN has zeros in the first k − 1 positions and τN is a scalar.
 Update

A H A A Ak k k k k k k
T

k
T

← = −− − −1 1 1τ µ µ3 8
End k

Thus,

A H H H A Q A Rp p p
T= = =−1 1L

where p = min(NRA − 1, NCA). The matrix Q is not produced directly by LQRRV.
The information needed to construct the Householder transformations is saved

instead. If the matrix Q is needed explicitly, Q7 can be determined while the
matrix is factored. No pivoting among the columns is done. The primary
purpose of LQRRV is to give the user a high-performance QR least-squares
solver. It is intended for least-squares problems that are well-posed. For
background, see Golub and Van Loan (1989, page 225). During the QR
factorization, the most time−consuming step is computing the matrix−vector

278 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

update AN ← HNAN�-�1. The routine LQRRV constructs “block” of NB Householder
transformations in which the update is “rich” in matrix multiplication. The
product of NB Householder transformations are written in the form

H H H I YTYk k k nb
T

+ + − = +1 1L

where Y15$�1% is a lower trapezoidal matrix and T1%�� 1% is upper triangular. The
optimal choice of the block size parameter NB varies among computer systems.
Users may want to change it from its default value of 1.

Example

Given a real m × k matrix B it is often necessary to compute the k least-squares
solutions of the linear system AX = B, where A is an m × n real matrix. When m >
n the system is considered overdetermined. A solution with a zero residual
normally does not exist. Instead the minimization problem

min
x

j j
j

n
Ax b

∈
−

R 2

is solved k times where xM, bM are the j-th columns of the matrices X, B
respectively. When A is of full column rank there exits a unique solution X/6 that
solves the above minimization problem. By using the routine LQRRV, X/6 is
computed.

C Declare variables
 INTEGER LDA, LDX, NCA, NRA, NUMEXC
 PARAMETER (NCA=3, NRA=5, NUMEXC=2, LDA=NRA, LDX=NCA)
C SPECIFICATIONS FOR LOCAL VARIABLES
 REAL X(LDX,NUMEXC)
C SPECIFICATIONS FOR SAVE VARIABLES
 REAL A(LDA,NCA+NUMEXC)
 SAVE A
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL LQRRV, SGEMM, WRRRN
C
C Set values for A and the
C righthand sides.
C
C A = (1 2 4 | 7 10)
C (1 4 16 | 21 10)
C (1 6 36 | 43 9)
C (1 8 64 | 73 10)
C (1 10 100 | 111 10)
C
 DATA A/5*1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 4.0, 16.0, 36.0, 64.0,
 & 100.0, 7.0, 21.0, 43.0, 73.0, 111.0, 2*10., 9., 2*10./
C
C
C QR factorization and solution
 CALL LQRRV (NRA, NCA, NUMEXC, A, LDA, X, LDX)
 CALL WRRRN (’SOLUTIONS 1-2’, NCA, NUMEXC, X, LDX, 0)
C Compute residuals and print
 CALL SGEMM (’N’, ’N’, NRA, NUMEXC, NCA, 1.E0, A, LDA, X, LDX,
 & -1.E0, A(1,NCA+1), LDA)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 279

 CALL WRRRN (’RESIDUALS 1-2’, NRA, NUMEXC, A(1,NCA+1), LDA, 0)
C
 END

Output
 SOLUTIONS 1-2
 1 2
1 1.00 10.80
2 1.00 -0.43
3 1.00 0.04

 RESIDUALS 1-2
 1 2
1 0.0000 0.0857
2 0.0000 -0.3429
3 0.0000 0.5143
4 0.0000 -0.3429
5 0.0000 0.0857

LSBRR/DLSBRR (Single/Double precision)
Solve a linear least-squares problem with iterative refinement.

Usage
CALL LSBRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA matrix containing the coefficient matrix of the least-
squares system to be solved. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Real vector of length NRA containing the right-hand side of the least-squares
system. (Input)

TOL — Real scalar containing the nonnegative tolerance used to determine the
subset of columns of A to be included in the solution. (Input)
If TOL is zero, a full complement of min(NRA, NCA) columns is used. See
Comments.

X — Real vector of length NCA containing the solution vector with components
corresponding to the columns not used set to zero. (Output)

RES — Real vector of length NRA containing the residual vector B − AX.
(Output)

280 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

KBASIS — Integer scalar containing the number of columns used in the solution.
(Output)

Comments

1. Automatic workspace usage is

LSBRR NRA * NCA + 4 * NCA + NRA − 1 units, or
DLSBRR 2 * NRA * NCA + 7 * NCA + 2 * NRA − 2 units.

Workspace may be explicitly provided, if desired, by use of
L2BRR/DL2BRR. The reference is

CALL L2BRR (NRA, NCA, A, LDA, B, TOL, X, RES,
 KBASIS,QR, BRRUX, IPVT, WK)

The additional arguments are as follows:

QR — Work vector of length NRA * NCA representing an NRA by NCA
matrix that contains information from the QR factorization of A. See
LQRRR for details.

BRRUX — Work vector of length NCA containing information about the
orthogonal factor of the QR factorization of A. See LQRRR for details.

IPVT — Integer work vector of length NCA containing the pivoting
information for the QR factorization of A. See LQRRR for details.

WK — Work vector of length NRA + 2 * NCA − 1.

2. Informational error
Type Code
 4 1 The data matrix is too ill-conditioned for iterative

refinement to be effective.

3. Routine LSBRR calculates the QR decomposition with pivoting of a
matrix A and tests the diagonal elements against a user-supplied
tolerance TOL. The first integer KBASIS = k is determined for which

r rk k+ + ≤1 1 11, TOL *

In effect, this condition implies that a set of columns with a condition
number approximately bounded by 1.0/TOL is used. Then, LQRSL
performs a truncated fit of the first KBASIS columns of the permuted A

to an input vector B. The coefficient of this fit is unscrambled to
correspond to the original columns of A, and the coefficients
corresponding to unused columns are set to zero. It may be helpful to
scale the rows and columns of A so that the error estimates in the
elements of the scaled matrix are roughly equal to TOL. The iterative
refinement method of Björck is then applied to this factorization.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 281

4. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2BRR the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSBRR.
Additional memory allocation for FAC and option value
restoration are done automatically in LSBRR. Users directly
calling L2BRR can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSBRR or L2BRR. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSBRR temporarily replaces
IVAL(2) by IVAL(1). The routine L2CRG computes the
condition number if IVAL(2) = 2. Otherwise L2CRG skips this
computation. LSBRR restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

Routine LSBRR solves the linear least-squares problem using iterative refinement.
The iterative refinement algorithm is due to Björck (1967, 1968). It is also
described by Golub and Van Loan (1983, pages 182−183).

Example

This example solves the linear least-squares problem with A, an 8 × 4 matrix.
Note that the second and fourth columns of A are identical. Routine LSBRR
determines that there are three columns in the basis.

C Declare variables
 PARAMETER (NRA=8, NCA=4, LDA=NRA)
 REAL A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL
C
C Set values for A
C
C A = (1 5 15 5)
C (1 4 17 4)
C (1 7 14 7)
C (1 3 18 3)
C (1 1 15 1)
C (1 8 11 8)
C (1 3 9 3)
C (1 4 10 4)
C
 DATA A/8*1, 5., 4., 7., 3., 1., 8., 3., 4., 15., 17., 14.,
 & 18., 15., 11., 9., 10., 5., 4., 7., 3., 1., 8., 3., 4. /
C
C Set values for B
C

282 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 DATA B/ 30., 31., 35., 29., 18., 35., 20., 22. /
C
C Solve the least squares problem
 TOL = 1.0E-4
 CALL LSBRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’KBASIS = ’, KBASIS
 CALL WRRRN (’X’, 1, NCA, X, 1, 0)
 CALL WRRRN (’RES’, 1, NRA, RES, 1, 0)
C
 END

Output
KBASIS = 3
 X
 1 2 3 4
 0.636 2.845 1.058 0.000

 RES
 1 2 3 4 5 6 7 8
 -0.733 0.996 -0.365 0.783 -1.353 -0.036 1.306 -0.597

LCLSQ/DLCLSQ (Single/Double precision)
Solve a linear least-squares problem with linear constraints.

Usage
CALL LCLSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU,
 IRTYPE, XLB, XUB, X, RES)

Arguments

NRA — Number of least-squares equations. (Input)

NCA — Number of variables. (Input)

NCON — Number of constraints. (Input)

A — Matrix of dimension NRA by NCA containing the coefficients of the NRA least
squares equations. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)
LDA must be at least NRA.

B — Vector of length NRA containing the right-hand sides of the least squares
equations. (Input)

C — Matrix of dimension NCON by NCA containing the coefficients of the NCON

constraints. (Input)
If NCON = 0, C is not referenced.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 283

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)
LDC must be at least NCON.

BL — Vector of length NCON containing the lower limit of the general
constraints. (Input)
If there is no lower limit on the I-th constraint, then BL(I) will not be referenced.

BU — Vector of length NCON containing the upper limit of the general
constraints. (Input)
If there is no upper limit on the I-th constraint, then BU(I) will not be referenced.
If there is no range constraint, BL and BU can share the same storage locations.

IRTYPE — Vector of length NCON indicating the type of constraints exclusive of
simple bounds, where IRTYPE(I) = 0, 1, 2, 3 indicates .EQ., .LE., .GE., and
range constraints respectively. (Input)

XLB — Vector of length NCA containing the lower bound on the variables.
(Input)
If there is no lower bound on the I-th variable, then XLB(I) should be set to
1.0E30.

XUB — Vector of length NCA containing the upper bound on the variables.
(Input)
If there is no upper bound on the I-th variable, then XUB(I) should be set to
−1.0E30.

X — Vector of length NCA containing the approximate solution. (Output)

RES — Vector of length NRA containing the residuals B − AX of the least-squares
equations at the approximate solution. (Output)

Comments

1. Automatic workspace usage is

LCLSQ (NCON + MAXDIM) * (NCA + NCON + 1) + 13 * NCA + 12 * NCON
+ 3 units, or

DLCLSQ 2 * (NCON + MAXDIM) * (NCA + NCON + 1) + 23 * NCA + 21 *
NCON + 6 units, where MAXDIM = max(NRA, NCA)

Workspace may be explicitly provided, if desired, by use of
L2LSQ/DL2LSQ. The reference is

CALL L2LSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL,
 BU, IRTYPE, XLB, XUB, X, RES, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length (NCON + MAXDIM) * (NCA +
NCON + 1) + 10 * NCA + 9 * NCON + 3.

IWK — Integer work vector of length 3 * (NCON + NCA).

284 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

2. Informational errors
Type Code
 3 1 The rank determination tolerance is less than machine

precision.
 4 2 The bounds on the variables are inconsistent.
 4 3 The constraint bounds are inconsistent.
 4 4 Maximum number of iterations exceeded.

3. Integer Options with Chapter 10 Options Manager

13 Debug output flag. If more detailed output is desired, set this
option to the value 1. Otherwise, set it to 0. Default value is 0.

14 Maximum number of add/drop iterations. If the value of this
option is zero, up to 5 * max(nra, nca) iterations will be
allowed. Otherwise set this option to the desired iteration limit.
Default value is 0.

4. Floating Point Options with Chapter 10 Options Manager

2 The value of this option is the relative rank determination
tolerance to be used. Default value is sqrt(AMACH (4)).

5 The value of this option is the absolute rank determination
tolerance to be used. Default value is sqrt(AMACH (4)).

Algorithm

The routine LCLSQ solves linear least-squares problems with linear constraints.
These are systems of least-squares equations of the form Ax ≅ b

subject to

bO ≤ C[≤ bX

xO ≤ x ≤ xX

Here, A is the coefficient matrix of the least-squares equations, b is the right-hand
side, and C is the coefficient matrix of the constraints. The vectors bO, bX, xO and
xX are the lower and upper bounds on the constraints and the variables,

respectively. The system is solved by defining dependent variables y ≡ Cx and
then solving the least squares system with the lower and upper bounds on x and y.
The equation Cx − y = 0 is a set of equality constraints. These constraints are
realized by heavy weighting, i.e. a penalty method, Hanson, (1986, pages 826−
834).

Example

A linear least-squares problem with linear constraints is solved.
C
C Solve the following in the least squares sense:
C 3x1 + 2x2 + x3 = 3.3

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 285

C 4x1 + 2x2 + x3 = 2.3
C 2x1 + 2x2 + x3 = 1.3
C x1 + x2 + x3 = 1.0
C
C Subject to: x1 + x2 + x3 <= 1
C 0 <= x1 <= .5
C 0 <= x2 <= .5
C 0 <= x3 <= .5
C
C --
C Declaration of variables
C
 INTEGER NRA, NCA, MCON, LDA, LDC
 PARAMETER (NRA=4, NCA=3, MCON=1, LDC=MCON, LDA=NRA)
C
 INTEGER IRTYPE(MCON), NOUT
 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA),
 & RESNRM, XSOL(NCA), XLB(NCA), XUB(NCA)
C
 EXTERNAL SNRM2, UMACH
 REAL SNRM2
C Data initialization
C
 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0,
 & 2.0E0, 2.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0/,
 & B/3.3E0, 2.3E0, 1.3E0, 1.0E0/,
 & C/3*1.0E0/,
 & BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/
C
C Solve the bounded, constrained
C least squares problem.
C
 CALL LCLSQ (NRA, NCA, MCON, A, LDA, B, C, LDC, BC, BC, IRTYPE,
 & XLB, XUB, XSOL, RES)
C Compute the 2-norm of the residuals.
 RESNRM = SNRM2 (NRA, RES, 1)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT, 999) XSOL, RES, RESNRM
C
 999 FORMAT (’ The solution is ’, 3F9.4, //, ’ The residuals ’,
 & ’evaluated at the solution are ’, /, 18X, 4F9.4, //,
 & ’ The norm of the residual vector is ’, F8.4)
C
 END
C

Output
 The solution is 0.5000 0.3000 0.2000
 The residuals evaluated at the solution are
 -1.0000 0.5000 0.5000 0.0000

 The norm of the residual vector is 1.2247

286 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LQRRR/DLQRRR (Single/Double precision)
Compute the QR decomposition, AP = QR, using Householder transformations.

Usage
CALL LQRRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX,
 CONORM)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA matrix containing the matrix whose QR factorization is to
be computed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

PIVOT — Logical variable. (Input)
PIVOT = .TRUE. means column pivoting is enforced.
PIVOT = .FALSE. means column pivoting is not done.

IPVT — Integer vector of length NCA containing information that controls the
final order of the columns of the factored matrix A. (Input/Output)
On input, if IPVT(K) > 0, then the K-th column of A is an initial column. If
IPVT(K) = 0, then the K-th column of A is a free column. If IPVT(K) < 0, then the
K-th column of A is a final column. See Comments.
On output, IPVT(K) contains the index of the column of A that has been
interchanged into the K-th column. This defines the permutation matrix P. The
array IPVT is referenced only if PIVOT is equal to .TRUE.

QR — Real NRA by NCA matrix containing information required for the QR
factorization. (Output)
The upper trapezoidal part of QR contains the upper trapezoidal part of R with its
diagonal elements ordered in decreasing magnitude. The strict lower trapezoidal
part of QR contains information to recover the orthogonal matrix Q of the
factorization. Arguments A and QR can occupy the same storage locations. In this
case, A will not be preserved on output.

LDQR — Leading dimension of QR exactly as specified in the dimension
statement of the calling program. (Input)

QRAUX — Real vector of length NCA containing information about the
orthogonal part of the decomposition in the first min(NRA, NCA) position.
(Output)

CONORM — Real vector of length NCA containing the norms of the columns of
the input matrix. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 287

If this information is not needed, CONORM and QRAUX can share the same storage
locations.

Comments

1. Automatic workspace usage is

LQRRR 2NCA − 1 units, or
DLQRRR 4NCA − 2 units.

Workspace may be explicitly provided, if desired, by use of
L2RRR/DL2RRR. The reference is

CALL L2RRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR,
 QRAUX, CONORM, WORK)

The additional argument is

WORK — Work vector of length 2NCA − 1. Only NCA − 1 locations of
WORK are referenced if PIVOT = .FALSE. .

2. LQRRR determines an orthogonal matrix Q, permutation matrix P, and an
upper trapezoidal matrix R with diagonal elements of nonincreasing
magnitude, such that AP = QR. The Householder transformation for
column k, k = 1, …, min(NRA, NCA) is of the form

I u uuk
T− −1

where u has zeros in the first k − 1 positions. If the explicit matrix Q is
needed, the user can call routine LQERR (page 289) after calling LQRRR.
This routine accumulates Q from its factored form.

3. Before the decomposition is computed, initial columns are moved to the
beginning and the final columns to the end of the array A. Both initial
and final columns are not moved during the computation. Only free
columns are moved. Pivoting, if requested, is done on the free columns
of largest reduced norm.

4. When pivoting has been selected by having entries of IPVT initialized to
zero, an estimate of the condition number of A can be obtained from the
output by computing the magnitude of the number QR(1, 1)/QR(K, K),
where K = MIN(NRA, NCA). This estimate can be used to select the
number of columns, KBASIS, used in the solution step computed with
routine LQRSL (page 292).

Algorithm

The routine LQRRR computes the QR decomposition of a matrix using
Householder transformations. It is based on the LINPACK routine SQRDC; see
Dongarra et al. (1979).

288 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

LQRRR determines an orthogonal matrix Q, a permutation matrix P, and an upper
trapezoidal matrix R with diagonal elements of nonincreasing magnitude, such
that AP = QR. The Householder transformation for column k is of the form

I
u u

p
k k

T

k
−

for k = 1, 2, …, min(NRA, NCA), where u has zeros in the first k − 1 positions. The
matrix Q is not produced directly by LQRRR . Instead the information needed to
reconstruct the Householder transformations is saved. If the matrix Q is needed
explicitly, the subroutine LQERR, described on page 289, can be called after
LQRRR. This routine accumulates Q from its factored form.

Before the decomposition is computed, initial columns are moved to the
beginning of the array A and the final columns to the end. Both initial and final
columns are frozen in place during the computation. Only free columns are
pivoted. Pivoting, when requested, is done on the free columns of largest reduced
norm.

Example

In various statistical algorithms it is necessary to compute q = x7(A7�A)-1x, where
A is a rectangular matrix of full column rank. By using the QR decomposition, q

can be computed without forming A7�A. Note that

A7�A = (QRP-1)7�(QRP-1) = P-T R7�(Q7�Q)RP-1 = P R7�RP7

since Q is orthogonal (Q7Q = I) and P is a permutation matrix. Let

Q AP R
RT = = �

!
"
$#

1

0

where R1 is an upper triangular nonsingular matrix. Then

x A A x x PR R P x R P xT T T T T3 8− − − − − −= =
1

1
1

1
1

1
1

2
2

In the following program, first the vector t = P-1 x is computed. Then

t R tT:= −
1

Finally,

q t= 2

C Declare variables
 INTEGER LDA, LDQR, NCA, NRA
 PARAMETER (NCA=3, NRA=4, LDA=NRA, LDQR=NRA)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER LDQ
 PARAMETER (LDQ=NRA)
C SPECIFICATIONS FOR LOCAL VARIABLES

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 289

 INTEGER IPVT(NCA), NOUT
 REAL CONORM(NCA), Q, QR(LDQR,NCA), QRAUX(NCA), T(NCA)
 LOGICAL PIVOT
 REAL A(LDA,NCA), X(NCA)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL ISET, LQRRR, LSLRT, PERMU, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL SDOT
 REAL SDOT
C
C Set values for A
C
C A = (1 2 4)
C (1 4 16)
C (1 6 36)
C (1 8 64)
C
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
C
C Set values for X
C
C X = (1 2 3)
 DATA X/1.0, 2.0, 3.0/
C
C QR factorization
 PIVOT = .TRUE.
 CALL ISET (NCA, 0, IPVT, 1)
 CALL LQRRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX,
 & CONORM)
C Set t = inv(P)*x
 CALL PERMU (NCA, X, IPVT, 1, T)
C Compute t = inv(trans(R))*t
 CALL LSLRT (NCA, QR, LDQR, T, 4, T)
C Compute 2-norm of t, squared.
 Q = SDOT(NCA,T,1,T,1)
C Print result
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Q = ’, Q
C
 END

Output
Q = 0.840624

LQERR/DLQERR (Single/Double precision)
Accumulate the orthogonal matrix Q from its factored form given the QR
factorization of a rectangular matrix A.

Usage
CALL LQERR (NRQR, NCQR, QR, LDQR, QRAUX, Q, LDQ)

290 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Arguments

NRQR — Number of rows in QR. (Input)

NCQR — Number of columns in QR. (Input)

QR — Real NRQR by NCQR matrix containing the factored form of the matrix Q in
the first min(NRQR, NCQR) columns of the strict lower trapezoidal part of QR as
output from subroutine LQRRR/DLQRRR. (Input)

LDQR — Leading dimension of QR exactly as specified in the dimension
statement of the calling program. (Input)

QRAUX — Real vector of length NCQR containing information about the
orthogonal part of the decomposition in the first min(NRQR, NCQR) position as
output from routine LQRRR/DLQRRR. (Input)

Q — Real NRQR by NRQR matrix containing the accumulated orthogonal matrix Q;
Q and QR can share the same storage locations if QR is not needed. (Output)

LDQ — Leading dimension of Q exactly as specified in the dimension statement
of the calling program. (Input)

Comments

Automatic workspace usage is

LQERR 2 * NRQR units, or
DLQERR 4 * NRQR units.

Workspace may be explicitly provided, if desired, by use of L2ERR/DL2ERR. The
reference is

CALL L2ERR (NRQR, NCQR, QR, LDQR, QRAUX, Q, LDQ, WK)

The additional argument is

WK — Work vector of length 2 * NRQR.

Algorithm

The routine LQERR accumulates the Householder transformations computed by
IMSL routine LQRRR, page 286, to produce the orthogonal matrix Q.

Example

In this example, the orthogonal matrix Q in the QR decomposition of a matrix A
is computed. The product X = QR is also computed. Note that X can be obtained
from A by reordering the columns of A according to IPVT.

C Declare variables
 INTEGER LDA, LDQ, LDQR, NCA, NRA
 PARAMETER (NCA=3, NRA=4, LDA=NRA, LDQ=NRA, LDQR=NRA)
C
 INTEGER IPVT(NCA), J

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 291

 REAL A(LDA,NCA), CONORM(NCA), Q(LDQ,NRA), QR(LDQR,NCA),
 & QRAUX(NCA), R(NRA,NCA), X(NRA,NCA)
 LOGICAL PIVOT
 EXTERNAL ISET, LQERR, LQRRR, MRRRR, SCOPY, SSET, WRIRN, WRRRN
C
C Set values for A
C
C A = (1 2 4)
C (1 4 16)
C (1 6 36)
C (1 8 64)
C
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
C
C QR factorization
C Set IPVT = 0 (all columns free)
 CALL ISET (NCA, 0, IPVT, 1)
 PIVOT = .TRUE.
 CALL LQRRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX,
 & CONORM)
C Accumulate Q
 CALL LQERR (NRA, NCA, QR, LDQR, QRAUX, Q, LDQ)
C R is the upper trapezoidal part of QR
 CALL SSET (NRA*NCA, 0.0, R, 1)
 DO 10 J=1, NRA
 CALL SCOPY (J, QR(1,J), 1, R(1,J), 1)
 10 CONTINUE
C Compute X = Q*R
 CALL MRRRR (NRA, NRA, Q, LDQ, NRA, NCA, R, NRA, NRA, NCA, X, LDA)
C Print results
 CALL WRIRN (’IPVT’, 1, NCA, IPVT, 1, 0)
 CALL WRRRN (’Q’, NRA, NRA, Q, LDQ, 0)
 CALL WRRRN (’R’, NRA, NCA, R, NRA, 0)
 CALL WRRRN (’X = Q*R’, NRA, NCA, X, LDA, 0)
C
 END

Output
 IPVT
 1 2 3
 3 2 1
 Q
 1 2 3 4
1 -0.0531 -0.5422 0.8082 -0.2236
2 -0.2126 -0.6574 -0.2694 0.6708
3 -0.4783 -0.3458 -0.4490 -0.6708
4 -0.8504 0.3928 0.2694 0.2236

 R
 1 2 3
1 -75.26 -10.63 -1.59
2 0.00 -2.65 -1.15
3 0.00 0.00 0.36
4 0.00 0.00 0.00

 X = Q*R
 1 2 3
1 4.00 2.00 1.00
2 16.00 4.00 1.00

292 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

3 36.00 6.00 1.00
4 64.00 8.00 1.00

LQRSL/DLQRSL (Single/Double precision)
Compute the coordinate transformation, projection, and complete the solution of
the least-squares problem Ax = b.

Usage
CALL LQRSL (NRA, KBASIS, QR, LDQR, QRAUX, B, IPATH, QB,
 QTB, X, RES, AX)

Arguments

NRA — Number of rows of matrix A. (Input)

KBASIS — Number of columns of the submatrix AN of A. (Input)
The value KBASIS must not exceed min(NRA, NCA), where NCA is the number of
columns in matrix A. The value NCA is an argument to routine LQRRR (page 286).
The value of KBASIS is normally NCA unless the matrix is rank-deficient. The
user must analyze the problem data and determine the value of KBASIS. See
Comments.

QR — NRA by NCA array containing information about the QR factorization of A
as output from routine LQRRR/DLQRRR. (Input)

LDQR — Leading dimension of QR exactly as specified in the dimension
statement of the calling program. (Input)

QRAUX — Vector of length NCA containing information about the QR
factorization of A as output from routine LQRRR/DLQRRR. (Input)

B — Vector b of length NRA to be manipulated. (Input)

IPATH — Option parameter specifying what is to be computed. (Input)
The value IPATH has the decimal expansion IJKLM, such that:
I ≠ 0 means compute Qb;

J ≠ 0 means compute Q7b;

K ≠ 0 means compute Q7b and x;

L ≠ 0 means compute Q7b and b − Ax;

M ≠ 0 means compute Q7b and Ax.

For example, if the decimal number IPATH = 01101, then I = 0, J = 1, K = 1, L=
0, and M= 1.

QB — Vector of length NRA containing Qb if requested in the option IPATH.
(Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 293

QTB — Vector of length NRA containing Q7b if requested in the option IPATH.
(Output)

X — Vector of length KBASIS containing the solution of the least-squares
problem ANx = b, if this is requested in the option IPATH. (Output)
If pivoting was requested in routine LQRRR/DLQRRR, then the J-th entry of X will
be associated with column IPVT(J) of the original matrix A. See Comments.

RES — Vector of length NRA containing the residuals (b − Ax) of the least-
squares problem if requested in the option IPATH. (Output)
This vector is the orthogonal projection of b onto the orthogonal complement of
the column space of A.

AX — Vector of length NRA containing the least-squares approximation Ax if
requested in the option IPATH. (Output)
This vector is the orthogonal projection of b onto the column space of A.

Comments

1. Informational error
Type Code
 4 1 Computation of the least-squares solution of

AK * X = B is requested, but the upper triangular
matrix R from the QR factorization is singular.

2. This routine is designed to be used together with LQRRR. It assumes that
LQRRR/DLQRR has been called to get QR, QRAUX and IPVT. The
submatrix AN mentioned above is actually equal to AN = (A(IPVT(1)),

A(IPVT(2)), …, A(IPVT (KBASIS))), where A(IPVT(I)) is the IPVT(I)-
th column of the original matrix.

Algorithm

Routine LQRSL is based on the LINPACK routine SQRSL, see Dongarra et al.
(1979).

The most important use of LQRSL is for solving the least-squares problem Ax = b,
with coefficient matrix A and data vector b. This problem can be formulated,

using the normal equations method, as A7�Ax = A7�b. Using LQRRR (page 286)
the QR decomposition of A, AP = QR, is computed. Here P is a permutation

matrix (P-1 = P T), Q is an orthogonal matrix (Q-1 = Q7) and R is an upper
trapezoidal matrix. The normal equations can then be written as

(PR7)(Q7Q)R(P7x) = (PR7)Q7�b

If A7A is nonsingular, then R is also nonsingular and the normal equations can be

written as R(P7x) = Q7�b. LQRSL can be used to compute Q7�b and then solve for

P7�x. Note that the permuted solution is returned.

294 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

The routine LQRSL can also be used to compute the least-squares residual,
b − Ax. This is the projection of b onto the orthogonal complement of the column

space of A. It can also compute Qb, Q7b and Ax, the orthogonal projection of x
onto the column space of A.

Example

Consider the problem of finding the coefficients cL�in

f(x) = c0 + c1x + c2x2

given data at xL = 2L, ι = 1, 2, 3, 4, using the method of least squares. The row of
the matrix A contains the value of 1, xL and

xi
2

at the data points. The vector b contains the data. The routine LQRRR is used to
compute the QR decomposition of A. Then LQRSL is then used to solve the least-
squares problem and compute the residual vector.

C Declare variables
 PARAMETER (NRA=4, NCA=3, KBASIS=3, LDA=NRA, LDQR=NRA)
 INTEGER IPVT(NCA)
 REAL A(LDA,NCA), QR(LDQR,NCA), QRAUX(NCA), CONORM(NCA),
 & X(KBASIS), QB(1), QTB(NRA), RES(NRA),
 & AX(1), B(NRA)
 LOGICAL PIVOT
C
C Set values for A
C
C A = (1 2 4)
C (1 4 16)
C (1 6 36)
C (1 8 64)
C
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
C
C Set values for B
C
C B = (16.99 57.01 120.99 209.01)
 DATA B/ 16.99, 57.01, 120.99, 209.01 /
C
C QR factorization
 PIVOT = .TRUE.
 CALL ISET (NCA, 0, IPVT, 1)
 CALL LQRRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX,
 & CONORM)
C Solve the least squares problem
 IPATH = 00110
 CALL LQRSL (NRA, KBASIS, QR, LDQR, QRAUX, B, IPATH, QB, QTB, X,
 & RES, AX)
C Print results
 CALL WRIRN (’IPVT’, 1, NCA, IPVT, 1, 0)
 CALL WRRRN (’X’, 1, KBASIS, X, 1, 0)
 CALL WRRRN (’RES’, 1, NRA, RES, 1, 0)
C

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 295

 END

Output
 IPVT
 1 2 3
 3 2 1

 X
 1 2 3
3.000 2.002 0.990

 RES
 1 2 3 4
-0.00400 0.01200 -0.01200 0.00400

Note that since IPVT is (3, 2, 1) the array X contains the solution coefficients cL in reverse order.

LUPQR/DLUPQR (Single/Double precision)
Compute an updated QR factorization after the rank-one matrix αxy7 is added.

Usage
CALL LUPQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH,
 QNEW, LDQNEW, RNEW, LDRNEW)

Arguments

NROW — Number of rows in the matrix A = Q * R. (Input)

NCOL — Number of columns in the matrix A = Q * R. (Input)

ALPHA — Scalar determining the rank-one update to be added. (Input)

W — Vector of length NROW determining the rank-one matrix to be added.
(Input)

The updated matrix is A + αxy7. If I = 0 then W contains the vector x. If I = 1

then W contains the vector Q7x.

Y — Vector of length NCOL determining the rank-one matrix to be added.
(Input)

Q — Matrix of order NROW containing the Q matrix from the QR factorization.
(Input)
Ignored if IPATH = 0.

LDQ — Leading dimension of Q exactly as specified in the dimension statement
of the calling program. (Input)
Ignored if IPATH = 0.

296 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

R — Matrix of order NROW by NCOL containing the R matrix from the QR
factorization. (Input)
Only the upper trapezoidal part of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
of the calling program. (Input)

IPATH — Flag used to control the computation of the QR update. (Input)
IPATH has the decimal expansion IJ such that: I = 0 means W contains the

vector x. I = 1 means W contains the vector Q7x. J = 0 means do not update the
matrix Q. J = 1 means update the matrix Q. For example, if IPATH = 10 then, I =
1 and J = 0.

QNEW — Matrix of order NROW containing the updated Q matrix in the QR
factorization. (Output)
Ignored if J = 0, see IPATH for definition of J.

LDQNEW — Leading dimension of QNEW exactly as specified in the dimension
statement of the calling program. (Input)
Ignored if J = 0; see IPATH for definition of J.

RNEW — Matrix of order NROW by NCOL containing the updated R matrix in the
QR factorization. (Output)
Only the upper trapezoidal part of RNEW is updated. R and RNEW may be the same.

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension
statement of the calling program. (Input)

Comments

Automatic workspace usage is

LUPQR NROW + MIN(NROW − 1, NCOL) units, or
DLUPQR 2 * (NROW + MIN(NROW − 1, NCOL)) units.

Workspace may be explicitly provided, if desired, by use of L2PQR/DL2PQR. The
reference is

CALL L2PQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH,
 QNEW, LDQNEW, RNEW, LDRNEW, Z, WORK)

The additional arguments are as follows:

Z — Work vector of length NROW.

WORK — Work vector of length MIN(NROW − 1, NCOL).

Algorithm

Let A be an m × n matrix and let A = QR be its QR decomposition. (In the
program, m is called NROW and n is called NCOL) Then

A + αxy7 = QR + αxy7 = Q(R + αQ7xy7) = Q(R + αwy7)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 297

where w = Q7�x. An orthogonal transformation J can be constructed, using a
sequence of m − 1 Givens rotations, such that Jw = ωe1, where ω = ±||w||2 and

e1 = (1, 0, …, 0)7. Then

A + αxy7 = (QJ7)(JR + αωe1y7)

Since JR is an upper Hessenberg matrix, H = JR + αωe1y7 is also an upper
Hessenberg matrix. Again using m − 1 Givens rotations, an orthogonal
transformation G can be constructed such that GH is an upper triangular matrix.
Then

A xy QR Q QJ GT T T+ = =α ~~ ~
, where

is orthogonal and
~
R GH=

is upper triangular.

If the last k components of w are zero, then the number of Givens rotations
needed to construct J or G is m − k − 1 instead of m − 1.

For further information, see Dennis and Schnabel (1983, pages 55−58 and 311−
313), or Golub and Van Loan (1983, pages 437−439).

Example

The QR factorization of A is found. It is then used to find the QR factorization of

A + xy7. Since pivoting is used, the QR factorization routine finds AP = QR,
where P is a permutation matrix determined by IPVT. We compute

AP xy A x Py P QRT T+ = + =α α 0 54 9 ~~

The IMSL routine PERMU (page 1138) is used to compute Py. As a check
~~
QR

is computed and printed. It can also be obtained from A + xy7 by permuting its
columns using the order given by IPVT.

C Declare variables
 INTEGER LDA, LDAQR, LDQ, LDQNEW, LDQR, LDR, LDRNEW, NCOL, NROW
 PARAMETER (NCOL=3, NROW=4, LDA=NROW, LDAQR=NROW, LDQ=NROW,
 & LDQNEW=NROW, LDQR=NROW, LDR=NROW, LDRNEW=NROW)
C
 INTEGER IPATH, IPVT(NCOL), J, MIN0
 REAL A(LDA,NCOL), ALPHA, AQR(LDAQR,NCOL), CONORM(NCOL),
 & Q(LDQ,NROW), QNEW(LDQNEW,NROW), QR(LDQR,NCOL),
 & QRAUX(NCOL), R(LDR,NCOL), RNEW(LDRNEW,NCOL), W(NROW),
 & Y(NCOL)
 LOGICAL PIVOT
 INTRINSIC MIN0

298 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 EXTERNAL ISET, LQERR, LQRRR, LUPQR, MRRRR, PERMU, SCOPY, SSET,
 & WRIRN, WRRRN
C
C Set values for A
C
C A = (1 2 4)
C (1 4 16)
C (1 6 36)
C (1 8 64)
C
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
C Set values for W and Y
 DATA W/1., 2., 3., 4./
 DATA Y/3., 2., 1./
C
C QR factorization
C Set IPVT = 0 (all columns free)
 CALL ISET (NCOL, 0, IPVT, 1)
 PIVOT = .TRUE.
 CALL LQRRR (NROW, NCOL, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX,
 & CONORM)
C Accumulate Q
 CALL LQERR (NROW, NCOL, QR, LDQR, QRAUX, Q, LDQ)
C Permute Y
 CALL PERMU (NCOL, Y, IPVT, 1, Y)
C R is the upper trapezoidal part of QR
 CALL SSET (NROW*NCOL, 0.0, R, 1)
 DO 10 J=1, NCOL
 CALL SCOPY (MIN0(J,NROW), QR(1,J), 1, R(1,J), 1)
 10 CONTINUE
C Update Q and R
 ALPHA = 1.0
 IPATH = 01
 CALL LUPQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH,
 & QNEW, LDQNEW, RNEW, LDRNEW)
C Compute AQR = Q*R
 CALL MRRRR (NROW, NROW, QNEW, LDQNEW, NROW, NCOL, RNEW, LDRNEW,
 & NROW, NCOL, AQR, LDAQR)
C Print results
 CALL WRIRN (’IPVT’, 1, NCOL, IPVT, 1, 0)
 CALL WRRRN (’QNEW’, NROW, NROW, QNEW, LDQNEW, 0)
 CALL WRRRN (’RNEW’, NROW, NCOL, RNEW, LDRNEW, 0)
 CALL WRRRN (’QNEW*RNEW’, NROW, NCOL, AQR, LDAQR, 0)
 END

Output
 IPVT
 1 2 3
 3 2 1

 QNEW
 1 2 3 4
1 -0.0620 -0.5412 0.8082 -0.2236
2 -0.2234 -0.6539 -0.2694 0.6708
3 -0.4840 -0.3379 -0.4490 -0.6708
4 -0.8438 0.4067 0.2694 0.2236

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 299

 RNEW
 1 2 3
1 -80.59 -21.34 -17.62
2 0.00 -4.94 -4.83
3 0.00 0.00 0.36
4 0.00 0.00 0.00

 QNEW*RNEW
 1 2 3
1 5.00 4.00 4.00
2 18.00 8.00 7.00
3 39.00 12.00 10.00
4 68.00 16.00 13.00

LCHRG/DLCHRG (Single/Double precision)
Compute the Cholesky decomposition of a symmetric positive semidefinite
matrix with optional column pivoting.

Usage
CALL LCHRG (N, A, LDA, PIVOT, IPVT, FAC, LDFAC)

Arguments

N — Order of the matrix A. (Input)

A — N by N symmetric positive semidefinite matrix to be decomposed. (Input)
Only the upper triangle of A is referenced.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

PIVOT — Logical variable. (Input)
PIVOT = .TRUE. means column pivoting is done. PIVOT = .FALSE. means no
pivoting is done.

IPVT — Integer vector of length N containing information that controls the
selection of the pivot columns. (Input/Output)
On input, if IPVT(K) > 0, then the K-th column of A is an initial column; if
IPVT(K) = 0, then the K-th column of A is a free column; if IPVT(K) < 0, then
the K-th column of A is a final column. See Comments. On output, IPVT(K)
contains the index of the diagonal element of A that was moved into the K-th
position. IPVT is only referenced when PIVOT is equal to .TRUE..

FAC — N by N matrix containing the Cholesky factor of the permuted matrix in
its upper triangle. (Output)
If A is not needed, A and FAC can share the same storage locations.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)

300 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments

1. Informational error
Type Code
 4 1 The input matrix is not positive semidefinite.

2. Before the decomposition is computed, initial elements are moved to the
leading part of A and final elements to the trailing part of A. During the
decomposition only rows and columns corresponding to the free
elements are moved. The result of the decomposition is an upper

triangular matrix R and a permutation matrix P that satisfy P7�AP = R7
R, where P is represented by IPVT.

3. LCHRG can be used together with subroutines PERMU and LSLDS to solve
the positive semidefinite linear system AX = B with the solution X
overwriting the right-hand side B as follows:

CALL ISET (N, 0, IPVT, 1)
CALL LCHRG (N, A, LDA, TOL, .TRUE., IPVT, FAC,
 LDFAC, IRANK)
CALL PERMU (N, B, IPVT, 1, B)
CALL LSLDS (N, FAC, LDFAC, B, B)
CALL PERMU (N, B, IPVT, 2, B)

Algorithm

Routine LCHRG is based on the LINPACK routine SCHDC; see Dongarra et al.
(1979).

Before the decomposition is computed, initial elements are moved to the leading
part of A and final elements to the trailing part of A. During the decomposition
only rows and columns corresponding to the free elements are moved. The result
of the decomposition is an upper triangular matrix R and a permutation matrix P

that satisfy P7�AP = R7�R, where P is represented by IPVT.

Example

Routine LCHRG can be used together with the IMSL routines PERMU (page 1138)
and LFSDS (page 65) to solve a positive definite linear system Ax = b. Since

A = PR7�RP-1, the system Ax = b is equivalent to R7�R(P-1x) = P-1b. LFSDS is

used to solve R7�Ry = P-1b for y. The routine PERMU is used to compute both

P-1b and x = Py.
C Declare variables
 PARAMETER (N=3, LDA=N, LDFAC=N)
 INTEGER IPVT(N)
 REAL A(LDA,N), FAC(LDFAC,N), B(N), X(N)
 LOGICAL PIVOT
C
C Set values for A and B
C
C A = (1 -3 2)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 301

C (-3 10 -5)
C (2 -5 6)
C
C B = (27 -78 64)
C
 DATA A/1.,-3.,2.,-3.,10.,-5.,2.,-5.,6./
 DATA B/27.,-78.,64./
C Pivot using all columns
 PIVOT = .TRUE.
 CALL ISET (N, 0, IPVT, 1)
C Compute Cholesky factorization
 CALL LCHRG (N, A, LDA, PIVOT, IPVT, FAC, LDFAC)
C Permute B and store in X
 CALL PERMU (N, B, IPVT, 1, X)
C Solve for X
 CALL LFSDS (N, FAC, LDFAC, X, X)
C Inverse permutation
 CALL PERMU (N, X, IPVT, 2, X)
C Print X
 CALL WRRRN (’X’, 1, N, X, 1, 0)
C
 END

Output
 X
 1 2 3
1.000 -4.000 7.000

LUPCH/DLUPCH (Single/Double precision)
Update the R7�R Cholesky factorization of a real symmetric positive definite
matrix after a rank-one matrix is added.

Usage
CALL LUPCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN)

Arguments

N — Order of the matrix. (Input)

R — N by N upper triangular matrix containing the upper triangular factor to be
updated. (Input)
Only the upper triangle of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
of the calling program. (Input)

X — Vector of length N determining the rank-one matrix to be added to the

factorization R7�R. (Input)

RNEW — N by N upper triangular matrix containing the updated triangular factor

of R7�R + XX7. (Output)

302 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can
share the same storage locations.

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension
statement of the calling program. (Input)

CS — Vector of length N containing the cosines of the rotations. (Output)

SN — Vector of length N containing the sines of the rotations. (Output)

Algorithm

The routine LUPCH is based on the LINPACK routine SCHUD; see Dongarra et al.
(1979).

The Cholesky factorization of a matrix is A = R7�R, where R is an upper
triangular matrix. Given this factorization, LUPCH computes the factorization

A xx R RT T+ = ~ ~

In the program
~
R

is called RNEW.

LUPCH determines an orthogonal matrix U as the product G1…G1 of Givens
rotations, such that

U
R

x

R
T

�
!

"
$#

=
�
!

"
$#

~

0

By multiplying this equation by its transpose, and noting that U7�U = I, the
desired result

R R xx R RT T T+ = ~ ~

is obtained.

Each Givens rotation, GL, is chosen to zero out an element in x7. The matrix GL is
(N + 1) × (N + 1) and has the form

G

I

c s

I

s c

i

i

i i

N i

i i

=

−

�

!

"

$

####

−

−

1 0 0 0

0 0

0 0 0

0 0

where IN is the identity matrix of order k and cL�= cosθL�= CS(I), sL = sinθL = SN(I)

for some θL.

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 303

Example

A linear system Az = b is solved using the Cholesky factorization of A. This

factorization is then updated and the system (A + xx7) z = b is solved using this
updated factorization.

C Declare variables
 INTEGER LDA, LDFAC, N
 PARAMETER (LDA=3, LDFAC=3, N=3)
 REAL A(LDA,LDA), FAC(LDFAC,LDFAC), FACNEW(LDFAC,LDFAC),
 & X(N), B(N), CS(N), SN(N), Z(N)
C
C Set values for A
C A = (1.0 -3.0 2.0)
C (-3.0 10.0 -5.0)
C (2.0 -5.0 6.0)
C
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C
C Set values for X and B
 DATA X/3.0, 2.0, 1.0/
 DATA B/53.0, 20.0, 31.0/
C Factor the matrix A
 CALL LFTDS (N, A, LDA, FAC, LDFAC)
C Solve the original system
 CALL LFSDS (N, FAC, LDFAC, B, Z)
C Print the results
 CALL WRRRN (’FAC’, N, N, FAC, LDFAC, 1)
 CALL WRRRN (’Z’, 1, N, Z, 1, 0)
C Update the factorization
 CALL LUPCH (N, FAC, LDFAC, X, FACNEW, LDFAC, CS, SN)
C Solve the updated system
 CALL LFSDS (N, FACNEW, LDFAC, B, Z)
C Print the results
 CALL WRRRN (’FACNEW’, N, N, FACNEW, LDFAC, 1)
 CALL WRRRN (’Z’, 1, N, Z, 1, 0)
C
 END

Output
 FAC
 1 2 3
1 1.000 -3.000 2.000

2 1.000 1.000
3 1.000
 Z
 1 2 3
1860.0 433.0 -254.0

 FACNEW
 1 2 3
1 3.162 0.949 1.581
2 3.619 -1.243
3 -1.719

304 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

 Z
 1 2 3
4.000 1.000 2.000

LDNCH/DLDNCH (Single/Double precision)
Downdate the R7�R Cholesky factorization of a real symmetric positive definite
matrix after a rank-one matrix is removed.

Usage
CALL LDNCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN)

Arguments

N — Order of the matrix. (Input)

R — N by N upper triangular matrix containing the upper triangular factor to be
downdated. (Input)
Only the upper triangle of R is referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
of the calling program. (Input)

X — Vector of length N determining the rank-one matrix to be subtracted from

the factorization R7�R. (Input)

RNEW — N by N upper triangular matrix containing the downdated triangular

factor of R7�R − X X7. (Output)
Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can
share the same storage locations.

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension
statement of the calling program. (Input)

CS — Vector of length N containing the cosines of the rotations. (Output)

SN — Vector of length N containing the sines of the rotations. (Output)

Comments

Informational error
Type Code

 4 1 R7R − X X7 is not positive definite. R cannot be downdated.

Algorithm

The routine LDNCH is based on the LINPACK routine SCHDD; see Dongarra et al.
(1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 305

The Cholesky factorization of a matrix is A = R7�R, where R is an upper
triangular matrix. Given this factorization, LDNCH computes the factorization

A xx R RT T− = ~ ~

In the program
~
R

is called RNEW. This is not always possible, since A − xx7 may not be positive
definite.

LDNCH determines an orthogonal matrix U as the product G1�…G1of Givens
rotations, such that

U
R R

xT0
�
!

"
$# =

�
!

"
$
##

~

By multiplying this equation by its transpose and noting that U7�U = I, the
desired result

R R xx R RT T T− = ~ ~

is obtained.

Let a be the solution of the linear system R7�a = x and let

α = −1 2
2a

The Givens rotations, GL, are chosen such that

G G
a

N1
0
1L α

�
!

"
$# = �

!
"
$#

The GL� are (N + 1) × (N + 1) matrices of the form

G

I

c s

I

s c

i

i

i i

N i

i i

=
−

�

!

"

$

####

−

−

1 0 0 0

0 0

0 0 0

0 0

where IN is the identity matrix of order k; and cL= cosθL = CS(I), sL= sinθL = SN(I)

for some θL.

The Givens rotations are then used to form

~
,

~

~R G G
R R

xN T1 0
L

�
!

"
$# =

�
!

"
$
##

306 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

The matrix
~
R

is upper triangular and
~x x=

because

x R
a

R U U
a

R x xT T T T= �
!

"
$# = �

!
"
$# = �

!
"
$# =0 0

0
13 8 3 8 3 8α α

~ ~ ~

Example

A linear system Az = b is solved using the Cholesky factorization of A. This

factorization is then downdated, and the system (A − xx7)z = b is solved using this
downdated factorization.

C Declare variables
 INTEGER LDA, LDFAC, N
 PARAMETER (LDA=3, LDFAC=3, N=3)
 REAL A(LDA,LDA), FAC(LDFAC,LDFAC), FACNEW(LDFAC,LDFAC),
 & X(N), B(N), CS(N), SN(N), Z(N)
C
C Set values for A
C A = (10.0 3.0 5.0)
C (3.0 14.0 -3.0)
C (5.0 -3.0 7.0)
C
 DATA A/10.0, 3.0, 5.0, 3.0, 14.0, -3.0, 5.0, -3.0, 7.0/
C
C Set values for X and B
 DATA X/3.0, 2.0, 1.0/
 DATA B/53.0, 20.0, 31.0/
C Factor the matrix A
 CALL LFTDS (N, A, LDA, FAC, LDFAC)
C Solve the original system
 CALL LFSDS (N, FAC, LDFAC, B, Z)
C Print the results
 CALL WRRRN (’FAC’, N, N, FAC, LDFAC, 1)
 CALL WRRRN (’Z’, 1, N, Z, 1, 0)
C Downdate the factorization
 CALL LDNCH (N, FAC, LDFAC, X, FACNEW, LDFAC, CS, SN)
C Solve the updated system
 CALL LFSDS (N, FACNEW, LDFAC, B, Z)
C Print the results
 CALL WRRRN (’FACNEW’, N, N, FACNEW, LDFAC, 1)
 CALL WRRRN (’Z’, 1, N, Z, 1, 0)
C
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 307

Output
 FAC
 1 2 3
1 3.162 0.949 1.581
2 3.619 -1.243
3 1.719
 Z
 1 2 3
 4.000 1.000 2.000

 FACNEW
 1 2 3
1 1.000 -3.000 2.000
2 1.000 1.000
3 1.000

 Z
 1 2 3
1859.9 433.0 -254.0

LSVRR/DLSVRR (Single/Double precision)
Compute the singular value decomposition of a real matrix.

Usage
CALL LSVRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU,
 V, LDV)

Arguments

NRA — Number of rows in the matrix A. (Input)

NCA — Number of columns in the matrix A. (Input)

A — NRA by NCA matrix whose singular value decomposition is to be computed.
(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IPATH — Flag used to control the computation of the singular vectors. (Input)
IPATH has the decimal expansion IJ such that:
I = 0 means do not compute the left singular vectors;
I = 1 means return the NCA left singular vectors in U;
I = 2 means return only the min(NRA, NCA) left singular vectors in U;
J = 0 means do not compute the right singular vectors,
J = 1 means return the right singular vectors in V.

For example, IPATH = 20 means I = 2 and J = 0.

TOL — Scalar containing the tolerance used to determine when a singular value
is negligible. (Input)
If TOL is positive, then a singular value σL considered negligible if σL ≤ TOL . If

308 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

TOL is negative, then a singular value σL considered negligible if σL ≤ |TOL| *
||A||�. In this case, |TOL| generally contains an estimate of the level of the relative
error in the data.

IRANK — Scalar containing an estimate of the rank of A. (Output)

S — Vector of length min(NRA + 1, NCA) containing the singular values of A in
descending order of magnitude in the first min(NRA, NCA) positions. (Output)

U — NRA by NCU matrix containing the left singular vectors of A. (Output)
NCU must be equal to NRA if I is equal to 1. NCU must be equal to min(NRA, NCA)
if I is equal to 2. U will not be referenced if I is equal to zero. If NRA is less than
or equal to NCU, then U can share the same storage locations as A. See Comments.

LDU — Leading dimension of U exactly as specified in the dimension statement
of the calling program. (Input)

V — NCA by NCA matrix containing the right singular vectors of A. (Output)
V will not be referenced if J is equal to zero. V can share the same storage
location as A, however, U and V cannot both coincide with A simultaneously.

LDV — Leading dimension of V exactly as specified in the dimension statement
of the calling program. (Input)

Comments

1. Automatic workspace usage is

LSVRR NRA * NCA + NRA + NCA + max(NRA, NCA) − 1 units, or
DLSVRR 2 * (NRA * NCA + NRA + NCA + max(NRA, NCA) − 1) units.

Workspace may be explicitly provided, if desired, by use of
L2VRR/DL2VRR. The reference is

CALL L2VRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S,
 U, LDU, V, LDV, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work vector of length NRA * NCA for the matrix A. If A is not
needed, then A and ACOPY may share the same storage locations.

WK — Work vector of length NRA + NCA + max(NRA, NCA) − 1.

2. Informational error
Type Code
 4 1 Convergence cannot be achieved for all the singular

values and their corresponding singular vectors.

3. When NRA is much greater than NCA, it might not be reasonable to store
the whole matrix U. In this case, IPATH with I = 2 allows a singular
value factorization of A to be computed in which only the first

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 309

NCA columns of U are computed, and in many applications those are all
that are needed.

4. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2VRR the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSVRR.
Additional memory allocation for FAC and option value
restoration are done automatically in LSVRR. Users directly
calling L2VRR can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSVRR or L2VRR. Default values
for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSVRR temporarily replaces
IVAL(2) by IVAL(1). The routine L2CRG computes the
condition number if IVAL(2) = 2. Otherwise L2CRG skips this
computation. LSVRR restores the option. Default values for the
option are IVAL(*) = 1, 2.

Algorithm

The routine LSVRR is based on the LINPACK routine SSVDC; see Dongarra et al.
(1979).

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in
A). For any n × p matrix A, there exists an n × n orthogonal matrix U and a
p × p orthogonal matrix V such that

U AV
n p

n p

T =
�
!

"
$# ≥

≤

%
&K
'K

Σ

Σ

0

0

if

if

where Σ = diag(σ1, …, σP), and m = min(n, p). The scalars σ1 ≥ σ2 ≥ … ≥ σP ≥ 0
are called the singular values of A. The columns of U are called the left singular
vectors of A. The columns of V are called the right singular vectors of A.

The estimated rank of A is the number of σN that is larger than a tolerance η. If τ
is the parameter TOL in the program, then

η
τ τ
τ τ

=
%&' ∞

if > 0

if < 0A

310 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example

This example computes the singular value decomposition of a 6 × 4 matrix A. The
matrices U and V containing the left and right singular vectors, respectively, and
the diagonal of Σ, containing singular values, are printed. On some systems, the
signs of some of the columns of U and V may be reversed.

C Declare variables
 PARAMETER (NRA=6, NCA=4, LDA=NRA, LDU=NRA, LDV=NCA)
 REAL A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA)
C
C Set values for A
C
C A = (1 2 1 4)
C (3 2 1 3)
C (4 3 1 4)
C (2 1 3 1)
C (1 5 2 2)
C (1 2 2 3)
C
 DATA A/1., 3., 4., 2., 1., 1., 2., 2., 3., 1., 5., 2., 3*1.,
 & 3., 2., 2., 4., 3., 4., 1., 2., 3./
C
C Compute all singular vectors
 IPATH = 11
 TOL = 10.*AMACH(4)
 CALL LSVRR(NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT, *) ’IRANK = ’, IRANK
 CALL WRRRN (’U’, NRA, NRA, U, LDU, 0)
 CALL WRRRN (’S’, 1, NCA, S, 1, 0)
 CALL WRRRN (’V’, NCA, NCA, V, LDV, 0)
C
 END

Output
IRANK = 4
 U
 1 2 3 4 5 6
1 -0.3805 0.1197 0.4391 -0.5654 0.0243 -0.5726
2 -0.4038 0.3451 -0.0566 0.2148 0.8089 0.1193
3 -0.5451 0.4293 0.0514 0.4321 -0.5723 0.0403
4 -0.2648 -0.0683 -0.8839 -0.2153 -0.0625 -0.3062
5 -0.4463 -0.8168 0.1419 0.3213 0.0621 -0.0799
6 -0.3546 -0.1021 -0.0043 -0.5458 -0.0988 0.7457

 S
 1 2 3 4
 11.49 3.27 2.65 2.09

 V
 1 2 3 4
1 -0.4443 0.5555 -0.4354 0.5518
2 -0.5581 -0.6543 0.2775 0.4283
3 -0.3244 -0.3514 -0.7321 -0.4851
4 -0.6212 0.3739 0.4444 -0.5261

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 311

LSVCR/DLSVCR (Single/Double precision)
Compute the singular value decomposition of a complex matrix.

Usage
CALL LSVCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU,
 V, LDV)

Arguments

NRA — Number of rows in the matrix A. (Input)

NCA — Number of columns in the matrix A. (Input)

A — Complex NRA by NCA matrix whose singular value decomposition is to be
computed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IPATH — Integer flag used to control the computation of the singular vectors.
(Input)
IPATH has the decimal expansion IJ such that:

I= 0 means do not compute the left singular vectors;
I = 1 means return the NCA left singular vectors in U;
I = 2 means return only the min(NRA, NCA) left singular vectors in U;
J = 0 means do not compute the right singular vectors;
J = 1 means return the right singular vectors in V.

For example, IPATH = 20 means I = 2 and J = 0.

TOL — Real scalar containing the tolerance used to determine when a singular
value is negligible. (Input)
If TOL is positive, then a singular value SI is considered negligible if SI ≤ TOL .
If TOL is negative, then a singular value SI is considered negligible if
SI ≤ |TOL|*(Infinity norm of A). In this case |TOL| should generally contain an
estimate of the level of relative error in the data.

IRANK — Integer scalar containing an estimate of the rank of A. (Output)

S — Complex vector of length min(NRA + 1, NCA) containing the singular values
of A in descending order of magnitude in the first min(NRA, NCA) positions.
(Output)

U — Complex NRA by NRA if I = 1 or NRA by min(NRA, NCA) if I = 2 matrix
containing the left singular vectors of A. (Output)
U will not be referenced if I is equal to zero. If NRA is less than or equal to NCA or
IPATH = 2, then U can share the same storage locations as A.

LDU — Leading dimension of U exactly as specified in the dimension statement
of the calling program. (Input)

312 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

V — Complex NCA by NCA matrix containing the right singular vectors of A.
(Output)
V will not be referenced if J is equal to zero. If NCA is less than or equal to NRA,
then V can share the same storage locations as A; however U and V cannot both
coincide with A simultaneously.

LDV — Leading dimension of V exactly as specified in the dimension statement
of the calling program. (Input)

Comments

1. Automatic workspace usage is

LSVCR 2 * (NRA * NCA + NRA + NCA + max(NRA, NCA) − 1) units, or
DLSVCR 4 * (NRA * NCA + NRA + NCA + max(NRA, NCA) − 1) units.

Workspace may be explicitly provided, if desired, by use of
L2VCR/DL2VCR. The reference is

CALL L2VCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S,
 U, LDU, V, LDV, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Complex work vector of length NRA * NCA for the matrix A.
If A is not needed, then A and ACOPY can share the same storage
locations.

WK — Complex work vector of length NRA + NCA +
max(NRA, NCA) − 1.

2. Informational error
Type Code
 4 1 Convergence cannot be achieved for all the singular

values and their corresponding singular vectors.

3. When NRA is much greater than NCA, it might not be reasonable to store
the whole matrix U. In this case IPATH with I = 2 allows a singular value
factorization of A to be computed in which only the first NCA columns of
U are computed, and in many applications those are all that are needed.

4. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2VCR the leading
dimension of FAC is increased by IVAL(3) when N is a multiple
of IVAL(4). The values IVAL(3) and IVAL(4) are temporarily
replaced by IVAL(1) and IVAL(2), respectively, in LSVCR.
Additional memory allocation for FAC and option value
restoration are done automatically in LSVCR. Users directly
calling L2VCR can allocate additional space for FAC and set
IVAL(3) and IVAL(4) so that memory bank conflicts

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 313

no longer cause inefficiencies. There is no requirement that
users change existing applications that use LSVCR or L2VCR.
Default values for the option are IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L1 condition
number is to be computed. Routine LSVCR temporarily replaces
IVAL(2) by IVAL(1). The routine L2CCG computes the
condition number if IVAL(2) = 2. Otherwise L2CCG skips this
computation. LSVCR restores the option. Default values for the
option are IVAL(*) = 1, 2

Algorithm

The IMSL routine LSVCR is based on the LINPACK routine CSVDC; see
Dongarra et al. (1979).

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in
A).For any n × p matrix A there exists an n × n orthogonal matrix U and a
p × p orthogonal matrix V such that

U AV
n p

n p

T =
�
!

"
$# ≥

≤

%
&K
'K

Σ

Σ

0

0

if

if

where Σ = diag(σ1, …, σP), and m = min(n, p). The scalars σ1 ≥ σ2 ≥ … ≥ 0 are
called the singular values of A. The columns of U are called the left singular
vectors of A. The columns of V are called the right singular vectors of A.

The estimated rank of A is the number of σN which are larger than a tolerance η.

If τ is the parameter TOL in the program, then

η
τ τ
τ τ

=
%&' ∞

if > 0

if < 0A

Example

This example computes the singular value decomposition of a 6 × 3 matrix A. The
matrices U and V containing the left and right singular vectors, respectively, and
the diagonal of Σ, containing singular values, are printed. On some systems, the
signs of some of the columns of U and V may be reversed.

C Declare variables
 PARAMETER (NRA=6, NCA=3, LDA=NRA, LDU=NRA, LDV=NCA)
 COMPLEX A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA)
C
C Set values for A
C
C A = (1+2i 3+2i 1-4i)
C (3-2i 2-4i 1+3i)
C (4+3i -2+1i 1+4i)

314 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

C (2-1i 3+0i 3-1i)
C (1-5i 2-5i 2+2i)
C (1+2i 4-2i 2-3i)
C
 DATA A/(1.0,2.0), (3.0,-2.0), (4.0,3.0), (2.0,-1.0), (1.0,-5.0),
 & (1.0,2.0), (3.0,2.0), (2.0,-4.0), (-2.0,1.0), (3.0,0.0),
 & (2.0,-5.0), (4.0,-2.0), (1.0,-4.0), (1.0,3.0), (1.0,4.0),
 & (3.0,-1.0), (2.0,2.0), (2.0,-3.0)/
C
C Compute all singular vectors
 IPATH = 11
 TOL = 10.*AMACH(4)
 CALL LSVCR(NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT, *) ’IRANK = ’, IRANK
 CALL WRCRN (’U’, NRA, NRA, U, LDU, 0)
 CALL WRCRN (’S’, 1, NCA, S, 1, 0)
 CALL WRCRN (’V’, NCA, NCA, V, LDV, 0)
C
 END

Output
IRANK = 3
 U
 1 2 3 4
1 (0.1968, 0.2186) (0.5011, 0.0217) (-0.2007,-0.1003) (-0.2036, 0.0405)
2 (0.3443,-0.3542) (-0.2933, 0.0248) (0.1155,-0.2338) (-0.2316, 0.0287)
3 (0.1457, 0.2307) (-0.5424, 0.1381) (-0.4361,-0.4407) (0.0281,-0.3088)
4 (0.3016,-0.0844) (0.2157, 0.2659) (-0.0523,-0.0894) (0.8617, 0.0223)
5 (0.2283,-0.6008) (-0.1325, 0.1433) (0.3152,-0.0090) (-0.0392,-0.0145)
6 (0.2876,-0.0350) (0.4377,-0.0400) (0.0458,-0.6205) (-0.2303, 0.0924)

 5 6
1 (0.4132,-0.0985) (-0.6017, 0.1612)
2 (-0.5061, 0.0198) (-0.5380,-0.0317)
3 (0.2043,-0.1853) (0.1012, 0.2132)
4 (-0.1272,-0.0866) (-0.0808,-0.0266)
5 (0.6482,-0.1033) (0.0995,-0.0837)
6 (-0.1412, 0.1121) (0.4897,-0.0436)

 S
 1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)

 V
 1 2 3
1 (0.6616, 0.0000) (-0.2651, 0.0000) (-0.7014, 0.0000)
2 (0.7355, 0.0379) (0.3850,-0.0707) (0.5482, 0.0624)
3 (0.0507,-0.1317) (0.1724, 0.8642) (-0.0173,-0.4509)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 315

LSGRR/DLSGRR (Single/Double precision)
Compute the generalized inverse of a real matrix.

Usage
CALL LSGRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV)

Arguments

NRA — Number of rows in the matrix A. (Input)

NCA — Number of columns in the matrix A. (Input)

A — NRA by NCA matrix whose generalized inverse is to be computed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

TOL — Scalar containing the tolerance used to determine when a singular value
(from the singular value decomposition of A) is negligible. (Input)
If TOL is positive, then a singular value σL considered negligible if σL ≤ TOL . If

TOL is negative, then a singular value σL considered negligible if σL ≤ |TOL| *
||A||�. In this case, |TOL| generally contains an estimate of the level of the relative
error in the data.

IRANK — Scalar containing an estimate of the rank of A. (Output)

GINVA — NCA by NRA matrix containing the generalized inverse of A. (Output)

LDGINV — Leading dimension of GINVA exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

LSGRR NRA * NCA + NRA2 + NCA2 + min(NRA + 1, NCA) + NRA + NCA +
max(NRA, NCA) − 1 units, or

DLSGRR 2 * (NRA * NCA + NRA2 + NCA2 + min (NRA + 1, NCA) + min
(NRA + 1, NCA) + NRA + NCA + max(NRA, NCA) − 1) units.

Workspace may be explicitly provided, if desired, by use of
L2GRR/DL2GRR. The reference is

CALL L2GRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA,
 LDGINV, WKA, WK)

The additional arguments are as follows:

316 • Chapter 1: Linear Systems IMSL MATH/LIBRARY

WKA — Work vector of length NRA * NCA used as workspace for the
matrix A. If A is not needed, WKA and A can share the same storage
locations.

WK — Work vector of length LWK where LWK is equal to NRA2 + NCA2 +
min(NRA + 1, NCA) + NRA + NCA + max(NRA, NCA) − 2.

2. Informational error
Type Code
 4 1 Convergence cannot be achieved for all the singular

values and their corresponding singular vectors.

Algorithm

Let k = IRANK, the rank of A; let n = NRA, the number of rows in A; let p = NCA,
the number of columns in A; and let

A† = GINV

be the generalized inverse of A.

To compute the Moore-Penrose generalized inverse, the routine LSVRR
(page 307) is first used to compute the singular value decomposition of A. A
singular value decomposition of A consists of an n × n orthogonal matrix U, a p ×
p orthogonal matrix V and a diagonal matrix Σ = diag(σ1,…, σP), m = min(n, p),

such that U7 AV = [Σ, 0] if n ≤ p and U7 AV = [Σ, 0]7 if n ≥ p. Only the first p
columns of U are computed. The rank k is estimated by counting the number of
nonnegligible σL.

The matrices U and V can be partitioned as U = (U1, U2) and V = (V1, V2) where
both U1 and V1 are k × k matrices. Let Σ1 = diag(σ1, …, σN). The Moore-Penrose
generalized inverse of A is

A U T† = ∑ −V1 1
1

1

Example

This example computes the generalized inverse of a 3 × 2 matrix A. The rank k =
IRANK and the inverse

A† = GINV

are printed.
C Declare variables
 PARAMETER (NRA=3, NCA=2, LDA=NRA, LDGINV=NCA)
 REAL A(LDA,NCA), GINV(LDGINV,NRA)
C
C Set values for A
C
C A = (1 0)
C (1 1)
C (100 -50)

IMSL MATH/LIBRARY Chapter 1: Linear Systems • 317

C
 DATA A/1., 1., 100., 0., 1., -50./
C
C Compute generalized inverse
 TOL = 10.*AMACH(4)
 CALL LSGRR (NRA, NCA, A, LDA, TOL, IRANK, GINV, LDGINV)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT, *) ’IRANK = ’, IRANK
 CALL WRRRN (’GINV’, NCA, NRA, GINV, LDGINV, 0)
C
 END

Output
IRANK = 2
 GINV
 1 2 3
1 0.1000 0.3000 0.0060
2 0.2000 0.6000 -0.0080

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 319

Chapter 2: Eigensystem Analysis

Routines
2.1. Eigenvalues and (Optionally) Eigenvectors of Ax = λx

2.1.1 Real General Problem Ax = λx
All eigenvalues...EVLRG 325
All eigenvalues and eigenvectors.. EVCRG 327
Performance index..EPIRG 330

2.1.2 Complex General Problem Ax = λx
All eigenvalues...EVLCG 331
All eigenvalues and eigenvectors.. EVCCG 333
Performance index..EPICG 336

2.1.3 Real Symmetric Problem Ax = λx
All eigenvalues..EVLSF 337
All eigenvalues and eigenvectors...EVCSF 339
Extreme eigenvalues ... EVASF 341
Extreme eigenvalues and their eigenvectors EVESF 343
Eigenvalues in an interval .. EVBSF 345
Eigenvalues in an interval and their eigenvectors................ EVFSF 347
Performance index...EPISF 350

2.1.4 Real Band Symmetric Matrices in Band Storage Mode
All eigenvalues... EVLSB 351
All eigenvalues and eigenvectors...EVCSB 353
Extreme eigenvalues ...EVASB 356
Extreme eigenvalues and their eigenvectorsEVESB 358
Eigenvalues in an interval ..EVBSB 361
Eigenvalues in an interval and their eigenvectors................ EVFSB 363
Performance index.. EPISB 366

320 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2.1.5 Complex Hermitian Matrices
All eigenvalues..EVLHF 367
All eigenvalues and eigenvectors .. EVCHF 369
Extreme eigenvalues ... EVAHF 372
Extreme eigenvalues and their eigenvectors....................... EVEHF 373
Eigenvalues in an interval.. EVBHF 376
Eigenvalues in an interval and their eigenvectorsEVFHF 379
Performance index ..EPIHF 382

2.1.6 Real Upper Hessenberg Matrices
All eigenvalues... EVLRH 383
All eigenvalues and eigenvectors ..EVCRH 385

2.1.7 Complex Upper Hessenberg Matrices
All eigenvalues... EVLCH 387
All eigenvalues and eigenvectors ..EVCCH 388

2.2. Eigenvalues and (Optionally) Eigenvectors of Ax = λBx

2.2.1 Real General Problem Ax = λBx
All eigenvalues...GVLRG 391
All eigenvalues and eigenvectors GVCRG 393
Performance index ...GPIRG 396

2.2.2 Complex General Problem Ax = λBx
All eigenvalues...GVLCG 398
All eigenvalues and eigenvectors GVCCG 400
Performance index ...GPICG 403

2.2.3 Real Symmetric Problem Ax = λBx
All eigenvalues... GVLSP 405
All eigenvalues and eigenvectors ..GVCSP 407
Performance index ... GPISP 409

Usage Notes
This chapter includes routines for linear eigensystem analysis. Many of these are
for matrices with special properties. Some routines compute just a portion of the
eigensystem. Use of the appropriate routine can substantially reduce computing
time and storage requirements compared to computing a full eigensystem for a
general complex matrix.

An ordinary linear eigensystem problem is represented by the equation Ax = λx
where A denotes an n × n matrix. The value λ is an eigenvalue and x ≠ 0 is the
corresponding eigenvector. The eigenvector is determined up to a scalar factor. In
all routines, we have chosen this factor so that x has Euclidean length with
value one, and the component of x of smallest index and largest magnitude is
positive. In case x is a complex vector, this largest component is real and positive.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 321

In contrast to Version 1.1 of the IMSL Libraries, in Version 2.0 the eigenvalues
and corresponding eigenvectors are sorted and returned in the order of largest to
smallest complex magnitude. Users who require access to specific eigenvalues
may need to alter their application codes to adjust for this change. If the order
returned by Version 1.1 eigensystem codes is required, a use of Level 2 routines
can replace the use of Level 1 routines. The Level 2 routines are documented in
Version 1.1.

For example, the single-precision routine for computing the complex eigenvalues
of a non-symmetric real matrix should now be obtained with the statement:

CALL E2LRG (N,A,LDA,EVAL,ACOPY,RWK)

This will replace the Level 1 statement:

CALL EVLRG (N,A,LDA,EVAL)

The arrays A(*,*), EVAL(*), ACOPY(*), and RWK(*) are documented on page
293 of Version 1.1 (IMSL 1989).

Similar comments hold for the use of the remaining Level 1 routines in the
following tables in those cases where the second character of the Level 2 routine
name is no longer the character "2".

A generalized linear eigensystem problem is represented by Ax = λBx where A
and B are n × n matrices. The value λ is an eigenvalue, and x is the corresponding
eigenvector. The eigenvectors are normalized in the same manner as for the
ordinary eigensystem problem. The linear eigensystem routines have names that
begin with the letter “E”. The generalized linear eigensystem routines have names
that begin with the letter “G”. This prefix is followed by a two-letter code for the
type of analysis that is performed. That is followed by another two-letter suffix
for the form of the coefficient matrix. The following tables summarize the names
of the eigensystem routines.

322 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Symmetric and Hermitian Eigensystems

Symmetric
Full

Symmetric
Band

Hermitian
Full

All eigenvalues EVLSF
p. 337

EVLSB
p. 351

EVLHF
p. 367

All eigenvalues
and eigenvectors

EVCSF
p. 339

EVCSB
p. 353

EVCHF
p. 369

Extreme eigenvalues EVASF
p. 341

EVASB
p. 356

EVAHF
p. 372

Extreme eigenvalues
and eigenvectors

EVESF
p. 343

EVESB
p. 358

EVEHF
p.373

Eigenvalues in
an interval

EVBSF
p. 345

EVBSB
p. 361

EVBHF
p. 376

Eigenvalues and
eigevectors in an
interval

EVFSF
p. 347

EVFSB
p. 363

EVFHF
p 379

Performance index EPISF
p. 350

EPISB
p. 366

EPIHF
p. 382

General Eigensystems

Real
General

Complex
General

Real
Hessenberg

Complex
Hessenberg

All eigenvalues EVLRG
p. 325

EVLCG
p. 331

EVLRH
p. 383

EVLCH
p. 387

All eigenvalues
and eigenvectors

EVCRG
p. 327

EVCCG
p. 333

EVCRH
p. 385

EVCCH
p. 388

Performance
index

EPIRG
p. 330

EPICG
p. 336

EPIRG
p. 330

EPICG
p. 336

Generalized Eigensystems Ax = λBx

Real
General

Complex
General

A Symmetric
B Positive

Definite

All eigenvalues GVLRG
p. 391

GVLCG
p. 398

GVLSP
p. 405

All eigenvalues and
eigenvectors

GVCRG
p. 393

GVCCG
p. 400

GVCSP
p. 407

Performance index GPIRG
p. 396

GPICG
p. 403

GPISP
p. 409

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 323

Error Analysis and Accuracy

The remarks in this section are for the ordinary eigenvalue problem. Except in
special cases, routines will not return the exact eigenvalue-eigenvector pair for
the ordinary eigenvalue problem Ax = λx. The computed pair

~,
~

x λ
is an exact eigenvector-eigenvalue pair for a “nearby” matrix A + E. Information
about E is known only in terms of bounds of the form || E||2 ≤ ƒ(n) ||A||2 ε. The
value of ƒ(n) depends on the algorithm but is typically a small fractional power of
n. The parameter ε is the machine precision. By a theorem due to Bauer and Fike
(see Golub and Van Loan [1989, page 342],

min
~
λ λ κ λ σ− ≤ X E0 5 0 52 for all in A

where σ (A) is the set of all eigenvalues of A (called the spectrum of A), X is the
matrix of eigenvectors, || ⋅ ||2 is the 2-norm, and κ(X) is the condition number of X

defined as κ(X) = || X ||2 || X-1||2. If A is a real symmetric or complex Hermitian
matrix, then its eigenvector matrix X is respectively orthogonal or unitary. For
these matrices,κ(X) = 1.

The eigenvalues
~
λ j

and eigenvectors
~x j

computed by EVC** can be checked by computing their performance index τ
using EPI**. The performance index is defined by Smith et al. (1976, pages
124−126) to be

τ
λ

ε
=

−

≤ ≤
max

~ ~ ~

~1

1

1 1
10j n

j j j

j

Ax x

n A x

No significance should be attached to the factor of 10 used in the denominator.
For a real vector x, the symbol || x ||1 represents the usual 1-norm of x. For a
complex vector x, the symbol || x ||1 is defined by

x x xk k
k

N

1
1

= ℜ + ℑ
=

∑2 7
The performance index τ is related to the error analysis because

Ex Ax xj j j j
~ & ~ ~ ~

2 2
= − λ

where E is the “nearby” matrix discussed above.

324 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

While the exact value of τ is machine and precision dependent, the performance
of an eigensystem analysis routine is defined as excellent if τ < 1, good if 1 ≤ τ ≤
100, and poor if τ > 100. This is an arbitrary definition, but large values of τ can
serve as a warning that there is a blunder in the calculation. There are also similar
routines GPI** to compute the performance index for generalized eigenvalue
problems.

If the condition number κ(X) of the eigenvector matrix X is large, there can be
large errors in the eigenvalues even if τ is small. In particular, it is often difficult
to recognize near multiple eigenvalues or unstable mathematical problems from
numerical results. This facet of the eigenvalue problem is difficult to understand:
A user often asks for the accuracy of an individual eigenvalue. This can be
answered approximately by computing the condition number of an individual
eigenvalue. See Golub and Van Loan (1989, pages 344-345). For matrices A such
that the computed array of normalized eigenvectors X is invertible, the condition

number of λM�is κM ≡ the Euclidean length of row j of the inverse matrix X-1 . Users
can choose to compute this matrix with routine LINCG, page 43. An approximate
bound for the accuracy of a computed eigenvalue is then given by κM ε || A || To
compute an approximate bound for the relative accuracy of an eigenvalue, divide
this bound by | λM |.

Reformulating Generalized Eigenvalue Problems

The generalized eigenvalue problem Ax = λBx is often difficult for users to
analyze because it is frequently ill-conditioned. There are occasionally changes of
variables that can be performed on the given problem to ease this ill-conditioning.

Suppose that B is singular but A is nonsingular. Define the reciprocal µ = λ-1.
Then, the roles of A and B are interchanged so that the reformulated problem Bx =
µAx is solved. Those generalized eigenvalues µM = 0 correspond to eigenvalues λM
= ∞. The remaining

λ µj j= −1

The generalized eigenvectors for λM correspond to those for µM. Other
reformulations can be made: If B is nonsingular, the user can solve the ordinary

eigenvalue problem Cx ≡ B-1 Ax = λx. This is not recommended as a
computational algorithm for two reasons. First, it is generally less efficient than
solving the generalized problem directly. Second, the matrix C will be subject to

perturbations due to ill-conditioning and rounding errors when computing B-1A.
Computing the condition numbers of the eigenvalues for C may, however, be
helpful for analyzing the accuracy of results for the generalized problem.

There is another method that users can consider to reduce the generalized
problem to an alternate ordinary problem. This technique is based on first
computing a matrix decomposition B = PQ, where both P and Q are matrices
that are “simple” to invert. Then, the given generalized problem is equivalent

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 325

to the ordinary eigenvalue problem Fy = λy. The matrix F ≡ P-1AQ-1. The

unnormalized eigenvectors of the generalized problem are given by x = Q-1y. An
example of this reformulation is used in the case where A and B are real and
symmetric with B positive definite. The IMSL routines GVLSP, page 405 and

GVCSP, page 407, use P = R7 and Q = R where R is an upper triangular matrix

obtained from a Cholesky decomposition, B = R7R. The matrix F = R-T AR-1 is
symmetric and real. Computation of the eigenvalue-eigenvector expansion for F
is based on routine EVCSF, page 339.

EVLRG/DEVLRG (Single/Double precision)
Compute all of the eigenvalues of a real matrix.

Usage
CALL EVLRG (N, A, LDA, EVAL)

Arguments

N — Order of the matrix. (Input)

A — Real full matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in
decreasing order of magnitude. (Output)

Comments

1. Automatic workspace usage is

EVLRG N(N + 6) units, or

DEVLRG 2N(N + 4) + 2n units.

Workspace may be explicitly provided, if desired, by use of
E3LRG/DE3LRG. The reference is

CALL E3LRG (N, A, LDA, EVAL, ACOPY, WK, IWK)

The additional arguments are as follows:

ACOPY — Real work array of length N2. A and ACOPY may be the same,

in which case the first N2 elements of A will be destroyed.

WK — Floating-point work array of size 4N.

IWK — Integer work array of size 2N.

326 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2. Informational error
Type Code
 4 1 The iteration for an eigenvalue failed to converge.

3. Integer Options with Chapter 10 Options Manager

1 This option uses eight values to solve memory bank conflict
(access inefficiency) problems. In routine E3LRG, the internal
or working leading dimension of ACOPY is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3)
and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in routine EVLRG . Additional memory allocation
and option value restoration are automatically done in EVLRG.
There is no requirement that users change existing applications
that use EVLRG or E3LRG. Default values for the option are
IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5−8 in IVAL(*) are for
the generalized eigenvalue problem and are not used in EVLRG.

Algorithm

Routine EVLRG computes the eigenvalues of a real matrix. The matrix is first
balanced. Elementary or Gauss similarity transformations with partial pivoting are
used to reduce this balanced matrix to a real upper Hessenberg matrix. A hybrid
double−shifted LR−QR algorithm is used to compute the eigenvalues of the
Hessenberg matrix, Watkins and Elsner (1990).

The balancing routine is based on the EISPACK routine BALANC. The reduction
routine is based on the EISPACK routine ELMHES. See Smith et al. (1976) for the
EISPACK routines. The LR−QR algorithm is based on software work of Watkins
and Haag. Further details, some timing data, and credits are given in Hanson et al.
(1990).

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 85). The eigenvalues of this real matrix are computed
and printed. The exact eigenvalues are known to be {4, 3, 2, 1}.

C Declare variables
 INTEGER LDA, N
 PARAMETER (N=4, LDA=N)
C
 REAL A(LDA,N)
 COMPLEX EVAL(N)
 EXTERNAL EVLRG, WRCRN
C Set values of A
C
C A = (-2.0 2.0 2.0 2.0)
C (-3.0 3.0 2.0 2.0)
C (-2.0 0.0 4.0 2.0)
C (-1.0 0.0 0.0 5.0)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 327

 DATA A/-2.0, -3.0, -2.0, -1.0, 2.0, 3.0, 0.0, 0.0, 2.0, 2.0,
 & 4.0, 0.0, 2.0, 2.0, 2.0, 5.0/
C
C Find eigenvalues of A
 CALL EVLRG (N, A, LDA, EVAL)
C Print results
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3 4
(4.000, 0.000) (3.000, 0.000) (2.000, 0.000) (1.000, 0.000)

EVCRG/DEVCRG (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a real matrix.

Usage
CALL EVCRG (N, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix. (Input)

A — Floating-point array containing the matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

EVAL — Complex array of size N containing the eigenvalues of A in decreasing
order of magnitude. (Output)

EVEC — Complex array containing the matrix of eigenvectors. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

EVCRG 2N * (N + 1) + 8N units, or

DEVCRG 4N * (N + 1) + 13N + N

Workspace may be explicitly provided, if desired, by use of
E8CRG/DE8CRG. The reference is:

CALL E8CRG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY,
 ECOPY WK,IWK)

328 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

The additional arguments are as follows:

ACOPY — Floating-point work array of size N by N. The arrays A and

ACOPY may be the same, in which case the first N2 elements of A will be
destroyed. The array ACOPY can have its working row dimension
increased from N to a larger value. An optional usage is required. See
Item 3 below for further details.

ECOPY — Floating-point work array of default size N by N + 1. The
working, leading dimension of ECOPY is the same as that for ACOPY. To
increase this value, an optional usage is required. See Item 3 below for
further details.

WK — Floating-point work array of size 6N.

IWK — Integer work array of size N.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

No eigenvalues or eigenvectors are computed.

3. Integer Options with Chapter 10 Options Manager

1 This option uses eight values to solve memory bank conflict
(access inefficiency) problems. In routine E8CRG, the internal
or working leading dimensions of ACOPY and ECOPY are both
increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by
IVAL(1) and IVAL(2), respectively, in routine EVCRG.
Additional memory allocation and option value restoration are
automatically done in EVCRG. There is no requirement that
users change existing applications that use EVCRG or E8CRG.
Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0,
1. Items 5−8 in IVAL(*) are for the generalized eigenvalue
problem and are not used in EVCRG.

Algorithm

Routine EVCRG computes the eigenvalues and eigenvectors of a real matrix. The
matrix is first balanced. Orthogonal similarity transformations are used to reduce
the balanced matrix to a real upper Hessenberg matrix. The implicit double−
shifted QR algorithm is used to compute the eigenvalues and eigenvectors of this
Hessenberg matrix. The eigenvectors are normalized such that each has Euclidean
length of value one. The largest component is real and positive.

The balancing routine is based on the EISPACK routine BALANC. The reduction
routine is based on the EISPACK routines ORTHES and ORTRAN. The QR
algorithm routine is based on the EISPACK routine HQR2. See Smith et al.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 329

(1976) for the EISPACK routines. Further details, some timing data, and credits
are given in Hanson et al. (1990).

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 82). The eigenvalues and eigenvectors of this real matrix
are computed and printed. The performance index is also computed and printed.
This serves as a check on the computations. For more details, see IMSL routine
EPIRG, page 330.

C Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDEVEC=N)

 INTEGER NOUT
 REAL PI
 COMPLEX EVAL(N), EVEC(LDEVEC,N)

 REAL A(LDA,N)
 EXTERNAL EVCRG, UMACH, WRCRN, EPIRG
 REAL EPIRG
C Define values of A:
C
C A = (8.0 -1.0 -5.0)
C (-4.0 4.0 -2.0)
C (18.0 -5.0 -7.0)
C
 DATA A/8.0, -4.0, 18.0, -1.0, 4.0, -5.0, -5.0, -2.0, -7.0/
C
C Find eigenvalues and vectors of A
 CALL EVCRG (N, A, LDA, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPIRG(N,N,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
(2.000, 4.000) (2.000,-4.000) (1.000, 0.000)

 EVEC
 1 2 3
1 (0.3162, 0.3162) (0.3162,-0.3162) (0.4082, 0.0000)
2 (0.0000, 0.6325) (0.0000,-0.6325) (0.8165, 0.0000)
3 (0.6325, 0.0000) (0.6325, 0.0000) (0.4082, 0.0000)

Performance index = 0.037

330 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EPIRG/DEPIRG (Single/Double precision)
Compute the performance index for a real eigensystem.

Usage
EPIRG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance
index computation is based. (Input)

A — Matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Complex vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — Complex N by NEVAL array containing eigenvectors of A. (Input)
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th
column of EVEC.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

EPIRG — Performance index. (Output)

Comments

1. Automatic workspace usage is

EPIRG 2N units, or
DEPIRG 4N units.

Workspace may be explicitly provided, if desired, by use of
E2IRG/DE2IRG. The reference is

E2IRG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, CWK)

The additional argument is

CWK — Complex work array of length N.

2. Informational errors
Type Code
 3 1 The performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 331

Algorithm

Let M = NEVAL, λ = EVAL, xM = EVEC(*,J), the j-th column of EVEC. Also, let ε be

the machine precision given by AMACH(4). The performance index, τ, is defined to
be

τ
λ

ε
=

−

≤ ≤
max

1

1

1 1
10j M

j j j

j

Ax x

N A x

The norms used are a modified form of the 1-norm. The norm of the complex
vector v is

v v vi i
i

N

1
1

= ℜ + ℑ
=
∑< A

While the exact value of τ is highly machine dependent, the performance of
EVCSF is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor if τ > 100.

The performance index was first developed by the EISPACK project at Argonne
National Laboratory; see Smith et al. (1976, pages 124−125).

Example

For an example of EPIRG, see IMSL routine EVCRG, page 327.

EVLCG/DEVLCG (Single/Double precision)
Compute all of the eigenvalues of a complex matrix.

Usage
CALL EVLCG (N, A, LDA, EVAL)

Arguments

N — Order of the matrix A. (Input)

A — Complex matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in
decreasing order of magnitude. (Output)

Comments

1. Automatic workspace usage is

332 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVLCG 2N2 + 6N units, or

DEVLCG 4N2 + 11N units.

Workspace may be explicitly provided, if desired, by use of
E3LCG/DE3LCG. The reference is

CALL E3LCG (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N2. A and ACOPY may be the

same, in which case the first N2 elements of A will be destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational error
Type Code
 4 1 The iteration for an eigenvalue failed to converge.

3. Integer Options with Chapter 10 Options Manager

1 This option uses eight values to solve memory bank conflict
(access inefficiency) problems. In routine E3LCG, the internal
or working, leading dimension of ACOPY is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3)
and IVAL (4) are temporarily replaced by IVAL(1) and
IVAL(2), respectively, in routine EVLCG . Additional memory
allocation and option value restoration are automatically done
in EVLCG. There is no requirement that users change existing
applications that use EVLCG or E3LCG. Default values for the
option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5−8 in
IVAL(*) are for the generalized eigenvalue problem and are not
used in EVLCG.

Algorithm

Routine EVLCG computes the eigenvalues of a complex matrix. The matrix is first
balanced. Unitary similarity transformations are used to reduce this balanced
matrix to a complex upper Hessenberg matrix. The shifted QR algorithm is used
to compute the eigenvalues of this Hessenberg matrix.

The balancing routine is based on the EISPACK routine CBAL. The reduction
routine is based on the EISPACK routine CORTH. The QR routine used is based
on the EISPACK routine COMQR2. See Smith et al. (1976) for the EISPACK
routines.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 333

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 115). The program computes the eigenvalues of this
matrix.

C Declare variables
 INTEGER LDA, N
 PARAMETER (N=3, LDA=N)
C
 COMPLEX A(LDA,N), EVAL(N)
 EXTERNAL EVLCG, WRCRN
C Set values of A
C
C A = (1+2i 3+4i 21+22i)
C (43+44i 13+14i 15+16i)
C (5+6i 7+8i 25+26i)
C
 DATA A/(1.0,2.0), (43.0,44.0), (5.0,6.0), (3.0,4.0),
 & (13.0,14.0), (7.0,8.0), (21.0,22.0), (15.0,16.0),
 & (25.0,26.0)/
C
C Find eigenvalues of A
 CALL EVLCG (N, A, LDA, EVAL)
C Print results
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3
(39.78, 43.00) (6.70, -7.88) (-7.48, 6.88)

EVCCG/DEVCCG (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a complex matrix.

Usage
CALL EVCCG (N, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

A — Complex matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in
decreasing order of magnitude. (Output)

334 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

EVCCG 2N2 + 6N units, or

DEVCCG 4N2 + 11N units.

Workspace may be explicitly provided, if desired, by use of
E6CCG/DE6CCG. The reference is

CALL E6CCG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY,
 RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N2. The arrays A and ACOPY

may be the same, in which case the first N2 elements of A will be
destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

No eigenvalues or eigenvectors are computed.

3. Integer Options with Chapter 10 Options Manager

1 This option uses eight values to solve memory bank conflict
(access inefficiency) problems. In routine E6CCG, the internal
or working leading dimensions of ACOPY and ECOPY are both
increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by
IVAL(1) and IVAL(2), respectively, in routine EVCCG.
Additional memory allocation and option value restoration are
automatically done in EVCCG. There is no requirement that
users change existing applications that use EVCCG or E6CCG.
Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0,
1. Items 5−8 in IVAL(*) are for the generalized eigenvalue
problem and are not used in EVCCG.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 335

Algorithm

Routine EVCCG computes the eigenvalues and eigenvectors of a complex matrix.
The matrix is first balanced. Unitary similarity transformations are used to reduce
this balanced matrix to a complex upper Hessenberg matrix. The QR algorithm is
used to compute the eigenvalues and eigenvectors of this Hessenberg matrix. The
eigenvectors of the original matrix are computed by transforming the eigenvectors
of the complex upper Hessenberg matrix.

The balancing routine is based on the EISPACK routine CBAL. The reduction
routine is based on the EISPACK routine CORTH. The QR algorithm routine used
is based on the EISPACK routine COMQR2. The back transformation routine is
based on the EISPACK routine CBABK2 . See Smith et al. (1976) for the
EISPACK routines.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 116). Its eigenvalues are known to be {1 + 5i, 2 + 6i, 3 +
7i, 4 + 8i}. The program computes the eigenvalues and eigenvectors of this
matrix. The performance index is also computed and printed. This serves as a
check on the computations; for more details, see IMSL routine EPICG, page 336.

C Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=4, LDA=N, LDEVEC=N)
C
 INTEGER NOUT
 REAL EPICG, PI
 COMPLEX A(LDA,N), EVAL(N), EVEC(LDEVEC,N)
 EXTERNAL EPICG, EVCCG, UMACH, WRCRN
C Set values of A
C
C A = (5+9i 5+5i -6-6i -7-7i)
C (3+3i 6+10i -5-5i -6-6i)
C (2+2i 3+3i -1+3i -5-5i)
C (1+i 2+2i -3-3i 4i)
C
 DATA A/(5.0,9.0), (3.0,3.0), (2.0,2.0), (1.0,1.0), (5.0,5.0),
 & (6.0,10.0), (3.0,3.0), (2.0,2.0), (-6.0,-6.0), (-5.0,-5.0),
 & (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0),
 & (-5.0,-5.0), (0.0,4.0)/
C
C Find eigenvalues and vectors of A
 CALL EVCCG (N, A, LDA, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPICG(N,N,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

336 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Output
 EVAL
 1 2 3 4
(4.000, 8.000) (3.000, 7.000) (2.000, 6.000) (1.000, 5.000)

 EVEC
 1 2 3 4
1 (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) (0.7559, 0.0000)
2 (0.5774, 0.0000) (0.5773, 0.0000) (0.7559, 0.0000) (0.3780, 0.0000)
3 (0.5774, 0.0000) (0.0000, 0.0000) (0.3780, 0.0000) (0.3780, 0.0000)
4 (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) (0.3780, 0.0000)

Performance index = 0.016

EPICG/DEPICG (Single/Double precision)
Compute the performance index for a complex eigensystem.

Usage
EPICG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance
index computation is based. (Input)

A — Complex matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A. (Input)

EVEC — Complex matrix of order N containing the eigenvectors of A. (Input)
The J-th eigenvalue/eigenvector pair should be in EVAL(J) and in the J-th column
of EVEC.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

EPICG — Performance index. (Output)

Comments

1. Automatic workspace usage is

EPICG 2N units, or
DEPICG 4N units.

Workspace may be explicitly provided, if desired, by use of
E2ICG/DE2ICG. The reference is

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 337

E2ICG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK)

The additional argument is

WK — Complex work array of length N.

2. Informational errors
Type Code
 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

Algorithm

Let M = NEVAL, λ = EVAL, xM = EVEC(*, J), the j-th column of EVEC. Also, let ε
be the machine precision given by AMACH(4). The performance index, τ, is
defined to be

τ
λ

ε
=

−

≤ ≤
max

1

1

1 1
10j M

j j j

j

Ax x

N A x

The norms used are a modified form of the 1-norm. The norm of the complex
vector v is

v v vi i
i

N

1
1

= ℜ + ℑ
=
∑< A

While the exact value of τ is highly machine dependent, the performance of
EVCSF (page 339) is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor
if τ > 100. The performance index was first developed by the EISPACK project
at Argonne National Laboratory; see Smith et al. (1976, pages 124−125).

Example

For an example of EPICG, see IMSL routine EVCCG on page 333.

EVLSF/DEVLSF (Single/Double precision)
Compute all of the eigenvalues of a real symmetric matrix.

Usage
CALL EVLSF (N, A, LDA, EVAL)

Arguments

N — Order of the matrix A. (Input)

A — Real symmetric matrix of order N. (Input)

338 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Real vector of length N containing the eigenvalues of A in decreasing
order of magnitude. (Output)

Comments

1. Automatic workspace usage is

EVLSF 3N units, or
DEVLSF 4N + N units.

Workspace may be explicitly provided, if desired, by use of
E4LSF/DE4LSF. The reference is

CALL E4LSF (N, A, LDA, EVAL,WORK, IWORK)

The additional arguments are as follows:

WORK — Work array of length 2N.

IWORK — Integer array of length N.

2. Informational error
Type Code
 3 1 The iteration for the eigenvalue failed to converge in

100 iterations before deflating.

Algorithm

Routine EVLSF computes the eigenvalues of a real symmetric matrix. Orthogonal
similarity transformations are used to reduce the matrix to an equivalent
symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to
compute the eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine TRED2. See Smith et al.
(1976). The rational QR algorithm is called the PWK algorithm. It is given in
Parlett (1980, page 169). Further details, some timing data, and credits are given
in Hanson et al. (1990).

Example

In this example, the eigenvalues of a real symmetric matrix are computed and
printed. This matrix is given by Gregory and Karney (1969, page 56).

C Declare variables
 INTEGER LDA, N
 PARAMETER (N=4, LDA=N)
C
 REAL A(LDA,N), EVAL(N)
 EXTERNAL EVLSF, WRRRN
C Set values of A
C
C A = (6.0 4.0 4.0 1.0)
C (4.0 6.0 1.0 4.0)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 339

C (4.0 1.0 6.0 4.0)
C (1.0 4.0 4.0 6.0)
C
 DATA A /6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0,
 & 4.0, 1.0, 4.0, 4.0, 6.0 /
C
C Find eigenvalues of A
 CALL EVLSF (N, A, LDA, EVAL)
C Print results
 CALL WRRRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3 4
15.00 5.00 5.00 -1.00

EVCSF/DEVCSF (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a real symmetric matrix.

Usage
CALL EVCSF (N, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

A — Real symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Real vector of length N containing the eigenvalues of A in decreasing
order of magnitude. (Output)

EVEC — Real matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

EVCSF 4N units, or
DEVCSF 7N units.

Workspace may be explicitly provided, if desired, by use of
E5CSF/DE5CSF. The reference is

340 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

CALL E5CSF (N, A, LDA, EVAL, EVEC, LDEVEC, WORK,
 IWK)

The additional argument is

WORK — Work array of length 3N.

IWK — Integer array of length N.

2. Informational error
Type Code
 3 1 The iteration for the eigenvalue failed to converge in

100 iterations before deflating.

Algorithm

Routine EVCSF computes the eigenvalues and eigenvectors of a real symmetric
matrix. Orthogonal similarity transformations are used to reduce the matrix to an
equivalent symmetric tridiagonal matrix. These transformations are accumulated.
An implicit rational QR algorithm is used to compute the eigenvalues of this
tridiagonal matrix. The eigenvectors are computed using the eigenvalues as
perfect shifts, Parlett (1980, pages 169, 172). The reduction routine is based on
the EISPACK routine TRED2. See Smith et al. (1976) for the EISPACK routines.
Further details, some timing data, and credits are given in Hanson et al. (1990).

Example

The eigenvalues and eigenvectors of this real symmetric matrix are computed and
printed. The performance index is also computed and printed. This serves as a
check on the computations. For more details, see EPISF on page 350.

C Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDEVEC=N)
C
 INTEGER NOUT
 REAL A(LDA,N), EPISF, EVAL(N), EVEC(LDEVEC,N), PI
 EXTERNAL EPISF, EVCSF, UMACH, WRRRN
C
C Set values of A
C
C A = (7.0 -8.0 -8.0)
C (-8.0 -16.0 -18.0)
C (-8.0 -18.0 13.0)
C
 DATA A/7.0, -8.0, -8.0, -8.0, -16.0, -18.0, -8.0, -18.0, 13.0/
C
C Find eigenvalues and vectors of A
 CALL EVCSF (N, A, LDA, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPISF (N, N, A, LDA, EVAL, EVEC, LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRRRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT, ’(/,A,F6.3)’) ’ Performance index = ’, PI

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 341

 END

Output
 EVAL
 1 2 3
 -27.90 22.68 9.22

 EVEC
 1 2 3
1 0.2945 -0.2722 0.9161
2 0.8521 -0.3591 -0.3806
3 0.4326 0.8927 0.1262

Performance index = 0.044

EVASF/DEVASF (Single/Double precision)
Compute the largest or smallest eigenvalues of a real symmetric matrix.

Usage
CALL EVASF (N, NEVAL, A, LDA, SMALL, EVAL)

Arguments

N — Order of the matrix A. (Input)

NEVAL — Number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest
NEVAL eigenvalues are computed.

EVAL — Real vector of length NEVAL containing the eigenvalues of A in
decreasing order of magnitude. (Output)

Comments

1. Automatic workspace usage is

EVASF 5N units, or
DEVASF 9N units.

Workspace may be explicitly provided, if desired, by use of
E4ASF/DE4ASF. The reference is

CALL E4ASF (N, NEVAL, A, LDA, SMALL, EVAL, WORK,
 IWK)

342 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

WORK — Work array of length 4N.
IWK — Integer work array of length N.

2. Informational error
Type Code
 3 1 The iteration for an eigenvalue failed to converge. The

best estimate will be returned.

Algorithm

Routine EVASF computes the largest or smallest eigenvalues of a real symmetric
matrix. Orthogonal similarity transformations are used to reduce the matrix to an
equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm
is used to compute the eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine TRED2. See Smith et al.
(1976). The rational QR algorithm is called the PWK algorithm. It is given in
Parlett (1980, page 169).

Example

In this example, the three largest eigenvalues of the computed Hilbert matrix
aLM = 1/(i + j −1) of order N = 10 are computed and printed.

C Declare variables
 INTEGER LDA, N, NEVAL
 PARAMETER (N=10, NEVAL=3, LDA=N)
C
 INTEGER I, J
 REAL A(LDA,N), EVAL(NEVAL), REAL
 LOGICAL SMALL
 INTRINSIC REAL
 EXTERNAL EVASF, WRRRN
C Set up Hilbert matrix
 DO 20 J=1, N
 DO 10 I=1, N
 A(I,J) = 1.0/REAL(I+J-1)
 10 CONTINUE
 20 CONTINUE
C Find the 3 largest eigenvalues
 SMALL = .FALSE.
 CALL EVASF (N, NEVAL, A, LDA, SMALL, EVAL)
C Print results
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3
1.752 0.343 0.036

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 343

EVESF/DEVESF (Single/Double precision)
Compute the largest or smallest eigenvalues and the corresponding eigenvectors
of a real symmetric matrix.

Usage
CALL EVESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

NEVEC — Number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVEC eigenvalues are computed. If .FALSE., the largest
NEVEC eigenvalues are computed.

EVAL — Real vector of length NEVEC containing the eigenvalues of A in
decreasing order of magnitude. (Output)

EVEC — Real matrix of dimension N by NEVEC. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

EVESF 10N units, or
DEVESF 19N units.

Workspace may be explicitly provided, if desired, by use of
E5ESF/DE5ESF. The reference is

CALL E5ESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC,
 LDEVEC, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 9N.

IWK — Integer array of length N.

344 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2. Informational errors
Type Code
 3 1 The iteration for an eigenvalue failed to converge. The

best estimate will be returned.
 3 2 Inverse iteration did not converge. Eigenvector is not

correct for the specified eigenvalue.
 3 3 The eigenvectors have lost orthogonality.

Algorithm

Routine EVESF computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix. Orthogonal similarity
transformations are used to reduce the matrix to an equivalent symmetric
tridiagonal matrix. Then, an implicit rational QR algorithm is used to compute the
eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the
eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of
these vectors. The eigenvectors of the original matrix are computed by back
transforming those of the tridiagonal matrix.

The reduction routine is based on the EISPACK routine TRED2. See Smith et al.
(1976). The rational QR algorithm is called the PWK algorithm. It is given in
Parlett (1980, page 169). The inverse iteration and orthogonalization computation
is discussed in Hanson et al. (1990). The back transformation routine is based on
the EISPACK routine TRBAK1.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 55). The largest two eigenvalues and their eigenvectors
are computed and printed. The performance index is also computed and printed.
This serves as a check on the computations. For more details, see IMSL routine
EPISF on page 350.

C Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=4, LDA=N, LDEVEC=N)
C
 INTEGER NEVEC, NOUT
 REAL A(LDA,N), EPISF, EVAL(N), EVEC(LDEVEC,N), PI
 LOGICAL SMALL
 EXTERNAL EPISF, EVESF, UMACH, WRRRN
C
C Set values of A
C
C A = (5.0 4.0 1.0 1.0)
C (4.0 5.0 1.0 1.0)
C (1.0 1.0 4.0 2.0)
C (1.0 1.0 2.0 4.0)
C
 DATA A/5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0, 1.0, 1.0, 4.0,
 & 2.0, 1.0, 1.0, 2.0, 4.0/
C
C Find eigenvalues and vectors of A

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 345

 NEVEC = 2
 SMALL = .FALSE.
 CALL EVESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPISF(N,NEVEC,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, 1, NEVEC, EVAL, 1, 0)
 CALL WRRRN (’EVEC’, N, NEVEC, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2
 10.00 5.00

 EVEC
 1 2
 1 0.6325 -0.3162
 2 0.6325 -0.3162
 3 0.3162 0.6325
 4 0.3162 0.6325

 Performance index = 0.026

EVBSF/DEVBSF (Single/Double precision)
Compute selected eigenvalues of a real symmetric matrix.

Usage
CALL EVBSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL)

Arguments

N — Order of the matrix A. (Input)

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought.
(Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought.
(Input)

NEVAL — Number of eigenvalues found. (Output)

346 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the
interval (ELOW, EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

Comments

1. Automatic workspace usage is

EVBSF 6N units, or
DEVBSF 11N units.

Workspace may be explicitly provided, if desired, by use of
E5BSF/DE5BSF. The reference is

CALL E5BSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL,
 EVAL, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 5N.

IWK — Integer work array of length 1N.

2. Informational error
Type Code
 3 1 The number of eigenvalues in the specified interval

exceeds MXEVAL. NEVAL contains the number of
eigenvalues in the interval. No eigenvalues will be
returned.

Algorithm

Routine EVBSF computes the eigenvalues in a given interval for a real symmetric
matrix. Orthogonal similarity transformations are used to reduce the matrix to an
equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm
is used to compute the eigenvalues of this tridiagonal matrix. The reduction step
is based on the EISPACK routine TRED1. See Smith et al. (1976). The rational
QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page
169).

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 56). The eigenvalues of A are known to be −1, 5, 5 and
15. The eigenvalues in the interval [1.5, 5.5] are computed and printed. As a test,
this example uses MXEVAL = 4. The routine EVBSF computes NEVAL, the number
of eigenvalues in the given interval. The value of NEVAL is 2.

C Declare variables
 INTEGER LDA, MXEVAL, N
 PARAMETER (MXEVAL=4, N=4, LDA=N)
C
 INTEGER NEVAL, NOUT
 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 347

 EXTERNAL EVBSF, UMACH, WRRRN
C
C Set values of A
C
C A = (6.0 4.0 4.0 1.0)
C (4.0 6.0 1.0 4.0)
C (4.0 1.0 6.0 4.0)
C (1.0 4.0 4.0 6.0)
C
 DATA A/6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0,
 & 4.0, 1.0, 4.0, 4.0, 6.0/
C
C Find eigenvalues of A
 ELOW = 1.5
 EHIGH = 5.5
 CALL EVBSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I2)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 END

Output
NEVAL = 2

 EVAL
 1 2
5.000 5.000

EVFSF/DEVFSF (Single/Double precision)
Compute selected eigenvalues and eigenvectors of a real symmetric matrix.

Usage
CALL EVFSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL,
 EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought.
(Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought.
(Input)

348 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the
interval (ELOW, EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

EVEC — Real matrix of dimension N by MXEVAL. (Output)
The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column.
Only the first NEVAL columns of EVEC are significant. Each vector is normalized
to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

EVFSF 10N units, or
DEVFSF 18N + N units.

Workspace may be explicitly provided, if desired, by use of
E3FSF/DE3FSF. The reference is

CALL E3FSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL,
 EVAL, EVEC, LDEVEC, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 9N.

IWK — Integer work array of length N.

2. Informational errors
Type Code
 3 1 The number of eigenvalues in the specified range

exceeds MXEVAL. NEVAL contains the number of
eigenvalues in the range. No eigenvalues will be
computed.

 3 2 Inverse iteration did not converge. Eigenvector is not
correct for the specified eigenvalue.

 3 3 The eigenvectors have lost orthogonality.

Algorithm

Routine EVFSF computes the eigenvalues in a given interval and the
corresponding eigenvectors of a real symmetric matrix. Orthogonal similarity
transformations are used to reduce the matrix to an equivalent symmetric
tridiagonal matrix. Then, an implicit rational QR algorithm is used to compute the
eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the
eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of
these vectors. The eigenvectors of the original matrix are computed by back
transforming those of the tridiagonal matrix.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 349

The reduction step is based on the EISPACK routine TRED1. The rational QR
algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169).
The inverse iteration and orthogonalization processes are discussed in Hanson et
al. (1990). The transformation back to the users’s input matrix is based on the
EISPACK routine TRBAK1. See Smith et al. (1976) for the EISPACK routines.

Example

In this example, A is set to the computed Hilbert matrix. The eigenvalues in the
interval [0.001, 1] and their corresponding eigenvectors are computed and
printed. This example uses MXEVAL = 3. The routine EVFSF computes the number
of eigenvalues NEVAL in the given interval. The value of NEVAL is 2. The
performance index is also computed and printed. For more details, see IMSL
routine EPISF on page 350.

C Declare variables
 INTEGER LDA, LDEVEC, MXEVAL, N
 PARAMETER (MXEVAL=3, N=3, LDA=N, LDEVEC=N)
C
 INTEGER NEVAL, NOUT
 REAL A(LDA,N), EHIGH, ELOW, EPISF, EVAL(MXEVAL),
 & EVEC(LDEVEC,MXEVAL), PI
 EXTERNAL EPISF, EVFSF, UMACH, WRRRN
C Compute Hilbert matrix
 DO 20 J=1,N
 DO 10 I=1,N
 A(I,J) = 1.0/FLOAT(I+J-1)
 10 CONTINUE
 20 CONTINUE
C Find eigenvalues and vectors
 ELOW = 0.001
 EHIGH = 1.0
 CALL EVFSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, EVEC,
 & LDEVEC)
C Compute performance index
 PI = EPISF(N,NEVAL,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I2)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 CALL WRRRN (’EVEC’, N, NEVAL, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
NEVAL = 2

 EVAL
 1 2
0.1223 0.0027

 EVEC
 1 2
1 -0.5474 -0.1277
2 0.5283 0.7137

350 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

3 0.6490 -0.6887

Performance index = 0.008

EPISF/DEPISF (Single/Double precision)
Compute the performance index for a real symmetric eigensystem.

Usage
EPISF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance
index computation is based on. (Input)

A — Symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — N by NEVAL array containing eigenvectors of A. (Input)
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th
column of EVEC.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

EPISF — Performance index. (Output)

Comments

1. Automatic workspace usage is

EPISF N units, or
DEPISF 2N units.

Workspace may be explicitly provided, if desired, by use of
E2ISF/DE2ISF. The reference is

E2ISF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WORK)

The additional argument is

WORK — Work array of length N.

E2ISF — Performance Index.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 351

2. Informational errors
Type Code
 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

Algorithm

Let M = NEVAL, λ = EVAL, xM = EVEC(*,J), the j-th column of EVEC. Also, let ε
be the machine precision, given by AMACH(4) (page 1201). The performance
index, τ, is defined to be

τ
λ

ε
=

−

≤ ≤
max

1

1

1 1
10j M

j j j

j

Ax x

N A x

While the exact value of τ is highly machine dependent, the performance of
EVCSF (page 339) is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor
if τ > 100. The performance index was first developed by the EISPACK project
at Argonne National Laboratory; see Smith et al. (1976, pages 124−125).

Example

For an example of EPISF, see routine EVCSF, page 339.

EVLSB/DEVLSB (Single/Double precision)
Compute all of the eigenvalues of a real symmetric matrix in band symmetric
storage mode.

Usage
CALL EVLSB (N, A, LDA, NCODA, EVAL)

Arguments

N — Order of the matrix A. (Input)

A — Band symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length N containing the eigenvalues of A in decreasing order
of magnitude. (Output)

352 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

EVLSB N(NCODA + 2) units, or
DEVLSB 2N(NCODA + 2) units.

Workspace may be explicitly provided, if desired, by use of
E3LSB/DE3LSB. The reference is

CALL E3LSB (N, A, LDA, NCODA, EVAL, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). The arrays A and
ACOPY may be the same, in which case the first N(NCODA + 1) elements
of A will be destroyed.

WK — Work array of length N.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

Algorithm

Routine EVLSB computes the eigenvalues of a real band symmetric matrix.
Orthogonal similarity transformations are used to reduce the matrix to an
equivalent symmetric tridiagonal matrix. The implicit QL algorithm is used to
compute the eigenvalues of the resulting tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al.
(1977). The QL routine is based on the EISPACK routine IMTQL1; see Smith et
al. (1976).

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 77). The eigenvalues of this matrix are given by

λ π
k

k

N
= −

+
�
�

�
� −1 2

1
3

2

cos

Since the eigenvalues returned by EVLSB are in decreasing magnitude, the above
formula for k = 1, …, N gives the the values in a different order. The eigenvalues
of this real band symmetric matrix are computed and printed.

C Declare variables
 INTEGER LDA, LDEVEC, N, NCODA
 PARAMETER (N=5, NCODA=2, LDA=NCODA+1, LDEVEC=N)
C
 REAL A(LDA,N), EVAL(N)
 EXTERNAL EVLSB, WRRRN
C Define values of A:
C A = (-1 2 1)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 353

C (2 0 2 1)
C (1 2 0 2 1)
C (1 2 0 2)
C (1 2 -1)
C Represented in band symmetric
C form this is:
C A = (0 0 1 1 1)
C (0 2 2 2 2)
C (-1 0 0 0 -1)
C
 DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0,
 & 0.0, 1.0, 2.0, -1.0/
C
 CALL EVLSB (N, A, LDA, NCODA, EVAL)
C Print results
 CALL WRRRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3 4 5
4.464 -3.000 -2.464 -2.000 1.000

EVCSB/DEVCSB (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a real symmetric matrix in
band symmetric storage mode.

Usage
CALL EVCSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

A — Band symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length N containing the eigenvalues of A in decreasing order
of magnitude. (Output)

EVEC — Matrix of order N containing the eigenvectors. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

354 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

EVCSB N(NCODA + 3) units, or
DEVCSB 2N(NCODA + 2) + N units.

Workspace may be explicitly provided, if desired, by use of
E4CSB/DE4CSB. The reference is

CALL E4CSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC,
 ACOPY, WK,IWK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the
same, in which case the first N * NCODA elements of A will be destroyed.

WK — Work array of length N.

IWK — Integer work array of length N.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

3. The success of this routine can be checked using EPISB (page 366).

Algorithm

Routine EVCSB computes the eigenvalues and eigenvectors of a real band
symmetric matrix. Orthogonal similarity transformations are used to reduce the
matrix to an equivalent symmetric tridiagonal matrix. These transformations are
accumulated. The implicit QL algorithm is used to compute the eigenvalues and
eigenvectors of the resulting tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al.
(1977). The QL routine is based on the EISPACK routine IMTQL2; see Smith et
al. (1976).

Example

In this example, a DATA statement is used to set A to a band matrix given by
Gregory and Karney (1969, page 75). The eigenvalues, λN, of this matrix are
given by

λ π
k

k

N
=

+
�
�

�
�16

2 2
4sin

The eigenvalues and eigenvectors of this real band symmetric matrix are
computed and printed. The performance index is also computed and printed. This
serves as a check on the computations; for more details, see IMSL routine EPISB,
page 366.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 355

C Declare variables
 INTEGER LDA, LDEVEC, N, NCODA
 PARAMETER (N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N)
C
 INTEGER NOUT
 REAL A(LDA,N), EPISB, EVAL(N), EVEC(LDEVEC,N), PI
 EXTERNAL EPISB, EVCSB, UMACH, WRRRN
C Define values of A:
C A = (5 -4 1)
C (-4 6 -4 1)
C (1 -4 6 -4 1)
C (1 -4 6 -4 1)
C (1 -4 6 -4)
C (1 -4 5)
C Represented in band symmetric
C form this is:
C A = (0 0 1 1 1 1)
C (0 -4 -4 -4 -4 -4)
C (5 6 6 6 6 5)
C
 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0,
 & 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/
C
C Find eigenvalues and vectors
 CALL EVCSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPISB(N,N,A,LDA,NCODA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRRRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3 4 5 6
14.45 10.54 5.98 2.42 0.57 0.04

 EVEC
 1 2 3 4 5 6
1 -0.2319 -0.4179 -0.5211 0.5211 -0.4179 0.2319
2 0.4179 0.5211 0.2319 0.2319 -0.5211 0.4179
3 -0.5211 -0.2319 0.4179 -0.4179 -0.2319 0.5211
4 0.5211 -0.2319 -0.4179 -0.4179 0.2319 0.5211
5 -0.4179 0.5211 -0.2319 0.2319 0.5211 0.4179
6 0.2319 -0.4179 0.5211 0.5211 0.4179 0.2319

Performance index = 0.029

356 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVASB/DEVASB (Single/Double precision)
Compute the largest or smallest eigenvalues of a real symmetric matrix in band
symmetric storage mode.

Usage
CALL EVASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL)

Arguments

N — Order of the matrix A. (Input)

NEVAL — Number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

NCODA — Number of codiagonals in A. (Input)

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest
NEVAL eigenvalues are computed.

EVAL — Vector of length NEVAL containing the computed eigenvalues in
decreasing order of magnitude. (Output)

Comments

1. Automatic workspace usage is

EVASB N(NCODA + 4) units, or
DEVASB 2N(NCODA + 4) units.

Workspace may be explicitly provided, if desired, by use of
E3ASB/DE3ASB. The reference is

CALL E3ASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL,
 ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the
same, in which case the first N(NCODA + 1) elements of A will be
destroyed.

WK — Work array of length 3N.

2. Informational error
Type Code
 3 1 The iteration for an eigenvalue failed to converge. The

best estimate will be returned.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 357

Algorithm

Routine EVASB computes the largest or smallest eigenvalues of a real band
symmetric matrix. Orthogonal similarity transformations are used to reduce the
matrix to an equivalent symmetric tridiagonal matrix. The rational QR algorithm
with Newton corrections is used to compute the extreme eigenvalues of this
tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al.
(1978). The QR routine is based on the EISPACK routine RATQR; see Smith et al.
(1976).

Example

The following example is given in Gregory and Karney (1969, page 63). The
smallest four eigenvalues of the matrix

A =

�

!

"

$

###############

5 2 1 1

2 6 3 1 1

1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1 1

1 1 3 6 3 1

1 1 3 6 2

1 1 2 5

are computed and printed.
C Declare variables
 INTEGER LDA, N, NCODA, NEVAL
 PARAMETER (N=11, NCODA=3, NEVAL=4, LDA=NCODA+1)
C
 REAL A(LDA,N), EVAL(NEVAL)
 LOGICAL SMALL
 EXTERNAL EVASB, SSET, WRRRN
C Set up matrix in band symmetric
C storage mode
 CALL SSET (N, 6.0, A(4,1), LDA)
 CALL SSET (N-1, 3.0, A(3,2), LDA)
 CALL SSET (N-2, 1.0, A(2,3), LDA)
 CALL SSET (N-3, 1.0, A(1,4), LDA)

358 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 CALL SSET (NCODA, 0.0, A(1,1), 1)
 CALL SSET (NCODA-1, 0.0, A(1,2), 1)
 CALL SSET (NCODA-2, 0.0, A(1,3), 1)
 A(4,1) = 5.0
 A(4,N) = 5.0
 A(3,2) = 2.0
 A(3,N) = 2.0
C Find the 4 smallest eigenvalues
 SMALL = .TRUE.
 CALL EVASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL)
C Print results
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3 4
4.000 3.172 1.804 0.522

EVESB/DEVESB (Single/Double precision)
Compute the largest or smallest eigenvalues and the corresponding eigenvectors
of a real symmetric matrix in band symmetric storage mode.

Usage
CALL EVESB (N, NEVEC, A, LDA, NCODA, SMALL, EVAL, EVEC,
 LDEVEC)

Arguments

N — Order of the matrix A. (Input)

NEVEC — Number of eigenvectors to be calculated. (Input)

A — Band symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

NCODA — Number of codiagonals in A. (Input)

SMALL — Logical variable. (Input)
If .TRUE. , the smallest NEVEC eigenvectors are computed. If .FALSE. , the largest
NEVEC eigenvectors are computed.

EVAL — Vector of length NEVEC containing the eigenvalues of A in decreasing
order of magnitude. (Output)

EVEC — Real matrix of dimension N by NEVEC. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 359

Comments

1. Automatic workspace usage is

EVESB N(3NCODA + 7) units, or
DEVESB 2N(3NCODA + 6) + N units.

Workspace may be explicitly provided, if desired, by use of
E4ESB/DE4ESB. The reference is

CALL E4ESB (N,NEVEC, A, LDA, NCODA,SMALL,EVAL, EVEC,
 LDEVEC, ACOPY, WK, IWK)

The additional argument is

ACOPY — Work array of length N(NCODA + 1).

WK — Work array of length N(2NCODA + 5).

IWK — Integer work array of length N.

2. Informational errors
Type Code
 3 1 Inverse iteration did not converge. Eigenvector is not

correct for the specified eigenvalue.
 3 2 The eigenvectors have lost orthogonality.

3. The success of this routine can be checked using EPISB.

Algorithm

Routine EVESB computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a real band symmetric matrix. Orthogonal
similarity transformations are used to reduce the matrix to an equivalent
symmetric tridiagonal matrix. The rational QR algorithm with Newton corrections
is used to compute the extreme eigenvalues of this tridiagonal matrix. Inverse
iteration and orthogonalization are used to compute the eigenvectors of the given
band matrix. The reduction routine is based on the EISPACK routine BANDR; see
Garbow et al. (1977). The QR routine is based on the EISPACK routine RATQR;
see Smith et al. (1976). The inverse iteration and orthogonalization steps are
based on EISPACK routine BANDV using the additional steps given in Hanson et
al. (1990).

Example

The following example is given in Gregory and Karney (1969, page 75). The
largest three eigenvalues and the corresponding eigenvectors of the matrix are
computed and printed.

C Declare variables
 INTEGER LDA, LDEVEC, N, NCODA, NEVEC
 PARAMETER (N=6, NCODA=2, NEVEC=3, LDA=NCODA+1, LDEVEC=N)
C
 INTEGER NOUT
 REAL A(LDA,N), EPISB, EVAL(NEVEC), EVEC(LDEVEC,NEVEC), PI

360 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 LOGICAL SMALL
 EXTERNAL EPISB, EVESB, UMACH, WRRRN
C Define values of A:
C A = (5 -4 1)
C (-4 6 -4 1)
C (1 -4 6 -4 1)
C (1 -4 6 -4 1)
C (1 -4 6 -4)
C (1 -4 5)
C Represented in band symmetric
C form this is:
C A = (0 0 1 1 1 1)
C (0 -4 -4 -4 -4 -4)
C (5 6 6 6 6 5)
C
 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0,
 & 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/
C
C Find the 3 largest eigenvalues
C and their eigenvectors.
 SMALL = .FALSE.
 CALL EVESB (N, NEVEC, A, LDA, NCODA, SMALL, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPISB(N,NEVEC,A,LDA,NCODA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, 1, NEVEC, EVAL, 1, 0)
 CALL WRRRN (’EVEC’, N, NEVEC, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
14.45 10.54 5.98

 EVEC
 1 2 3
1 0.2319 -0.4179 0.5211
2 -0.4179 0.5211 -0.2319
3 0.5211 -0.2319 -0.4179
4 -0.5211 -0.2319 0.4179
5 0.4179 0.5211 0.2319
6 -0.2319 -0.4179 -0.5211

Performance index = 0.172

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 361

EVBSB/DEVBSB (Single/Double precision)
Compute the eigenvalues in a given interval of a real symmetric matrix stored in
band symmetric storage mode.

Usage
CALL EVBSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL,
 EVAL)

Arguments

N — Order of the matrix A. (Input)

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

NCODA — Number of codiagonals in A. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought.
(Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought.
(Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the
interval (ELOW, EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are set.

Comments

1. Automatic workspace usage is

EVBSB N(NCODA + 6)units, or

DEVBSB 2N(NCODA + 6) units.

Workspace may be explicitly provided, if desired, by use of
E3BSB/DE3BSB. The reference is

CALL E3BSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH,
 NEVAL,EVAL, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work matrix of size NCODA + 1 by N. A and ACOPY may be
the same, in which case the first N(NCODA + 1) elements of A will be
destroyed.

WK — Work array of length 5N.

362 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2. Informational error
Type Code
 3 1 The number of eigenvalues in the specified interval

exceeds MXEVAL. NEVAL contains the number of
eigenvalues in the interval. No eigenvalues will be
returned.

Algorithm

Routine EVBSB computes the eigenvalues in a given range of a real band
symmetric matrix. Orthogonal similarity transformations are used to reduce the
matrix to an equivalent symmetric tridiagonal matrix. A bisection algorithm is
used to compute the eigenvalues of the tridiagonal matrix in a given range.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al.
(1977). The bisection routine is based on the EISPACK routine BISECT; see
Smith et al. (1976).

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 77). The eigenvalues in the range (-2.5, 1.5) are
computed and printed. As a test, this example uses MXEVAL = 5. The routine
EVBSB computes NEVAL, the number of eigenvalues in the given range, has the
value 3.

C Declare variables
 INTEGER LDA, MXEVAL, N, NCODA
 PARAMETER (MXEVAL=5, N=5, NCODA=2, LDA=NCODA+1)
C
 INTEGER NEVAL, NOUT
 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL)
 EXTERNAL EVBSB, WRRRN
C
C Define values of A:
C A = (-1 2 1)
C (2 0 2 1)
C (1 2 0 2 1)
C (1 2 0 2)
C (1 2 -1)
C Representedin band symmetric
C form this is:
C A = (0 0 1 1 1)
C (0 2 2 2 2)
C (-1 0 0 0 -1)
 DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0,
 & 0.0, 1.0, 2.0, -1.0/
C
 ELOW = -2.5
 EHIGH = 1.5
 CALL EVBSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL)
C Print results
 CALL UMACH (2, NOUT)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 363

 WRITE (NOUT,’(/,A,I1)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 END

Output
NEVAL = 3

 EVAL
 1 2 3
-2.464 -2.000 1.000

EVFSB/DEVFSB (Single/Double precision)
Compute the eigenvalues in a given interval and the corresponding eigenvectors
of a real symmetric matrix stored in band symmetric storage mode.

Usage
CALL EVFSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL,
 EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

NCODA — Number of codiagonals in A. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought.
(Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought.
(Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the
interval (ELOW, EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

EVEC — Real matrix containing in its first NEVAL columns the eigenvectors
associated with the eigenvalues found and stored in EVAL. Eigenvector J
corresponds to eigenvalue J for J = 1 to NEVAL. Each vector is normalized to
have Euclidean length equal to the value one. (Output)

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

364 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

EVFSB 3N * NCODA + 9N units, or
DEVFSB 6N * NCODA + 17N units.

Workspace may be explicitly provided, if desired, by use of
E3FSB/DE3FSB. The reference is
CALL E3FSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH,
 NEVAL, EVAL, EVEC, LDEVEC, ACOPY, WK1,
 WK2, IWK)

The additional arguments are as follows:

ACOPY — Work matrix of size NCODA + 1 by N.

WK1 — Work array of length 6N.

WK2 — Work array of length 2N * NCODA + N

IWK — Integer work array of length N.

2. Informational errors
Type Code
 3 1 The number of eigenvalues in the specified interval

exceeds MXEVAL. NEVAL contains the number of
eigenvalues in the interval. No eigenvalues will be
returned.

 3 2 Inverse iteration did not converge. Eigenvector is not
correct for the specified eigenvalue.

 3 3 The eigenvectors have lost orthogonality.

Algorithm

Routine EVFSB computes the eigenvalues in a given range and the corresponding
eigenvectors of a real band symmetric matrix. Orthogonal similarity
transformations are used to reduce the matrix to an equivalent tridiagonal matrix.
A bisection algorithm is used to compute the eigenvalues of the tridiagonal matrix
in the required range. Inverse iteration and orthogonalization are used to compute
the eigenvectors of the given band symmetric matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al.
(1977). The bisection routine is based on the EISPACK routine BISECT; see
Smith et al. (1976). The inverse iteration and orthogonalization steps are based on
the EISPACK routine BANDV using remarks from Hanson et al. (1990).

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 75). The eigenvalues in the range [1, 6] and their
corresponding eigenvectors are computed and printed. As a test, this example
uses MXEVAL = 4. The routine EVFSB computes NEVAL, the number of
eigenvalues in the given range has the value 2. As a check on the computations,

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 365

the performance index is also computed and printed. For more details, see IMSL
routine EPISB on page 366.

C Declare variables
 INTEGER LDA, LDEVEC, MXEVAL, N, NCODA
 PARAMETER (MXEVAL=4, N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N)
C
 INTEGER NEVAL, NOUT
 REAL A(LDA,N), EHIGH, ELOW, EPISB, EVAL(MXEVAL),
 & EVEC(LDEVEC,MXEVAL), PI
 EXTERNAL EPISB, EVFSB, UMACH, WRRRN
C Define values of A:
C A = (5 -4 1)
C (-4 6 -4 1)
C (1 -4 6 -4 1)
C (1 -4 6 -4 1)
C (1 -4 6 -4)
C (1 -4 5)
C Represented in band symmetric
C form this is:
C A = (0 0 1 1 1 1)
C (0 -4 -4 -4 -4 -4)
C (5 6 6 6 6 5)
 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0,
 & 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/
C
C Find eigenvalues and vectors
 ELOW = 1.0
 EHIGH = 6.0
 CALL EVFSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL,
 & EVEC, LDEVEC)
C Compute performance index
 PI = EPISB(N,NEVAL,A,LDA,NCODA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I1)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 CALL WRRRN (’EVEC’, N, NEVAL, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
NEVAL = 2

 EVAL
 1 2
5.978 2.418

 EVEC
 1 2
1 0.5211 0.5211
2 -0.2319 0.2319
3 -0.4179 -0.4179
4 0.4179 -0.4179
5 0.2319 0.2319
6 -0.5211 0.5211

 Performance index = 0.082

366 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EPISB/DEPISB (Single/Double precision)
Compute the performance index for a real symmetric eigensystem in band
symmetric storage mode.

Usage
EPISB(N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance is
based. (Input)

A — Band symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — N by NEVAL array containing eigenvectors of A. (Input)
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th
column of EVEC.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

EPISB — Performance index. (Output)

Comments

1. Automatic workspace usage is

EPISB N units, or
DEPISB 2N units.

Workspace may be explicitly provided, if desired, by use of
E2ISB/DE2ISB. The reference is

E2ISB(N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC, WK)

The additional argument is

WK — Work array of length N.

2. Informational errors
Type Code
 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 367

Algorithm

Let M = NEVAL, λ = EVAL, xM = EVEC(*,J), the j-th column of EVEC. Also, let ε
be the machine precision, given by AMACH(4), page 1201. The performance index,
τ, is defined to be

τ
λ

ε
=

−

≤ ≤
max

1

1

1 1
10j M

j j j

j

Ax x

N A x

While the exact value of τ is highly machine dependent, the performance of
EVCSF (page 339) is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor
if τ > 100. The performance index was first developed by the EISPACK project
at Argonne National Laboratory; see Smith et al. (1976, pages 124−125).

Example

For an example of EPISB, see IMSL routine EVCSB on page 353.

EVLHF/DEVLHF (Single/Double precision)
Compute all of the eigenvalues of a complex Hermitian matrix.

Usage
CALL EVLHF (N, A, LDA, EVAL)

Arguments

N — Order of the matrix A. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Real vector of length N containing the eigenvalues of A in decreasing
order of magnitude. (Output)

Comments

1. Automatic workspace usage is

EVLHF 2 N2 + 6N units, or

DEVLHF 2(2 N2 + 5N) + N units.

Workspace may be explicitly provided, if desired, by use of
E3LHF/DE3LHF. The reference is

CALL E3LHF (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK)

368 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

The additional arguments are as follows:

ACOPY — Complex work array of length N2. A and ACOPY may be the
same in which case A will be destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational errors
Type Code
 3 1 The matrix is not Hermitian. It has a diagonal entry

with a small imaginary part.
 4 1 The iteration for an eigenvalue failed to converge.
 4 2 The matrix is not Hermitian. It has a diagonal entry

with an imaginary part.

3. Integer Options with Chapter 10 Options Manager

1 This option uses eight values to solve memory bank conflict
(access inefficiency) problems. In routine E3LHF, the internal
or working leading dimensions of ACOPY and ECOPY are both
increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by
IVAL(1) and IVAL(2), respectively, in routine EVLHF.
Additional memory allocation and option value restoration are
automatically done in EVLHF. There is no requirement that
users change existing applications that use EVLHF or E3LHF.
Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0,
1. Items 5 − 8 in IVAL(*) are for the generalized eigenvalue
problem and are not used in EVLHF.

Algorithm

Routine EVLHF computes the eigenvalues of a complex Hermitian matrix. Unitary
similarity transformations are used to reduce the matrix to an equivalent real
symmetric tridiagonal matrix. The implicit QL algorithm is used to compute the
eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The QL routine
is based on the EISPACK routine IMTQL1. See Smith et al. (1976) for the
EISPACK routines.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 114). The eigenvalues of this complex Hermitian matrix
are computed and printed.

C Declare variables

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 369

 INTEGER LDA, N
 PARAMETER (N=2, LDA=N)
C
 REAL EVAL(N)
 COMPLEX A(LDA,N)
 EXTERNAL EVLHF, WRRRN
C Set values of A
C
C A = (1 -i)
C (i 1)
C
 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/
C
C Find eigenvalues of A
 CALL EVLHF (N, A, LDA, EVAL)
C Print results
 CALL WRRRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

Output
 EVAL
 1 2
2.000 0.000

EVCHF/DEVCHF (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a complex Hermitian matrix.

Usage
CALL EVCHF (N, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Real vector of length N containing the eigenvalues of A in decreasing
order of magnitude. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

370 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

EVCHF 3N2 + 6N units, or

DEVCHF 6N2 + 11N units.

Workspace may be explicitly provided, if desired, by use of
E5CHF/DE5CHF. The reference is

CALL E5CHF (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY,
 RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N2. A and ACOPY may be the
same, in which case A will be destroyed.

RWK — Work array of length N2 + N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational error
Type Code
 3 1 The matrix is not Hermitian. It has a diagonal entry

with a small imaginary part.
 4 1 The iteration for an eigenvalue failed to converge.
 4 2 The matrix is not Hermitian. It has a diagonal entry

with an imaginary part.

3. The success of this routine can be checked using EPIHF (page 382).

4. Integer Options with Chapter 10 Options Manager

1 This option uses eight values to solve memory bank conflict
(access inefficiency) problems. In routine E5CHF, the internal
or working leading dimensions of ACOPY and ECOPY are both
increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by
IVAL(1) and IVAL(2), respectively, in routine EVCHF.
Additional memory allocation and option value restoration are
automatically done in EVCHF. There is no requirement that
users change existing applications that use EVCHF or E5CHF.
Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0,
1. Items 5−8 in IVAL(*) are for the generalized eigenvalue
problem and are not used in EVCHF.

Algorithm

Routine EVCHF computes the eigenvalues and eigenvectors of a complex
Hermitian matrix. Unitary similarity transformations are used to reduce the

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 371

matrix to an equivalent real symmetric tridiagonal matrix. The implicit QL
algorithm is used to compute the eigenvalues and eigenvectors of this tridiagonal
matrix. These eigenvectors and the transformations used to reduce the matrix to
tridiagonal form are combined to obtain the eigenvectors for the user’s problem.
The reduction routine is based on the EISPACK routine HTRIDI. The QL routine
is based on the EISPACK routine IMTQL2. See Smith et al. (1976) for the
EISPACK routines.

Example

In this example, a DATA statement is used to set A to a complex Hermitian matrix.
The eigenvalues and eigenvectors of this matrix are computed and printed. The
performance index is also computed and printed. This serves as a check on the
computations; for more details, see routine EPIHF on page 382.

C Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDEVEC=N)
C
 INTEGER NOUT
 REAL EPIHF, EVAL(N), PI
 COMPLEX A(LDA,N), EVEC(LDEVEC,N)
 EXTERNAL EPIHF, EVCHF, UMACH, WRCRN, WRRRN
C Set values of A
C
C A = ((1, 0) (1,-7i) (0,- i))
C ((1,7i) (5, 0) (10,-3i))
C ((0, i) (10, 3i) (-2, 0))
C
 DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0),
 & (10.0, 3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/
C
C Find eigenvalues and vectors of A
 CALL EVCHF (N, A, LDA, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPIHF(N,N,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
15.38 -10.63 -0.75

 EVEC
 1 2 3
1 (0.0631,-0.4075) (-0.0598,-0.3117) (0.8539, 0.0000)
2 (0.7703, 0.0000) (-0.5939, 0.1841) (-0.0313,-0.1380)
3 (0.4668, 0.1366) (0.7160, 0.0000) (0.0808,-0.4942)

Performance index = 0.093

372 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVAHF/DEVAHF (Single/Double precision)
Compute the largest or smallest eigenvalues of a complex Hermitian matrix.

Usage
CALL EVAHF (N, NEVAL, A, LDA, SMALL, EVAL)

Arguments

N — Order of the matrix A. (Input)

NEVAL — Number of eigenvalues to be calculated. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest
NEVAL eigenvalues are computed.

EVAL — Real vector of length NEVAL containing the eigenvalues of A in
decreasing order of magnitude. (Output)

Comments

1. Automatic workspace usage is

EVAHF 2N2 + 7N units, or

DEVAHF 4N2 + 13N units.

Workspace may be explicitly provided, if desired, by use of
E3AHF/DE3AHF. The reference is

CALL E3AHF (N, NEVAL, A, LDA, SMALL, EVAL, ACOPY,
 RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N2. A and ACOPY may be the
same in which case A will be destroyed.

RWK — Work array of length 2N.

CWK — Complex work array of length 2N.

IWK — Work array of length N.

2. Informational errors
Type Code
 3 1 The iteration for an eigenvalue failed to converge. The

best estimate will be returned.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 373

 3 2 The matrix is not Hermitian. It has a diagonal entry
with a small imaginary part.

 4 2 The matrix is not Hermitian. It has a diagonal entry
with an imaginary part.

Algorithm

Routine EVAHF computes the largest or smallest eigenvalues of a complex
Hermitian matrix. Unitary transformations are used to reduce the matrix to an
equivalent symmetric tridiagonal matrix. The rational QR algorithm with Newton
corrections is used to compute the extreme eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine
is based on the EISPACK routine RATQR. See Smith et al. (1976) for the
EISPACK routines.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 114). Its largest eigenvalue is computed and printed.

C Declare variables
 INTEGER LDA, N
 PARAMETER (N=2, LDA=N)
C
 INTEGER NEVAL
 REAL EVAL(N)
 COMPLEX A(LDA,N)
 LOGICAL SMALL
 EXTERNAL EVAHF, WRRRN
C Set values of A
C
C A = (1 -i)
C (i 1)
C
 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/
C
C Find the largest eigenvalue of A
 NEVAL = 1
 SMALL = .FALSE.
 CALL EVAHF (N, NEVAL, A, LDA, SMALL, EVAL)
C Print results
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 END

Output
EVAL
2.000

374 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVEHF/DEHF (Single/Double precision)
Compute the largest or smallest eigenvalues and the corresponding eigenvectors
of a complex Hermitian matrix.

Usage
CALL EVEHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

NEVEC — Number of eigenvectors to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVEC eigenvectors are computed. If .FALSE., the
largest NEVEC eigenvectors are computed.

EVAL — Real vector of length NEVEC containing the eigenvalues of A in
decreasing order of magnitude. (Output)

EVEC — Complex matrix of dimension N by NEVEC. (Output)
The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

EVEHF 2N2 + N * NEVEC + 13N units, or

DEVEHF 4N2 + 2N * NEVEC + 25N units.

Workspace may be explicitly provided, if desired, by use of
E3EHF/DE3EHF. The reference is

CALL E3EHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC,
 LDEVEC, ACOPY, RW1, RW2, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N2. A and ACOPY may be the
same, in which case A will be destroyed.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 375

RW1 — Work array of length N * NEVEC. Used to store the real
eigenvectors of a symmetric tridiagonal matrix.

RW2 — Work array of length 8N.

CWK — Complex work array of length 2N.

IWK — Work array of length N.

2. Informational errors
Type Code
 3 1 The iteration for an eigenvalue failed to converge. The

best estimate will be returned.
 3 2 The iteration for an eigenvector failed to converge.

The eigenvector will be set to 0.
 3 3 The matrix is not Hermitian. It has a diagonal entry

with a small imaginary part.
 4 2 The matrix is not Hermitian. It has a diagonal entry

with an imaginary part.

3. The success of this routine can be checked using EPIHF (page 382).

Algorithm

Routine EVEHF computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a complex Hermitian matrix. Unitary
transformations are used to reduce the matrix to an equivalent real symmetric
tridiagonal matrix. The rational QR algorithm with Newton corrections is used to
compute the extreme eigenvalues of the tridiagonal matrix. Inverse iteration is
used to compute the eigenvectors of the tridiagonal matrix. Eigenvectors of the
original matrix are found by back transforming the eigenvectors of the tridiagonal
matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine
used is based on the EISPACK routine RATQR. The inverse iteration routine is
based on the EISPACK routine TINVIT. The back transformation routine is
based on the EISPACK routine HTRIBK. See Smith et al. (1976) for the
EISPACK routines.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 115). The smallest eigenvalue and its corresponding
eigenvector is computed and printed. The performance index is also computed
and printed. This serves as a check on the computations. For more details, see
IMSL routine EPIHF on page 382.

C Declare variables
 INTEGER LDA, LDEVEC, N, NEVEC
 PARAMETER (N=3, NEVEC=1, LDA=N, LDEVEC=N)
C
 INTEGER NOUT

376 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 REAL EPIHF, EVAL(N), PI
 COMPLEX A(LDA,N), EVEC(LDEVEC,NEVEC)
 LOGICAL SMALL
 EXTERNAL EPIHF, EVEHF, UMACH, WRCRN, WRRRN
C Set values of A
C
C A = (2 -i 0)
C (i 2 0)
C (0 0 3)
C
 DATA A/(2.0,0.0), (0.0,1.0), (0.0,0.0), (0.0,-1.0), (2.0,0.0),
 & (0.0,0.0), (0.0,0.0), (0.0,0.0), (3.0,0.0)/
C
C Find smallest eigenvalue and its
C eigenvectors
 SMALL = .TRUE.
 CALL EVEHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPIHF(N,NEVEC,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, 1, NEVEC, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, NEVEC, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
EVAL
1.000

 EVEC
1 (0.0000, 0.7071)
2 (0.7071, 0.0000)
3 (0.0000, 0.0000)

Performance index = 0.031

EVBHF/DEVBHF (Single/Double precision)
Compute the eigenvalues in a given range of a complex Hermitian matrix.

Usage
CALL EVBHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL)

Arguments

N — Order of the matrix A. (Input)

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 377

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought.
(Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought.
(Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the
interval (ELOW, EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

Comments

1. Automatic workspace usage is

EVBHF 2N2 + 9N + MXEVAL units, or

DEVBHF 4N2 + 18N + MXEVAL units.

Workspace may be explicitly provided, if desired, by use of
E3BHF/DE3BHF. The reference is

CALL E3BHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL,
 EVAL, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work matrix of size N by N. A and ACOPY may be

the same, in which case the first N2 elements of A will be destroyed.

RWK — Work array of length 5N.

CWK — Complex work array of length 2N.

IWK — Work array of length MXEVAL.

2. Informational errors
Type Code
 3 1 The number of eigenvalues in the specified range

exceeds MXEVAL. NEVAL contains the number of
eigenvalues in the range. No eigenvalues will be
computed.

 3 2 The matrix is not Hermitian. It has a diagonal entry
with a small imaginary part.

 4 2 The matrix is not Hermitian. It has a diagonal entry
with an imaginary part.

Algorithm

Routine EVBHF computes the eigenvalues in a given range of a complex
Hermitian matrix. Unitary transformations are used to reduce the matrix to an

378 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

equivalent symmetric tridiagonal matrix. A bisection algorithm is used to compute
the eigenvalues in the given range of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The bisection
routine used is based on the EISPACK routine BISECT. See Smith et al. (1976)
for the EISPACK routines.

Example

In this example, a DATA statement is used to set A to a matrix given by Gregory
and Karney (1969, page 114). The eigenvalues in the range [1.5, 2.5] are
computed and printed. This example allows a maximum number of eigenvalues
MXEVAL = 2. The routine computes that there is one eigenvalue in the given
range. This value is returned in NEVAL.

C Declare variables
 INTEGER LDA, MXEVAL, N
 PARAMETER (MXEVAL=2, N=2, LDA=N)
C
 INTEGER NEVAL, NOUT
 REAL EHIGH, ELOW, EVAL(MXEVAL)
 COMPLEX A(LDA,N)
 EXTERNAL EVBHF, UMACH, WRRRN
C Set values of A
C
C A = (1 -i)
C (i 1)
C
 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/
C
C Find eigenvalue
 ELOW = 1.5
 EHIGH = 2.5
 CALL EVBHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL)
C
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I3)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 END

Output
NEVAL = 1

EVAL
2.000

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 379

EVFHF/DEVFHF (Single/Double precision)
Compute the eigenvalues in a given range and the corresponding eigenvectors of
a complex Hermitian matrix.

Usage
CALL EVFHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL,
 EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought.
(Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought.
(Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the
interval (ELOW, EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

EVEC — Complex matrix containing in its first NEVAL columns the eigenvectors
associated with the eigenvalues found stored in EVAL. Each vector is normalized
to have Euclidean length equal to the value one. (Output)

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

EVFHF 2N2 + N * MXEVAL + 12N + MXEVAL units, or

DEVFHF 4N2 + 2N * MXEVAL + 24N + MXEVAL units.

Workspace may be explicitly provided, if desired, by use of
E3FHF/DE3FHF. The reference is

CALL E3FHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL,
 EVAL, EVEC,LDEVEC, ACOPY, ECOPY, RWK,
 CWK, IWK)

380 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

The additional arguments are as follows:

ACOPY — Complex work matrix of size N by N. A and ACOPY may be

the same, in which case the first N2 elements of A will be destroyed.

ECOPY — Work matrix of size N by MXEVAL. Used to store
eigenvectors of a real tridiagonal matrix.

RWK — Work array of length 8N.

CWK — Complex work array of length 2N.

IWK — Work array of length MXEVAL.

2. Informational errors
Type Code
 3 1 The number of eigenvalues in the specified range

exceeds MXEVAL. NEVAL contains the number of
eigenvalues in the range. No eigenvalues will be
computed.

 3 2 The iteration for an eigenvector failed to converge.
The eigenvector will be set to 0.

 3 3 The matrix is not Hermitian. It has a diagonal entry
with a small imaginary part.

 4 2 The matrix is not Hermitian. It has a diagonal entry
with an imaginary part.

Algorithm

Routine EVFHF computes the eigenvalues in a given range and the corresponding
eigenvectors of a complex Hermitian matrix. Unitary transformations are used to
reduce the matrix to an equivalent symmetric tridiagonal matrix. A bisection
algorithm is used to compute the eigenvalues in the given range of this tridiagonal
matrix. Inverse iteration is used to compute the eigenvectors of the tridiagonal
matrix. The eigenvectors of the original matrix are computed by back
transforming the eigenvectors of the tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The bisection
routine is based on the EISPACK routine BISECT. The inverse iteration routine is
based on the EISPACK routine TINVIT. The back transformation routine is
based on the EISPACK routine HTRIBK. See Smith et al. (1976) for the
EISPACK routines.

Example

In this example, a DATA statement is used to set A to a complex Hermitian
matrix. The eigenvalues in the range [−15, 0] and their corresponding
eigenvectors are computed and printed. As a test, this example uses
MXEVAL = 3. The routine EVFHF computes the number of eigenvalues in the
given range. That value, NEVAL, is two. As a check on the computations, the

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 381

performance index is also computed and printed. For more details, see routine
EPIHF on page 382.

C Declare variables
 INTEGER LDA, LDEVEC, MXEVAL, N
 PARAMETER (MXEVAL=3, N=3, LDA=N, LDEVEC=N)
C
 INTEGER NEVAL, NOUT
 REAL EHIGH, ELOW, EPIHF, EVAL(MXEVAL), PI
 COMPLEX A(LDA,N), EVEC(LDEVEC,MXEVAL)
 EXTERNAL EPIHF, EVFHF, UMACH, WRCRN, WRRRN
C Set values of A
C
C A = ((1, 0) (1,-7i) (0,- i))
C ((1,7i) (5, 0) (10,-3i))
C ((0, i) (10, 3i) (-2, 0))
C
 DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0),
 & (10.0,3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/
C
C Find eigenvalues and vectors
 ELOW = -15.0
 EHIGH = 0.0
 CALL EVFHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, EVEC,
 & LDEVEC)
C Compute performance index
 PI = EPIHF(N,NEVAL,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I3)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, 1, NEVAL, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, NEVAL, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
NEVAL = 2

 EVAL
 1 2
-10.63 -0.75

 EVEC
 1 2
1 (-0.0598,-0.3117) (0.8539, 0.0000)
2 (-0.5939, 0.1841) (-0.0313,-0.1380)
3 (0.7160, 0.0000) (0.0808,-0.4942)

 Performance index = 0.057

382 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EPIHF/DEPIHF (Single/Double precision)
Compute the performance index for a complex Hermitian eigensystem.

Usage
EPIHF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

NEVAL — Number of eigenvalue/eigenvector pairs on which the performance
index computation is based. (Input)

A — Complex Hermitian matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — Complex N by NEVAL array containing eigenvectors of A. (Input)
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th
column of EVEC.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

EPIHF — Performance index. (Output)

Comments

1 Automatic workspace usage is

EPIHF 2N units, or
DEPIHF 4N units.

Workspace may be explicitly provided, if desired, by use of
E2IHF/DE2IHF. The reference is

E2IHF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK)

The additional argument is

WK — Complex work array of length N.

2. Informational errors
Type Code
 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 383

Algorithm

Let M = NEVAL, λ = EVAL, xM = EVEC(*, J), the j-th column of EVEC. Also, let ε
be the machine precision, given by AMACH(4), page 1201. The performance index,
τ, is defined to be

τ
λ

ε
=

−

≤ ≤
max

1

1

1 1
10j M

j j j

j

Ax x

N A x

The norms used are a modified form of the 1-norm. The norm of the complex
vector v is

v v vi i
i

N

1
1

= ℜ + ℑ
=
∑< A

While the exact value of τ is highly machine dependent, the performance of
EVCSF (page 339) is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor
if τ > 100. The performance index was first developed by the EISPACK project
at Argonne National Laboratory; see Smith et al. (1976, pages 124−125).

Example

For an example of EPIHF, see IMSL routine EVCHF, page 369.

EVLRH/DEVLRH (Single/Double precision)
Compute all of the eigenvalues of a real upper Hessenberg matrix.

Usage
CALL EVLRH (N, A, LDA, EVAL)

Arguments

N — Order of the matrix A. (Input)

A — Real upper Hessenberg matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Complex vector of length N containing the eigenvalues in decreasing
order of magnitude. (Output)

Comments

1. Automatic workspace usage is

EVLRH N2 + 4N units, or

DEVLRH 2N2 + 7N units.

384 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Workspace may be explicitly provided, if desired, by use of
E3LRH/DE3LRH. The reference is

CALL E3LRH (N, A, LDA, EVAL, ACOPY, WK, IWK)

The additional argument is

ACOPY — Real N by N work matrix.

WK — Real vector of length 3n.

IWK — Integer vector of length n.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

Algorithm

Routine EVLRH computes the eigenvalues of a real upper Hessenberg matrix by
using the QR algorithm. The QR Algorithm routine is based on the EISPACK
routine HQR, Smith et al. (1976).

Example

In this example, a DATA statement is used to set A to an upper Hessenberg matrix
of integers. The eigenvalues of this matrix are computed and printed.

C Declare variables
 INTEGER LDA, N
 PARAMETER (N=4, LDA=N)
C
 INTEGER NOUT
 REAL A(LDA,N)
 COMPLEX EVAL(N)
 EXTERNAL EVLRH, UMACH, WRCRN
C Set values of A
C
C A = (2.0 1.0 3.0 4.0)
C (1.0 0.0 0.0 0.0)
C (1.0 0.0 0.0)
C (1.0 0.0)
C
 DATA A/2.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 3.0, 0.0, 0.0,
 & 1.0, 4.0, 0.0, 0.0, 0.0/
C
C Find eigenvalues of A
 CALL EVLRH (N, A, LDA, EVAL)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 385

Output
 EVAL
 1 2 3 4
(2.878, 0.000) (0.011, 1.243) (0.011,-1.243) (-0.900, 0.000)

EVCRH/DEVCRH (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a real upper Hessenberg
matrix.

Usage
CALL EVCRH (N, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

A — Real upper Hessenberg matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Complex vector of length N containing the eigenvalues in decreasing
order of magnitude. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

EVCRH 2N2 + 4N units, or

DEVCRH 4N2 + 7N units.

Workspace may be explicitly provided, if desired, by use of
E6CRH/DE6CRH. The reference is

CALL E6CRH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY,
 ECOPY,RWK,IWK)

The additional arguments are as follows:

ACOPY — Real N by N work matrix.

ECOPY — Real N by N work matrix.

RWK — Real array of length 3N.

IWK — Integer array of length N.

386 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

Algorithm

Routine EVCRH computes the eigenvalues and eigenvectors of a real upper
Hessenberg matrix by using the QR algorithm. The QR algorithm routine is based
on the EISPACK routine HQR2; see Smith et al. (1976).

Example

In this example, a DATA statement is used to set A to a Hessenberg matrix with
integer entries. The values are returned in decreasing order of magnitude. The
eigenvalues, eigenvectors and performance index of this matrix are computed and
printed. See routine EPIRG on page 330 for details.

C Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=4, LDA=N, LDEVEC=N)
C
 INTEGER NOUT
 REAL A(LDA,N), EPIRG, PI
 COMPLEX EVAL(N), EVEC(LDEVEC,N)
 EXTERNAL EPIRG, EVCRH, UMACH, WRCRN
C Define values of A:
C
C A = (-1.0 -1.0 -1.0 -1.0)
C (1.0 0.0 0.0 0.0)
C (1.0 0.0 0.0)
C (1.0 0.0)
C
 DATA A/-1.0, 1.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0,
 & 1.0, -1.0, 0.0, 0.0, 0.0/
C
C Find eigenvalues and vectors of A
 CALL EVCRH (N, A, LDA, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPIRG(N,N,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3 4
(-0.8090, 0.5878) (-0.8090,-0.5878) (0.3090, 0.9511) (0.3090,-0.9511)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 387

 EVEC
 1 2 3 4
1 (-0.4045, 0.2939) (-0.4045,-0.2939) (0.1545, 0.4755) (0.1545,-0.4755)
2 (0.5000, 0.0000) (0.5000, 0.0000) (0.5000, 0.0000) (0.5000, 0.0000)
3 (-0.4045,-0.2939) (-0.4045, 0.2939) (0.1545,-0.4755) (0.1545, 0.4755)
4 (0.1545, 0.4755) (0.1545,-0.4755) (-0.4045,-0.2939) (-0.4045, 0.2939)

Performance index = 0.051

EVLCH/DEVLCH (Single/Double precision)
Compute all of the eigenvalues of a complex upper Hessenberg matrix.

Usage
CALL EVLCH (N, A, LDA, EVAL)

Arguments

N — Order of the matrix A. (Input)

A — Complex upper Hessenberg matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in
decreasing order of magnitude. (Output)

Comments

1. Automatic workspace usage is

EVLCH 2N2 + 2N units, or

DEVLCH 4N2 + 3N units.

Workspace may be explicitly provided, if desired, by use of
E3LCH/DE3LCH. The reference is

CALL E3LCH (N, A, LDA, EVAL, ACOPY, RWK, IWK)

The additional arguments are

ACOPY — Complex N by N work array. A and ACOPY may be the same,
in which case A is destroyed.

RWK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

388 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Algorithm

Routine EVLCH computes the eigenvalues of a complex upper Hessenberg matrix
using the QR algorithm. This routine is based on the EISPACK routine COMQR2;
see Smith et al. (1976).

Example

In this example, a DATA statement is used to set the matrix A. The program
computes and prints the eigenvalues of this matrix.

C Declare variables
 INTEGER LDA, N
 PARAMETER (N=4, LDA=N)
 COMPLEX A(LDA,N), EVAL(N)
C Set values of A
C
C A = (5+9i 5+5i -6-6i -7-7i)
C (3+3i 6+10i -5-5i -6-6i)
C (0 3+3i -1+3i -5-5i)
C (0 0 -3-3i 4i)
C
 DATA A /(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0),
 & (5.0,5.0), (6.0,10.0), (3.0,3.0), (0.0,0.0),
 & (-6.0,-6.0), (-5.0,-5.0), (-1.0,3.0), (-3.0,-3.0),
 & (-7.0,-7.0), (-6.0,-6.0), (-5.0,-5.0), (0.0,4.0)/
C
C Find the eigenvalues of A
 CALL EVLCH (N, A, LDA, EVAL)
C Print results
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3 4
(8.22, 12.22) (3.40, 7.40) (1.60, 5.60) (-3.22, 0.78)

EVCCH/DEVCCH (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a complex upper Hessenberg
matrix.

Usage
CALL EVCCH (N, A, LDA, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrix A. (Input)

A — Complex upper Hessenberg matrix of order N. (Input)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 389

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in
decreasing order of magnitude. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

EVCCH 4N(N + 2) units, or
DEVCCH 7N(N + 2) units.

Workspace may be explicitly provided, if desired, by use of
E4CCH/DE4CCH. The reference is

CALL E4CCH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY,
 CWORK, RWK,IWK)

The additional arguments are as follows:

ACOPY — Complex N by N work array. A and ACOPY may be the same,
in which case A is destroyed.

CWORK — Complex work array of length 2N.

RWK — Real work array of length N.

IWK — Integer work array of length N.

2 Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

3. The results of EVCCH can be checked using EPICG (page 336). This
requires that the matrix A explicitly contains the zeros in A(I, J) for
(I − 1) > J which are assumed by EVCCH.

Algorithm

Routine EVCCH computes the eigenvalues and eigenvectors of a complex upper
Hessenberg matrix using the QR algorithm. This routine is based on the
EISPACK routine COMQR2; see Smith et al. (1976).

Example

In this example, a DATA statement is used to set the matrix A. The program
computes the eigenvalues and eigenvectors of this matrix. The performance

390 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

index is also computed and printed. This serves as a check on the computations;
for more details, see IMSL routine EPICG, page 336. The zeros in the lower part
of the matrix are not referenced by EVCCH, but they are required by EPICG
(page 336).

C Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=4, LDA=N, LDEVEC=N)
C
 INTEGER NOUT
 REAL EPICG, PI
 COMPLEX A(LDA,N), EVAL(N), EVEC(LDEVEC,N)
 EXTERNAL EPICG, EVCCH, UMACH, WRCRN
C Set values of A
C
C A = (5+9i 5+5i -6-6i -7-7i)
C (3+3i 6+10i -5-5i -6-6i)
C (0 3+3i -1+3i -5-5i)
C (0 0 -3-3i 4i)
C
 DATA A/(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), (5.0,5.0),
 & (6.0,10.0), (3.0,3.0), (0.0,0.0), (-6.0,-6.0), (-5.0,-5.0),
 & (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0),
 & (-5.0,-5.0), (0.0,4.0)/
C
C Find eigenvalues and vectors of A
 CALL EVCCH (N, A, LDA, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = EPICG(N,N,A,LDA,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3 4
(8.22, 12.22) (3.40, 7.40) (1.60, 5.60) (-3.22, 0.78)

 EVEC
 1 2 3 4
1 (0.7167, 0.0000) (-0.0704, 0.0000) (-0.3678, 0.0000) (0.5429, 0.0000)
2 (0.6402, 0.0000) (-0.0046, 0.0000) (0.6767, 0.0000) (0.4298, 0.0000)
3 (0.2598, 0.0000) (0.7477, 0.0000) (-0.3005, 0.0000) (0.5277, 0.0000)
4 (-0.0948, 0.0000) (-0.6603, 0.0000) (0.5625, 0.0000) (0.4920, 0.0000)

Performance index = 0.020

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 391

GVLRG/DGVLRG (Single/Double precision)
Compute all of the eigenvalues of a generalized real eigensystem Az = λBz.

Usage
CALL GVLRG (N, A, LDA, B, LDB, ALPHA, BETA)

Arguments

N — Order of the matrices A and B. (Input)

A — Real matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

B — Real matrix of order N. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program. (Input)

ALPHA — Complex vector of size N containing scalars αL, i = 1, …, n. If βL�≠ 0,

λL = αL / βL the eigenvalues of the system in decreasing order of magnitude.
(Output)

BETA — Real vector of size N. (Output)

Comments

1. Automatic workspace usage is

GVLRG 2N2 + 4N units, or

DGVLRG 4N2 + 7N units.

Workspace may be explicitly provided, if desired, by use of
G3LRG/DG3LRG. The reference is

CALL G3LRG (N, A, LDA, B, LDB, ALPHA, BETA, ACOPY,
 BCOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Work array of size N2 . The arrays A and ACOPY may be the

same, in which case the first N2 elements of A will be destroyed.

BCOPY — Work array of size N2 . The arrays B and BCOPY may be the

same, in which case the first N2 elements of B will be destroyed.

RWK — Real work array of size N.

CWK — Complex work array of size N.

IWK — Integer work array of size N.

392 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2. Integer Options with Chapter 10 Options Manager

1 This option uses eight values to solve memory bank conflict
(access inefficiency) problems. In routine G3LRG, the internal
or working leading dimension of ACOPY is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3)
and IVAL (4) are temporarily replaced by IVAL(1) and
IVAL(2), respectively, in routine GVLRG . Analogous comments
hold for BCOPY and the values IVAL(5) − IVAL(8) . Additional
memory allocation and option value restoration are
automatically done in GVLRG. There is no requirement that
users change existing applications that use GVLRG or G3LRG.
Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0,
1.

Algorithm

Routine GVLRG computes the eigenvalues of the generalized eigensystem Ax = λ
Bx where A and B are real matrices of order N. The eigenvalues for this problem
can be infinite; so instead of returning λ, GVLRG returns α and β. If β is nonzero,
then λ = α/β.

The first step of the QZ algorithm is to simultaneously reduce A to upper
Hessenberg form and B to upper triangular form. Then, orthogonal
transformations are used to reduce A to quasi-upper-triangular form while
keeping B upper triangular. The generalized eigenvalues are then computed.

The routine GVLRG uses the QZ algorithm due to Moler and Stewart (1973), as
implemented by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et
al. (1977).

Example

In this example, DATA statements are used to set A and B. The eigenvalues are
computed and printed.

 INTEGER LDA, LDB, N
 PARAMETER (N=3, LDA=N, LDB=N)
C
 INTEGER I
 REAL A(LDA,N), AMACH, B(LDB,N), BETA(N)
 COMPLEX ALPHA(N), EVAL(N)
 EXTERNAL AMACH, GVLRG, WRCRN
C
C Set values of A and B
C A = (1.0 0.5 0.0)
C (-10.0 2.0 0.0)
C (5.0 1.0 0.5)
C
C B = (0.5 0.0 0.0)
C (3.0 3.0 0.0)
C (4.0 0.5 1.0)
C

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 393

C Declare variables
 DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/
 DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/
C
 CALL GVLRG (N, A, LDA, B, LDB, ALPHA, BETA)
C Compute eigenvalues
 DO 10 I=1, N
 EVAL(I) = ALPHA(I)/BETA(I)
 10 CONTINUE
C Print results
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3
(0.833, 1.993) (0.833,-1.993) (0.500, 0.000)

GVCRG/DGVCRG (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a generalized real
eigensystem Az = λBz.

Usage
CALL GVCRG (N, A, LDA, B, LDB, ALPHA, BETA, EVEC, LDEVEC)

Arguments

N — Order of the matrices A and B. (Input)

A — Real matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

B — Real matrix of order N. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program. (Input)

ALPHA — Complex vector of size N containing scalars αL��If
βL�≠ 0, λL = αL�/ βL� i = 1, …, n are the eigenvalues of the system.

BETA — Vector of size N containing scalars βL. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to λ-, is stored in the J-th column. Each
vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

394 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

GVCRG 3N2 + 4N units, or

DGVCRG 6N2 + 7N units.

Workspace may be explicitly provided, if desired, by use of
G8CRG/DG8CRG. The reference is

CALL G8CRG (N, A, LDA, B, LDB, ALPHA, BETA, EVEC,
 LDEVEC, ACOPY, BCOPY, ECOPY, RWK, CWK,
 IWK)

The additional arguments are as follows:

ACOPY — Work array of size N2. The arrays A and ACOPY may be the

same, in which case the first N2 elements of A will be destroyed.

BCOPY — Work array of size N2. The arrays B and BCOPY may be the

same, in which case the first N2 elements of B will be destroyed.

ECOPY — Work array of size N2.

RWK — Work array of size N.

CWK — Complex work array of size N.

IWK — Integer work array of size N.

2. Integer Options with Chapter 10 Options Manager

1 This option uses eight values to solve memory bank conflict
(access inefficiency) problems. In routine G8CRG, the internal
or working leading dimensions of ACOPY and ECOPY are both
increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by
IVAL(1) and IVAL(2), respectively, in routine GVCRG.
Analogous comments hold for the array BCOPY and the option
values IVAL(5) − IVAL(8). Additional memory allocation and
option value restoration are automatically done in GVCRG.
There is no requirement that users change existing applications
that use GVCRG or G8CRG. Default values for the option are
IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5−8 in IVAL(*) are for
the generalized eigenvalue problem and are not used in GVCRG.

Algorithm

Routine GVCRG computes the complex eigenvalues and eigenvectors of the
generalized eigensystem Ax = λBx where A and B are real matrices of order N.
The eigenvalues for this problem can be infinite; so instead of returning λ, GVCRG
returns complex numbers α and real numbers β. If β is nonzero, then

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 395

λ = α/β. For problems with small |β| users can choose to solve the mathematically

equivalent problem Bx = µAx where µ = λ-1.

The first step of the QZ algorithm is to simultaneously reduce A to upper
Hessenberg form and B to upper triangular form. Then, orthogonal
transformations are used to reduce A to quasi-upper-triangular form while
keeping B upper triangular. The generalized eigenvalues and eigenvectors for the
reduced problem are then computed.

The routine GVCRG is based on the QZ algorithm due to Moler and Stewart
(1973), as implemented by the EISPACK routines QZHES, QZIT and QZVAL; see
Garbow et al. (1977).

Example

In this example, DATA statements are used to set A and B. The eigenvalues,
eigenvectors and performance index are computed and printed for the systems Ax

= λBx and Bx = µAx where µ = λ- 1. For more details about the performance
index, see routine GPIRG (page 396).

 INTEGER LDA, LDB, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)
C
 INTEGER I, NOUT
 REAL A(LDA,N), AMACH, B(LDB,N), BETA(N), GPIRG, PI
 COMPLEX ALPHA(N), EVAL(N), EVEC(LDEVEC,N)
 EXTERNAL AMACH, GPIRG, GVCRG, UMACH, WRCRN
C
C Define values of A and B:
C A = (1.0 0.5 0.0)
C (-10.0 2.0 0.0)
C (5.0 1.0 0.5)
C
C B = (0.5 0.0 0.0)
C (3.0 3.0 0.0)
C (4.0 0.5 1.0)
C
C Declare variables
 DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/
 DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/
C
 CALL GVCRG (N, A, LDA, B, LDB, ALPHA, BETA, EVEC, LDEVEC)
C Compute eigenvalues
 DO 10 I=1, N
 EVAL(I) = ALPHA(I)/BETA(I)
 10 CONTINUE
C Compute performance index
 PI = GPIRG(N,N,A,LDA,B,LDB,ALPHA,BETA,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
C Solve for reciprocals of values
 CALL GVCRG (N, B, LDB,A, LDA, ALPHA, BETA, EVEC, LDEVEC)

396 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

C Compute reciprocals
 DO 20 I=1, N
 EVAL(I) = ALPHA(I)/BETA(I)
 20 CONTINUE
C Compute performance index
 PI = GPIRG(N,N,B,LDB,A,LDA,ALPHA,BETA,EVEC,LDEVEC)
C Print results
 CALL WRCRN (’EVAL reciprocals’, 1, N, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
(0.833, 1.993) (0.833,-1.993) (0.500, 0.000)

 EVEC
 1 2 3
1 (-0.197, 0.150) (-0.197,-0.150) (0.000, 0.000)
2 (-0.069,-0.568) (-0.069, 0.568) (0.000, 0.000)
3 (0.782, 0.000) (0.782, 0.000) (1.000, 0.000)

Performance index = 0.384

 EVAL reciprocals
 1 2 3
(2.000, 0.000) (0.179, 0.427) (0.179,-0.427)

 EVEC
 1 2 3
1 (0.000, 0.000) (-0.197,-0.150) (-0.197, 0.150)
2 (0.000, 0.000) (-0.069, 0.568) (-0.069,-0.568)
3 (1.000, 0.000) (0.782, 0.000) (0.782, 0.000)

Performance index = 0.283

GPIRG/DGPIRG (Single/Double precision)
Compute the performance index for a generalized real eigensystem Az = λBz.

Usage
GPIRG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETA, EVEC, LDEVEC)

Arguments

N — Order of the matrices A and B. (Input)

NEVAL — Number of eigenvalue/eigenvector pairs performance index
computation is based on. (Input)

A — Real matrix of order N. (Input)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 397

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

B — Real matrix of order N. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program. (Input)

ALPHA — Complex vector of length NEVAL containing the numerators of
eigenvalues. (Input)

BETA — Real vector of length NEVAL containing the denominators of
eigenvalues. (Input)

EVEC — Complex N by NEVAL array containing the eigenvectors. (Input)

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

GPIRG — Performance index. (Output)

Comments

1. Automatic workspace usage is

GPIRG 4N units, or
DGPIRG 8N units.

Workspace may be explicitly provided, if desired, by use of
G2IRG/DG2IRG. The reference is

G2IRG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETA, EVEC,
 LDEVEC, WK)

The additional argument is

WK — Complex work array of length 2N.

2. Informational errors
Type Code
 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix A is zero.
 3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETA(J), its eigenvector should
be in the J-th column of EVEC.

Algorithm

Let M = NEVAL, xM = EVEC(*,J) , the j-th column of EVEC. Also, let ε be the

machine precision given by AMACH(4), page 1201. The performance index, τ, is
defined to be

398 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

τ
β α

ε β α
=

−

+≤ ≤
max

1

1

1 1 1
j M

j j j j

j j j

Ax Bx

A B x4 9
The norms used are a modified form of the 1-norm. The norm of the complex
vector v is

v v vi i
i

N

1
1

= ℜ + ℑ
=
∑< A

While the exact value of τ is highly machine dependent, the performance of
EVCSF (page 339) is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor
if τ > 100. The performance index was first developed by the EISPACK project
at Argonne National Laboratory; see Garbow et al. (1977, pages 77−79).

Example

For an example of GPIRG, see routine GVCRG on page 393.

GVLCG/DGVLCG (Single/Double precision)
Compute all of the eigenvalues of a generalized complex eigensystem Az = λBz.

Usage
CALL GVLCG (N, A, LDA, B, LDB, ALPHA, BETA)

Arguments

N — Order of the matrices A and B. (Input)

A — Complex matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

B — Complex matrix of order N. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program. (Input)

ALPHA — Complex vector of length N. Ultimately, alpha(i)/beta(i) (for i = 1, n),
will be the eigenvalues of the system in decreasing order of magnitude. (Output)

BETA — Complex vector of length N. (Output)

Comments

1. Automatic workspace usage is

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 399

GVLCG 4N2 + 4N units, or

DGVLCG 8N2 + 7N units.

Workspace may be explicitly provided, if desired, by use of
G3LCG/DG3LCG. The reference is

CALL G3LCG (N, A, LDA, B, LDB, ALPHA, BETA, ACOPY,
 BCOPY, CWK, WK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N2. A and ACOPY may be the
same, in which case A will be destroyed.

BCOPY — Complex work array of length N2. B and BCOPY may be the
same, in which case B will be destroyed.

CWK — Complex work array of length N.

WK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error
Type Code
 4 1 The iteration for the eigenvalues failed to converge.

Algorithm

Routine GVLCG computes the eigenvalues of the generalized eigensystem
Ax = λBx, where A and B are complex matrices of order n. The eigenvalues for
this problem can be infinite; so instead of returning λ, GVLCG returns α and β. If β
is nonzero, then λ = α/β. If the eigenvectors are needed, then use GVCCG.
See page 400.

The routine GVLCG is based on routines for the generalized complex eigenvalue
problem by Garbow (1978). The QZ algorithm is described by Moler and Stewart
(1973). Some timing information is given in Hanson et al. (1990).

Example

In this example, DATA statements are used to set A and B. Then, the eigenvalues
are computed and printed.

C Declaration of variables
 INTEGER LDA, LDB, N
 PARAMETER (N=5, LDA=N, LDB=N)
C
 INTEGER I
 COMPLEX A(LDA,N), ALPHA(N), B(LDB,N), BETA(N), EVAL(N)
 EXTERNAL GVLCG, WRCRN
C
C Define values of A and B
C
 DATA A/(-238.0,-344.0), (76.0,152.0), (118.0,284.0),

400 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 & (-314.0,-160.0), (-54.0,-24.0), (86.0,178.0),
 & (-96.0,-128.0), (55.0,-182.0), (132.0,78.0),
 & (-205.0,-400.0), (164.0,240.0), (40.0,-32.0),
 & (-13.0,460.0), (114.0,296.0), (109.0,148.0),
 & (-166.0,-308.0), (60.0,184.0), (34.0,-192.0),
 & (-90.0,-164.0), (158.0,312.0), (56.0,158.0),
 & (-60.0,-136.0), (-176.0,-214.0), (-424.0,-374.0),
 & (-38.0,-96.0)/
 DATA B/(388.0,94.0), (-304.0,-76.0), (-658.0,-136.0),
 & (-640.0,-10.0), (-162.0,-72.0), (-386.0,-122.0),
 & (384.0,64.0), (-73.0,100.0), (204.0,-42.0), (631.0,158.0),
 & (-250.0,-14.0), (-160.0,16.0), (-109.0,-250.0),
 & (-692.0,-90.0), (131.0,52.0), (556.0,130.0),
 & (-240.0,-92.0), (-118.0,100.0), (288.0,66.0),
 & (-758.0,-184.0), (-396.0,-62.0), (240.0,68.0),
 & (406.0,96.0), (-192.0,154.0), (278.0,76.0)/
C
 CALL GVLCG (N, A, LDA, B, LDB, ALPHA, BETA)
C Compute eigenvalues
 DO 10 I=1, N
 EVAL(I) = ALPHA(I)/BETA(I)
 10 CONTINUE
C Print results
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)

 STOP
 END

Output
 EVAL
 1 2 3 4
(-1.000,-1.333) (0.765, 0.941) (-0.353, 0.412) (-0.353,-0.412)

 5
(-0.353,-0.412)

GVCCG/DGVCCG (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of a generalized complex
eigensystem Az = λBz.

Usage
CALL GVCCG (N, A, LDA, B, LDB, ALPHA, BETA, EVEC, LDEVEC)

Arguments

N — Order of the matrices A and B. (Input)

A — Complex matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex matrix of order N. (Input)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 401

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

ALPHA — Complex vector of length N. Ultimately, alpha(i)/beta(i) (for i = 1, …,
n), will be the eigenvalues of the system in decreasing order of magnitude.
(Output)

BETA — Complex vector of length N. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to ALPHA(J) = BETA (J), is stored in the
J-th column. Each vector is normalized to have Euclidean length equal to the
value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

GVCCG 4N2 + 4N units, or

DGVCCG 8N2 + 7N units.

Workspace may be explicitly provided, if desired, by use of
G6CCG/DG6CCG. The reference is

CALL G6CCG (N, A, LDA, B, LDB, ALPHA, BETA, EVEC,
 LDEVEC, ACOPY, BCOPY, CWK, WK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N2. A and ACOPY may be the

same in which case the first N2 elements of A will be destroyed.

BCOPY — Complex work array of length N2. B and BCOPY may be the

same in which case the first N2 elements of B will be destroyed.

CWK — Complex work array of length N.

WK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error
Type Code
 4 1 The iteration for an eigenvalue failed to converge.

3. The success of this routine can be checked using GPICG (page 403).

Algorithm

Routine GVCCG computes the eigenvalues and eigenvectors of the generalized
eigensystem Ax = λBx. Here, A and B, are complex matrices of order n. The

402 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

eigenvalues for this problem can be infinite; so instead of returning λ, GVCCG
returns α and β. If β is nonzero, then λ = α / β.

The routine GVCCG uses the QZ algorithm described by Moler and Stewart
(1973). The implementation is based on routines of Garbow (1978). Some timing
results are given in Hanson et al. (1990).

Example

In this example, DATA statements are used to set A and B. The eigenvalues and
eigenvectors are computed and printed. The performance index is also computed
and printed. This serves as a check on the computations. For more details, see
routine GPICG on page 403.

 INTEGER LDA, LDB, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)
C
 INTEGER I, NOUT
 REAL GPICG, PI
 COMPLEX A(LDA,N), ALPHA(N), B(LDB,N), BETA(N), EVAL(N),
 & EVEC(LDEVEC,N)
 EXTERNAL GPICG, GVCCG, UMACH
C
C Define values of A and B
C A = (1+0i 0.5+i 0+5i)
C (-10+0i 2+i 0+0i)
C (5+i 1+0i 0.5+3i)
C
C B = (0.5+0i 0+0i 0+0i)
C (3+3i 3+3i 0+i)
C (4+2i 0.5+i 1+i)
C
C Declare variables
 DATA A/(1.0,0.0), (-10.0,0.0), (5.0,1.0), (0.5,1.0), (2.0,1.0),
 & (1.0,0.0), (0.0,5.0), (0.0,0.0), (0.5,3.0)/
 DATA B/(0.5,0.0), (3.0,3.0), (4.0,2.0), (0.0,0.0), (3.0,3.0),
 & (0.5,1.0), (0.0,0.0), (0.0,1.0), (1.0,1.0)/
C Compute eigenvalues
 CALL GVCCG (N, A, LDA, B, LDB, ALPHA, BETA, EVEC, LDEVEC)

 DO 10 I=1, N
 EVAL(I) = ALPHA(I)/BETA(I)
 10 CONTINUE
C Compute performance index
 PI = GPICG(N,N,A,LDA,B,LDB,ALPHA,BETA,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRCRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT, ’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
(-8.18,-25.38) (2.18, 0.61) (0.12, -0.39)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 403

 EVEC
 1 2 3
1 (-0.3267,-0.1245) (-0.3007,-0.2444) (0.0371, 0.1518)
2 (0.1767, 0.0054) (0.8959, 0.0000) (0.9577, 0.0000)
3 (0.9201, 0.0000) (-0.2019, 0.0801) (-0.2215, 0.0968)

Performance index = 0.709

GPICG/DGPICG (Single/Double precision)
Compute the performance index for a generalized complex eigensystem
Az = λBz.

Usage
GPICG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETA, EVEC, LDEVEC)

Arguments

N — Order of the matrices A and B. (Input)

NEVAL — Number of eigenvalue/eigenvector pairs performance index
computation is based on. (Input)

A — Complex matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

B — Complex matrix of order N. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program. (Input)

ALPHA — Complex vector of length NEVAL containing the numerators of
eigenvalues. (Input)

BETA — Complex vector of length NEVAL containing the denominators of
eigenvalues. (Input)

EVEC — Complex N by NEVAL array containing the eigenvectors. (Input)

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

GPICG — Performance index. (Output)

Comments

1. Automatic workspace usage is

GPICG 4N units, or
DGPICG 8N units.

404 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Workspace may be explicitly provided, if desired, by use of
G2ICG/DG2ICG. The reference is

G2ICG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETA, EVEC,
 LDEVEC, WK)

The additional argument is

WK — Complex work array of length 2N.

2. Informational errors
Type Code
 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix A is zero.
 3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETA (J), its eigenvector
should be in the J-th column of EVEC.

Algorithm

Let M = NEVAL, xM = EVEC(*, J) , the j-th column of EVEC. Also, let ε be the

machine precision given by AMACH(4). The performance index, τ, is defined to be

τ
β α

ε β α
=

−

+≤ ≤
max

1

1

1 1 1
j M

j j j j

j j j

Ax Bx

A B x4 9
The norms used are a modified form of the 1-norm. The norm of the complex
vector v is

v v vi i
i

N

1
1

= ℜ + ℑ
=
∑< A

While the exact value of τ is highly machine dependent, the performance of
EVCSF (page 339) is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor
if τ > 100.

The performance index was first developed by the EISPACK project at Argonne
National Laboratory; see Garbow et al. (1977, pages 77−79).

Example

For an example of GPICG, see routine GVCCG on page 400.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 405

GVLSP/DGVLSP (Single/Double precision)
Compute all of the eigenvalues of the generalized real symmetric eigenvalue
problem Az = λBz, with B symmetric positive definite.

Usage
CALL GVLSP (N, A, LDA, B, LDB, EVAL)

Arguments

N — Order of the matrices A and B. (Input)

A — Real symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

B — Positive definite symmetric matrix of order N. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Vector of length N containing the eigenvalues in decreasing order of
magnitude. (Output)

Comments

1. Automatic workspace usage is

GVLSP N2 + 4N units, or

DGVLSP 2N2 + 7N units.

Workspace may be explicitly provided, if desired, by use of
G3LSP/DG3LSP. The reference is

CALL G3LSP (N, A, LDA, B, LDB, EVAL, IWK, WK1, WK2)

The additional arguments are as follows:

IWK — Integer work array of length N.

WK1 — Work array of length 2N.

WK2 — Work array of length N2 + N.

2. Informational errors
Type Code
 4 1 The iteration for an eigenvalue failed to converge.
 4 2 Matrix B is not positive definite.

406 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Algorithm

Routine GVLSP computes the eigenvalues of Ax = λBx with A symmetric and B

symmetric positive definite. The Cholesky factorization B = R7�R, with R a
triangular matrix, is used to transform the equation Ax = λBx to

(R-7 AR-1)(Rx) = λ (Rx)

The eigenvalues of C = R-7 AR- 1 are then computed. This development is found
in Martin and Wilkinson (1968). The Cholesky factorization of B is computed
based on IMSL routine LFTDS, page 64. The eigenvalues of C are computed
based on routine EVLSF, page 337. Further discussion and some timing results are
given Hanson et al. (1990).

Example

In this example, a DATA statement is used to set the matrices A and B. The
eigenvalues of the system are computed and printed.

C Declare variables
 INTEGER LDA, LDB, N
 PARAMETER (N=3, LDA=N, LDB=N)
C
 REAL A(LDA,N), B(LDB,N), EVAL(N)
 EXTERNAL GVLSP, WRRRN
C Define values of A:
C A = (2 3 5)
C (3 2 4)
C (5 4 2)
 DATA A/2.0, 3.0, 5.0, 3.0, 2.0, 4.0, 5.0, 4.0, 2.0/
C
C Define values of B:
C B = (3 1 0)
C (1 2 1)
C (0 1 1)
 DATA B/3.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 1.0/
C
C Find eigenvalues
 CALL GVLSP (N, A, LDA, B, LDB, EVAL)
C Print results
 CALL WRRRN (’EVAL’, 1, N, EVAL, 1, 0)
 END

Output
 EVAL
 1 2 3
-4.717 4.393 -0.676

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 407

GVCSP/DGVCSP (Single/Double precision)
Compute all of the eigenvalues and eigenvectors of the generalized real
symmetric eigenvalue problem Az = λBz, with B symmetric positive definite.

Usage
CALL GVCSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrices A and B. (Input)

A — Real symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

B — Positive definite symmetric matrix of order N. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Vector of length N containing the eigenvalues in decreasing order of
magnitude. (Output)

EVEC — Matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column.
Each vector is normalized to have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

GVCSP N2 + 5N units, or

DGVCSP 2N2 + 9N units.

Workspace may be explicitly provided, if desired, by use of
G3CSP/DG3CSP. The reference is

CALL G3CSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC,
 IWK, WK1, WK2)

The additional arguments are as follows:

IWK — Integer work array of length N.

WK1 — Work array of length 3N.

WK2 — Work array of length N2 + N.

408 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2. Informational errors
Type Code
 4 1 The iteration for an eigenvalue failed to converge.
 4 2 Matrix B is not positive definite.

3. The success of this routine can be checked using GPISP (page 409).

Algorithm

Routine GVLSP (page 405) computes the eigenvalues and eigenvectors of
Az = λBz, with A symmetric and B symmetric positive definite. The Cholesky

factorization B = R7R, with R a triangular matrix, is used to transform the
equation Az = λBz, to

(R-T AR- 1)(Rz) = λ (Rz)

The eigenvalues and eigenvectors of C = R-T AR- 1 are then computed. The

generalized eigenvectors of A are given by z = R- 1 x, where x is an eigenvector of
C. This development is found in Martin and Wilkinson (1968). The Cholesky
factorization is computed based on IMSL routine LFTDS, page 64. The
eigenvalues and eigenvectors of C are computed based on routine EVCSF, page
339. Further discussion and some timing results are given Hanson et al. (1990).

Example

In this example, a DATA statement is used to set the matrices A and B. The
eigenvalues, eigenvectors and performance index are computed and printed. For
details on the performance index, see IMSL routine GPISP on page 409.

C Declare variables
 INTEGER LDA, LDB, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)
C
 INTEGER NOUT
 REAL A(LDA,N), B(LDB,N), EVAL(N), EVEC(LDEVEC,N), GPISP, PI
 EXTERNAL GPISP, GVCSP, UMACH, WRRRN
C Define values of A:
C A = (1.1 1.2 1.4)
C (1.2 1.3 1.5)
C (1.4 1.5 1.6)
 DATA A/1.1, 1.2, 1.4, 1.2, 1.3, 1.5, 1.4, 1.5, 1.6/
C
C Define values of B:
C B = (2.0 1.0 0.0)
C (1.0 2.0 1.0)
C (0.0 1.0 2.0)
 DATA B/2.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 2.0/
C
C Find eigenvalues and vectors
 CALL GVCSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC)
C Compute performance index
 PI = GPISP(N,N,A,LDA,B,LDB,EVAL,EVEC,LDEVEC)
C Print results
 CALL UMACH (2, NOUT)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis • 409

 CALL WRRRN (’EVAL’, 1, N, EVAL, 1, 0)
 CALL WRRRN (’EVEC’, N, N, EVEC, LDEVEC, 0)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
1.386 -0.058 -0.003

 EVEC
 1 2 3
1 0.6431 -0.1147 -0.6817
2 -0.0224 -0.6872 0.7266
3 0.7655 0.7174 -0.0858

Performance index = 0.620

GPISP/DGPISP (Single/Double precision)
Compute the performance index for a generalized real symmetric eigensystem
problem.

Usage
GPISP(N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC)

Arguments

N — Order of the matrices A and B. (Input)

NEVAL — Number of eigenvalue/eigenvector pairs that the performance index
computation is based on. (Input)

A — Symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

B — Symmetric matrix of order N. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program. (Input)

EVAL — Vector of length NEVAL containing eigenvalues. (Input)

EVEC — N by NEVAL array containing the eigenvectors. (Input)

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program. (Input)

GPISP — Performance index. (Output)

410 • Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

GPISP 2 * N units, or
DGPISP 4 * N units.

Workspace may be explicitly provided, if desired, by use of
G2ISP/DG2ISP. The reference is

G2ISP(N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC,
 WORK)

The additional argument is

WORK — Work array of length 2 * N.

2. Informational errors
Type Code
 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix A is zero.
 3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETA(J), its eigenvector should
be in the J-th column of EVEC.

Algorithm

Let M = NEVAL, λ = EVAL, xM = EVEC(*, J) , the j-th column of EVEC. Also, let ε
be the machine precision given by AMACH(4). The performance index, τ, is
defined to be

τ
λ

ε λ
=

−

+≤ ≤
max

1

1

1 1 1
j M

j j j

j j

Ax Bx

A B x4 9
The norms used are a modified form of the 1-norm. The norm of the complex
vector v is

v v vi i
i

N

1
1

= ℜ + ℑ
=
∑< A

While the exact value of τ is highly machine dependent, the performance of
EVCSF (page 339) is considered excellent if τ < 1, good if 1 ≤ τ ≤ 100, and poor
if τ > 100. The performance index was first developed by the EISPACK project
at Argonne National Laboratory; see Garbow et al. (1977, pages 77−79).

Example

For an example of GPISP, see routine GVCSP on page 407.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 411

Chapter 3: Interpolation and
Approximation

Routines
3.1. Cubic Spline Interpolation

Easy to use cubic spline routine.. CSIEZ 420
Not-a-knot ... CSINT 423
Derivative end conditions.. CSDEC 425
Hermite ... CSHER 429
Akima .. CSAKM 432
Shape preserving..CSCON 434
Periodic ..CSPER 438

3.2. Cubic Spline Evaluation and Integration
Evaluation .. CSVAL 440
Evaluation of the derivative... CSDER 441
Evaluation on a grid .. CS1GD 443
Integration ...CSITG 445

3.3. B-spline Interpolation
Easy to use spline routine...SPLEZ 447
One-dimensional interpolation .. BSINT 450
Knot sequence given interpolation data...............................BSNAK 454
Optimal knot sequence given interpolation dataBSOPK 457
Two-dimensional tensor product interpolationBS2IN 459
Three-dimensional tensor product interpolation.....................BS3IN 464

3.4. Spline Evaluation, Integration, and Conversion to Piecewise
Polynomial Given the B-spline Representation
Evaluation .. BSVAL 469
Evaluation of the derivative..BSDER 471
Evaluation on a grid ...BS1GD 473
One-dimensional integration ... BSITG 476
Two-dimensional evaluation..BS2VL 479
Two-dimensional evaluation of the derivativeBS2DR 480
Two-dimensional evaluation on a grid..................................BS2GD 483
Two-dimensional integration ... BS2IG 487

412 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Three-dimensional evaluation .. BS3VL 490
Three-dimensional evaluation of the derivative................... BS3DR 491
Three-dimensional evaluation on a grid BS3GD 495
Three-dimensional integration ...BS3IG 500
Convert B-spline representation to piecewise polynomial... BSCPP 504

3.5. Piecewise Polynomial
Evaluation...PPVAL 505
Evaluation of the derivative..PPDER 507
Evaluation on a grid... PP1GD 510
Integration..PPITG 512

3.6. Quadratic Polynomial Interpolation Routines for Gridded Data
One-dimensional evaluation .. QDVAL 514
One-dimensional evaluation of the derivative..................... QDDER 516
Two-dimensional evaluation ...QD2VL 518
Two-dimensional evaluation of the derivative......................QD2DR 520
Three-dimensional evaluation ..QD3VL 523
Three-dimensional evaluation of the derivative...................QD3DR 525

3.7. Scattered Data Interpolation
Akima’s surface fitting method .. SURF 529

3.8. Least-Squares Approximation
Linear polynomial...RLINE 532
General polynomial..RCURV 535
General functions .. FNLSQ 539
Splines with fixed knots ... BSLSQ 543
Splines with variable knot ...BSVLS 547
Splines with linear constraints ...CONFT 551
Two-dimensional tensor-product splines with fixed knots BSLS2 561
Three-dimensional tensor-product splines with fixed knots.. BSLS3 566

3.9. Cubic Spline Smoothing
Smoothing by error detection ..CSSED 572
Smoothing spline .. CSSMH 575
Smoothing spline using cross-validationCSSCV 578

3.10. Rational L∞ Approximation
Rational Chebyshev...RATCH 581

Usage Notes
The majority of the routines in this chapter produce piecewise polynomial or
spline functions that either interpolate or approximate given data, or are support
routines for the evaluation, integration, and conversion from one representation to
another. Two major subdivisions of routines are provided. The cubic spline
routines begin with the letters “CS” and utilize the piecewise polynomial
representation described below. The B-spline routines begin with the letters

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 413

“BS” and utilize the B-spline representation described below. Most of the spline
routines are based on routines in the book by de Boor (1978).

Piecewise Polynomials

A univariate piecewise polynomial (function) p is specified by giving its

breakpoint sequence ξ ∈ RQ, the order k (degree k − 1) of its polynomial pieces,
and the k × (n − 1) matrix c of its local polynomial coefficients. In terms of this
information, the piecewise polynomial (pp) function is given by

p x c
x

j
xji

j

k
i

j

i i0 5 1 6
0 5=
−

−
≤

=

−

+∑
1

1

11

ξ
ξ ξ

!
for <

The breakpoint sequence ξ is assumed to be strictly increasing, and we extend the
pp function to the entire real axis by extrapolation from the first and last intervals.
The subroutines in this chapter will consistently make the following
identifications for FORTRAN variables:

c

k

N

=
=
=
=

PPCOEF

BREAK

KORDER

NBREAK

ξ

This representation is redundant when the pp function is known to be smooth. For
example, if p is known to be continuous, then we can compute c��L�� from the cML�as
follows

c p c c c
ki i i i i ki

i
k

1 1 1 1 2

1

1, !+ +

−

= = + + +
−

ξ1 6 1 6
0 5∆ξ
∆ξ

K

where ∆ξL := ξL�� − ξL. For smooth pp, we prefer to use the irredundant
representation in terms of the B-(for ‘basis’)-splines, at least when such a function
is first to be determined. The above pp representation is employed for evaluation
of the pp function at many points since it is more efficient.

Splines and B-splines

B-splines provide a particularly convenient and suitable basis for a given class of
smooth pp functions. Such a class is specified by giving its breakpoint sequence,
its order, and the required smoothness across each of the interior breakpoints.
The corresponding B-spline basis is specified by giving its knot sequence t ∈

R0. The specification rule is the following: If the class is to have all derivatives
up to and including the j-th derivative continuous across the interior breakpoint
ξL, then the number ξL should occur k − j − 1 times in the knot sequence.

Assuming that ξ�, and ξQ are the endpoints of the interval of interest, one

414 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

chooses the first k knots equal to ξ� and the last k knots equal to ξQ. This can be

done since the B-splines are defined to be right continuous near ξ� and left

continuous near ξQ.

When the above construction is completed, we will have generated a knot
sequence t of length M; and there will be m := M − k B-splines of order k, say B� ,
…, BP that span the pp functions on the interval with the indicated smoothness.
That is, each pp function in this class has a unique representation

p = a�B� + a�B� + … + aPBP

as a linear combination of B-splines. The B-spline routines will consistently make
use of the following identifiers for FORTRAN variables:

a

m

M

=
=
=
=

BSCOEF

XKNOT

NCOEF

NKNOT

t

A B-spline is a particularly compact pp function. BL is a nonnegative function that
is nonzero only on the interval [tL, tL���N]. More precisely, the support of the i-th B-
spline is [tL, tL���N]. No pp function in the same class (other than the zero function)
has smaller support (i.e., vanishes on more intervals) than a B-spline. This makes
B-splines particularly attractive basis functions since the influence of any
particular B-spline coefficient extends only over a few intervals. When it is
necessary to emphasize the dependence of the B-spline on its parameters, we will
use the notation

BL�N�W

to denote the i-th B-spline of order k for the knot sequence t.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 415

CSAKM

CSINT
CSDEC (natural spline)

CSCON

BSINT with K=3 BSINT with K=5

Figure 3-1 Spline Interpolants of the Same Data

Cubic Splines

Cubic splines are smooth (i.e., C � or C �) fourth-order pp functions. For historical
and other reasons, cubic splines are the most heavily used pp functions.
Therefore, we provide special routines for their construction and evaluation. The
routines for their determination use yet another representation (in terms of value
and slope at all the breakpoints) but output the pp representation as described
above for general pp functions.

We provide seven cubic spline interpolation routines: CSIEZ (page 420), CSINT
(page 423), CSDEC (page 425), CSHER (page 429), CSAKM (page 432), CSCON
(page 434), and CSPER (page 438). The first routine, CSIEZ, is an easy-to-use
version of CSINT coupled with CSVAL. The routine CSIEZ will compute the

416 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

value of the cubic spline interpolant (to given data using the ‘not-a-knot’
criterion) on a grid. The routine CSDEC allows the user to specify various
endpoint conditions (such as the value of the first or second derivative at the right
and left points). This means that the natural cubic spline can be obtained using
this routine by setting the second derivative to zero at both endpoints. If function
values and derivatives are available, then the Hermite cubic interpolant can be
computed using CSHER. The two routines CSAKM and CSCON are designed so that
the shape of the curve matches the shape of the data. In particular, CSCON

preserves the convexity of the data while CSAKM attempts to minimize
oscillations. If the data is periodic, then CSPER will produce a periodic
interpolant. The routine CONFT (page 551) allows the user wide latitude in
enforcing shapes. This routine returns the B-spline representation.

It is possible that the cubic spline interpolation routines will produce
unsatisfactory results. The adventurous user should consider using the B-spline
interpolation routine BSINT that allows one to choose the knots and order of the
spline interpolant.

In Figure 3-1, we display six spline interpolants to the same data. This data can be
found in Example 1 of the IMSL routine CSCON (page 434) Notice the different
characteristics of the interpolants. The interpolation routines CSAKM (page 432)
and CSCON are the only two that attempt to preserve the shape of the data. The
other routines tend to have extraneous inflection points, with the piecewise
quartic (k = 5) exhibiting the most oscillation.

Tensor Product Splines

The simplest method of obtaining multivariate interpolation and approximation
routines is to take univariate methods and form a multivariate method via tensor
products. In the case of two-dimensional spline interpolation, the development
proceeds as follows: Let t[be a knot sequence for splines of order k[, and t\ be a
knot sequence for splines of order k\. Let N[+ k[be the length of t[, and N\�+ k\
be the length of t\. Then, the tensor product spline has the form

m

N

nm
n

N

n k m k

y x

x x y y
c B x B y

= =
∑ ∑

1 1
, , , ,() ()t t

Given two sets of points

x yi i
N

i i
Nx y; @ ; @= =1 1

 and

for which the corresponding univariate interpolation problem could be solved, the
tensor product interpolation problem becomes: Find the coefficients cQP so that

m

N

nm
n

N

n k i m k i ij

y x

x x y y
c B x B y f

= =
∑ ∑ =

1 1
, , , ,() ()t t

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 417

This problem can be solved efficiently by repeatedly solving univariate
interpolation problems as described in de Boor (1978, page 347). Three-
dimensional interpolation has analogous behavior. In this chapter, we provide
routines that compute the two-dimensional tensorproduct spline coefficients given
two-dimensional interpolation data (BS2IN, page 459), compute the three-
dimensional tensor-product spline coefficients given three-dimensional
interpolation data (BS3IN, page 464) compute the two-dimensional tensor-
product spline coefficients for a tensor-product least squares problem (BSLS2,
page 561), and compute the three-dimensional tensor-product spline coefficients
for a tensor-product least squares problem (BSLS3, page 566). In addition, we
provide evaluation, differentiation, and integration routines for the twoand three-
dimensional tensor-product spline functions. The relevant routines are BS2VL
(page 479), BS3VL (page 490), BS2DR (page 480), BS3DR (page 491), BS2GD
(page 483), BS3GD (page 495), BS2IG (page 487), and BS3IG (page 500).

Quadratic Interpolation

The routines that begin with the letters “QD” in this chapter are designed to
interpolate a one-, two-, or three-dimensional (tensor product) table of values and
return an approximation to the value of the underlying function or one of its
derivatives at a given point. These routines are all based on quadratic polynomial
interpolation.

Scattered Data Interpolation

We have one routine, SURF, that will return values of an interpolant to scattered
data in the plane. This routine is based on work by Akima (1978), which utilizes

C� piecewise quintics on a triangular mesh.

Least Squares

Routines are provided to smooth noisy data: regression using linear polynomials
(RLINE), regression using arbitrary polynomials (RCURV, page 535), and
regression using user-supplied functions (FNLSQ, page 539). Additional routines
compute the least-squares fit using splines with fixed knots (BSLSQ, page 543) or
free knots (BSVLS, page 547). These routines can produce cubic-spline least-
squares fit simply by setting the order to 4. The routine CONFT (page 551)
computes a fixed-knot spline weighted least-squares fit subject to linear
constraints. This routine is very general and is recommended if issues of shape
are important. The two- and three-dimensional tensor-product spline regression
routines are (BSLS2, page 561) and (BSLS3, page 566).

Smoothing by Cubic Splines

Two “smoothing spline” routines are provided. The routine CSSMH (page 575)
returns the cubic spline that smooths the data, given a smoothing parameter
chosen by the user. Whereas, CSSCV (page 578) estimates the smoothing

418 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

parameter by cross-validation and then returns the cubic spline that smooths the
data. In this sense, CSSCV is the easier of the two routines to use. The routine
CSSED (page 572) returns a smoothed data vector approximating the values of the
underlying function when the data are contaminated by a few random spikes.

Rational Chebyshev Approximation

The routine RATCH (page 581) computes a rational Chebyshev approximation to a
user-supplied function. Since polynomials are rational functions, this routine can
be used to compute best polynomial approximations.

Using the Univariate Spline Routines

An easy to use spline interpolation routine CSIEZ (page 420) is provided . This
routine computes an interpolant and returns the values of the interpolant on a
user-supplied grid. A slightly more advanced routine SPLEZ (page 447) computes
(at the users discretion) one of several interpolants or least-squares fits and
returns function values or derivatives on a user-supplied grid.

For more advanced uses of the interpolation (or least squares) spline routines, one
first forms an interpolant from interpolation (or least-squares) data. Then it must
be evaluated, differentiated, or integrated once the interpolant has been formed.
One way to perform these tasks, using cubic splines with the ‘not-a-knot’ end
condition, is to call CSINT to obtain the local coefficients of the piecewise cubic
interpolant and then call CSVAL to evaluate the interpolant. A more complicated
situation arises if one wants to compute a quadratic spline interpolant and then
evaluate it (efficiently) many times. Typically, the sequence of routines called
might be BSNAK (get the knots), BSINT (returns the B-spline coefficients of the
interpolant), BSCPP (convert to pp form), and PPVAL (evaluate). The last two
calls could be replaced by a call to the B-spline grid evaluator BS1GD, or the last
call could be replaced with pp grid evaluator PP1GD. The interconnection of the
spline routines is summarized in Figure 3-2.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 419

CSVAL

CSDER

CSITG

CS1GD

BSNAK

BSOPK

BSINT

BSLSQ

BSVLS

CONFT

BSCPP

BSVAL

BSDER

BSITG

BS1GD

DATA

CSSMH

CSSCV

PPVAL

PPDER

PPITG

PP1GD

OUT

CSINT

CSHER

CSCON

CSPER

CSAKM

CSDEC

Figure 3-2 Interrelation of the Spline Routines

Choosing an Interpolation Routine

The choice of an interpolation routine depends both on the type of data and on the
use of the interpolant. We provide 18 interpolation routines. These routines are
depicted in a decision tree in Figure 3-3. This figure provides a guide for
selecting an appropriate interpolation routine. For example, if periodic one-
dimensional (univariate) data is available, then the path through univariate to
periodic leads to the IMSL routine CSPER, which is the proper routine for this
setting. The general-purpose univariate interpolation routines can be found in

420 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

the box beginning with CSINT. Two- and three-dimensional tensor-product
interpolation routines are also provided. For two-dimensional scattered data, the
appropriate routine is SURF .

INTERPOLATION

CSPER

CSHER

CSAKM

CSCON
SURF

Scattered

data

BS2IN

QD2VL

QD2DR

BS3IN

QD3VL

QD3DR
 CSIEZ

CSINT

CSDEC

SPLEZ

BSINT

QDVAL

QDDER

univariate multivariate

shape

preserving

periodic

derivatives

2D

3D

tensor
product

Figure 3-3 Choosing an Interplation Routine

CSIEZ/DCSIEZ (Single/Double precision)
Compute the cubic spline interpolant with the ‘not-a-knot’ condition and return
values of the interpolant at specified points.

Usage
CALL CSIEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 421

Arguments

NDATA — Number of data points. (Input)
NDATA must be at least 2.

XDATA — Array of length NDATA containing the data point abscissas. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

N — Length of vector XVEC. (Input)

XVEC — Array of length N containing the points at which the spline is to be
evaluated. (Input)

VALUE — Array of length N containing the values of the spline at the points in
XVEC. (Output)

Comments

Automatic workspace usage is

CSIEZ MAX0(N, NDATA) + 3 * N + 5 * NDATA units, or
DCSIEZ MAX0(N, NDATA) + 5 * N + 10 * NDATA units.

Workspace may be explicitly provided, if desired, by use of C2IEZ/DC2IEZ. The
reference is

CALL C2IEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE, IWK, WK1,
 WK2)

The additional arguments are as follows:

IWK — Integer work array of length MAX0(N, NDATA) + N.

WK1 — Real work array of length 5 * NDATA.

WK2 — Real work array of length 2 * N.

Algorithm

This routine is designed to let the user easily compute the values of a cubic spline
interpolant. The routine CSIEZ computes a spline interpolant to a set of data
points (xL, fL) for i = 1, …, NDATA. The output for this routine consists of a vector
of values of the computed cubic spline. Specifically, let n = N, v = XVEC, and y =
VALUE, then if s is the computed spline we set

yM�= s(vM�)j = 1, …, n

Additional documentation can be found by referring to the IMSL routines CSINT

(page 423) or SPLEZ (page 447).

Example

In this example, a cubic spline interpolant to a function F is computed. The values
of this spline are then compared with the exact function values.

422 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 INTEGER NDATA
 PARAMETER (NDATA=11)
C
 INTEGER I, NOUT
 REAL F, FDATA(NDATA), FLOAT, SIN, VALUE(2*NDATA-1), X,
 & XDATA(NDATA), XVEC(2*NDATA-1)
 INTRINSIC FLOAT, SIN
 EXTERNAL CSIEZ, UMACH
C Define function
 F(X) = SIN(15.0*X)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
 DO 20 I=1, 2*NDATA - 1
 XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2)
 20 CONTINUE
C Compute cubic spline interpolant
 CALL CSIEZ (NDATA, XDATA, FDATA, 2*NDATA-1, XVEC, VALUE)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99998)
99998 FORMAT (13X, ’X’, 9X, ’INTERPOLANT’, 5X, ’ERROR’)
C Print the interpolant and the error
C on a finer grid
 DO 30 I=1, 2*NDATA - 1
 WRITE (NOUT,99999) XVEC(I), VALUE(I), F(XVEC(I)) - VALUE(I)
 30 CONTINUE
99999 FORMAT(’ ’, 2F15.3, F15.6)
 END

Output
 X INTERPOLANT ERROR
0.000 0.000 0.000000
0.050 0.809 -0.127025
0.100 0.997 0.000000
0.150 0.723 0.055214
0.200 0.141 0.000000
0.250 -0.549 -0.022789
0.300 -0.978 0.000000
0.350 -0.843 -0.016246
0.400 -0.279 0.000000
0.450 0.441 0.009348
0.500 0.938 0.000000
0.550 0.903 0.019947
0.600 0.412 0.000000
0.650 -0.315 -0.004895
0.700 -0.880 0.000000
0.750 -0.938 -0.029541
0.800 -0.537 0.000000
0.850 0.148 0.034693
0.900 0.804 0.000000
0.950 1.086 -0.092559
1.000 0.650 0.000000

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 423

CSINT/DCSINT (Single/Double precision)
Compute the cubic spline interpolant with the ‘not-a-knot’ condition.

Usage
CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Arguments

NDATA — Number of data points. (Input)
NDATA must be at least 2.

XDATA — Array of length NDATA containing the data point abscissas. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise
cubic representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the
cubic pieces. (Output)

Comments

1. Automatic workspace usage is

CSINT NDATA units, or
DCSINT NDATA units.

Workspace may be explicitly provided, if desired, by use of
C2INT/DC2INT. The reference is

CALL C2INT (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK)

The additional argument is

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL (page 440); its derivative
can be evaluated using CSDER (page 441).

3. Note that column NDATA of CSCOEF is used as workspace.

Algorithm

The routine CSINT computes a C � cubic spline interpolant to a set of data points
(xL, fL) for i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas.
Endpoint conditions are automatically determined by the program. These
conditions correspond to the “not-a-knot” condition (see de Boor 1978), which
requires that the third derivative of the spline be continuous at the second and
next-to-last breakpoint. If N is 2 or 3, then the linear or quadratic interpolating
polynomial is computed, respectively.

424 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

If the data points arise from the values of a smooth (say C �) function f, i.e.
fL�= f(xL), then the error will behave in a predictable fashion. Let ξ be the
breakpoint vector for the above spline interpolant. Then, the maximum absolute
error satisfies

f s C f
N N

− ≤)
ξ ξ ξ ξ

ξ
1 1

4 4
, ,

0

where

ξ ξ ξ: max
, ,

= −
=

−
i N

i i
2

1
K

For more details, see de Boor (1978, pages 55−56).

Example

In this example, a cubic spline interpolant to a function F is computed. The values
of this spline are then compared with the exact function values.

C Specifications
 INTEGER NDATA
 PARAMETER (NDATA=11)
C
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), CSVAL, F,
 & FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
 EXTERNAL CSINT, CSVAL, UMACH
C Define function
 F(X) = SIN(15.0*X)

C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Compute cubic spline interpolant
 CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF)
C Get output unit number.
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
C Print the interpolant and the error
C on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,NINTV,BREAK,CSCOEF),
 & F(X) - CSVAL(X,NINTV,BREAK,
 & CSCOEF)
 20 CONTINUE
 END

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 425

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.809 -0.127025
0.100 0.997 0.000000
0.150 0.723 0.055214
0.200 0.141 0.000000
0.250 -0.549 -0.022789
0.300 -0.978 0.000000
0.350 -0.843 -0.016246
0.400 -0.279 0.000000
0.450 0.441 0.009348
0.500 0.938 0.000000
0.550 0.903 0.019947
0.600 0.412 0.000000
0.650 -0.315 -0.004895
0.700 -0.880 0.000000
0.750 -0.938 -0.029541
0.800 -0.537 0.000000
0.850 0.148 0.034693
0.900 0.804 0.000000
0.950 1.086 -0.092559
1.000 0.650 0.000000

CSDEC/DCSDEC (Single/Double precision)
Compute the cubic spline interpolant with specified derivative endpoint
conditions.

Usage
CALL CSDEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT,
 DRIGHT, BREAK, CSCOEF)

Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the data point abscissas. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

ILEFT — Type of end condition at the left endpoint. (Input)

ILEFT Condition
 0 “Not-a-knot” condition
 1 First derivative specified by DLEFT

 2 Second derivative specified by DLEFT

DLEFT — Derivative at left endpoint if ILEFT is equal to 1 or 2. (Input)
If ILEFT = 0, then DLEFT is ignored.

IRIGHT — Type of end condition at the right endpoint. (Input)

426 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

IRIGHT Condition
 0 “Not-a-knot” condition
 1 First derivative specified by DRIGHT

 2 Second derivative specified by DRIGHT

DRIGHT — Derivative at right endpoint if IRIGHT is equal to 1 or 2. (Input) If
IRIGHT = 0 then DRIGHT is ignored.

BREAK — Array of length NDATA containing the breakpoints for the piecewise
cubic representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the
cubic pieces. (Output)

Comments

1. Automatic workspace usage is

CSDEC NDATA units, or
DCSDEC NDATA units.

Workspace may be explicitly provided, if desired, by use of
C2DEC/DC2DEC. The reference is

CALL C2DEC (NDATA, XDATA, FDATA, ILEFT, DLEFT,
 IRIGHT, DRIGHT, BREAK, CSCOEF, IWK)

The additional argument is

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL (page 440); its derivative
can be evaluated using CSDER (page 441).

3. Note that column NDATA of CSCOEF is used as workspace.

Algorithm

The routine CSDEC computes a C � cubic spline interpolant to a set of data points
(xL, fL) for i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas.
Endpoint conditions are to be selected by the user. The user may specify not-a-
knot, first derivative, or second derivative at each endpoint (see de Boor 1978,
Chapter 4).

If the data (including the endpoint conditions) arise from the values of a smooth

(say C �) function f, i.e. fL�= f(xL), then the error will behave in a predictable

fashion. Let ξ be the breakpoint vector for the above spline interpolant. Then, the
maximum absolute error satisfies

f s C f
N N

− ≤)
ξ ξ ξ ξ

ξ
1 1

4 4
, ,

0

where

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 427

ξ ξ ξ:
, ,

= −
=

−
i N

i i
2

1
K

For more details, see de Boor (1978, Chapter 4 and 5).

Example 1

In Example 1, a cubic spline interpolant to a function f is computed. The value of
the derivative at the left endpoint and the value of the second derivative at the
right endpoint are specified. The values of this spline are then compared with the
exact function values.

 INTEGER ILEFT, IRIGHT, NDATA
 PARAMETER (ILEFT=1, IRIGHT=2, NDATA=11)
C
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), COS, CSCOEF(4,NDATA), CSVAL, DLEFT,
 & DRIGHT, F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)
 INTRINSIC COS, FLOAT, SIN
 EXTERNAL CSDEC, CSVAL, UMACH
C Define function
 F(X) = SIN(15.0*X)
C Initialize DLEFT and DRIGHT
 DLEFT = 15.0*COS(15.0*0.0)
 DRIGHT = -15.0*15.0*SIN(15.0*1.0)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Compute cubic spline interpolant
 CALL CSDEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,
 & BREAK, CSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
C Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,NINTV,BREAK,CSCOEF),
 & F(X) - CSVAL(X,NINTV,BREAK,
 & CSCOEF)
 20 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.675 0.006332
0.100 0.997 0.000000
0.150 0.759 0.019485
0.200 0.141 0.000000
0.250 -0.558 -0.013227
0.300 -0.978 0.000000

428 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

0.350 -0.840 -0.018765
0.400 -0.279 0.000000
0.450 0.440 0.009859
0.500 0.938 0.000000
0.550 0.902 0.020420
0.600 0.412 0.000000
0.650 -0.312 -0.007301
0.700 -0.880 0.000000
0.750 -0.947 -0.020391
0.800 -0.537 0.000000
0.850 0.182 0.000497
0.900 0.804 0.000000
0.950 0.959 0.035074
1.000 0.650 0.000000

Example 2

In Example 2, we compute the natural cubic spline interpolant to a function f by
forcing the second derivative of the interpolant to be zero at both endpoints. As in
the previous example, we compare the exact function values with the values of
the spline.

 INTEGER ILEFT, IRIGHT, NDATA
 PARAMETER (ILEFT=2, IRIGHT=2, NDATA=11)
C
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), CSVAL, DLEFT, DRIGHT,
 & F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
 EXTERNAL CSDEC, CSVAL, UMACH
C Initialize DLEFT and DRIGHT
 DATA DLEFT/0./, DRIGHT/0./
C Define function
 F(X) = SIN(15.0*X)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Compute cubic spline interpolant
 CALL CSDEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,
 & BREAK, CSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
C Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,NINTV,BREAK,CSCOEF),
 & F(X) - CSVAL(X,NINTV,BREAK,
 & CSCOEF)
 20 CONTINUE
 END

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 429

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.667 0.015027
0.100 0.997 0.000000
0.150 0.761 0.017156
0.200 0.141 0.000000
0.250 -0.559 -0.012609
0.300 -0.978 0.000000
0.350 -0.840 -0.018907
0.400 -0.279 0.000000
0.450 0.440 0.009812
0.500 0.938 0.000000
0.550 0.902 0.020753
0.600 0.412 0.000000
0.650 -0.311 -0.008586
0.700 -0.880 0.000000
0.750 -0.952 -0.015585
0.800 -0.537 0.000000

CSHER/DCSHER (Single/Double precision)
Compute the Hermite cubic spline interpolant.

Usage
CALL CSHER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF)

Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the data point abscissas. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

DFDATA — Array of length NDATA containing the values of the derivative.
(Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise
cubic representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the
cubic pieces. (Output)

Comments

1. Automatic workspace usage is

CSHER NDATA units, or
DCSHER NDATA units.

Workspace may be explicitly provided, if desired, by use of
C2HER/DC2HER. The reference is

430 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK,
 CSCOEF, IWK)

The additional argument is

IWK — Work array of length NDATA.

2. Informational error
Type Code
 4 2 The XDATA values must be distinct.

3. The cubic spline can be evaluated using CSVAL (page 440); its derivative
can be evaluated using CSDER (page 441).

4. Note that column NDATA of CSCOEF is used as workspace.

Algorithm

The routine CSHER computes a C � cubic spline interpolant to the set of data
points

x f x fi i i i, ,1 6 1 6and ′

for i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas.

If the data points arise from the values of a smooth (say C �) function f, i.e.,

f f x f f xi i i i= ′ = ′() ()and

then the error will behave in a predictable fashion. Let ξ be the

breakpoint vector for the above spline interpolant. Then, the maximum absolute
error satisfies

f s C f
N N

− ≤)
ξ ξ ξ ξ

ξ
1 1

4 4
, ,

0

where

ξ ξ ξ:
, ,

= −
=

−
i N

i i
2

1
K

For more details, see de Boor (1978, page 51).

Example

In this example, a cubic spline interpolant to a function f is computed. The value
of the function f and its derivative f ′ are computed on the interpolation nodes and
passed to CSHER. The values of this spline are then compared with the exact
function values.

 INTEGER NDATA
 PARAMETER (NDATA=11)
C
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), COS, CSCOEF(4,NDATA), CSVAL, DF,
 & DFDATA(NDATA), F, FDATA(NDATA), FLOAT, SIN, X,

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 431

 & XDATA(NDATA)
 INTRINSIC COS, FLOAT, SIN
 EXTERNAL CSHER, CSVAL, UMACH
C Define function and derivative
 F(X) = SIN(15.0*X)
 DF(X) = 15.0*COS(15.0*X)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 DFDATA(I) = DF(XDATA(I))
 10 CONTINUE
C Compute cubic spline interpolant
 CALL CSHER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
C Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3, F15.6)’) X, CSVAL(X,NINTV,BREAK,CSCOEF)
 & , F(X) - CSVAL(X,NINTV,BREAK,
 & CSCOEF)
 20 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.673 0.008654
0.100 0.997 0.000000
0.150 0.768 0.009879
0.200 0.141 0.000000
0.250 -0.564 -0.007257
0.300 -0.978 0.000000
0.350 -0.848 -0.010906
0.400 -0.279 0.000000
0.450 0.444 0.005714
0.500 0.938 0.000000
0.550 0.911 0.011714
0.600 0.412 0.000000
0.650 -0.315 -0.004057
0.700 -0.880 0.000000
0.750 -0.956 -0.012288
0.800 -0.537 0.000000
0.850 0.180 0.002318
0.900 0.804 0.000000
0.950 0.981 0.012616
1.000 0.650 0.000000

432 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

CSAKM/DCSAKM (Single/Double precision)
Compute the Akima cubic spline interpolant.

Usage
CALL CSAKM (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the data point abscissas. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise
cubic representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the
cubic pieces. (Output)

Comments

1. Automatic workspace usage is

CSAKM NDATA units, or
DCSAKM NDATA units.

Workspace may be explicitly provided, if desired, by use of
C2AKMD/C2AKM. The reference is

CALL C2AKM (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK)

The additional argument is

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL (page 440); its derivative
can be evaluated using CSDER (page 441).

3. Note that column NDATA of CSCOEF is used as workspace.

Algorithm

The routine CSAKM computes a C � cubic spline interpolant to a set of data points
(xL, fL) for i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas.
Endpoint conditions are automatically determined by the program; see Akima
(1970) or de Boor (1978).

If the data points arise from the values of a smooth (say C �) function f, i.e.
fL = f(xL), then the error will behave in a predictable fashion. Let ξ be the

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 433

breakpoint vector for the above spline interpolant. Then, the maximum absolute
error satisfies

f s C f
N N

− ≤)
ξ ξ ξ ξ

ξ
1 1

2 2
, ,

0

where

ξ ξ ξ: max
, ,

= −
=

−
i N

i i
2

1
K

The routine CSAKM is based on a method by Akima (1970) to combat wiggles in
the interpolant. The method is nonlinear; and although the interpolant is a
piecewise cubic, cubic polynomials are not reproduced. (However, linear
polynomials are reproduced.)

Example

In this example, a cubic spline interpolant to a function f is computed. The values
of this spline are then compared with the exact function values.

 INTEGER NDATA
 PARAMETER (NDATA=11)
C
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), CSVAL, F,
 & FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
 EXTERNAL CSAKM, CSVAL, UMACH
C Define function
 F(X) = SIN(15.0*X)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Compute cubic spline interpolant
 CALL CSAKM (NDATA, XDATA, FDATA, BREAK, CSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
C Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,NINTV,BREAK,CSCOEF),
 & F(X) - CSVAL(X,NINTV,BREAK,
 & CSCOEF)
 20 CONTINUE
 END

434 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.818 -0.135988
0.100 0.997 0.000000
0.150 0.615 0.163487
0.200 0.141 0.000000
0.250 -0.478 -0.093376
0.300 -0.978 0.000000
0.350 -0.812 -0.046447
0.400 -0.279 0.000000
0.450 0.386 0.064491
0.500 0.938 0.000000
0.550 0.854 0.068274
0.600 0.412 0.000000
0.650 -0.276 -0.043288
0.700 -0.880 0.000000
0.750 -0.889 -0.078947
0.800 -0.537 0.000000
0.850 0.149 0.033757
0.900 0.804 0.000000
0.950 0.932 0.061260
1.000 0.650 0.000000

CSCON/DCSCON (Single/Double precision)
Compute a cubic spline interpolant that is consistent with the concavity of the
data.

Usage
CALL CSCON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF)

Arguments

NDATA — Number of data points. (Input)
NDATA must be at least 3.

XDATA — Array of length NDATA containing the data point abscissas. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

IBREAK — The number of breakpoints. (Output)
It will be less than 2 * NDATA.

BREAK — Array of length IBREAK containing the breakpoints for the piecewise
cubic representation in its first IBREAK positions. (Output)
The dimension of BREAK must be at least 2 * NDATA.

CSCOEF — Matrix of size 4 by N where N is the dimension of BREAK. (Output)
The first IBREAK − 1 columns of CSCOEF contain the local coefficients of the
cubic pieces.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 435

Comments

1. Automatic workspace usage is

CSCON 11 * NDATA − 14 units, or
DCSCON 21 * NDATA − 28 units.

Workspace may be explicitly provided, if desired, by use of
C2CON/DC2CON. The reference is

CALL C2CON (NDATA, XDATA, FDATA, IBREAK, BREAK,
 CSCOEF, ITMAX, XSRT, FSRT, A, Y, DIVD,
 ID, WK)

The additional arguments are as follows:

ITMAX — Maximum number of iterations of Newton’s method.
(Input)

XSRT — Work array of length NDATA to hold the sorted XDATA values.

FSRT — Work array of length NDATA to hold the sorted FDATA values.

A — Work array of length NDATA.

Y — Work array of length NDATA − 2.

DIVD — Work array of length NDATA − 2.

ID — Integer work array of length NDATA.

WK — Work array of length 5 * (NDATA − 2).

2 Informational errors
Type Code
 3 16 Maximum number of iterations exceeded, call

C2CON/DC2CON to set a larger number for ITMAX.
 4 3 The XDATA values must be distinct.

3. The cubic spline can be evaluated using CSVAL (page 440); its derivative
can be evaluated using CSDER (page 441).

4. The default value for ITMAX is 25. This can be reset by calling
C2CON/DC2CON directly.

Algorithm

The routine CSCON computes a cubic spline interpolant to n = NDATA data points
{ xL, fL} for i = 1, …, n. For ease of explanation, we will assume that xL < xL����,
although it is not necessary for the user to sort these data values. If the data are

strictly convex, then the computed spline is convex, C �, and minimizes the
expression

′′I g
x

xn 0 5
1

2

436 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

over all convex C � functions that interpolate the data. In the general case when
the data have both convex and concave regions, the convexity of the spline is
consistent with the data and the above integral is minimized under the appropriate
constraints. For more information on this interpolation scheme, we refer the
reader to Micchelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this subroutine is that it is not
possible, a priori, to predict the number of breakpoints of the resulting
interpolant. In most cases, there will be breakpoints at places other than data
locations. The method is nonlinear; and although the interpolant is a piecewise
cubic, cubic polynomials are not reproduced. (However, linear polynomials are
reproduced.) This routine should be used when it is important to preserve the
convex and concave regions implied by the data.

Example

We first compute the shape-preserving interpolant using CSCON, and display the
coefficients and breakpoints. Second, we interpolate the same data using CSINT
(page 423) in a program not shown and overlay the two results. The graph of the
result from CSINT is represented by the dashed line. Notice the extra inflection
points in the curve produced by CSINT.

C Specifications
 INTEGER NDATA
 PARAMETER (NDATA=9)
C
 INTEGER IBREAK, NOUT
 REAL BREAK(2*NDATA), CSCOEF(4,2*NDATA), FDATA(NDATA),
 & XDATA(NDATA)
 CHARACTER CLABEL(14)*2, RLABEL(4)*2
 EXTERNAL CSCON, UMACH, WRRRL
C
 DATA XDATA/0.0, .1, .2, .3, .4, .5, .6, .8, 1./
 DATA FDATA/0.0, .9, .95, .9, .1, .05, .05, .2, 1./
 DATA RLABEL/’ 1’, ’ 2’, ’ 3’, ’ 4’/
 DATA CLABEL/’ ’, ’ 1’, ’ 2’, ’ 3’, ’ 4’, ’ 5’, ’ 6’,
 & ’ 7’, ’ 8’, ’ 9’, ’10’, ’11’, ’12’, ’13’/
C Compute cubic spline interpolant
 CALL CSCON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print the BREAK points and the
C coefficients (CSCOEF) for
C checking purposes.
 WRITE (NOUT,’(1X,A,I2)’) ’IBREAK = ’, IBREAK
 CALL WRRRL (’BREAK’, 1, IBREAK, BREAK, 1, 0, ’(F9.3)’, RLABEL,
 & CLABEL)
 CALL WRRRL (’CSCOEF’, 4, IBREAK, CSCOEF, 4, 0, ’(F9.3)’, RLABEL,
 & CLABEL)
 END

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 437

Output
IBREAK = 13
 BREAK
 1 2 3 4 5 6
1 0.000 0.100 0.136 0.200 0.259 0.300

 7 8 9 10 11 12
1 0.400 0.436 0.500 0.600 0.609 0.800

 13
1 1.000

 CSCOEF
 1 2 3 4 5 6
1 0.000 0.900 0.942 0.950 0.958 0.900
2 11.886 3.228 0.131 0.131 0.131 -4.434
3 0.000 -173.170 0.000 0.000 0.000 220.218
4 -1731.699 4841.604 0.000 0.000 -5312.082 4466.875

 7 8 9 10 11 12
1 0.100 0.050 0.050 0.050 0.050 0.200
2 -4.121 0.000 0.000 0.000 0.000 2.356
3 226.470 0.000 0.000 0.000 0.000 24.664
4 -6222.348 0.000 0.000 0.000 129.115 123.321

 13
1 1.000
2 0.000
3 0.000
4 0.000

Figure 3-4 CSCON vs. CSINT

438 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

CSPER/DCSPER (Single/Double precision)
Compute the cubic spline interpolant with periodic boundary conditions.

Usage
CALL CSPER (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Arguments

NDATA — Number of data points. (Input)
NDATA must be at least 4.

XDATA — Array of length NDATA containing the data point abscissas. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise
cubic representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the
cubic pieces. (Output)

Comments

1. Automatic workspace usage is

CSPER 7 * NDATA units, or
DCSPER 13 * NDATA units.

Workspace may be explicitly provided, if desired, by use of
C2PER/DC2PER. The reference is

CALL C2PER (NDATA, XDATA, FDATA, BREAK, CSCOEF, WK,
 IWK)

The additional arguments are as follows:

WK — Work array of length 6 * NDATA.

IWK — Work array of length NDATA.

2. Informational error
Type Code
 3 1 The data set is not periodic, i.e., the function values at

the smallest and largest XDATA points are not equal.
The value at the smallest XDATA point is used.

3. The cubic spline can be evaluated using CSVAL (page 440)and its
derivative can be evaluated using CSDER (page 441).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 439

Algorithm

The routine CSPER computes a C� cubic spline interpolant to a set of data points
(xL, fL) for i = 1, …, NDATA = N. The breakpoints of the spline are the abscissas.
The program enforces periodic endpoint conditions. This means that the spline s
satisfies s(a) = s(b), s′(a) = s′(b), and s″(a) = s″(b), where a is the leftmost
abscissa and b is the rightmost abscissa. If the ordinate values corresponding to a
and b are not equal, then a warning message is issued. The ordinate value at b is
set equal to the ordinate value at a and the interpolant is computed.

If the data points arise from the values of a smooth (say C �) periodic function f,
i.e. fL = f(xL), then the error will behave in a predictable fashion. Let ξ be the
breakpoint vector for the above spline interpolant. Then, the maximum absolute
error satisfies

f s C f
N N

− ≤)
ξ ξ ξ ξ

ξ
1 1

4 4
, ,

0

where

ξ ξ ξ: max
, ,

= −
=

−
i N

i i
2

1
K

For more details, see de Boor (1978, pages 320−322).

Example

In this example, a cubic spline interpolant to a function f is computed. The values
of this spline are then compared with the exact function values.

 INTEGER NDATA
 PARAMETER (NDATA=11)
C
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), CSVAL, F,
 & FDATA(NDATA), FLOAT, H, PI, SIN, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
 EXTERNAL CSPER, CSVAL, UMACH
C
C Define function
 F(X) = SIN(15.0*X)
C Set up a grid
 PI = CONST(’PI’)
 H = 2.0*PI/15.0/10.0
 DO 10 I=1, NDATA
 XDATA(I) = H*FLOAT(I-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Round off will cause FDATA(11) to
C be nonzero; this would produce a
C warning error since FDATA(1) is zero.
C Therefore, the value of FDATA(1) is
C used rather than the value of
C FDATA(11).
 FDATA(NDATA) = FDATA(1)

440 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

C
C Compute cubic spline interpolant
 CALL CSPER (NDATA, XDATA, FDATA, BREAK, CSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
 H = H/2.0
C Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = H*FLOAT(I-1)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,NINTV,BREAK,CSCOEF),
 & F(X) - CSVAL(X,NINTV,BREAK,
 & CSCOEF)
 20 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.021 0.309 0.000138
0.042 0.588 0.000000
0.063 0.809 0.000362
0.084 0.951 0.000000
0.105 1.000 0.000447
0.126 0.951 0.000000
0.147 0.809 0.000362
0.168 0.588 0.000000
0.188 0.309 0.000138
0.209 0.000 0.000000
0.230 -0.309 -0.000138
0.251 -0.588 0.000000
0.272 -0.809 -0.000362
0.293 -0.951 0.000000
0.314 -1.000 -0.000447
0.335 -0.951 0.000000
0.356 -0.809 -0.000362
0.377 -0.588 0.000000
0.398 -0.309 -0.000138
0.419 0.000 0.000000

CSVAL/DCSVAL (Single/Double precision)
Evaluate a cubic spline.

Usage
CSVAL(X, NINTV, BREAK, CSCOEF)

Arguments

X — Point at which the spline is to be evaluated. (Input)

NINTV — Number of polynomial pieces. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 441

BREAK — Array of length NINTV + 1 containing the breakpoints for the
piecewise cubic representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of
the cubic pieces. (Input)

CSVAL — Value of the polynomial at X. (Output)

Algorithm

The routine CSVAL evaluates a cubic spline at a given point. It is a special case of
the routine PPDER (page 507), which evaluates the derivative of a piecewise
polynomial. (The value of a piecewise polynomial is its zero-th derivative and a
cubic spline is a piecewise polynomial of order 4.) The routine PPDER is based on
the routine PPVALU in de Boor (1978, page 89).

Example

For an example of the use of CSVAL, see IMSL routine CSINT (page 423).

CSDER/DCSDER (Single/Double precision)
Evaluate the derivative of a cubic spline.

Usage
CSDER(IDERIV, X, NINTV, BREAK, CSCOEF)

Arguments

IDERIV — Order of the derivative to be evaluated. (Input)
In particular, IDERIV = 0 returns the value of the polynomial.

X — Point at which the polynomial is to be evaluated. (Input)

NINTV — Number of polynomial pieces. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the
piecewise cubic representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of
the cubic pieces. (Input)

CSDER — Value of the IDERIV-th derivative of the polynomial at X. (Output)

Algorithm

The function CSDER evaluates the derivative of a cubic spline at a given point. It
is a special case of the routine PPDER (page 507), which evaluates the derivative

442 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

of a piecewise polynomial. (A cubic spline is a piecewise polynomial of order 4.)
The routine PPDER is based on the routine PPVALU in de Boor (1978, page 89).

Example

In this example, we compute a cubic spline interpolant to a function f using IMSL
routine CSINT (page 423). The values of the spline and its first and second
derivatives are computed using CSDER. These values can then be compared with
the corresponding values of the interpolated function.

 INTEGER NDATA
 PARAMETER (NDATA=10)
C
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CDDF, CDF, CF, COS, CSCOEF(4,NDATA),
 & CSDER, DDF, DF, F, FDATA(NDATA), FLOAT, SIN, X,
 & XDATA(NDATA)
 INTRINSIC COS, FLOAT, SIN
 EXTERNAL CSDER, CSINT, UMACH
C Define function and derivatives
 F(X) = SIN(15.0*X)
 DF(X) = 15.0*COS(15.0*X)
 DDF(X) = -225.0*SIN(15.0*X)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Compute cubic spline interpolant
 CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
99999 FORMAT (9X, ’X’, 8X, ’S(X)’, 5X, ’Error’, 6X, ’S’’(X)’, 5X,
 & ’Error’, 6X, ’S’’’’(X)’, 4X, ’Error’, /)
 NINTV = NDATA - 1
C Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA
 X = FLOAT(I-1)/FLOAT(2*NDATA-1)
 CF = CSDER(0,X,NINTV,BREAK,CSCOEF)
 CDF = CSDER(1,X,NINTV,BREAK,CSCOEF)
 CDDF = CSDER(2,X,NINTV,BREAK,CSCOEF)
 WRITE (NOUT,’(F11.3, 3(F11.3, F11.6))’) X, CF, F(X) - CF,
 & CDF, DF(X) - CDF,
 & CDDF, DDF(X) - CDDF
 20 CONTINUE
 END

Output
 X S(X) Error S’(X) Error S’’(X) Error

0.000 0.000 0.000000 26.285 -11.284739 -379.458 379.457794
0.053 0.902 -0.192203 8.841 1.722460 -283.411 123.664734
0.105 1.019 -0.019333 -3.548 3.425718 -187.364 -37.628586
0.158 0.617 0.081009 -10.882 0.146207 -91.317 -65.824875
0.211 -0.037 0.021155 -13.160 -1.837700 4.730 -1.062027

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 443

0.263 -0.674 -0.046945 -10.033 -0.355268 117.916 44.391640
0.316 -0.985 -0.015060 -0.719 1.086203 235.999 -11.066727
0.368 -0.682 -0.004651 11.314 -0.409097 154.861 -0.365387
0.421 0.045 -0.011915 14.708 0.284042 -25.887 18.552732
0.474 0.708 0.024292 9.508 0.702690 -143.785 -21.041260
0.526 0.978 0.020854 0.161 -0.771948 -211.402 -13.411087
0.579 0.673 0.001410 -11.394 0.322443 -163.483 11.674103
0.632 -0.064 0.015118 -14.937 -0.045511 28.856 -17.856323
0.684 -0.724 -0.019246 -8.859 -1.170871 163.866 3.435547
0.737 -0.954 -0.044143 0.301 0.554493 184.217 40.417282
0.789 -0.675 0.012143 10.307 0.928152 166.021 -16.939514
0.842 0.027 0.038176 15.015 -0.047344 12.914 -27.575521
0.895 0.764 -0.010112 11.666 -1.819128 -140.193 -29.538193
0.947 1.114 -0.116304 0.258 -1.357680 -293.301 68.905701
1.000 0.650 0.000000 -19.208 7.812407 -446.408 300.092896

CS1GD/DCS1GD (Single/Double precision)
Evaluate the derivative of a cubic spline on a grid.

Usage
CALL CS1GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF, VALUE)

Arguments

IDERIV — Order of the derivative to be evaluated. (Input)
In particular, IDERIV = 0 returns the values of the cubic spline.

N — Length of vector XVEC. (Input)

XVEC — Array of length N containing the points at which the cubic spline is to
be evaluated. (Input)
The points in XVEC should be strictly increasing.

NINTV — Number of polynomial pieces. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the
piecewise cubic representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of
the cubic pieces. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative
of the cubic spline at the points in XVEC. (Output)

Comments

1. Automatic workspace usage is

CS1GD 3N units, or
DCS1GD 5N units.

444 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Workspace may be explicitly provided, if desired, by use of
C21GD/DC21GD. The reference is

CALL C21GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF,
 VALUE, IWK, WORK1, WORK2)

The additional arguments are as follows:

IWK — Array of length N.

WORK1 — Array of length N.

WORK2 — Array of length N.

2. Informational error
Type Code
 4 4 The points in XVEC must be strictly increasing.

Algorithm

The routine CS1GD evaluates a cubic spline (or its derivative) at a vector of
points. That is, given a vector x of length n satisfying xL < xL�����for i = 1, …,

n − 1, a derivative value j, and a cubic spline s that is represented by a breakpoint
sequence and coefficient matrix this routine returns the values

s�M�(xL) i = 1, …, n

in the array VALUE. The functionality of this routine is the same as that of CSDER

(page 441) called in a loop, however CS1GD should be much more efficient.

Example

To illustrate the use of CS1GD, we modify the example program for CSINT

(page 423). In this example, a cubic spline interpolant to F is computed. The
values of this spline are then compared with the exact function values. The
routine CS1GD is based on the routine PPVALU in de Boor (1978, page 89).

C Specifications
 INTEGER NDATA, N
 PARAMETER (NDATA=11, N=2*NDATA-1)
C
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), CSVAL, F,
 & FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA),
 & FVALUE(N), VALUE(N), XVEC(N)
 INTRINSIC FLOAT, SIN
 EXTERNAL CSINT, CSVAL, UMACH
C Define function
 F(X) = SIN(15.0*X)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Compute cubic spline interpolant

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 445

 CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF)
 DO 20 I=1, N
 XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2)
 FVALUE(I) = F(XVEC(I))
 20 CONTINUE
 IDERIV = 0
 NINTV = NDATA - 1
 CALL CS1GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF, VALUE)
C Get output unit number.
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
C Print the interpolant and the error
C on a finer grid
 DO 30 J=1, N
 WRITE (NOUT,’(2F15.3,F15.6)’) XVEC(J), VALUE(J),
 & FVALUE(J)-VALUE(J)
 30 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.809 -0.127025
0.100 0.997 0.000000
0.150 0.723 0.055214
0.200 0.141 0.000000
0.250 -0.549 -0.022789
0.300 -0.978 0.000000
0.350 -0.843 -0.016246
0.400 -0.279 0.000000
0.450 0.441 0.009348
0.500 0.938 0.000000
0.550 0.903 0.019947
0.600 0.412 0.000000
0.650 -0.315 -0.004895
0.700 -0.880 0.000000
0.750 -0.938 -0.029541
0.800 -0.537 0.000000
0.850 0.148 0.034693
0.900 0.804 0.000000
0.950 1.086 -0.092559
1.000 0.650 0.000000

CSITG/DCSITG (Single/Double precision)
Evaluate the integral of a cubic spline.

Usage
CSITG(A, B, NINTV, BREAK, CSCOEF)

Arguments

A — Lower limit of integration. (Input)

446 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

B — Upper limit of integration. (Input)

NINTV — Number of polynomial pieces. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the
piecewise cubic representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of
the cubic pieces. (Input)

CSITG — Value of the integral of the spline from A to B. (Output)

Algorithm

The function CSITG evaluates the integral of a cubic spline over an interval. It is
a special case of the routine PPITG (page 512), which evaluates the integral of a
piecewise polynomial. (A cubic spline is a piecewise polynomial of order 4.)

Example

This example computes a cubic spline interpolant to the function x� using CSINT
(page 423) and evaluates its integral over the intervals [0., .5] and [0., 2.]. Since

CSINT uses the not-a knot condition, the interpolant reproduces x�, hence the
integral values are 1/24 and 8/3, respectively.

 INTEGER NDATA
 PARAMETER (NDATA=10)
C
 INTEGER I, NINTV, NOUT
 REAL A, B, BREAK(NDATA), CSCOEF(4,NDATA), CSITG, ERROR,
 & EXACT, F, FDATA(NDATA), FI, FLOAT, VALUE, X,
 & XDATA(NDATA)
 INTRINSIC FLOAT
 EXTERNAL CSINT, CSITG, UMACH
C Define function and integral
 F(X) = X*X
 FI(X) = X*X*X/3.0
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Compute cubic spline interpolant
 CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF)
C Compute the integral of F over
C [0.0,0.5]
 A = 0.0
 B = 0.5
 NINTV = NDATA - 1
 VALUE = CSITG(A,B,NINTV,BREAK,CSCOEF)
 EXACT = FI(B) - FI(A)
 ERROR = EXACT - VALUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Print the result

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 447

 WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR
C Compute the integral of F over
C [0.0,2.0]
 A = 0.0
 B = 2.0
 VALUE = CSITG(A,B,NINTV,BREAK,CSCOEF)
 EXACT = FI(B) - FI(A)
 ERROR = EXACT - VALUE
C Print the result
 WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,
 & ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,
 & 1X, ’Exact Integral = ’, F10.5, /, 1X, ’Error ’
 & , ’ = ’, F10.6, /, /)
 END

Output
On the closed interval (0.0,0.5) we have :
Computed Integral = 0.04167
Exact Integral = 0.04167
Error = 0.000000

On the closed interval (0.0,2.0) we have :
Computed Integral = 2.66666
Exact Integral = 2.66667
Error = 0.000006

SPLEZ/DSPLEZ (Single/Double precision)
Compute the values of a spline that either interpolates or fits user-supplied data.

Usage
CALL SPLEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N, XVEC,
 VALUE)

Arguments

NDATA — Number of data points. (Input)
All choices of ITYPE are valid if NDATA is larger than 6. More specifically,
NDATA > ITYPE or ITYPE = 1.
NDATA > 3 for ITYPE = 2, 3.
NDATA > (ITYPE − 3) for ITYPE = 4, 5, 6, 7, 8.
NDATA > 3 for ITYPE = 9, 10, 11, 12.
NDATA > KORDER for ITYPE = 13, 14, 15.

XDATA — Array of length NDATA containing the data point abscissae. (Input)
The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

ITYPE — Type of interpolant desired. (Input)

448 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

ITYPE

1 yields CSINT
2 yields CSAKM
3 yields CSCON
4 yields BSINT-BSNAK K = 2
5 yields BSINT-BSNAK K = 3
6 yields BSINT-BSNAK K = 4
7 yields BSINT-BSNAK K = 5
8 yields BSINT-BSNAK K = 6
9 yields CSSCV
10 yields BSLSQ K = 2
11 yields BSLSQ K = 3
12 yields BSLSQ K = 4
13 yields BSVLS K = 2
14 yields BSVLS K = 3
15 yields BSVLS K = 4

IDER — Order of the derivative desired. (Input)

N — Number of function values desired. (Input)

XVEC — Array of length N containing the points at which the spline function
values are desired. (Input)
The entries of XVEC must be distinct.

VALUE — Array of length N containing the spline values. (Output)
VALUE (I) = S(XVEC (I)) if IDER = 0, VALUE(I) = S′(XVEC (I)) if IDER = 1, and
so forth, where S is the computed spline.

Comments

1. Automatic workspace usage is

SPLEZ 32 * NDATA + 5 * N + 22 + MAX0(NDATA, N) units, or
DSPLEZ 64 * NDATA + 9 * N + 44 + MAX0(NDATA, N) units.

Workspace may be explicitly provided, if desired, by use of
S2LEZ/DS2LEZ. The reference is

CALL S2LEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N,
 XVEC, VALUE, WRK, IWK)

The additional arguments are as follows:

WRK — Work array of length 32 * NDATA + 4 * N + 22.

IWK — Work array of length MAX0(NDATA, N) + N.

2. Informational errors
Type Code
 4 1 XDATA entries are not unique.
 4 2 XVEC entries are not unique.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 449

3. The workspace listed above is the maximum that is needed. Depending
on the choice of ITYPE, the actual amount used may be less. If
workspace is a critical resource, consult the explicit routines listed under
ITYPE to see if less workspace can be used.

Algorithm

This routine is designed to let the user experiment with various interpolation and
smoothing routines in the library.

The routine SPLEZ computes a spline interpolant to a set of data points (xL, fL) for

i = 1, …, NDATA if ITYPE = 1, …, 8. If ITYPE ≥ 9, various smoothing or least
squares splines are computed. The output for this routine consists of a vector of
values of the computed spline or its derivatives. Specifically, let i = IDER, n = N,
v = XVEC, and y = VALUE, then if s is the computed spline we set

yM = s�L�(vM) j = 1, …, n

The routines called are listed above under the ITYPE heading. Additional
documentation can be found by referring to these routines.

Example

In this example, all the ITYPE parameters are exercised. The values of the spline
are then compared with the exact function values and derivatives.

 INTEGER NDATA, N
 PARAMETER (NDATA=21, N=2*NDATA-1)
C Specifications for local variables
 INTEGER I, IDER, ITYPE, NOUT
 REAL FDATA(NDATA), FPVAL(N), FVALUE(N),
 & VALUE(N), XDATA(NDATA), XVEC(N), EMAX1(15),
 & EMAX2(15)
C Specifications for intrinsics
 INTRINSIC FLOAT, SIN, COS
 REAL FLOAT, SIN, COS
C Specifications for subroutines
 EXTERNAL UMACH, SPLEZ, SAXPY
C
 REAL F, FP
C
C Define a function
 F(X) = SIN(X*X)
 FP(X) = 2*X*COS(X*X)
C
 CALL UMACH (2, NOUT)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
 DO 20 I=1, N
 XVEC(I) = 3.0*(FLOAT(I-1)/FLOAT(2*NDATA-2))
 FVALUE(I) = F(XVEC(I))

450 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 FPVAL(I) = FP(XVEC(I))
 20 CONTINUE
C
 WRITE (NOUT,99999)
C Loop to call SPLEZ for each ITYPE
 DO 40 ITYPE=1, 15
 DO 30 IDER=0, 1
 CALL SPLEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N,
 & XVEC, VALUE)
C Compute the maximum error
 IF (IDER .EQ. 0) THEN
 CALL SAXPY (N, -1.0, FVALUE, 1, VALUE, 1)
 EMAX1(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1)))
 ELSE
 CALL SAXPY (N, -1.0, FPVAL, 1, VALUE, 1)
 EMAX2(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1)))
 END IF
 30 CONTINUE
 WRITE (NOUT,’(I7,2F20.6)’) ITYPE, EMAX1(ITYPE), EMAX2(ITYPE)
 40 CONTINUE
C
99999 FORMAT (4X, ’ITYPE’, 6X, ’Max error for f’, 5X,
 & ’Max error for f’’’, /)
 END

Output
ITYPE Max error for f Max error for f’

 1 0.014082 0.658018
 2 0.024682 0.897757
 3 0.020896 0.813228
 4 0.083615 2.168083
 5 0.010403 0.508043
 6 0.014082 0.658020
 7 0.004756 0.228858
 8 0.001070 0.077159
 9 0.020896 0.813228
10 0.392603 6.047916
11 0.162793 1.983959
12 0.045404 1.582624
13 0.588370 7.680381
14 0.752475 9.673786
15 0.049340 1.713031

BSINT/DBSINT (Single/Double precision)
Compute the spline interpolant, returning the B-spline coefficients.

Usage
CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

Arguments

NDATA — Number of data points. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 451

XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of length NDATA containing the data point ordinates. (Input)

KORDER — Order of the spline. (Input)
KORDER must be less than or equal to NDATA.

XKNOT — Array of length NDATA + KORDER containing the knot sequence.
(Input)
XKNOT must be nondecreasing.

BSCOEF — Array of length NDATA containing the B-spline coefficients.
(Output)

Comments

1. Automatic workspace usage is

BSINT (5 * KORDER + 1) * NDATA units, or
DBSINT (10 * KORDER + 1) * NDATA units.

Workspace may be explicitly provided, if desired, by use of
B2INT/DB2INT. The reference is

CALL B2INT (NDATA, XDATA, FDATA, KORDER, XKNOT,
 BSCOEF, WK1, WK2, WK3, IWK)

The additional arguments are as follows:

WK1 — Work array of length (5 * KORDER − 2) * NDATA.

WK2 — Work array of length NDATA.

WK3 — Work array of length NDATA.

IWK — Work array of length NDATA.

2. Informational errors
Type Code
 3 1 The interpolation matrix is ill-conditioned.
 4 3 The XDATA values must be distinct.
 4 4 Multiplicity of the knots cannot exceed the order of

the spline.
 4 5 The knots must be nondecreasing.
 4 15 The I-th smallest element of the data point array must

be greater than the Ith knot and less than the
(I + KORDER)-th knot.

 4 16 The largest element of the data point array must be
greater than the (NDATA)-th knot and less than or equal
to the (NDATA + KORDER)-th knot.

 4 17 The smallest element of the data point array must be
greater than or equal to the first knot and less than the
(KORDER + 1)st knot.

452 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

3. The spline can be evaluated using BSVAL (page 469), and its derivative
can be evaluated using BSDER (page 471).

Algorithm

Following the notation in de Boor (1978, page 108), let BM = BM�N�W denote the j-th
B-spline of order k with respect to the knot sequence t. Then, BSINT computes
the vector a satisfying

a B x fj j
j

N

i i
=
∑ =

1

1 6

and returns the result in BSCOEF = a. This linear system is banded with at most k
− 1 subdiagonals and k − 1 superdiagonals. The matrix

A = (BM�(xL))

is totally positive and is invertible if and only if the diagonal entries are nonzero.
The routine BSINT is based on the routine SPLINT by de Boor (1978, page 204).

The routine BSINT produces the coefficients of the B-spline interpolant of order
KORDER with knot sequence XKNOT to the data (xL, fL) for i = 1 to NDATA, where x
= XDATA and f = FDATA. Let t = XKNOT, k = KORDER, and N = NDATA. First,
BSINT sorts the XDATA vector and stores the result in x. The elements of the
FDATA vector are permuted appropriately and stored in f, yielding the equivalent
data (xL, fL) for i = 1 to N. The following preliminary checks are performed on the
data. We verify that

x x i N

i N

i N k

i i

i i

i i k

< = −
< =
≤ = + −

+

+

+

1

1

1 1

1

1 1

, ,

, ,

, ,

K

K

K

t t

t t

The first test checks to see that the abscissas are distinct. The second and third
inequalities verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check
tN ≤ xL ≤ t1���� for i = 1 to N. This first inequality in the last check is necessary
since the method used to generate the entries of the interpolation matrix requires
that the k possibly nonzero B-splines at xL,

BM���N���, …, BM where j satisfies tM ≤ xL�< tM����

be well-defined (that is, j − k + 1 ≥ 1).

General conditions are not known for the exact behavior of the error in spline
interpolation, however, if t and x are selected properly and the data points arise

from the values of a smooth (say C N) function f, i.e. fL = f(xL), then the error will
behave in a predictable fashion. The maximum absolute error satisfies

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 453

f s C f
k N

k N

k k− ≤
+ +

t t t t
t, ,1

1

0 5

where

t t t: max
, ,

= −
=

+
i k N

i i
K

1

For more information on this problem, see de Boor (1978, Chapter 13) and the
references therein. This routine can be used in place of the IMSL routine CSINT
(page 423) by calling BSNAK (page 454) to obtain the proper knots, then calling
BSINT yielding the B-spline coefficients, and finally calling IMSL routine BSCPP
(page 504) to convert to piecewise polynomial form.

Example

In this example, a spline interpolant s, to

f x x0 5 =
is computed. The interpolated values are then compared with the exact function
values using the IMSL routine BSVAL (page 469).

 INTEGER KORDER, NDATA, NKNOT
 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER)
C
 INTEGER I, NCOEF, NOUT
 REAL BSCOEF(NDATA), BSVAL, BT, F, FDATA(NDATA), FLOAT,
 & SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT
 INTRINSIC FLOAT, SQRT
 EXTERNAL BSINT, BSNAK, BSVAL, UMACH
C Define function
 F(X) = SQRT(X)
C Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Print on a finer grid
 NCOEF = NDATA
 XT = XDATA(1)
C Evaluate spline
 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT, F(XT) - BT
 DO 20 I=2, NDATA
 XT = (XDATA(I-1)+XDATA(I))/2.0
C Evaluate spline
 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT, F(XT) - BT

454 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 XT = XDATA(I)
C Evaluate spline
 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT, F(XT) - BT
 20 CONTINUE
99998 FORMAT (’ ’, F6.4, 15X, F8.4, 12X, F11.6)
99999 FORMAT (/, 6X, ’X’, 19X, ’S(X)’, 18X, ’Error’, /)
 END

Output
 X S(X) Error
0.0000 0.0000 0.000000
0.1250 0.2918 0.061781
0.2500 0.5000 0.000000
0.3750 0.6247 -0.012311
0.5000 0.7071 0.000000
0.6250 0.7886 0.002013
0.7500 0.8660 0.000000
0.8750 0.9365 -0.001092
1.0000 1.0000 0.000000

BSNAK/DBSNAK (Single/Double precision)
Compute the “not-a-knot” spline knot sequence.

Usage
CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the location of the data points.
(Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length NDATA + KORDER containing the knot sequence.
(Output)

Comments

1. Automatic workspace usage is

BSNAK 2 * NDATA units, or
DBSNAK 3 * NDATA units.

Workspace may be explicitly provided, if desired, by use of
B2NAK/DB2NAK. The reference is

CALL B2NAK (NDATA, XDATA, KORDER, XKNOT, XSRT, IWK)

The additional arguments are as follows:

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 455

XSRT — Work array of length NDATA to hold the sorted XDATA values.
If XDATA is not needed, XSRT may be the same as XDATA.

IWK — Work array of length NDATA to hold the permutation of XDATA.

2. Informational error
Type Code
 4 4 The XDATA values must be distinct.

3. The first knot is at the left endpoint and the last knot is slightly beyond
the last endpoint. Both endpoints have multiplicity KORDER.

4. Interior knots have multiplicity one.

Algorithm

Given the data points x = XDATA , the order of the spline k = KORDER, and the
number N = NDATA of elements in XDATA, the subroutine BSNAK returns in
t = XKNOT a knot sequence that is appropriate for interpolation of data on x by
splines of order k. The vector t contains the knot sequence in its first N + k
positions. If k is even and we assume that the entries in the input vector x are
increasing, then t is returned as

tL = x� for i = 1, …, k

tL = xL���N�� for i = k + 1, …, N

tL = x1 + ε for i = N + 1, …, N + k

where ε is a small positive constant. There is some discussion concerning this
selection of knots in de Boor (1978, page 211). If k is odd, then t is returned as

t i x i k= 1 for = 1, , K

t i
i

k
i

kx x i k N= +
− − − − −() /1

2
1

1

2

2 1for = + , , K

t i Nx i N N k= + ε for = + , , + 1 K

It is not necessary to sort the values in x since this is done in the routine BSNAK.

Example

In this example, we compute (for k = 3, …, 8) six spline interpolants sN to

F(x) = sin(10x�) on the interval [0,1]. The routine BSNAK is used to generate the
knot sequences for sN and then BSINT (page 450) is called to obtain the
interpolant. We evaluate the absolute error

|sN�− F|

at 100 equally spaced points and print the maximum error for each k.
 INTEGER KMAX, KMIN, NDATA
 PARAMETER (KMAX=8, KMIN=3, NDATA=20)
C

456 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 INTEGER I, K, KORDER, NOUT
 REAL ABS, AMAX1, BSCOEF(NDATA), BSVAL, DIF, DIFMAX, F,
 & FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),
 & XKNOT(KMAX+NDATA), XT
 INTRINSIC ABS, AMAX1, FLOAT, SIN
 EXTERNAL BSINT, BSNAK, BSVAL, UMACH
C Define function and tau function
 F(X) = SIN(10.0*X*X*X)
 T(X) = 1.0 - X*X
C Set up data
 DO 10 I=1, NDATA
 XT = FLOAT(I-1)/FLOAT(NDATA-1)
 XDATA(I) = T(XT)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Loop over different orders
 DO 30 K=KMIN, KMAX
 KORDER = K
C Generate knots
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
 DIFMAX = 0.0
 DO 20 I=1, 100
 XT = FLOAT(I-1)/99.0
C Evaluate spline
 ST = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF)
 FT = F(XT)
 DIF = ABS(FT-ST)
C Compute maximum difference
 DIFMAX = AMAX1(DIF,DIFMAX)
 20 CONTINUE
C Print maximum difference
 WRITE (NOUT,99998) KORDER, DIFMAX
 30 CONTINUE
C
99998 FORMAT (’ ’, I3, 5X, F9.4)
99999 FORMAT (’ KORDER’, 5X, ’Maximum difference’, /)
 END

Output
KORDER Maximum difference
 3 0.0080
 4 0.0026
 5 0.0004
 6 0.0008
 7 0.0010
 8 0.0004

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 457

BSOPK/DBSOPK (Single/Double precision)
Compute the “optimal” spline knot sequence.

Usage
CALL BSOPK (NDATA, XDATA, KORDER, XKNOT)

Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the location of the data points.
(Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length NDATA + KORDER containing the knot sequence.
(Output)

Comments

1. Automatic workspace usage is

BSOPK (NDATA − KORDER) * (3 * KORDER − 2) + 7 * NDATA + 2 *
KORDER + 5 units, or

DBSOPK 2 * (NDATA − KORDER) * (3 * KORDER − 2) + 13 * NDATA + 4 *
KORDER + 10 units.

Workspace may be explicitly provided, if desired, by use of
B2OPK/DB2OPK. The reference is

CALL B2OPK (NDATA, XDATA, KORDER, XKNOT, MAXIT, WK,
 IWK)

The additional arguments are as follows:

MAXIT — Maximum number of iterations of Newton’s Method.
(Input) A suggested value is 10.

WK — Work array of length (NDATA − KORDER) * (3 * KORDER − 2) + 6
* NDATA + 2 * KORDER + 5.

IWK — Work array of length NDATA.

2. Informational errors
Type Code
 3 6 Newton’s method iteration did not converge.
 4 3 The XDATA values must be distinct.
 4 4 Interpolation matrix is singular. The XDATA values

may be too close together.

3. The default value for MAXIT is 10, this can be overridden by calling
B2OPK/DB2OPK directly with a larger value.

458 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Algorithm

Given the abscissas x = XDATA for an interpolation problem and the order of the
spline interpolant k = KORDER, BSOPK returns the knot sequence t = XKNOT that
minimizes the constant in the error estimate

|| f − s || ≤ c || f �N� ||

In the above formula, f is any function in CN and s is the spline interpolant to f at
the abscissas x with knot sequence t.

The algorithm is based on a routine described in de Boor (1978, page 204), which
in turn is based on a theorem of Micchelli, Rivlin and Winograd (1976).

Example

In this example, we compute (for k = 3, …, 8) six spline interpolants sN to

F(x) = sin(10x�) on the interval [0, 1]. The routine BSOPK is used to generate the
knot sequences for sN and then BSINT (page 450) is called to obtain the
interpolant. We evaluate the absolute error

| sN − F |

at 100 equally spaced points and print the maximum error for each k.
 INTEGER KMAX, KMIN, NDATA
 PARAMETER (KMAX=8, KMIN=3, NDATA=20)
C
 INTEGER I, K, KORDER, NOUT
 REAL ABS, AMAX1, BSCOEF(NDATA), BSVAL, DIF, DIFMAX, F,
 & FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),
 & XKNOT(KMAX+NDATA), XT
 INTRINSIC ABS, AMAX1, FLOAT, SIN
 EXTERNAL BSINT, BSOPK, BSVAL, UMACH
C Define function and tau function
 F(X) = SIN(10.0*X*X*X)
 T(X) = 1.0 - X*X
C Set up data
 DO 10 I=1, NDATA
 XT = FLOAT(I-1)/FLOAT(NDATA-1)
 XDATA(I) = T(XT)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Loop over different orders
 DO 30 K=KMIN, KMAX
 KORDER = K
C Generate knots
 CALL BSOPK (NDATA, XDATA, KORDER, XKNOT)
C Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
 DIFMAX = 0.0
 DO 20 I=1, 100

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 459

 XT = FLOAT(I-1)/99.0
C Evaluate spline
 ST = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF)
 FT = F(XT)
 DIF = ABS(FT-ST)
C Compute maximum difference
 DIFMAX = AMAX1(DIF,DIFMAX)
 20 CONTINUE
C Print maximum difference
 WRITE (NOUT,99998) KORDER, DIFMAX
 30 CONTINUE
C
99998 FORMAT (’ ’, I3, 5X, F9.4)
99999 FORMAT (’ KORDER’, 5X, ’Maximum difference’, /)
 END

Output
KORDER Maximum difference

 3 0.0096
 4 0.0018
 5 0.0005
 6 0.0004
 7 0.0007
 8 0.0035

BS2IN/DBS2IN (Single/Double precision)
Compute a two-dimensional tensor-product spline interpolant, returning the
tensor-product B-spline coefficients.

Usage
CALL BS2IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,
 KXORD, KYORD, XKNOT, YKNOT, BSCOEF)

Arguments

NXDATA — Number of data points in the X-direction. (Input)

XDATA — Array of length NXDATA containing the data points in the X-direction.
(Input)
XDATA must be strictly increasing.

NYDATA — Number of data points in the Y-direction. (Input)

YDATA — Array of length NYDATA containing the data points in the Y-direction.
(Input)
YDATA must be strictly increasing.

FDATA — Array of size NXDATA by NYDATA containing the values to be
interpolated. (Input)
FDATA (I, J) is the value at (XDATA (I), YDATA(J)).

460 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

LDF — The leading dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)

KXORD — Order of the spline in the X-direction. (Input)
KXORD must be less than or equal to NXDATA.

KYORD — Order of the spline in the Y-direction. (Input)
KYORD must be less than or equal to NYDATA.

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the
X-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the
Y-direction. (Input)
YKNOT must be nondecreasing.

BSCOEF — Array of length NXDATA * NYDATA containing the tensor-product B-
spline coefficients. (Output)
BSCOEF is treated internally as a matrix of size NXDATA by NYDATA.

Comments

1. Automatic workspace usage is

BS2IN MAX((2 * KXORD − 1) * NXDATA, (2 * KYORD − 1) * NYDATA) +
MAX((3 * KXORD − 2) * NXDATA, (3 * KYORD − 2) * NYDATA) +
3 * MAX(NXDATA, NYDATA) + NXDATA + NYDATA units, or

DBS2IN 2 * MAX ((2 * KXORD − 1) * NXDATA, (2 * KYORD − 1) *
NYDATA) + 2 * MAX ((3 * KXORD − 2) * NXDATA, (3 * KYORD −
2) * NYDATA) + 5 * MAX(NXDATA, NYDATA) + 2 * NXDATA +
NYDATA units.

Workspace may be explicitly provided, if desired, by use of
B22IN/DB22IN. The reference is

CALL B22IN (NXDATA, XDATA, NYDATA, YDATA, FDATA,
 LDF, KXORD, KYORD, XKNOT, YKNOT, BSCOEF,
 WK, IWK)

The additional arguments are as follows:

WK — Work array of length NXDATA * NYDATA + MAX((2 * KXORD −1)
NXDATA, (2 * KYORD − 1) * NYDATA) + MAX((3 * KXORD − 2) * NXDATA,
(3 * KYORD − 2) * NYDATA) + 2 * MAX(NXDATA, NYDATA).

IWK — Work array of length MAX(NXDATA, NYDATA).

2. Informational errors
Type Code
 3 1 Interpolation matrix is nearly singular. LU factorization

failed.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 461

 3 2 Interpolation matrix is nearly singular. Iterative
refinement failed.

 4 6 The XDATA values must be strictly increasing.
 4 7 The YDATA values must be strictly increasing.
 4 13 Multiplicity of the knots cannot exceed the order of

the spline.
 4 14 The knots must be nondecreasing.
 4 15 The I-th smallest element of the data point array must

be greater than the I-th knot and less than the (I +
K_ORD)-th knot.

 4 16 The largest element of the data point array must be
greater than the (N_DATA)-th knot and less than or
equal to the (N_DATA + K_ORD)-th knot.

 4 17 The smallest element of the data point array must be
greater than or equal to the first knot and less than the
(K_ORD + 1)st knot.

Algorithm

The routine BS2IN computes a tensor product spline interpolant. The tensor
product spline interpolant to data {(xL, yM, fLM)}, where 1 ≤ i ≤ N[and 1 ≤ j ≤ N\,
has the form

m

N

n k m k

y

x x y y
B x B y

=
∑

1
, , , ,t t0 5 0 5

where k[and k\ are the orders of the splines. (These numbers are passed to the
subroutine in KXORD and KYORD, respectively.) Likewise, t[and t\ are the
corresponding knot sequences (XKNOT and YKNOT). The algorithm requires that

t[(k[) ≤ xL ≤ t[(N[+ 1) 1 ≤ i ≤ N[

t\(k\) ≤ yM ≤ t\(N\ + 1) 1 ≤ j ≤ N\

Tensor product spline interpolants in two dimensions can be computed quite
efficiently by solving (repeatedly) two univariate interpolation problems. The
computation is motivated by the following observations. It is necessary to solve
the system of equations

c B x B y fnm n k i
n

N

m

N

m k j ijx x

xy

y y, , , ,t t1 6 3 8
==

∑∑ =
11

Setting

h c B xmi nm n k xn

N
ix

x=
=∑ , ,t1

1 6
we note that for each fixed i from 1 to N[, we have N\ linear equations in the same
number of unknowns as can be seen below:

462 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

h B y fmi m k
m

N

j ijy y

y

, ,t
=

∑ =
1

3 8
The same matrix appears in all of the equations above:

B y m j Nm k j yy y, , ,t 3 8 1≤ ≤

Thus, we need only factor this matrix once and then apply this factorization to the
N[righthand sides. Once this is done and we have computed hPL, then we must
solve for the coefficients cQP using the relation

c B x hnm
n

N

n k i mi

x

x x
=

∑ =
1

, ,t 1 6
for m from 1 to N\, which again involves one factorization and N\ solutions to the
different right-hand sides. The routine BS2IN is based on the routine SPLI2D by
de Boor (1978, page 347).

Example

In this example, a tensor product spline interpolant to a function f is computed.
The values of the interpolant and the error on a 4 × 4 grid are displayed.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NXVEC, NYDATA,
 & NYKNOT, NYVEC
 PARAMETER (KXORD=5, KYORD=2, NXDATA=21, NXVEC=4, NYDATA=6,
 & NYVEC=4, LDF=NXDATA, NXKNOT=NXDATA+KXORD,
 & NYKNOT=NYDATA+KYORD)
C
 INTEGER I, J, NOUT, NXCOEF, NYCOEF
 REAL BSCOEF(NXDATA,NYDATA), F, FDATA(LDF,NYDATA), FLOAT,
 & VALUE(NXVEC,NYVEC), X, XDATA(NXDATA), XKNOT(NXKNOT),
 & XVEC(NXVEC), Y, YDATA(NYDATA), YKNOT(NYKNOT),
 & YVEC(NYVEC)
 INTRINSIC FLOAT
 EXTERNAL BS2GD, BS2IN, BSNAK, UMACH
C Define function
 F(X,Y) = X*X*X + X*Y
C Set up interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
C Set up interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/5.0
 20 CONTINUE
C Generate knot sequence
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
C Generate FDATA
 DO 40 I=1, NYDATA
 DO 30 J=1, NXDATA

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 463

 FDATA(J,I) = F(XDATA(J),YDATA(I))
 30 CONTINUE
 40 CONTINUE
C Interpolate
 CALL BS2IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD,
 & KYORD, XKNOT, YKNOT, BSCOEF)
 NXCOEF = NXDATA
 NYCOEF = NYDATA
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Print over a grid of
C [0.0,1.0] x [0.0,1.0] at 16 points.
 DO 50 I=1, NXVEC
 XVEC(I) = FLOAT(I-1)/3.0
 50 CONTINUE
 DO 60 I=1, NYVEC
 YVEC(I) = FLOAT(I-1)/3.0
 60 CONTINUE
C Evaluate spline
 CALL BS2GD (0, 0, NXVEC, XVEC, NYVEC, YVEC, KXORD, KYORD, XKNOT,
 & YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, NXVEC)
 DO 80 I=1, NXVEC
 DO 70 J=1, NYVEC
 WRITE (NOUT,’(3F15.4,F15.6)’) XVEC(I), YVEC(J),
 & VALUE(I,J),
 & (F(XVEC(I),YVEC(J))-
 & VALUE(I,J))
 70 CONTINUE
 80 CONTINUE
99999 FORMAT (13X, ’X’, 14X, ’Y’, 10X, ’S(X,Y)’, 9X, ’Error’)
 END

Output
 X Y S(X,Y) Error
0.0000 0.0000 0.0000 0.000000
0.0000 0.3333 0.0000 0.000000
0.0000 0.6667 0.0000 0.000000
0.0000 1.0000 0.0000 0.000000
0.3333 0.0000 0.0370 0.000000
0.3333 0.3333 0.1481 0.000000
0.3333 0.6667 0.2593 0.000000
0.3333 1.0000 0.3704 0.000000
0.6667 0.0000 0.2963 0.000000
0.6667 0.3333 0.5185 0.000000
0.6667 0.6667 0.7407 0.000000
0.6667 1.0000 0.9630 0.000000
1.0000 0.0000 1.0000 0.000000
1.0000 0.3333 1.3333 0.000000
1.0000 0.6667 1.6667 0.000000
1.0000 1.0000 2.0000 0.000000

464 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

BS3IN/DBS3IN (Single/Double precision)
Compute a three-dimensional tensor-product spline interpolant, returning the
tensor-product B-spline coefficients.

Usage
CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA,
 FDATA, LDF, MDF, KXORD, KYORD, KZORD, XKNOT,
 YKNOT, ZKNOT, BSCOEF)

Arguments

NXDATA — Number of data points in the x-direction. (Input)

XDATA — Array of length NXDATA containing the data points in the x-direction.
(Input)
XDATA must be increasing.

NYDATA — Number of data points in the y-direction. (Input)

YDATA — Array of length NYDATA containing the data points in the y-direction.
(Input)
YDATA must be increasing.

NZDATA — Number of data points in the z-direction. (Input)

ZDATA — Array of length NZDATA containing the data points in the z-direction.
(Input)
ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to
be interpolated. (Input)
FDATA (I, J, K) contains the value at (XDATA (I), YDATA(J), ZDATA(K)).

LDF — Leading dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)

MDF — Middle dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)

KXORD — Order of the spline in the x-direction. (Input)
KXORD must be less than or equal to NXDATA.

KYORD — Order of the spline in the y-direction. (Input)
KYORD must be less than or equal to NYDATA.

KZORD — Order of the spline in the z-direction. (Input)
KZORD must be less than or equal to NZDATA.

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the
x-direction. (Input)
XKNOT must be nondecreasing.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 465

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the
y-direction. (Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZDATA + KZORD containing the knot sequence in the
z-direction. (Input)
ZKNOT must be nondecreasing.

BSCOEF — Array of length NXDATA * NYDATA * NZDATA containing the tensor-
product B-spline coefficients. (Output)
BSCOEF is treated internally as a matrix of size NXDATA by NYDATA by NZDATA.

Comments

1. Automatic workspace usage is

BS3IN MAX((2 * KXORD − 1) * NXDATA, (2 * KYORD − 1) * NYDATA, (2
* KZORD − 1) * NZDATA) + MAX((3 * KXORD − 2) * NXDATA, (3
* KYORD − 2) * NYDATA, (3 * KZORD − 2) * NZDATA) + 3 *
MAX(NXDATA, NYDATA, NZDATA) + NXDATA * NYDATA *
NZDATA units, or

DBS3IN 2 * MAX((2 * KXORD − 1) * NXDATA, (2 * KYORD − 1) *
NYDATA, (2 * KZORD − 1) * NZDATA) + 2 * MAX ((3 * KXORD −
2) * NXDATA, (3 * KYORD − 2) * NYDATA, (3 * KZORD −2) *
NZDATA) + 5 * MAX(NXDATA, NYDATA, NZDATA) + 2 * NXDATA
* NYDATA * NZDATA units.

Workspace may be explicitly provided, if desired, by use of
B23IN/DB23IN. The reference is

CALL B23IN (NXDATA, XDATA, NYDATA, YDATA, NZDAYA,
 ZDATA, FDATA, LDF, MDF, KXORD, KYORD,
 KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, WK,
 IWK)

The additional arguments are as follows:

WK — Work array of length MAX((2 * KXORD − 1) * NXDATA, (2 *
KYORD − 1) * NYDATA, (2 * KZORD − 1) * NZDATA) + MAX((3 * KXORD −
2) * NXDATA, (3 * KYORD − 2) * NYDATA + (3 * KZORD − 2) * NZDATA)
+ NXDATA * NYDATA *NZDATA + 2 * MAX(NXDATA, NYDATA, NZDATA).

IWK — Work array of length MAX(NXDATA, NYDATA, NZDATA).

2. Informational errors
Type Code
 3 1 Interpolation matrix is nearly singular. LU factorization

failed.
 3 2 Interpolation matrix is nearly singular. Iterative

refinement failed.

466 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 4 13 Multiplicity of the knots cannot exceed the order of
the spline.

 4 14 The knots must be nondecreasing.
 4 15 The I-th smallest element of the data point array must

be greater than the Ith knot and less than the (I +
K_ORD)-th knot.

 4 16 The largest element of the data point array must be
greater than the (N_DATA)-th knot and less than or
equal to the (N_DATA + K_ORD)-th knot.

 4 17 The smallest element of the data point array must be
greater than or equal to the first knot and less than the
(K_ORD + 1)st knot.

 4 18 The XDATA values must be strictly increasing.
 4 19 The YDATA values must be strictly increasing.
 4 20 The ZDATA values must be strictly increasing.

Algorithm

The routine BS3IN computes a tensor-product spline interpolant. The tensor-
product spline interpolant to data {(xL, yM, zN, fLMN)}, where 1 ≤ i ≤ N[, 1 ≤ j ≤ N\,
and 1 ≤ k ≤ N] has the form

c B x B y B znml
n

N

m

N

l

N

n k m k l k

xyz

x x y y z z
===

∑∑∑
111

, , , , , ,t t t0 5 0 5 0 5
where k[, k\, and k]�are the orders of the splines (these numbers are passed to the
subroutine in KXORD, KYORD, and KZORD, respectively). Likewise, t[, t\, and t] are
the corresponding knot sequences (XKNOT, YKNOT, and ZKNOT). The algorithm
requires that

t t

t t

t t

x x i x x x

y y j y y y

z z k z z z

k x N i N

k y N j N

k z N k N

1 6 1 6
3 8 3 8
1 6 1 6

≤ ≤ + ≤ ≤

≤ ≤ + ≤ ≤

≤ ≤ + ≤ ≤

1 1

1 1

1 1

Tensor-product spline interpolants can be computed quite efficiently by solving
(repeatedly) three univariate interpolation problems. The computation is
motivated by the following observations. It is necessary to solve the system of
equations

c B x B y B z fnml
n

N

m

N

l

N

n k i m k j l k k ijk

xyz

x x y y z z
===

∑∑∑ =
111

, , , , , ,t t t1 6 3 8 1 6
Setting

h c B x B ylij nmln

N

m

N
n k i m k j

xy

x x y y
=

== ∑∑ 11 , , , ,t t1 6 3 8

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 467

we note that for each fixed pair ij we have N] linear equations in the same number
of unknowns as can be seen below:

h B z flij
l

N

l k k ijk

z

z z
=
∑ =

1
, ,t 1 6

The same interpolation matrix appears in all of the equations above:

B z l k Nl k k zz z, , ,t 1 6 1 ≤ ≤

Thus, we need only factor this matrix once and then apply it to the N[N\ right-
hand sides. Once this is done and we have computed hOLM, then we must solve for
the coefficients cQPO using the relation

c B x B y hnml
n

N

m

N

n k i m k j lij

xy

x x y y
==

∑∑ =
11

, , , ,t t1 6 3 8
that is the bivariate tensor-product problem addressed by the IMSL routine
BS2IN (page 459). The interested reader should consult the algorithm description
in the two-dimensional routine if more detail is desired. The routine BS3IN is
based on the routine SPLI2D by de Boor (1978, page 347).

Example

In this example, a tensor-product spline interpolant to a function f is computed.
The values of the interpolant and the error on a 4 × 4 × 2 grid are displayed.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT, NXVEC,
 & NYDATA, NYKNOT, NYVEC, NZDATA, NZKNOT, NZVEC
 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NXVEC=4,
 & NYDATA=6, NYVEC=4, NZDATA=8, NZVEC=2, LDF=NXDATA,
 & MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,
 & NZKNOT=NZDATA+KZORD)
C
 INTEGER I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF
 REAL BSCOEF(NXDATA,NYDATA,NZDATA), F,
 & FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(NXVEC,NYVEC,NZVEC)
 & , X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,
 & YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC), Z,
 & ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZVEC)
 INTRINSIC FLOAT
 EXTERNAL BS3GD, BS3IN, BSNAK, UMACH
C Define function.
 F(X,Y,Z) = X*X*X + X*Y*Z
C Set up X-interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
C Set up Y-interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE

468 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

C Set up Z-interpolation points
 DO 30 I=1, NZDATA
 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
 30 CONTINUE
C Generate knots
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
C Generate FDATA
 DO 50 K=1, NZDATA
 DO 40 I=1, NYDATA
 DO 40 J=1, NXDATA
 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
 40 CONTINUE
 50 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Interpolate
 CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA,
 & LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,
 & BSCOEF)
C
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 NZCOEF = NZDATA
C Write heading
 WRITE (NOUT,99999)
C Print over a grid of
C [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]
C at 32 points.
 DO 60 I=1, NXVEC
 XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0
 60 CONTINUE
 DO 70 I=1, NYVEC
 YVEC(I) = FLOAT(I-1)/3.0
 70 CONTINUE
 DO 80 I=1, NZVEC
 ZVEC(I) = FLOAT(I-1)
 80 CONTINUE
C Call the evaluation routine.
 CALL BS3GD (0, 0, 0, NXVEC, XVEC, NYVEC, YVEC, NZVEC, ZVEC,
 & KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF,
 & NYCOEF, NZCOEF, BSCOEF, VALUE, NXVEC, NYVEC)
 DO 110 I=1, NXVEC
 DO 100 J=1, NYVEC
 DO 90 K=1, NZVEC
 WRITE (NOUT,’(4F13.4, F13.6)’) XVEC(I), YVEC(K),
 & ZVEC(K), VALUE(I,J,K),
 & F(XVEC(I),YVEC(J),ZVEC(K))
 & - VALUE(I,J,K)
 90 CONTINUE
 100 CONTINUE
 110 CONTINUE
99999 FORMAT (10X, ’X’, 11X, ’Y’, 10X, ’Z’, 10X, ’S(X,Y,Z)’, 7X,
 & ’Error’)
 END

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 469

Output
 X Y Z S(X,Y,Z) Error
-1.0000 0.0000 0.0000 -1.0000 0.000000
-1.0000 0.3333 1.0000 -1.0000 0.000000
-1.0000 0.0000 0.0000 -1.0000 0.000000
-1.0000 0.3333 1.0000 -1.3333 0.000000
-1.0000 0.0000 0.0000 -1.0000 0.000000
-1.0000 0.3333 1.0000 -1.6667 0.000000
-1.0000 0.0000 0.0000 -1.0000 0.000000
-1.0000 0.3333 1.0000 -2.0000 0.000000
-0.3333 0.0000 0.0000 -0.0370 0.000000
-0.3333 0.3333 1.0000 -0.0370 0.000000
-0.3333 0.0000 0.0000 -0.0370 0.000000
-0.3333 0.3333 1.0000 -0.1481 0.000000
-0.3333 0.0000 0.0000 -0.0370 0.000000
-0.3333 0.3333 1.0000 -0.2593 0.000000
-0.3333 0.0000 0.0000 -0.0370 0.000000
-0.3333 0.3333 1.0000 -0.3704 0.000000
 0.3333 0.0000 0.0000 0.0370 0.000000
 0.3333 0.3333 1.0000 0.0370 0.000000
 0.3333 0.0000 0.0000 0.0370 0.000000
 0.3333 0.3333 1.0000 0.1481 0.000000
 0.3333 0.0000 0.0000 0.0370 0.000000
 0.3333 0.3333 1.0000 0.2593 0.000000
 0.3333 0.0000 0.0000 0.0370 0.000000
 0.3333 0.3333 1.0000 0.3704 0.000000
 1.0000 0.0000 0.0000 1.0000 0.000000
 1.0000 0.3333 1.0000 1.0000 0.000000
 1.0000 0.0000 0.0000 1.0000 0.000000
 1.0000 0.3333 1.0000 1.3333 0.000000
 1.0000 0.0000 0.0000 1.0000 0.000000
 1.0000 0.3333 1.0000 1.6667 0.000000
 1.0000 0.0000 0.0000 1.0000 0.000000
 1.0000 0.3333 1.0000 2.0000 0.000000

BSVAL/DBSVAL (Single/Double precision)
Evaluate a spline, given its B-spline representation.

Usage
BSVAL(X, KORDER, XKNOT, NCOEF, BSCOEF)

Arguments

X — Point at which the spline is to be evaluated. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length KORDER + NCOEF containing the knot sequence.
(Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

470 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

BSVAL — Value of the spline at X. (Output)

Comments

1. Automatic workspace usage is

BSVAL 3 * KORDER units, or
DBSVAL 6 * KORDER units.

Workspace may be explicitly provided, if desired, by use of
B2VAL/DB2VAL. The reference is
CALL B2VAL(X, KORDER, XKNOT, NCOEF, BSCOEF, WK1,
 WK2, WK3)

The additional arguments are as follows:

WK1 — Work array of length KORDER.

WK2 — Work array of length KORDER.

WK3 — Work array of length KORDER.

2. Informational errors
Type Code
 4 4 Multiplicity of the knots cannot exceed the order of

the spline.
 4 5 The knots must be nondecreasing.

Algorithm

The function BSVAL evaluates a spline (given its B-spline representation) at a
specific point. It is a special case of the routine BSDER (page 471), which
evaluates the derivative of a spline given its B-spline representation. The routine
BSDER is based on the routine BVALUE by de Boor (1978, page 144).

Specifically, given the knot vector t, the number of coefficients N, the coefficient
vector a, and a point x, BSVAL returns the number

a B xj
j

N

j k
=
∑

1
, 0 5

where BM�N is the j-th B-spline of order k for the knot sequence t. Note that this
function routine arbitrarily treats these functions as if they were right continuous
near XKNOT(KORDER) and left continuous near XKNOT(NCOEF + 1). Thus, if we
have KORDER knots stacked at the left or right end point, and if we try to evaluate
at these end points, then we will get the value of the limit from the interior of the
interval.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 471

Example

For an example of the use of BSVAL, see IMSL routine BSINT (page 450).

BSDER/DBSDER (Single/Double precision)
Evaluate the derivative of a spline, given its B-spline representation.

Usage
BSDER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF)

Arguments

IDERIV — Order of the derivative to be evaluated. (Input)
In particular, IDERIV = 0 returns the value of the spline.

X — Point at which the spline is to be evaluated. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.
(Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

BSDER — Value of the IDERIV-th derivative of the spline at X. (Output)

Comments

1. Automatic workspace usage is

BSDER 3 * KORDER units, or
DBSDER 6 * KORDER units.

Workspace may be explicitly provided, if desired, by use of
B2DER/DB2DER. The reference is
CALL B2DER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF,
 WK1, WK2, WK3)

The additional arguments are as follows:

WK1 — Array of length KORDER.

WK2 — Array of length KORDER.

WK3 — Array of length KORDER.

472 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

2. Informational errors
Type Code
 4 4 Multiplicity of the knots cannot exceed the order of

the spline.
 4 5 The knots must be nondecreasing.

Algorithm

The function BSDER produces the value of a spline or one of its derivatives (given
its B-spline representation) at a specific point. The function BSDER is based on
the routine BVALUE by de Boor (1978, page 144).

Specifically, given the knot vector t, the number of coefficients N, the coefficient
vector a, the order of the derivative i and a point x, BSDER returns the number

a B xj
j

N

j k
i

=

)∑
1

,
0 0 5

where BM�N is the j-th B-spline of order k for the knot sequence t. Note that this
function routine arbitrarily treats these functions as if they were right continuous
near XKNOT(KORDER) and left continuous near XKNOT(NCOEF + 1). Thus, if we
have KORDER knots stacked at the left or right end point, and if we try to evaluate
at these end points, then we will get the value of the limit from the interior of the
interval.

Example

A spline interpolant to the function

f x x() =
is constructed using BSINT (page 450). The B-spline representation, which is
returned by the IMSL routine BSINT, is then used by BSDER to compute the value
and derivative of the interpolant. The output consists of the interpolation values
and the error at the data points and the midpoints. In addition, we display the
value of the derivative and the error at these same points.

 INTEGER KORDER, NDATA, NKNOT
 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER)
C
 INTEGER I, NCOEF, NOUT
 REAL BSCOEF(NDATA), BSDER, BT0, BT1, DF, F, FDATA(NDATA),
 & FLOAT, SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT
 INTRINSIC FLOAT, SQRT
 EXTERNAL BSDER, BSINT, BSNAK, UMACH
C Define function and derivative
 F(X) = SQRT(X)
 DF(X) = 0.5/SQRT(X)
C Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I)/FLOAT(NDATA)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 473

C Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Print on a finer grid
 NCOEF = NDATA
 XT = XDATA(1)
C Evaluate spline
 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1
 DO 20 I=2, NDATA
 XT = (XDATA(I-1)+XDATA(I))/2.0
C Evaluate spline
 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1
 XT = XDATA(I)
C Evaluate spline
 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1
 20 CONTINUE
99998 FORMAT (’ ’, F6.4, 5X, F7.4, 3X, F10.6, 5X, F8.4, 3X, F10.6)
99999 FORMAT (6X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 8X, ’S’’(X)’, 8X,
 & ’Error’, /)
 END

Output
 X S(X) Error S’(X) Error

0.2000 0.4472 0.000000 1.0423 0.075738
0.3000 0.5456 0.002084 0.9262 -0.013339
0.4000 0.6325 0.000000 0.8101 -0.019553
0.5000 0.7077 -0.000557 0.6940 0.013071
0.6000 0.7746 0.000000 0.6446 0.000869
0.7000 0.8366 0.000071 0.5952 0.002394
0.8000 0.8944 0.000000 0.5615 -0.002525
0.9000 0.9489 -0.000214 0.5279 -0.000818
1.0000 1.0000 0.000000 0.4942 0.005814

BS1GD/DBS1GD (Single/Double precision)
Evaluate the derivative of a spline on a grid, given its B-spline representation.

Usage
CALL BS1GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF,
 VALUE)

474 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Arguments

IDERIV — Order of the derivative to be evaluated. (Input)
In particular, IDERIV = 0 returns the value of the spline.

N — Length of vector XVEC. (Input)

XVEC — Array of length N containing the points at which the spline is to be
evaluated. (Input)
XVEC should be strictly increasing.

KORDER — Order of the spline. (Input)

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.
(Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative
of the spline at the points in XVEC. (Output)

Comments

1. Automatic workspace usage is

BS1GD (NCOEF − KORDER + 1) * (KORDER + 1) + 3 * N + (KORDER + 3)
* KORDER + 1 units, or

DBS1GD 2 * (NCOEF − KORDER + 1) * (KORDER +1) + 5 * N + 2 *
(KORDER + 3) * KORDER + 2 units.

Workspace may be explicitly provided, if desired, by use of
B21GD/DB21GD. The reference is

CALL B21GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF,
 BSCOEF, VALUE, RWK1, RWK2, IWK3, RWK4,
 RWK5, RWK6)

The additional arguments are as follows:

RWK1 — Real array of length KORDER * (NCOEF − KORDER + 1).

RWK2 — Real array of length NCOEF − KORDER + 2.

IWK3 — Integer array of length N.

RWK4 — Real array of length N.

RWK5 — Real array of length N.

RWK6 — Real array of length (KORDER + 3) * KORDER

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 475

2. Informational error
Type Code
 4 5 The points in XVEC must be strictly increasing

Algorithm

The routine BS1GD evaluates a B-spline (or its derivative) at a vector of points.
That is, given a vector x of length n satisfying xL�< xL���� for i = 1, …, n − 1, a
derivative value j, and a B-spline s that is represented by a knot sequence and
coefficient sequence, this routine returns the values

s x i nj
i

0 5 1 6 = 1, ,K

in the array VALUE. The functionality of this routine is the same as that of BSDER
(page 471) called in a loop, however BS1GD should be much more efficient. This
routine converts the B-spline representation to piecewise polynomial form using
the IMSL routine BSCPP (page 504), and then uses the IMSL routine PPVAL
(page 505) for evaluation.

Example

To illustrate the use of BS1GD, we modify the example program for BSDER
(page 471). In this example, a quadratic (order 3) spline interpolant to F is
computed. The values and derivatives of this spline are then compared with the
exact function and derivative values. The routine BS1GD is based on the routines
BSPLPP and PPVALU in de Boor (1978, page 89).

 INTEGER KORDER, NDATA, NKNOT, NFGRID
 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER, NFGRID = 9)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, NCOEF, NOUT
 REAL ANS0(NFGRID), ANS1(NFGRID), BSCOEF(NDATA),
 & FDATA(NDATA),
 & X, XDATA(NDATA), XKNOT(NKNOT), XVEC(NFGRID)
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT, SQRT
 REAL FLOAT, SQRT
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL BS1GD, BSINT, BSNAK, UMACH
 REAL DF, F
C
 F(X) = SQRT(X)
 DF(X) = 0.5/SQRT(X)
C
 CALL UMACH (2, NOUT)
C Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I)/FLOAT(NDATA)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
 WRITE (NOUT,99999)
C Print on a finer grid

476 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 NCOEF = NDATA
 XVEC(1) = XDATA(1)
 DO 20 I=2, 2*NDATA - 2, 2
 XVEC(I) = (XDATA(I/2+1)+XDATA(I/2))/2.0
 XVEC(I+1) = XDATA(I/2+1)
 20 CONTINUE
 CALL BS1GD (0, 2*NDATA-1, XVEC, KORDER, XKNOT, NCOEF, BSCOEF,
 & ANS0)
 CALL BS1GD (1, 2*NDATA-1, XVEC, KORDER, XKNOT, NCOEF, BSCOEF,
 & ANS1)
 DO 30 I=1, 2*NDATA - 1
 WRITE (NOUT,99998) XVEC(I), ANS0(I), F(XVEC(I)) - ANS0(I),
 & ANS1(I), DF(XVEC(I)) - ANS1(I)
 30 CONTINUE
99998 FORMAT (’ ’, F6.4, 5X, F7.4, 5X, F8.4, 5X, F8.4, 5X, F8.4)
99999 FORMAT (6X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 8X, ’S’’(X)’, 8X,
 & ’Error’, /)
 END

Output
 X S(X) Error S’(X) Error

0.2000 0.4472 0.0000 1.0423 0.0757
0.3000 0.5456 0.0021 0.9262 -0.0133
0.4000 0.6325 0.0000 0.8101 -0.0196
0.5000 0.7077 -0.0006 0.6940 0.0131
0.6000 0.7746 0.0000 0.6446 0.0009
0.7000 0.8366 0.0001 0.5952 0.0024
0.8000 0.8944 0.0000 0.5615 -0.0025
0.9000 0.9489 -0.0002 0.5279 -0.0008
1.0000 1.0000 0.0000 0.4942 0.0058

BSITG/DBSITG (Single/Double precision)
Evaluate the integral of a spline, given its B-spline representation.

Usage
BSITG(A, B, KORDER, XKNOT, NCOEF, BSCOEF)

Arguments

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length KORDER + NCOEF containing the knot sequence.
(Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 477

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

BSITG — Value of the integral of the spline from A to B. (Output)

Comments

1. Automatic workspace usage is

BSITG 4 * (KORDER + 1) units, or

DBSITG 8 * (KORDER + 1) units.

Workspace may be explicitly provided, if desired, by use of
B2ITG/DB2ITG. The reference is

CALL B2ITG(A, B, KORDER, XKNOT, NCOEF, BSCOEF,
 TCOEF, AJ, DL, DR)

The additional arguments are as follows:

TCOEF — Work array of length KORDER + 1.

AJ — Work array of length KORDER + 1.

DL — Work array of length KORDER + 1.

DR — Work array of length KORDER + 1.

2. Informational errors
Type Code
 3 7 The upper and lower endpoints of integration are

equal.
 3 8 The lower limit of integration is less than

XKNOT(KORDER).
 3 9 The upper limit of integration is greater than

XKNOT(NCOEF + 1).
 4 4 Multiplicity of the knots cannot exceed the order of

the spline.
 4 5 The knots must be nondecreasing.

Algorithm

The function BSITG computes the integral of a spline given its B-spline
representation. Specifically, given the knot sequence t = XKNOT, the order
k = KORDER, the coefficients a = BSCOEF , n = NCOEF and an interval [a, b],
BSITG returns the value

a B x dxi
i

n

a

b
i k

=
∑I

1
, ,t 0 5

This routine uses the identity (22) on page 151 of de Boor (1978), and it assumes
that t� = … = tN and tQ����= … = tQ���N.

478 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Example

We integrate the quartic (k = 5) spline that interpolates x� at the points
{i/10 : i = −10, …, 10} over the interval [0, 1]. The exact answer is 1/4 since the
interpolant reproduces cubic polynomials.

 INTEGER KORDER, NDATA, NKNOT
 PARAMETER (KORDER=5, NDATA=21, NKNOT=NDATA+KORDER)
C
 INTEGER I, NCOEF, NOUT
 REAL A, B, BSCOEF(NDATA), BSITG, ERROR, EXACT, F,
 & FDATA(NDATA), FI, FLOAT, VAL, X, XDATA(NDATA),
 & XKNOT(NKNOT)
 INTRINSIC FLOAT
 EXTERNAL BSINT, BSITG, BSNAK, UMACH
C Define function and integral
 F(X) = X*X*X
 FI(X) = X**4/4.0
C Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-11)/10.0
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C
 NCOEF = NDATA
 A = 0.0
 B = 1.0
C Integrate from A to B
 VAL = BSITG(A,B,KORDER,XKNOT,NCOEF,BSCOEF)
 EXACT = FI(B) - FI(A)
 ERROR = EXACT - VAL
C Print results
 WRITE (NOUT,99999) A, B, VAL, EXACT, ERROR
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,
 & ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,
 & 1X, ’Exact Integral = ’, F10.5, /, 1X, ’Error ’
 & , ’ = ’, F10.6, /, /)
 END

Output
On the closed interval (0.0,1.0) we have :
Computed Integral = 0.25000
Exact Integral = 0.25000
Error = 0.000000

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 479

BS2VL/DBS2VL (Single/Double precision)
Evaluate a two-dimensional tensor-product spline, given its tensor-product B-
spline representation.

Usage
BS2VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,
 BSCOEF)

Arguments

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the
X-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the
Y-direction. (Input)
YKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-
spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

BS2VL — Value of the spline at (X, Y). (Output)

Comments

Automatic workspace usage is

BS2VL 3 * MAX(KXORD, KYORD) + KYORD units, or
DBS2VL 6 * MAX(KXORD, KYORD) + 2 * KYORD units.

Workspace may be explicitly provided, if desired, by use of B22VL/DB22VL. The
reference is

CALL B22VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF,
 NYCOEF, BSCOEF, WK)

The additional argument is

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD.

480 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Algorithm

The function BS2VL evaluates a bivariate tensor product spline (represented as a
linear combination of tensor product B-splines) at a given point. This routine is a
special case of the routine BS2DR (page 480), which evaluates partial derivatives
of such a spline. (The value of a spline is its zero-th derivative.) For more
information see de Boor (1978, pages 351−353).

This routine returns the value of the function s at a point (x, y) given the
coefficients c by computing

s x y c B x B ynm
n

N

m

N

n k m k

xy

x x y y
, , , , ,0 5 0 5 0 5=

==
∑∑

11
t t

where k[and k\ are the orders of the splines. (These numbers are passed to the
subroutine in KXORD and KYORD, respectively.) Likewise, t[and t\ are the
corresponding knot sequences (XKNOT and YKNOT).

Example

For an example of the use of BS2VL, see IMSL routine BS2IN (page 459).

BS2DR/DBS2DR (Single/Double precision)
Evaluate the derivative of a two-dimensional tensor-product spline, given its
tensor-product B-spline representation.

Usage
BS2DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT,
 NXCOEF, NYCOEF, BSCOEF)

Arguments

IXDER — Order of the derivative in the X-direction. (Input)

IYDER — Order of the derivative in the Y-direction. (Input)

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the
X-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the
Y-direction. (Input)
YKNOT must be nondecreasing.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 481

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-
spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

BS2DR — Value of the (IXDER, IYDER) derivative of the spline at (X, Y).
(Output)

Comments

1. Automatic workspace usage is

BS2DR 3 * MAX(KXORD, KYORD) + KYORD units, or

DBS2DR 6 * MAX(KXORD, KYORD) + 2 * KYORD units.

Workspace may be explicitly provided, if desired, by use of
B22DR/DB22DR. The reference is

CALL B22DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT,
 YKNOT, NXCOEF, NYCOEF, BSCOEF, WK)

The additional argument is

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD.

2. Informational errors
Type Code
 3 1 The point X does not satisfy

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1).
 3 2 The point Y does not satisfy

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1).

Algorithm

The routine BS2DR evaluates a partial derivative of a bivariate tensor-product
spline (represented as a linear combination of tensor product B-splines) at a given
point; see de Boor (1978, pages 351−353).

This routine returns the value of s�S�T�at a point (x, y) given the coefficients c by
computing

s x y c B x B yp q
nm

n

N

m

N
p
n k

q
m k

xy

x x y y
,

, , , ,,0 5 0 5 0 50 5 0 5 0 5=
==

∑∑
11

t t

where k[and k\ are the orders of the splines. (These numbers are passed to the
subroutine in KXORD and KYORD, respectively.) Likewise, t[and t\ are the
corresponding knot sequences (XKNOT and YKNOT).

482 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Example

In this example, a spline interpolant s to a function f is constructed. We use the
IMSL routine BS2IN (page 459) to compute the interpolant and then BS2DR is

employed to compute s�����(x, y). The values of this partial derivative and the error
are computed on a 4 × 4 grid and then displayed.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT
 PARAMETER (KXORD=5, KYORD=3, NXDATA=21, NYDATA=6, LDF=NXDATA,
 & NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD)
C
 INTEGER I, J, NOUT, NXCOEF, NYCOEF
 REAL BS2DR, BSCOEF(NXDATA,NYDATA), F, F21,
 & FDATA(LDF,NYDATA), FLOAT, S21, X, XDATA(NXDATA),
 & XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT)
 INTRINSIC FLOAT
 EXTERNAL BS2DR, BS2IN, BSNAK, UMACH
C Define function and (2,1) derivative
 F(X,Y) = X*X*X*X + X*X*X*Y*Y
 F21(X,Y) = 12.0*X*Y
C Set up interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
C Set up interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/5.0
 20 CONTINUE
C Generate knot sequence
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
C Generate FDATA
 DO 40 I=1, NYDATA
 DO 30 J=1, NXDATA
 FDATA(J,I) = F(XDATA(J),YDATA(I))
 30 CONTINUE
 40 CONTINUE
C Interpolate
 CALL BS2IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD,
 & KYORD, XKNOT, YKNOT, BSCOEF)
 NXCOEF = NXDATA
 NYCOEF = NYDATA
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Print (2,1) derivative over a
C grid of [0.0,1.0] x [0.0,1.0]
C at 16 points.
 DO 60 I=1, 4
 DO 50 J=1, 4
 X = FLOAT(I-1)/3.0
 Y = FLOAT(J-1)/3.0
C Evaluate spline
 S21 = BS2DR(2,1,X,Y,KXORD,KYORD,XKNOT,YKNOT,NXCOEF,NYCOEF,
 & BSCOEF)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 483

 WRITE (NOUT,’(3F15.4, F15.6)’) X, Y, S21, F21(X,Y) - S21
 50 CONTINUE
 60 CONTINUE
99999 FORMAT (39X, ’(2,1)’, /, 13X, ’X’, 14X, ’Y’, 10X, ’S (X,Y)’,
 & 5X, ’Error’)
 END

Output
 (2,1)
 X Y S (X,Y) Error
0.0000 0.0000 0.0000 0.000000
0.0000 0.3333 0.0000 0.000000
0.0000 0.6667 0.0000 0.000000
0.0000 1.0000 0.0000 0.000001
0.3333 0.0000 0.0000 0.000000
0.3333 0.3333 1.3333 0.000002
0.3333 0.6667 2.6667 -0.000002
0.3333 1.0000 4.0000 0.000008
0.6667 0.0000 0.0000 0.000006
0.6667 0.3333 2.6667 -0.000011
0.6667 0.6667 5.3333 0.000028
0.6667 1.0000 8.0001 -0.000134
1.0000 0.0000 -0.0004 0.000439
1.0000 0.3333 4.0003 -0.000319
1.0000 0.6667 7.9996 0.000363
1.0000 1.0000 12.0005 -0.000458

BS2GD/DBS2GD (Single/Double precision)
Evaluate the derivative of a two-dimensional tensor-product spline, given its
tensor-product B-spline representation on a grid.

Usage
CALL BS2GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD, KYORD,
 XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE,
 LDVALU)

Arguments

IXDER — Order of the derivative in the X-direction. (Input)

IYDER — Order of the derivative in the Y-direction. (Input)

NX — Number of grid points in the X-direction. (Input)

XVEC — Array of length NX containing the X-coordinates at which the spline is
to be evaluated. (Input)
The points in XVEC should be strictly increasing.

NY — Number of grid points in the Y-direction. (Input)

YVEC — Array of length NY containing the Y-coordinates at which the spline is
to be evaluated. (Input)
The points in YVEC should be strictly increasing.

484 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the
X-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the
Y-direction. (Input)
YKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-
spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

VALUE — Value of the (IXDER, IYDER) derivative of the spline on the NX by NY
grid. (Output)
VALUE (I, J) contains the derivative of the spline at the point
(XVEC(I), YVEC(J)).

LDVALU — Leading dimension of VALUE exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

BS2GD KXORD * (NX + KXORD+ IXDER + 1) + KYORD * (NY + KYORD +
IYDER + 1) + NX + NY units, or

DBS2GD 2 * (KXORD * (NX + KXORD + IXDER + 1) + KYORD * (NY +
KYORD + IYDER + 1)) + NX + NY

Workspace may be explicitly provided, if desired, by use of
B22GD/DB22GD. The reference is

CALL B22GD (IXDER, IYDER, XVEC, NX, YVEC, NY, KXORD,
 KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,
 BSCOEF, VALUE, LDVALU, LEFTX, LEFTY, A,
 B, DBIATX, DBIATY, BX, BY)

The additional arguments are as follows:

LEFTX — Integer work array of length NX.

LEFTY — Integer work array of length NY.

A — Work array of length KXORD * KXORD.

B — Work array of length KYORD * KYORD.

DBIATX — Work array of length KXORD * (IXDER + 1).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 485

DBIATY — Work array of length KYORD * (IYDER + 1).

BX — Work array of length KXORD * NX.

BY — Work array of length KYORD * NY.

2 Informational errors
Type Code
 3 1 XVEC(I) does not satisfy

XKNOT (KXORD) .LE. XVEC(I) .LE. XKNOT(NXCOEF
+ 1)

 3 2 YVEC(I) does not satisfy
YKNOT (KYORD) .LE. YVEC(I) .LE. YKNOT(NYCOEF
+ 1)

 4 3 XVEC is not strictly increasing.
 4 4 YVEC is not strictly increasing.

Algorithm

The routine BS2GD evaluates a partial derivative of a bivariate tensor-product
spline (represented as a linear combination of tensor-product B-splines) on a grid
of points; see de Boor (1978, pages 351−353).

This routine returns the values of s�S�T�on the grid (xL, yM) for i = 1, …, nx and

j = 1, …, ny given the coefficients c by computing (for all (x, y) in the grid)

s x y c B x B yp q
nm

n

N

m

N

n k
p

m k
q

xy

x x y y

,
, , , ,,0 5 0 5 0 50 5 0 5 0 5=

==
∑∑

11
t t

where k[and k\ are the orders of the splines. (These numbers are passed to the
subroutine in KXORD and KYORD, respectively.) Likewise, t[and t\ are the
corresponding knot sequences (XKNOT and YKNOT). The grid must be ordered in
the sense that xL < xL�� and yM < yM��.

Example

In this example, a spline interpolant s to a function f is constructed. We use the
IMSL routine BS2IN (page 459) to compute the interpolant and then BS2GD is

employed to compute s����� (x, y) on a grid. The values of this partial derivative
and the error are computed on a 4 × 4 grid and then displayed.

C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, KXORD, KYORD, LDF, NOUT, NXCOEF, NXDATA,
 & NYCOEF, NYDATA
 REAL DCCFD(21,6), DOCBSC(21,6), DOCXD(21), DOCXK(26),
 & DOCYD(6), DOCYK(9), F, F21, FLOAT, VALUE(4,4),
 & X, XVEC(4), Y, YVEC(4)
 INTRINSIC FLOAT
 EXTERNAL BS2GD, BS2IN, BSNAK, UMACH
C Define function and derivative
 F(X,Y) = X*X*X*X + X*X*X*Y*Y
 F21(X,Y) = 12.0*X*Y

486 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

C yj Initialize/Setup
 CALL UMACH (2, NOUT)
 KXORD = 5
 KYORD = 3
 NXDATA = 21
 NYDATA = 6
 LDF = NXDATA
C Set up interpolation points
 DO 10 I=1, NXDATA
 DOCXD(I) = FLOAT(I-11)/10.0
 10 CONTINUE
C Set up interpolation points
 DO 20 I=1, NYDATA
 DOCYD(I) = FLOAT(I-1)/5.0
 20 CONTINUE
C Generate knot sequence
 CALL BSNAK (NXDATA, DOCXD, KXORD, DOCXK)
C Generate knot sequence
 CALL BSNAK (NYDATA, DOCYD, KYORD, DOCYK)
C Generate FDATA
 DO 40 I=1, NYDATA
 DO 30 J=1, NXDATA
 DCCFD(J,I) = F(DOCXD(J),DOCYD(I))
 30 CONTINUE
 40 CONTINUE
C Interpolate
 CALL BS2IN (NXDATA, DOCXD, NYDATA, DOCYD, DCCFD, LDF, KXORD,
 & KYORD, DOCXK, DOCYK, DOCBSC)
C Print (2,1) derivative over a
C grid of [0.0,1.0] x [0.0,1.0]
C at 16 points.
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 WRITE (NOUT,99999)
 DO 50 I=1, 4
 XVEC(I) = FLOAT(I-1)/3.0
 YVEC(I) = XVEC(I)
 50 CONTINUE
 CALL BS2GD (2, 1, 4, XVEC, 4, YVEC, KXORD, KYORD, DOCXK, DOCYK,
 & NXCOEF, NYCOEF, DOCBSC, VALUE, 4)
 DO 70 I=1, 4
 DO 60 J=1, 4
 WRITE (NOUT,’(3F15.4,F15.6)’) XVEC(I), YVEC(J),
 & VALUE(I,J),
 & F21(XVEC(I),YVEC(J)) -
 & VALUE(I,J)
 60 CONTINUE
 70 CONTINUE
99999 FORMAT (39X, ’(2,1)’, /, 13X, ’X’, 14X, ’Y’, 10X, ’S (X,Y)’,
 & 5X, ’Error’)
 END

Output
 (2,1)
 X Y S (X,Y) Error
0.0000 0.0000 0.0000 0.000000
0.0000 0.3333 0.0000 0.000000
0.0000 0.6667 0.0000 0.000000

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 487

0.0000 1.0000 0.0000 0.000001
0.3333 0.0000 0.0000 -0.000001
0.3333 0.3333 1.3333 0.000001
0.3333 0.6667 2.6667 -0.000003
0.3333 1.0000 4.0000 0.000008

0.6667 0.0000 0.0000 -0.000001
0.6667 0.3333 2.6667 -0.000009
0.6667 0.6667 5.3333 0.000037
0.6667 1.0000 8.0001 -0.000120
1.0000 0.0000 -0.0005 0.000488
1.0000 0.3333 4.0003 -0.000320
1.0000 0.6667 7.9994 0.000610
1.0000 1.0000 12.0005 -0.000488

BS2IG/DBS2IG (Single/Double precision)
Evaluate the integral of a tensor-product spline on a rectangular domain, given its
tensor-product B-spline representation.

Usage
BS2IG(A, B, C, D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF,
 NYCOEF, BSCOEF)

Arguments

A — Lower limit of the X-variable. (Input)

B — Upper limit of the X-variable. (Input)

C — Lower limit of the Y-variable. (Input)

D — Upper limit of the Y-variable. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the
X-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the
Y-direction. (Input)
YKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-
spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

BS2IG — Integral of the spline over the rectangle (A, B) by (C, D). (Output)

488 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

BS2IG 4 * (MAX(KXORD, KYORD) + 1) + NYCOEF units, or

DBS2IG 8 * (MAX(KXORD, KYORD) + 1) + 2 * NYCOEF units.

Workspace may be explicitly provided, if desired, by use of
B22IG/DB22IG. The reference is

CALL B22IG(A, B, C, D, KXORD, KYORD, XKNOT, YKNOT,
 NXCOEF, NYCOEF, BSCOEF, WK)

The additional argument is

WK — Work array of length 4 * (MAX(KXORD, KYORD) + 1) + NYCOEF.

2. Informational errors
Type Code
 3 1 The lower limit of the X-integration is less than

XKNOT(KXORD).
 3 2 The upper limit of the X-integration is greater than

XKNOT(NXCOEF + 1).
 3 3 The lower limit of the Y-integration is less than

YKNOT(KYORD).
 3 4 The upper limit of the Y-integration is greater than

YKNOT(NYCOEF + 1).
 4 13 Multiplicity of the knots cannot exceed the order of

the spline.
 4 14 The knots must be nondecreasing.

Algorithm

The function BS2IG computes the integral of a tensor-product two-dimensional
spline given its B-spline representation. Specifically, given the knot sequence
t[= XKNOT, t\ = YKNOT, the order k[= KXORD, k\ = KYORD, the coefficients

β = BSCOEF, the number of coefficients n[= NXCOEF, n\ = NYCOEF and a
rectangle [a, b] by [c, d], BS2IG returns the value

βij
j

n

i

n

c

d

a

b
ij

yx

B dy dx
==
∑∑II

11

where

B x y B x B yi j i k j kx x y y, , , , ,,0 5 0 5 0 5= t t

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for
all knot sequences) that the first and last k knots are stacked, that is,
t� = … = tN and tQ�����= … = tQ���N, where k is the order of the spline in the x or y
direction.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 489

Example

We integrate the two-dimensional tensor-product quartic (k[= 5) by

linear (k\ = 2) spline that interpolates x� + xy at the points {(i/10, j/5) : i = −10, …
, 10 and j = 0, …, 5} over the rectangle [0, 1] × [.5, 1]. The exact answer is 5/16.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT
 PARAMETER (KXORD=5, KYORD=2, NXDATA=21, NYDATA=6, LDF=NXDATA,
 & NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD)
C
 INTEGER I, J, NOUT, NXCOEF, NYCOEF
 REAL A, B, BS2IG, BSCOEF(NXDATA,NYDATA), C, D, F,
 & FDATA(LDF,NYDATA), FI, FLOAT, VAL, X, XDATA(NXDATA),
 & XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT)
 INTRINSIC FLOAT
 EXTERNAL BS2IG, BS2IN, BSNAK, UMACH
C Define function and integral
 F(X,Y) = X*X*X + X*Y
 FI(A,B,C,D) = .25*((B**4-A**4)*(D-C)+(B*B-A*A)*(D*D-C*C))
C Set up interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
C Set up interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/5.0
 20 CONTINUE
C Generate knot sequence
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
C Generate FDATA
 DO 40 I=1, NYDATA
 DO 30 J=1, NXDATA
 FDATA(J,I) = F(XDATA(J),YDATA(I))
 30 CONTINUE
 40 CONTINUE
C Interpolate
 CALL BS2IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD,
 & KYORD, XKNOT, YKNOT, BSCOEF)
C Integrate over rectangle
C [0.0,1.0] x [0.0,0.5]
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 A = 0.0
 B = 1.0
 C = 0.5
 D = 1.0
 VAL = BS2IG(A,B,C,D,KXORD,KYORD,XKNOT,YKNOT,NXCOEF,NYCOEF,
 & BSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print results
 WRITE (NOUT,99999) VAL, FI(A,B,C,D), FI(A,B,C,D) - VAL
99999 FORMAT (’ Computed Integral = ’, F10.5, /, ’ Exact Integral ’
 & , ’= ’, F10.5, /, ’ Error ’

490 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 & , ’= ’, F10.6, /)
 END

Output
Computed Integral = 0.31250
Exact Integral = 0.31250
Error = 0.000000

BS3VL/DBS3VL (Single/Double precision)
Evaluate a three-dimensional tensor-product spline, given its tensor-product B-
spline representation.

Usage
BS3VL(X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,
 NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Arguments

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

Z — Z-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the
X-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the
Y-direction. (Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the
Z-direction. (Input)
ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-
product B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

BS3VL — Value of the spline at (X, Y, Z). (Output)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 491

Comments

Automatic workspace usage is

BS3VL 3 * MAX(KXORD, KYORD, KZORD) + KYORD * KZORD + KZORD units, or

DBS3VL 6 * MAX(KXORD, KYORD, KZORD) + 2 * KYORD * KZORD + 2 * KZORD
units.

Workspace may be explicitly provided, if desired, by use of B23VL/DB23VL. The
reference is

CALL B23VL(X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,
 ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK)

The additional argument is

WK — Work array of length 3 * MAX(KXORD, KYORD, KZORD) + KYORD * KZORD
+ KZORD.

Algorithm

The function BS3VL evaluates a trivariate tensor-product spline (represented as a
linear combination of tensor-product B-splines) at a given point. This routine is a
special case of the IMSL routine BS3DR (page 491), which evaluates a partial
derivative of such a spline. (The value of a spline is its zero-th derivative.) For
more information, see de Boor (1978, pages 351−353).

This routine returns the value of the function s at a point (x, y, z) given the
coefficients c by computing

s x y z c B x B y B znml
n

N

m

N

n k m k
l

N

l k

xy

x x y y

z

z z
, , , , , , , ,0 5 0 5 0 5 0 5=

===
∑∑∑

111
t t t

where k[, k\, and k] are the orders of the splines. (These numbers are passed to the
subroutine in KXORD, KYORD, and KZORD, respectively.) Likewise, t[, t\, and t] are
the corresponding knot sequences (XKNOT, YKNOT, and ZKNOT).

Example

For an example of the use of BS3VL, see IMSL routine BS3IN (page 464).

BS3DR/DBS3DR (Single/Double precision)
Evaluate the derivative of a three-dimensional tensor-product spline, given its
tensor-product B-spline representation.

Usage
BS3DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD, KZORD,
 XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

492 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Arguments

IXDER — Order of the X-derivative. (Input)

IYDER — Order of the Y-derivative. (Input)

IZDER — Order of the Z-derivative. (Input)

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

Z — Z-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the
X-direction. (Input)
KNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the
Y-direction. (Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the
Z-direction. (Input)
ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-
product B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

BS3DR — Value of the (IXDER, IYDER, IZDER) derivative of the spline at (X, Y,
Z). (Output)

Comments

1. Automatic workspace usage is

BS3DR 3 * MAX(KXORD, KYORD, KZORD) + KYORD * KZORD + KZORD
units, or

DBS3DR 6 * MAX(KXORD, KYORD, KZORD) + 2 * KYORD * KZORD + 2 *
KZORD units.

Workspace may be explicitly provided, if desired, by use of
B23DR/DB23DR. The reference is

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 493

CALL B23DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD,
 KYORD, KZORD, XKNOT, YKNOT, ZKNOT,
 NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK)

The additional argument is

WK — Work array of length 3 * MAX0(KXORD, KYORD, KZORD) + KYORD
* KZORD + KZORD.

2. Informational errors
Type Code
 3 1 The point X does not satisfy

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1).
 3 2 The point Y does not satisfy

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1).
 3 3 The point Z does not satisfy

ZKNOT (KZORD) .LE. Z .LE. ZKNOT(NZCOEF + 1).

Algorithm

The function BS3DR evaluates a partial derivative of a trivariate tensor-product
spline (represented as a linear combination of tensor-product B-splines) at a given
point. For more information, see de Boor (1978, pages 351−353).

This routine returns the value of the function s�S� T� U� at a point (x, y, z) given the
coefficients c by computing

s x y z c B x B y B zp q r
nml

n

N

m

N

n k
p

m k
q

l

N

l k
r

xy

x x y y

z

z z

, ,
, , , , , ,, ,0 5 0 5 0 5 00 5 0 5 0 5 0 5=

===

)∑∑∑
111

t t t

where k[, k\, and k] are the orders of the splines. (These numbers are passed to the
subroutine in KXORD, KYORD, and KZORD, respectively.) Likewise, t[, t\, and t] are
the corresponding knot sequences (XKNOT, YKNOT, and ZKNOT).

Example

In this example, a spline interpolant s to a function f(x, y, z) = x� + y(xz)� is
constructed using BS3IN (page 464). Next, BS3DR is used to compute

s�������(x, y, z). The values of this partial derivative and the error are computed on
a 4 × 4 × 2 grid and then displayed.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,
 & NYDATA, NYKNOT, NZDATA, NZKNOT
 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,
 & NZDATA=8, LDF=NXDATA, MDF=NYDATA,
 & NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,
 & NZKNOT=NZDATA+KZORD)
C
 INTEGER I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF
 REAL BS3DR, BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,
 & FDATA(LDF,MDF,NZDATA), FLOAT, S201, X, XDATA(NXDATA),

494 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

& XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT), Z,
 & ZDATA(NZDATA), ZKNOT(NZKNOT)
 INTRINSIC FLOAT
 EXTERNAL BS3DR, BS3IN, BSNAK, UMACH
C Define function and (2,0,1)
C derivative
 F(X,Y,Z) = X*X*X*X + X*X*X*Y*Z*Z*Z
 F201(X,Y,Z) = 18.0*X*Y*Z
C Set up X-interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
C Set up Y-interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
C Set up Z-interpolation points
 DO 30 I=1, NZDATA
 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
 30 CONTINUE
C Generate knots
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
C Generate FDATA
 DO 50 K=1, NZDATA
 DO 40 I=1, NYDATA
 DO 40 J=1, NXDATA
 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
 40 CONTINUE
 50 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Interpolate
 CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA,
 & LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,
 & BSCOEF)
C
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 NZCOEF = NZDATA
C Write heading
 WRITE (NOUT,99999)
C Print over a grid of
C [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]
C at 32 points.
 DO 80 I=1, 4
 DO 70 J=1, 4
 DO 60 L=1, 2
 X = 2.0*(FLOAT(I-1)/3.0) - 1.0
 Y = FLOAT(J-1)/3.0
 Z = FLOAT(L-1)
C Evaluate spline
 S201 = BS3DR(2,0,1,X,Y,Z,KXORD,KYORD,KZORD,XKNOT,YKNOT,
 & ZKNOT,NXCOEF,NYCOEF,NZCOEF,BSCOEF)
 WRITE (NOUT,’(3F12.4,2F12.6)’) X, Y, Z, S201,
 & F201(X,Y,Z) - S201
 60 CONTINUE
 70 CONTINUE

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 495

 80 CONTINUE
99999 FORMAT (38X, ’(2,0,1)’, /, 9X, ’X’, 11X,
 & ’Y’, 11X, ’Z’, 4X, ’S (X,Y,Z) Error’)
 END

Output
 (2,0,1)
 X Y Z S (X,Y,Z) Error
-1.0000 0.0000 0.0000 -0.000107 0.000107
-1.0000 0.0000 1.0000 0.000053 -0.000053
-1.0000 0.3333 0.0000 0.064051 -0.064051
-1.0000 0.3333 1.0000 -5.935941 -0.064059
-1.0000 0.6667 0.0000 0.127542 -0.127542
-1.0000 0.6667 1.0000 -11.873034 -0.126966
-1.0000 1.0000 0.0000 0.191166 -0.191166
-1.0000 1.0000 1.0000 -17.808527 -0.191473
-0.3333 0.0000 0.0000 -0.000002 0.000002
-0.3333 0.0000 1.0000 0.000000 0.000000
-0.3333 0.3333 0.0000 0.021228 -0.021228
-0.3333 0.3333 1.0000 -1.978768 -0.021232
-0.3333 0.6667 0.0000 0.042464 -0.042464
-0.3333 0.6667 1.0000 -3.957536 -0.042464
-0.3333 1.0000 0.0000 0.063700 -0.063700
-0.3333 1.0000 1.0000 -5.936305 -0.063694
 0.3333 0.0000 0.0000 -0.000003 0.000003
 0.3333 0.0000 1.0000 0.000000 0.000000
 0.3333 0.3333 0.0000 -0.021229 0.021229
 0.3333 0.3333 1.0000 1.978763 0.021238
 0.3333 0.6667 0.0000 -0.042465 0.042465
 0.3333 0.6667 1.0000 3.957539 0.042462
 0.3333 1.0000 0.0000 -0.063700 0.063700
 0.3333 1.0000 1.0000 5.936304 0.063697
 1.0000 0.0000 0.0000 -0.000098 0.000098
 1.0000 0.0000 1.0000 0.000053 -0.000053
 1.0000 0.3333 0.0000 -0.063855 0.063855
 1.0000 0.3333 1.0000 5.936146 0.063854
 1.0000 0.6667 0.0000 -0.127631 0.127631
 1.0000 0.6667 1.0000 11.873067 0.126933
 1.0000 1.0000 0.0000 -0.191442 0.191442
 1.0000 1.0000 1.0000 17.807940 0.192060

BS3GD/DBS3GD (Single/Double precision)
Evaluate the derivative of a three-dimensional tensor-product spline, given its
tensor-product B-spline representation on a grid.

Usage
CALL BS3GD (IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ,
 ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,
 NXCOEF, NYCOEF, NZCOEF, BSCOEF, VALUE, LDVALU,
 MDVALU)

Arguments

IXDER — Order of the X-derivative. (Input)

496 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

IYDER — Order of the Y-derivative. (Input)

IZDER — Order of the Z-derivative. (Input)

NX — Number of grid points in the x-direction. (Input)

XVEC — Array of length NX containing the x-coordinates at which the spline is
to be evaluated. (Input)
The points in XVEC should be strictly increasing.

NY — Number of grid points in the y-direction. (Input)

YVEC — Array of length NY containing the y-coordinates at which the spline is to
be evaluated. (Input)
The points in YVEC should be strictly increasing.

NZ — Number of grid points in the z-direction. (Input)

ZVEC — Array of length NY containing the y-coordinates at which the spline is to
be evaluated. (Input)
The points in YVEC should be strictly increasing.

KXORD — Order of the spline in the x-direction. (Input)

KYORD — Order of the spline in the y-direction. (Input)

KZORD — Order of the spline in the z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the
x-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the
y-direction. (Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the
z-direction. (Input)
ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the x-direction. (Input)

NYCOEF — Number of B-spline coefficients in the y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-
product B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

VALUE — Array of size NX by NY by NZ containing the values of the (IXDER,
IYDER, IZDER) derivative of the spline on the NX by NY by NZ grid. (Output)
VALUE(I, J, K) contains the derivative of the spline at the point
(XVEC(I), YVEC(J), ZVEC(K)).

LDVALU — Leading dimension of VALUE exactly as specified in the dimension
statement of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 497

MDVALU — Middle dimension of VALUE exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

BS3GD KXORD * (IXDER + NX + 1) + KYORD * (IYDER + NY + 1) +
KZORD * (IZDER + NZ + 1) + KXORD * KXORD + KYORD *
KYORD + KZORD * KZORD + NZ + NY + NZ units, or
+ KZORD units, or

DBS3GD 2 * (KXORD * (IXDER + NX + 1) + KYORD * (IYDER + NY + 1)
+ KZORD * (IZDER + NZ + 1) + KXORD * KXORD + KYORD *
KYORD + KZORD * KZORD) + NX + NY + NZ units.

Workspace may be explicitly provided, if desired, by use of
B23GD/DB23GD. The reference is

CALL B23GD (IXDER, IYDER, IZDER, X, Y, Z, KXORD,
 KYORD, KZORD,XKNOT, YKNOT, ZKNOT,
 NXCOEF, NYCOEF, NZCOEF, BSCOEF, VALUE,
 LDVALU, MDVALU, LEFTX, LEFTY, LEFTZ, A,
 B, C, DBIATX, DBIATY, DBIATZ, BX, BY,
 BZ)

The additional arguments are as follows:

LEFTX — Work array of length NX.

LEFTY — Work array of length NY.

LEFTZ — Work array of length NZ.

A — Work array of length KXORD * KXORD.

B — Work array of length KYORD * KYORD.

C — Work array of length KZORD * KZORD.

DBIATX — Work array of length KXORD * (IXDER + 1).

DBIATY — Work array of length KYORD * (IYDER + 1).

DBIATZ — Work array of length KZORD * (IZDER + 1).

BX — Work array of length KXORD * NX.

BY — Work array of length KYORD * NY.

BZ — Work array of length KZORD * NZ.

2. Informational errors
Type Code
 3 1 XVEC(I) does not satisfy XKNOT(KXORD) ≤ XVEC(I) ≤

XKNOT(NXCOEF + 1).
 3 2 YVEC(I) does not satisfy YKNOT(KYORD) ≤ YVEC(I) ≤

YKNOT(NYCOEF + 1).

498 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 3 3 ZVEC(I) does not satisfy ZKNOT(KZORD) ≤ ZVEC(I) ≤
ZKNOT(NZCOEF + 1).

 4 4 XVEC is not strictly increasing.
 4 5 YVEC is not strictly increasing.
 4 6 ZVEC is not strictly increasing.

Algorithm

The routine BS3GD evaluates a partial derivative of a trivariate tensor-product
spline (represented as a linear combination of tensor-product B-splines) on a grid.
For more information, see de Boor (1978, pages 351−353).

This routine returns the value of the function s�S�T�U� on the grid (xL, yM, zN) for

i = 1, …, nx, j = 1, …, ny, and k = 1, …, nz given the coefficients c by computing
(for all (x, y, z) on the grid)

s x y z c B x B y B zp q r
nml

n

N

m

N

n k
p

m k
q

l

N

l k
r

xy

x x y y

z

z z

, ,
, , , , , ,, ,0 5 0 5 0 5 00 5 0 5 0 5 0 5=

===

)∑∑∑
111

t t t

where k[, k\, and k] are the orders of the splines. (These numbers are passed to the
subroutine in KXORD, KYORD, and KZORD, respectively.) Likewise, t[, t\, and t] are
the corresponding knot sequences (XKNOT, YKNOT, and ZKNOT). The grid must be
ordered in the sense that xL < xL����, yM < yM����, and zN < zN����.

Example

In this example, a spline interpolant s to a function f(x, y, z) = x� + y(xz)� is
constructed using BS3IN (page 464). Next, BS3GD is used to compute

s�������(x, y, z) on the grid. The values of this partial derivative and the error are
computed on a 4 × 4 × 2 grid and then displayed.

 INTEGER KXORD, KYORD, KZORD, LDF, LDVAL, MDF, MDVAL, NXDATA,
 & NXKNOT, NYDATA, NYKNOT, NZ, NZDATA, NZKNOT
 PARAMETER (KXORD=5, KYORD=2, KZORD=3, LDVAL=4, MDVAL=4,
 & NXDATA=21, NYDATA=6, NZ=2, NZDATA=8, LDF=NXDATA,
 & MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,
 & NZKNOT=NZDATA+KZORD)
C
 INTEGER I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF
 REAL BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,
 & FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(LDVAL,MDVAL,NZ),
 & X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(LDVAL), Y,
 & YDATA(NYDATA), YKNOT(NYKNOT), YVEC(MDVAL), Z,
 & ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZ)
 INTRINSIC FLOAT
 EXTERNAL BS3GD, BS3IN, BSNAK, UMACH
C
C
C
 F(X,Y,Z) = X*X*X*X + X*X*X*Y*Z*Z*Z
 F201(X,Y,Z) = 18.0*X*Y*Z
C

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 499

 CALL UMACH (2, NOUT)
C Set up X interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) - 1.0
 10 CONTINUE
C Set up Y interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
C Set up Z interpolation points
 DO 30 I=1, NZDATA
 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
 30 CONTINUE
C Generate knots
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
C Generate FDATA
 DO 50 K=1, NZDATA
 DO 40 I=1, NYDATA
 DO 40 J=1, NXDATA
 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
 40 CONTINUE
 50 CONTINUE
C Interpolate
 CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA,
 & LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,
 & BSCOEF)
C
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 NZCOEF = NZDATA
C Print over a grid of
C [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]
C at 32 points.
 DO 60 I=1, 4
 XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0
 60 CONTINUE
 DO 70 J=1, 4
 YVEC(J) = FLOAT(J-1)/3.0
 70 CONTINUE
 DO 80 L=1, 2
 ZVEC(L) = FLOAT(L-1)
 80 CONTINUE
 CALL BS3GD (2, 0, 1, 4, XVEC, 4, YVEC, 2, ZVEC, KXORD, KYORD,
 & KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF,
 & BSCOEF, VALUE, LDVAL, MDVAL)
C
C
 WRITE (NOUT,99999)
 DO 110 I=1, 4
 DO 100 J=1, 4
 DO 90 L=1, 2
 WRITE (NOUT,’(5F13.4)’) XVEC(I), YVEC(J), ZVEC(L),
 & VALUE(I,J,L),
 & F201(XVEC(I),YVEC(J),ZVEC(L)) -
 & VALUE(I,J,L)
 90 CONTINUE
 100 CONTINUE

500 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 110 CONTINUE
99999 FORMAT (44X, ’(2,0,1)’, /, 10X, ’X’, 11X, ’Y’, 10X, ’Z’, 10X,
 & ’S (X,Y,Z) Error’)
 STOP
 END

Output
 (2,0,1)
 X Y Z S (X,Y,Z) Error
-1.0000 0.0000 0.0000 -0.0003 0.0003
-1.0000 0.0000 1.0000 0.0001 -0.0001
-1.0000 0.3333 0.0000 0.0642 -0.0642
-1.0000 0.3333 1.0000 -5.9360 -0.0640
-1.0000 0.6667 0.0000 0.1273 -0.1273
-1.0000 0.6667 1.0000 -11.8730 -0.1270
-1.0000 1.0000 0.0000 0.1911 -0.1911
-1.0000 1.0000 1.0000 -17.8086 -0.1914
-0.3333 0.0000 0.0000 0.0000 0.0000
-0.3333 0.0000 1.0000 0.0000 0.0000
-0.3333 0.3333 0.0000 0.0212 -0.0212
-0.3333 0.3333 1.0000 -1.9788 -0.0212
-0.3333 0.6667 0.0000 0.0425 -0.0425
-0.3333 0.6667 1.0000 -3.9575 -0.0425
-0.3333 1.0000 0.0000 0.0637 -0.0637
-0.3333 1.0000 1.0000 -5.9363 -0.0637
 0.3333 0.0000 0.0000 0.0000 0.0000
 0.3333 0.0000 1.0000 0.0000 0.0000
 0.3333 0.3333 0.0000 -0.0212 0.0212
 0.3333 0.3333 1.0000 1.9788 0.0212
 0.3333 0.6667 0.0000 -0.0425 0.0425
 0.3333 0.6667 1.0000 3.9575 0.0425
 0.3333 1.0000 0.0000 -0.0637 0.0637
 0.3333 1.0000 1.0000 5.9363 0.0637
 1.0000 0.0000 0.0000 -0.0006 0.0006
 1.0000 0.0000 1.0000 0.0000 0.0000
 1.0000 0.3333 0.0000 -0.0636 0.0636
 1.0000 0.3333 1.0000 5.9359 0.0641
 1.0000 0.6667 0.0000 -0.1273 0.1273
 1.0000 0.6667 1.0000 11.8734 0.1266
 1.0000 1.0000 0.0000 -0.1910 0.1910
 1.0000 1.0000 1.0000 17.8098 0.1902

BS3IG/DBS3IG (Single/Double precision)
Evaluate the integral of a tensor-product spline in three dimensions over a three-
dimensional rectangle, given its tensor-product B-spline representation.

Usage
BS3IG(A, B, C, D, E, F, KXORD, KYORD, KZORD, XKNOT, YKNOT,
 ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Arguments

A — Lower limit of the X-variable. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 501

B — Upper limit of the X-variable. (Input)

C — Lower limit of the Y-variable. (Input)

D — Upper limit of the Y-variable. (Input)

E — Lower limit of the Z-variable. (Input)

F — Upper limit of the Z-variable. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the
X-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the
Y-direction. (Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the
Z-direction. (Input)
ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-
product B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

BS3IG — Integral of the spline over the three-dimensional rectangle (A, B) by (C,
D) by (E, F). (Output)

Comments

1. Automatic workspace usage is

BS3IG 4 * (MAX(KXORD, KYORD, KZORD) + 1) + NYCOEF + NZCOEF
units, or

DBS3IG 8 * (MAX(KXORD, KYORD, KZORD) + 1) + 2 * NYCOEF + 2 *
NZCOEF units.

Workspace may be explicitly provided, if desired, by use of
B23IG/DB23IG. The reference is

CALL B23IG(A, B, C, D, E, F, KXORD, KYORD, KZORD,
 XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF,
 NZCOEF, BSCOEF, WK)

502 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

The additional argument is

WK — Work array of length 4 * (MAX(KXORD, KYORD, KZORD) + 1) +
NYCOEF + NZCOEF.

2. Informational errors
Type Code
 3 1 The lower limit of the X-integration is less than

XKNOT(KXORD).
 3 2 The upper limit of the X-integration is greater than

XKNOT(NXCOEF + 1).
 3 3 The lower limit of the Y-integration is less than

YKNOT(KYORD).
 3 4 The upper limit of the Y-integration is greater than

YKNOT(NYCOEF + 1).
 3 5 The lower limit of the Z- integration is less than

ZKNOT(KZORD).
 3 6 The upper limit of the Z-integration is greater than

ZKNOT(NZCOEF + 1).
 4 13 Multiplicity of the knots cannot exceed the order of

the spline.
 4 14 The knots must be nondecreasing.

Algorithm

The routine BS3IG computes the integral of a tensor-product three-dimensional
spline, given its B-spline representation. Specifically, given the knot sequence
t[= XKNOT, t\ = YKNOT, t] = ZKNOT, the order k[= KXORD, k\ = KYORD,

k] = KZORD, the coefficients β = BSCOEF, the number of coefficients
n[= NXCOEF, n\ = NYCOEF, n] = NZCOEF, and a three-dimensional rectangle
[a, b] by [c, d] by [e, f], BS3IG returns the value

βijm
m

n

j

n

i

n

e

f

c

d

a

b
ijm

zyx

B dz dy dx
===

∑∑∑III
111

where

B x y z B x B y B zijm i k j k m kx x y y z z
, , , , , , ,0 5 0 5 0 5 0 5= t t t

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for
all knot sequences) that the first and last k knots are stacked, that is, t� = … = tN
and tQ�����= … = tQ���N, where k is the order of the spline in the x, y, or z direction.

Example

We integrate the three-dimensional tensor-product quartic (k[= 5) by linear (k\ =

2) by quadratic (k] = 3) spline which interpolates x� + xyz at the points

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 503

i j m i j m/ , / , / : , , , , , , , ,10 5 7 10 10 0 5 0 70 5< A= − = =K K Kand

over the rectangle [0, 1] × [.5, 1] × [0, .5]. The exact answer is 11/128.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,
 & NYDATA, NYKNOT, NZDATA, NZKNOT
 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,
 & NZDATA=8, LDF=NXDATA, MDF=NYDATA,
 & NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,
 & NZKNOT=NZDATA+KZORD)
C
 INTEGER I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF
 REAL A, B, BS3IG, BSCOEF(NXDATA,NYDATA,NZDATA), C, D, E,
 & F, FDATA(LDF,MDF,NZDATA), FF, FIG, FLOAT, G, H, RI,
 & RJ, VAL, X, XDATA(NXDATA), XKNOT(NXKNOT), Y,
 & YDATA(NYDATA), YKNOT(NYKNOT), Z, ZDATA(NZDATA),
 & ZKNOT(NZKNOT)
 INTRINSIC FLOAT
 EXTERNAL BS3IG, BS3IN, BSNAK, UMACH
C Define function
 F(X,Y,Z) = X*X*X + X*Y*Z
C Set up interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
C Set up interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
C Generate knot sequence
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
C Set up interpolation points
 DO 30 I=1, NZDATA
 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
 30 CONTINUE
C Generate knot sequence
 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
C Generate FDATA
 DO 50 K=1, NZDATA
 DO 40 I=1, NYDATA
 DO 40 J=1, NXDATA
 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
 40 CONTINUE
 50 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Interpolate
 CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA,
 & LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,
 & BSCOEF)
C
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 NZCOEF = NZDATA
 A = 0.0
 B = 1.0

504 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 C = 0.5
 D = 1.0
 E = 0.0
 FF = 0.5
C Integrate
 VAL = BS3IG(A,B,C,D,E,FF,KXORD,KYORD,KZORD,XKNOT,YKNOT,ZKNOT,
 & NXCOEF,NYCOEF,NZCOEF,BSCOEF)
C Calculate integral directly
 G = .5*(B**4-A**4)
 H = (B-A)*(B+A)
 RI = G*(D-C)
 RJ = .5*H*(D-C)*(D+C)
 FIG = .5*(RI*(FF-E)+.5*RJ*(FF-E)*(FF+E))
C Print results
 WRITE (NOUT,99999) VAL, FIG, FIG - VAL
99999 FORMAT (’ Computed Integral = ’, F10.5, /, ’ Exact Integral ’
 & , ’= ’, F10.5,/, ’ Error ’
 & , ’= ’, F10.6, /)
 END

Output
Computed Integral = 0.08594
Exact Integral = 0.08594
Error = 0.000000

BSCPP/DBSCPP (Single/Double precision)
Convert a spline in B-spline representation to piecewise polynomial
representation.

Usage
CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK,
 PPCOEF)

Arguments

KORDER — Order of the spline. (Input)

XKNOT — Array of length KORDER + NCOEF containing the knot sequence.
(Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

NPPCF — Number of piecewise polynomial pieces. (Output)
NPPCF is always less than or equal to NCOEF − KORDER + 1.

BREAK — Array of length (NPPCF + 1) containing the breakpoints of the
piecewise polynomial representation. (Output)
BREAK must be dimensioned at least NCOEF − KORDER + 2.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 505

PPCOEF — Array of length KORDER * NPPCF containing the local coefficients
of the polynomial pieces. (Output)
PPCOEF is treated internally as a matrix of size KORDER by NPPCF.

Comments

1. Automatic workspace usage is

BSCPP (KORDER + 3) * KORDER units, or
DBSCPP 2 * (KORDER + 3) * KORDER units.

Workspace may be explicitly provided, if desired, by use of
B2CPP/DB2CPP. The reference is

CALL B2CPP (KORDER, XKNOT, NCOEF, BSCOEFF, NPPCF,
 BREAK, PPCOEF, WK)

The additional argument is

WK — Work array of length (KORDER + 3) * KORDER.

2. Informational errors
Type Code
 4 4 Multiplicity of the knots cannot exceed the order of

the spline.
 4 5 The knots must be nondecreasing.

Algorithm

The routine BSCPP is based on the routine BSPLPP by de Boor (1978, page 140).
This routine is used to convert a spline in B-spline representation to a piecewise
polynomial (pp) representation which can then be evaluated more efficiently.
There is some overhead in converting from the B-spline representation to the pp
representation, but the conversion to pp form is recommended when 3 or more
function values are needed per polynomial piece.

Example

For an example of the use of BSCPP, see PPDER (page 507).

PPVAL/DPPVAL (Single/Double precision)
Evaluate a piecewise polynomial.

Usage
PPVAL(X, KORDER, NINTV, BREAK, PPCOEF)

Arguments

X — Point at which the polynomial is to be evaluated. (Input)

KORDER — Order of the polynomial. (Input)

506 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

NINTV — Number of polynomial pieces. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints of the
piecewise polynomial representation. (Input)
BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of
the piecewise polynomial pieces. (Input)
PPCOEF is treated internally as a matrix of size KORDER by NINTV.

PPVAL — Value of the piecewise polynomial at X. (Output)

Algorithm

The routine PPVAL evaluates a piecewise polynomial at a given point. This
routine is a special case of the routine PPDER (page 507), which evaluates the
derivative of a piecewise polynomial. (The value of a piecewise polynomial is its
zero-th derivative.)

The routine PPDER is based on the routine PPVALU in de Boor (1978, page 89).

Example

In this example, a spline interpolant to a function f is computed using the IMSL
routine BSINT (page 450). This routine represents the interpolant as a linear
combination of B-splines. This representation is then converted to piecewise
polynomial representation by calling the IMSL routine BSCPP (page 504). The
piecewise polynomial is evaluated using PPVAL. These values are compared to
the corresponding values of f.

 INTEGER KORDER, NCOEF, NDATA, NKNOT
 PARAMETER (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER)
C
 INTEGER I, NOUT, NPPCF
 REAL BREAK(NCOEF), BSCOEF(NCOEF), EXP, F, FDATA(NDATA),
 & FLOAT, PPCOEF(KORDER,NCOEF), PPVAL, S, X,
 & XDATA(NDATA), XKNOT(NKNOT)
 INTRINSIC EXP, FLOAT
 EXTERNAL BSCPP, BSINT, PPVAL, UMACH
C Define function
 F(X) = X*EXP(X)
C Set up interpolation points
 DO 30 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 30 CONTINUE
C Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Compute the B-spline interpolant
 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
C Convert to piecewise polynomial
 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 507

C Print the interpolant on a uniform
C grid
 DO 40 I=1, NDATA
 X = FLOAT(I-1)/FLOAT(NDATA-1)
C Compute value of the piecewise
C polynomial
 S = PPVAL(X,KORDER,NPPCF,BREAK,PPCOEF)
 WRITE (NOUT,’(2F12.3, E14.3)’) X, S, F(X) - S
 40 CONTINUE
99999 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’)
 END

Output
 X S(X) Error
0.000 0.000 0.000E+00
0.053 0.055 -0.745E-08
0.105 0.117 0.000E+00
0.158 0.185 0.000E+00
0.211 0.260 -0.298E-07
0.263 0.342 0.298E-07
0.316 0.433 0.000E+00
0.368 0.533 0.000E+00
0.421 0.642 0.000E+00
0.474 0.761 0.596E-07
0.526 0.891 0.000E+00
0.579 1.033 0.000E+00
0.632 1.188 0.000E+00
0.684 1.356 0.000E+00
0.737 1.540 -0.119E-06
0.789 1.739 0.000E+00
0.842 1.955 0.000E+00
0.895 2.189 0.238E-06
0.947 2.443 0.238E-06
1.000 2.718 0.238E-06

PPDER/DPPDER (Single/Double precision)
Evaluate the derivative of a piecewise polynomial.

Usage
PPDER(IDERIV, X, KORDER, NINTV, BREAK, PPCOEF)

Arguments

IDERIV — Order of the derivative to be evaluated. (Input)
In particular, IDERIV = 0 returns the value of the polynomial.

X — Point at which the polynomial is to be evaluated. (Input)

KORDER — Order of the polynomial. (Input)

NINTV — Number of polynomial pieces. (Input)

508 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

BREAK — Array of length NINTV + 1 containing the breakpoints of the
piecewise polynomial representation. (Input)
BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of
the piecewise polynomial pieces. (Input)
PPCOEF is treated internally as a matrix of size KORDER by NINTV.

PPDER — Value of the IDERIV-th derivative of the piecewise polynomial at X.
(Output)

Algorithm

The routine PPDER evaluates the derivative of a piecewise polynomial function f
at a given point. This routine is based on the subroutine PPVALU by de Boor
(1978, page 89). In particular, if the breakpoint sequence is stored in ξ (a vector
of length N = NINTV + 1), and if the coefficients of the piecewise polynomial
representation are stored in c, then the value of the j-th derivative of f at x in
[ξL, ξL����) is

f x c
x

m j
j

m i
m j

k
i

m j
0 5 0 5 1 6

0 5=
−

−+
=

− −

∑ 1

1

, !

ξ

when j = 0 to k − 1 and zero otherwise. Notice that this representation forces the
function to be right continuous. If x is less than ξ�, then i is set to 1 in the above

formula; if x is greater than or equal to ξ1 , then i is set to N − 1. This has the
effect of extending the piecewise polynomial representation to the real axis by
extrapolation of the first and last pieces.

Example

In this example, a spline interpolant to a function f is computed using the IMSL
routine BSINT (page 450). This routine represents the interpolant as a linear
combination of B-splines. This representation is then converted to piecewise
polynomial representation by calling the IMSL routine BSCPP (page 504). The
piecewise polynomial’s zero-th and first derivative are evaluated using PPDER.
These values are compared to the corresponding values of f.

 INTEGER KORDER, NCOEF, NDATA, NKNOT
 PARAMETER (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER)
C
 INTEGER I, NOUT, NPPCF
 REAL BREAK(NCOEF), BSCOEF(NCOEF), DF, DS, EXP, F,
 & FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), PPDER, S,
 & X, XDATA(NDATA), XKNOT(NKNOT)
 INTRINSIC EXP, FLOAT
 EXTERNAL BSCPP, BSINT, BSNAK, PPDER, UMACH
C
 F(X) = X*EXP(X)
 DF(X) = (X+1.)*EXP(X)
C Set up interpolation points
 DO 10 I=1, NDATA

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 509

 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Compute the B-spline interpolant
 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
C Convert to piecewise polynomial
 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Print the interpolant on a uniform
C grid
 DO 20 I=1, NDATA
 X = FLOAT(I-1)/FLOAT(NDATA-1)
C Compute value of the piecewise
C polynomial
 S = PPDER(0,X,KORDER,NPPCF,BREAK,PPCOEF)
C Compute derivative of the piecewise
C polynomial
 DS = PPDER(1,X,KORDER,NPPCF,BREAK,PPCOEF)
 WRITE (NOUT,’(2F12.3,F12.6,F12.3,F12.6)’) X, S, F(X) - S, DS,
 & DF(X) - DS
 20 CONTINUE
99999 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 7X, ’S’’(X)’, 7X,
 & ’Error’)
 END

Output
 X S(X) Error S’(X) Error
0.000 0.000 0.000000 1.000 -0.000112
0.053 0.055 0.000000 1.109 0.000030
0.105 0.117 0.000000 1.228 -0.000008
0.158 0.185 0.000000 1.356 0.000002
0.211 0.260 0.000000 1.494 0.000000
0.263 0.342 0.000000 1.643 0.000000
0.316 0.433 0.000000 1.804 -0.000001
0.368 0.533 0.000000 1.978 0.000002
0.421 0.642 0.000000 2.165 0.000001
0.474 0.761 0.000000 2.367 0.000000
0.526 0.891 0.000000 2.584 -0.000001
0.579 1.033 0.000000 2.817 0.000001
0.632 1.188 0.000000 3.068 0.000001
0.684 1.356 0.000000 3.338 0.000001
0.737 1.540 0.000000 3.629 0.000001
0.789 1.739 0.000000 3.941 0.000000
0.842 1.955 0.000000 4.276 -0.000006
0.895 2.189 0.000000 4.636 0.000024
0.947 2.443 0.000000 5.022 -0.000090
1.000 2.718 0.000000 5.436 0.000341

510 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

PP1GD/DPP1GD (Single/Double precision)
Evaluate the derivative of a piecewise polynomial on a grid.

Usage
CALL PP1GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF,
 VALUE)

Arguments

IDERIV — Order of the derivative to be evaluated. (Input)
In particular, IDERIV = 0 returns the values of the piecewise polynomial.

N — Length of vector XVEC. (Input)

XVEC — Array of length N containing the points at which the piecewise
polynomial is to be evaluated. (Input)
The points in XVEC should be strictly increasing.

KORDER — Order of the polynomial. (Input)

NINTV — Number of polynomial pieces. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the
piecewise polynomial representation. (Input)
BREAK must be strictly increasing.

PPCOEF — Matrix of size KORDER by NINTV containing the local coefficients
of the polynomial pieces. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative
of the piecewise polynomial at the points in XVEC. (Output)

Comments

1. Automatic workspace usage is

PP1GD 3 * N units, or

DPP1GD 5 * N units.

Workspace may be explicitly provided, if desired, by use of
P21GD/DP21GD. The reference is

CALL P21GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK,
 PPCOEF, VALUE, IWK, WORK1, WORK2)

The additional arguments are as follows:

IWK — Array of length N.

WORK1 — Array of length N.

WORK2 — Array of length N.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 511

2. Informational error
Type Code
 4 4 The points in XVEC must be strictly increasing.

Algorithm

The routine PP1GD evaluates a piecewise polynomial function f (or its derivative)
at a vector of points. That is, given a vector x of length n satisfying xL < xL���� for i

= 1, …, n − 1, a derivative value j, and a piecewise polynomial function f that is
represented by a breakpoint sequence and coefficient matrix this routine returns
the values

f x i nj
i

0 5 1 6 = 1, ,K

in the array VALUE. The functionality of this routine is the same as that of PPDER
(page 507) called in a loop, however PP1GD is much more efficient.

Example

To illustrate the use of PP1GD, we modify the example program for PPDER
(page 507). In this example, a piecewise polynomial interpolant to F is computed.
The values of this polynomial are then compared with the exact function values.
The routine PP1GD is based on the routine PPVALU in de Boor (1978, page 89).

 INTEGER KORDER, N, NCOEF, NDATA, NKNOT
 PARAMETER (KORDER=4, N=20, NCOEF=20, NDATA=20,
 & NKNOT=NDATA+KORDER)
C
 INTEGER I, NINTV, NOUT, NPPCF
 REAL BREAK(NCOEF), BSCOEF(NCOEF), DF, EXP, F,
 & FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), VALUE1(N),
 & VALUE2(N), X, XDATA(NDATA), XKNOT(NKNOT), XVEC(N)
 INTRINSIC EXP, FLOAT
 EXTERNAL BSCPP, BSINT, BSNAK, PP1GD, UMACH
C
 F(X) = X*EXP(X)
 DF(X) = (X+1.)*EXP(X)
C Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Compute the B-spline interpolant
 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
C Convert to piecewise polynomial
 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)
C Compute evaluation points
 DO 20 I=1, N
 XVEC(I) = FLOAT(I-1)/FLOAT(N-1)
 20 CONTINUE
C Compute values of the piecewise
C polynomial

512 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 NINTV = NPPCF
 CALL PP1GD (0, N, XVEC, KORDER, NINTV, BREAK, PPCOEF, VALUE1)
C Compute the values of the first
C derivative of the piecewise
C polynomial
 CALL PP1GD (1, N, XVEC, KORDER, NINTV, BREAK, PPCOEF, VALUE2)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99998)
C Print the results on a uniform
C grid
 DO 30 I=1, N
 WRITE (NOUT,99999) XVEC(I), VALUE1(I), F(XVEC(I)) - VALUE1(I)
 & , VALUE2(I), DF(XVEC(I)) - VALUE2(I)
 30 CONTINUE
99998 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 7X, ’S’’(X)’, 7X,
 & ’Error’)
99999 FORMAT (’ ’, 2F12.3, F12.6, F12.3, F12.6)
 END

Output
 X S(X) Error S’(X) Error
0.000 0.000 0.000000 1.000 -0.000112
0.053 0.055 0.000000 1.109 0.000030
0.105 0.117 0.000000 1.228 -0.000008
0.158 0.185 0.000000 1.356 0.000002
0.211 0.260 0.000000 1.494 0.000000
0.263 0.342 0.000000 1.643 0.000000
0.316 0.433 0.000000 1.804 -0.000001
0.368 0.533 0.000000 1.978 0.000002
0.421 0.642 0.000000 2.165 0.000001
0.474 0.761 0.000000 2.367 0.000000
0.526 0.891 0.000000 2.584 -0.000001
0.579 1.033 0.000000 2.817 0.000001
0.632 1.188 0.000000 3.068 0.000001
0.684 1.356 0.000000 3.338 0.000001
0.737 1.540 0.000000 3.629 0.000001
0.789 1.739 0.000000 3.941 0.000000
0.842 1.955 0.000000 4.276 -0.000006
0.895 2.189 0.000000 4.636 0.000024
0.947 2.443 0.000000 5.022 -0.000090
1.000 2.718 0.000000 5.436 0.000341

PPITG/DPPITG (Single/Double precision)
Evaluate the integral of a piecewise polynomial.

Usage
PPITG(A, B, KORDER, NINTV, BREAK, PPCOEF)

Arguments

A — Lower limit of integration. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 513

B — Upper limit of integration. (Input)

KORDER — Order of the polynomial. (Input)

NINTV — Number of piecewise polynomial pieces. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the
piecewise polynomial. (Input)
BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of
the piecewise polynomial pieces. (Input)
PPCOEF is treated internally as a matrix of size KORDER by NINTV.

PPITG — Value of the integral from A to B of the piecewise polynomial.
(Output)

Algorithm

The routine PPITG evaluates the integral of a piecewise polynomial over an
interval.

Example

In this example, we compute a quadratic spline interpolant to the function x�
using the IMSL routine BSINT (page 450). We then evaluate the integral of the
spline interpolant over the intervals [0, 1/2] and [0, 2]. The interpolant reproduces

x�, and hence, the values of the integrals are 1/24 and 8/3, respectively.
 INTEGER KORDER, NDATA, NKNOT
 PARAMETER (KORDER=3, NDATA=10, NKNOT=NDATA+KORDER)
C
 INTEGER I, NOUT, NPPCF
 REAL A, B, BREAK(NDATA), BSCOEF(NDATA), EXACT, F,
 & FDATA(NDATA), FI, FLOAT, PPCOEF(KORDER,NDATA), PPITG,
 & VALUE, X, XDATA(NDATA), XKNOT(NKNOT)
 INTRINSIC FLOAT
 EXTERNAL BSCPP, BSINT, BSNAK, PPITG, UMACH
C
 F(X) = X*X
 FI(X) = X*X*X/3.0
C Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
C Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
C Convert to piecewise polynomial
 CALL BSCPP (KORDER, XKNOT, NDATA, BSCOEF, NPPCF, BREAK, PPCOEF)
C Compute the integral of F over
C [0.0,0.5]
 A = 0.0

514 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 B = 0.5
 VALUE = PPITG(A,B,KORDER,NPPCF,BREAK,PPCOEF)
 EXACT = FI(B) - FI(A)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print the result
 WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE
C Compute the integral of F over
C [0.0,2.0]
 A = 0.0
 B = 2.0
 VALUE = PPITG(A,B,KORDER,NPPCF,BREAK,PPCOEF)
 EXACT = FI(B) - FI(A)
C Print the result
 WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,
 & ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,
 & 1X, ’Exact Integral = ’, F10.5, /, 1X, ’Error ’
 & , ’ = ’, F10.6, /, /)
C
 END

Output
On the closed interval (0.0,0.5) we have :
Computed Integral = 0.04167
Exact Integral = 0.04167
Error = 0.000000

On the closed interval (0.0,2.0) we have :
Computed Integral = 2.66667
Exact Integral = 2.66667
Error = 0.000001

QDVAL/DQDVAL (Single/Double precision)
Evaluate a function defined on a set of points using quadratic interpolation.

Usage
QDVAL(X, NDATA, XDATA, FDATA, CHECK)

Arguments

X — Coordinate of the point at which the function is to be evaluated. (Input)

NDATA — Number of data points. (Input)
NDATA must be at least 3.

XDATA — Array of length NDATA containing the location of the data points.
(Input) XDATA must be strictly increasing.

FDATA — Array of length NDATA containing the function values. (Input)
FDATA(I) is the value of the function at XDATA(I).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 515

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or
.FALSE. if checking is not required. (Input)

QDVAL — Value of the quadratic interpolant at X. (Output)

Comments
Informational error
Type Code
 4 3 The XDATA values must be strictly increasing.

Algorithm

The function QDVAL interpolates a table of values, using quadratic polynomials,
returning an approximation to the tabulated function. Let (xL, fL) for i = 1, …, n be
the tabular data. Given a number x at which an interpolated value is desired, we
first find the nearest interior grid point xL. A quadratic interpolant q is then formed
using the three points (xL��, fL��), (xL, fL), and (xL��, fL��). The number returned by
QDVAL is q(x). One should note that, in general, the function QDVAL is
discontinuous at the midpoints of the mesh.

Example

In this example, the value of sin x is approximated at π/4 by using QDVAL on a
table of 33 equally spaced values.

 INTEGER NDATA
 PARAMETER (NDATA=33)
C
 INTEGER I, NOUT
 REAL CONST, F, FDATA(NDATA), H, PI, QDVAL, QT, SIN, X,
 & XDATA(NDATA)
 LOGICAL CHECK
 INTRINSIC SIN
 EXTERNAL CONST, QDVAL, UMACH
C Define function
 F(X) = SIN(X)
C Generate data points
 XDATA(1) = 0.0
 FDATA(1) = F(XDATA(1))
 H = 1.0/32.0
 DO 10 I=2, NDATA
 XDATA(I) = XDATA(I-1) + H
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Get value of PI and set X
 PI = CONST(’PI’)
 X = PI/4.0
C Check XDATA
 CHECK = .TRUE.
C Evaluate at PI/4
 QT = QDVAL(X,NDATA,XDATA,FDATA,CHECK)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print results
 WRITE (NOUT,99999) X, F(X), QT, (F(X)-QT)

516 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

C
99999 FORMAT (15X, ’X’, 6X, ’F(X)’, 6X, ’QDVAL’, 5X, ’ERROR’, //, 6X,
 & 4F10.3, /)
 END

Output
 X F(X) QDVAL ERROR

0.785 0.707 0.707 0.000

QDDER/DQDDER (Single/Double precision)
Evaluate the derivative of a function defined on a set of points using quadratic
interpolation.

Usage
QDDER(IDERIV, X, NDATA, XDATA, FDATA, CHECK)

Arguments

IDERIV — Order of the derivative. (Input)

X — Coordinate of the point at which the function is to be evaluated. (Input)

NDATA — Number of data points. (Input)
NDATA must be at least three.

XDATA — Array of length NDATA containing the location of the data points.
(Input) XDATA must be strictly increasing.

FDATA — Array of length NDATA containing the function values. (Input)
FDATA(I) is the value of the function at XDATA(I).

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or
.FALSE. if checking is not required. (Input)

QDDER — Value of the IDERIV-th derivative of the quadratic interpolant at X.
(Output)

Comments

1. Informational error
Type Code
 4 3 The XDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of the derivative is
greater than two, then the returned value is zero.

Algorithm

The function QDDER interpolates a table of values, using quadratic polynomials,
returning an approximation to the derivative of the tabulated function. Let (xL, fL)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 517

for i = 1, …, n be the tabular data. Given a number x at which an interpolated
value is desired, we first find the nearest interior grid point xL. A quadratic
interpolant q is then formed using the three points (xL��, fL��), (xL, fL), and

(xL��, fL��). The number returned by QDDER is q�M�(x), where j = IDERIV. One
should note that, in general, the function QDDER is discontinuous at the midpoints
of the mesh.

Example

In this example, the value of sin x and its derivatives are approximated at π/4 by
using QDDER on a table of 33 equally spaced values.

 INTEGER NDATA
 PARAMETER (NDATA=33)
C
 INTEGER I, IDERIV, NOUT
 REAL CONST, COS, F, F1, F2, FDATA(NDATA), H, PI,
 & QDDER, QT, SIN, X, XDATA(NDATA)
 LOGICAL CHECK
 INTRINSIC COS, SIN
 EXTERNAL CONST, QDDER, UMACH
C Define function and derivatives
 F(X) = SIN(X)
 F1(X) = COS(X)
 F2(X) = -SIN(X)
C Generate data points
 XDATA(1) = 0.0
 FDATA(1) = F(XDATA(1))
 H = 1.0/32.0
 DO 10 I=2, NDATA
 XDATA(I) = XDATA(I-1) + H
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Get value of PI and set X
 PI = CONST(’PI’)
 X = PI/4.0
C Check XDATA
 CHECK = .TRUE.
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99998)
C Evaluate quadratic at PI/4
 IDERIV = 0
 QT = QDDER(IDERIV,X,NDATA,XDATA,FDATA,CHECK)
 WRITE (NOUT,99999) X, IDERIV, F(X), QT, (F(X)-QT)
 CHECK = .FALSE.
C Evaluate first derivative at PI/4
 IDERIV = 1
 QT = QDDER(IDERIV,X,NDATA,XDATA,FDATA,CHECK)
 WRITE (NOUT,99999) X, IDERIV, F1(X), QT, (F1(X)-QT)
C Evaluate second derivative at PI/4
 IDERIV = 2
 QT = QDDER(IDERIV,X,NDATA,XDATA,FDATA,CHECK)
 WRITE (NOUT,99999) X, IDERIV, F2(X), QT, (F2(X)-QT)
C

518 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

99998 FORMAT (33X, ’IDER’, /, 15X, ’X’, 6X, ’IDER’, 6X, ’F (X)’,
 & 5X, ’QDDER’, 6X, ’ERROR’, //)
99999 FORMAT (7X, F10.3, I8, 3F12.3/)
 END

Output
 IDER
 X IDER F (X) QDDER ERROR

0.785 0 0.707 0.707 0.000

0.785 1 0.707 0.707 0.000

0.785 2 -0.707 -0.704 -0.003

QD2VL/DQD2VL (Single/Double precision)
Evaluate a function defined on a rectangular grid using quadratic interpolation.

Usage
QD2VL(X, Y, NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,
 CHECK)

Arguments

X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

NXDATA — Number of data points in the x-direction. (Input)
NXDATA must be at least three.

XDATA — Array of length NXDATA containing the location of the data points in
the x-direction. (Input)
XDATA must be increasing.

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.

YDATA — Array of length NYDATA containing the location of the data points in
the y-direction. (Input)
YDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA containing function values.
(Input)
FDATA (I, J) is the value of the function at (XDATA (I), YDATA(J)).

LDF — Leading dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)
LDF must be at least as large as NXDATA.

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is
required or .FALSE. if checking is not required. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 519

QD2VL — Value of the function at (X, Y). (Output)

Comments
Informational errors
Type Code
 4 6 The XDATA values must be strictly increasing.
 4 7 The YDATA values must be strictly increasing.

Algorithm

The function QD2VL interpolates a table of values, using quadratic polynomials,
returning an approximation to the tabulated function. Let (xL, yM, fLM) for i = 1, …,

n[and j = 1, …, n\ be the tabular data. Given a point (x, y) at which an
interpolated value is desired, we first find the nearest interior grid point (xL, yM). A
bivariate quadratic interpolant q is then formed using six points near (x, y). Five
of the six points are (xL, yM), (xL�s�, yM), and (xL, yM�s�). The sixth point is the nearest
point to (x, y) of the grid points (xL��, yM��). The value q(x, y) is returned by
QD2VL. One should note that, in general, the function QD2VL is discontinuous at
the midlines of the mesh.

Example

In this example, the value of sin(x + y) at x = y = π/4 is approximated by using
QDVAL on a table of size 21 × 42 equally spaced values on the unit square.

 INTEGER LDF, NXDATA, NYDATA
 PARAMETER (NXDATA=21, NYDATA=42, LDF=NXDATA)
C
 INTEGER I, J, NOUT
 REAL CONST, F, FDATA(LDF,NYDATA), FLOAT, PI, Q, QD2VL,
 & SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA)
 LOGICAL CHECK
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, QD2VL, UMACH
C Define function
 F(X,Y) = SIN(X+Y)
C Set up X-grid
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NXDATA-1)
 10 CONTINUE
C Set up Y-grid
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
C Evaluate function on grid
 DO 30 I=1, NXDATA
 DO 30 J=1, NYDATA
 FDATA(I,J) = F(XDATA(I),YDATA(J))
 30 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Check XDATA and YDATA

520 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 CHECK = .TRUE.
C Get value for PI and set X and Y
 PI = CONST(’PI’)
 X = PI/4.0
 Y = PI/4.0
C Evaluate quadratic at (X,Y)
 Q = QD2VL(X,Y,NXDATA,XDATA,NYDATA,YDATA,FDATA,NXDATA,CHECK)
C Print results
 WRITE (NOUT,’(5F12.4)’) X, Y, F(X,Y), Q, (Q-F(X,Y))
99999 FORMAT (10X, ’X’, 11X, ’Y’, 7X, ’F(X,Y)’, 7X, ’QD2VL’, 9X,
 & ’DIF’)
 END

Output
 X Y F(X,Y) QD2VL DIF
0.7854 0.7854 1.0000 1.0000 0.0000

QD2DR/DQD2DR (Single/Double precision)
Evaluate the derivative of a function defined on a rectangular grid using quadratic
interpolation.

Usage
QD2DR(IXDER, IYDER, X, Y, NXDATA, XDATA, NYDATA, YDATA,
 FDATA, LDF, CHECK)

Arguments

IXDER — Order of the x-derivative. (Input)

IYDER — Order of the y-derivative. (Input)

X — X-coordinate of the point at which the function is to be evaluated. (Input)

Y — Y-coordinate of the point at which the function is to be evaluated. (Input)

NXDATA — Number of data points in the x-direction. (Input)
NXDATA must be at least three.

XDATA — Array of length NXDATA containing the location of the data points in
the x-direction. (Input)
XDATA must be increasing.

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.

YDATA — Array of length NYDATA containing the location of the data points in
the y-direction. (Input)
YDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA containing function values.
(Input)
FDATA(I, J) is the value of the function at (XDATA(I), YDATA(J)).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 521

LDF — Leading dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)
LDF must be at least as large as NXDATA.

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is
required or .FALSE. if checking is not required. (Input)

QD2DR — Value of the (IXDER, IYDER) derivative of the function at (X, Y).
(Output)

Comments

1. Informational errors
Type Code
 4 6 The XDATA values must be strictly increasing.
 4 7 The YDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of any derivative is
greater than two, then the returned value is zero.

Algorithm

The function QD2DR interpolates a table of values, using quadratic polynomials,
returning an approximation to the tabulated function. Let (xL, yM, fLM) for i = 1, …,

n[and j = 1, …, n\ be the tabular data. Given a point (x, y) at which an
interpolated value is desired, we first find the nearest interior grid point (xL, yM). A
bivariate quadratic interpolant q is then formed using six points near (x, y). Five
of the six points are (xL, yM), (xLs�, yM), and (xL, yMs�). The sixth point is the nearest

point to (x, y) of the grid points (xL��, yM��). The value q�S� U��(x, y) is returned by
QD2DR, where p = IXDER and r = IYDER. One should note that, in general, the
function QD2DR is discontinuous at the midlines of the mesh.

Example

In this example, the partial derivatives of sin(x + y) at x = y = π/3 are
approximated by using QD2DR on a table of size 21 × 42 equally spaced values on
the rectangle [0, 2] × [0, 2].

 INTEGER LDF, NXDATA, NYDATA
 PARAMETER (NXDATA=21, NYDATA=42, LDF=NXDATA)
C
 INTEGER I, IXDER, IYDER, J, NOUT
 REAL CONST, F, FDATA(LDF,NYDATA), FLOAT, FU, FUNC, PI, Q,
 & QD2DR, SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA)
 LOGICAL CHECK
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, FUNC, QD2DR, UMACH
C Define function
 F(X,Y) = SIN(X+Y)
C Set up X-grid
 DO 10 I=1, NXDATA
 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))

522 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 10 CONTINUE
C Set up Y-grid
 DO 20 I=1, NYDATA
 YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1))
 20 CONTINUE
C Evaluate function on grid
 DO 30 I=1, NXDATA
 DO 30 J=1, NYDATA
 FDATA(I,J) = F(XDATA(I),YDATA(J))
 30 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99998)
C Check XDATA and YDATA
 CHECK = .TRUE.
C Get value for PI and set X and Y
 PI = CONST(’PI’)
 X = PI/3.0
 Y = PI/3.0
C Evaluate and print the function
C and its derivatives at X=PI/3 and
C Y=PI/3.
 DO 40 IXDER=0, 1
 DO 40 IYDER=0, 1
 Q = QD2DR(IXDER,IYDER,X,Y,NXDATA,XDATA,NYDATA,YDATA,FDATA,
 & LDF,CHECK)
 FU = FUNC(IXDER,IYDER,X,Y)
 WRITE (NOUT,99999) X, Y, IXDER, IYDER, FU, Q, (FU-Q)
 40 CONTINUE
C
99998 FORMAT (32X, ’(IDX,IDY)’, /, 8X, ’X’, 8X, ’Y’, 3X, ’IDX’, 2X,
 & ’IDY’, 3X, ’F (X,Y)’, 3X, ’QD2DR’, 6X, ’ERROR’)
99999 FORMAT (2F9.4, 2I5, 3X, F9.4, 2X, 2F11.4)
 END
 REAL FUNCTION FUNC (IX, IY, X, Y)
 INTEGER IX, IY
 REAL X, Y
C
 REAL COS, SIN
 INTRINSIC COS, SIN
C
 IF (IX.EQ.0 .AND. IY.EQ.0) THEN
C Define (0,0) derivative
 FUNC = SIN(X+Y)
 ELSE IF (IX.EQ.0 .AND. IY.EQ.1) THEN
C Define (0,1) derivative
 FUNC = COS(X+Y)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.0) THEN
C Define (1,0) derivative
 FUNC = COS(X+Y)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.1) THEN
C Define (1,1) derivative
 FUNC = -SIN(X+Y)
 ELSE
 FUNC = 0.0
 END IF
 RETURN
 END

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 523

Output
 (IDX,IDY)
 X Y IDX IDY F (X,Y) QD2DR ERROR
1.0472 1.0472 0 0 0.8660 0.8661 -0.0001
1.0472 1.0472 0 1 -0.5000 -0.4993 -0.0007
1.0472 1.0472 1 0 -0.5000 -0.4995 -0.0005
1.0472 1.0472 1 1 -0.8660 -0.8634 -0.0026

QD3VL/DQD3VL (Single/Double precision)
Evaluate a function defined on a rectangular three-dimensional grid using
quadratic interpolation.

Usage
QD3VL(X, Y, Z, NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA,
 FDATA, LDF, MDF, CHECK)

Arguments

X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

Z — z-coordinate of the point at which the function is to be evaluated. (Input)

NXDATA — Number of data points in the x-direction. (Input)
NXDATA must be at least three.

XDATA — Array of length NXDATA containing the location of the data points in
the x-direction. (Input)
XDATA must be increasing.

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.

YDATA — Array of length NYDATA containing the location of the data points in
the y-direction. (Input)
YDATA must be increasing.

NZDATA — Number of data points in the z-direction. (Input)
NZDATA must be at least three.

ZDATA — Array of length NZDATA containing the location of the data points in
the z-direction. (Input)
ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function
values. (Input)
FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)).

LDF — Leading dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)
LDF must be at least as large as NXDATA.

524 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

MDF — Middle (second) dimension of FDATA exactly as specified in the
dimension statement of the calling program. (Input)
MDF must be at least as large as NYDATA.

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and
ZDATA is required or .FALSE. if checking is not required. (Input)

QD3VL — Value of the function at (X, Y, Z). (Output)

Comments
Informational errors
Type Code
 4 9 The XDATA values must be strictly increasing.
 4 10 The YDATA values must be strictly increasing.
 4 11 The ZDATA values must be strictly increasing.

Algorithm

The function QD3VL interpolates a table of values, using quadratic polynomials,
returning an approximation to the tabulated function. Let (xL, yM, zN, fLMN) for i = 1,

…, n[, j = 1, …, n\, and k = 1, …, n] be the tabular data. Given a point (x, y, z) at
which an interpolated value is desired, we first find the nearest interior grid point
(xL, yM, zN,). A trivariate quadratic interpolant q is then formed. Ten points are
needed for this purpose. Seven points have the form

x y z x y z x y z x y zi j k i j k i j k i j k, , , , , , , , , ,3 8 3 8 3 8 3 8± ± ±1 1 1and

The last three points are drawn from the vertices of the octant containing (x, y, z).
There are four of these vertices remaining, and we choose to exclude the vertex
farthest from the center. This has the slightly deleterious effect of not reproducing
the tabular data at the eight exterior corners of the table. The value q(x, y, z) is
returned by QD3VL. One should note that, in general, the function QD3VL is
discontinuous at the midplanes of the mesh.

Example

In this example, the value of sin(x + y + z) at x = y = z = π/3 is approximated by
using QD3VL on a grid of size 21 × 42 × 18 equally spaced values on the cube

[0, 2]�.
 INTEGER LDF, MDF, NXDATA, NYDATA, NZDATA
 PARAMETER (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,
 & MDF=NYDATA)
C
 INTEGER I, J, K, NOUT
 REAL CONST, F, FDATA(LDF,MDF,NZDATA), FLOAT, PI, Q, QD3VL,
 & SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA), Z,
 & ZDATA(NZDATA)
 LOGICAL CHECK
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, QD3VL, UMACH
C Define function

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 525

 F(X,Y,Z) = SIN(X+Y+Z)
C Set up X-grid
 DO 10 I=1, NXDATA
 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 10 CONTINUE
C Set up Y-grid
 DO 20 J=1, NYDATA
 YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1))
 20 CONTINUE
C Set up Z-grid
 DO 30 K=1, NZDATA
 ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1))
 30 CONTINUE
C Evaluate function on grid
 DO 40 I=1, NXDATA
 DO 40 J=1, NYDATA
 DO 40 K=1, NZDATA
 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K))
 40 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Check XDATA, YDATA, and ZDATA
 CHECK = .TRUE.
C Get value for PI and set values
C for X, Y, and Z
 PI = CONST(’PI’)
 X = PI/3.0
 Y = PI/3.0
 Z = PI/3.0
C Evaluate quadratic at (X,Y,Z)
 Q = QD3VL(X,Y,Z,NXDATA,XDATA,NYDATA,YDATA,NZDATA,ZDATA,FDATA,LDF,
 & MDF,CHECK)
C Print results
 WRITE (NOUT,’(6F11.4)’) X, Y, Z, F(X,Y,Z), Q, (Q-F(X,Y,Z))
99999 FORMAT (10X, ’X’, 10X, ’Y’, 10X, ’Z’, 5X, ’F(X,Y,Z)’, 4X,
 & ’QD3VL’, 6X, ’ERROR’)
 END

Output
 X Y Z F(X,Y,Z) QD3VL ERROR
1.0472 1.0472 1.0472 0.0000 0.0002 0.0002

QD3DR/DQD3DR (Single/Double precision)
Evaluate the derivative of a function defined on a rectangular three-dimensional
grid using quadratic interpolation.

Usage
QD3DR(IXDER, IYDER, IZDER, X, Y, Z, NXDATA, XDATA, NYDATA,
 YDATA, NZDATA, ZDATA, FDATA, LDF, MDF, CHECK)

526 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Arguments

IXDER — Order of the x-derivative. (Input)

IYDER — Order of the y-derivative. (Input)

IZDER — Order of the z-derivative. (Input)

X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

Z — z-coordinate of the point at which the function is to be evaluated. (Input)

NXDATA — Number of data points in the x-direction. (Input)
NXDATA must be at least three.

XDATA — Array of length NXDATA containing the location of the data points in
the x-direction. (Input)
XDATA must be increasing.

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.

YDATA — Array of length NYDATA containing the location of the data points in
the y-direction. (Input)
YDATA must be increasing.

NZDATA — Number of data points in the z-direction. (Input)
NZDATA must be at least three.

ZDATA — Array of length NZDATA containing the location of the data points in
the z-direction. (Input)
ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function
values. (Input)
FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)).

LDF — Leading dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)
LDF must be at least as large as NXDATA.

MDF — Middle (second) dimension of FDATA exactly as specified in the
dimension statement of the calling program. (Input)
MDF must be at least as large as NYDATA.

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and
ZDATA is required or .FALSE. if checking is not required. (Input)

QD3DR — Value of the appropriate derivative of the function at (X, Y, Z).
(Output)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 527

Comments

1. Informational errors
Type Code
 4 9 The XDATA values must be strictly increasing.
 4 10 The YDATA values must be strictly increasing.
 4 11 The ZDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of any derivative is
greater than two, then the returned value is zero.

Algorithm

The function QD3DR interpolates a table of values, using quadratic polynomials,
returning an approximation to the partial derivatives of the tabulated function. Let

(xL, yM, zN, fLMN)

for i = 1, …, n[, j = 1, …, n\, and k = 1, …, n] be the tabular data. Given a point
(x, y, z) at which an interpolated value is desired, we first find the nearest interior
grid point (xL, yM, zN). A trivariate quadratic interpolant q is then formed. Ten
points are needed for this purpose. Seven points have the form

x y z x y z x y z x y zi j k i j k i j k i j k, , , , , , , , , ,3 8 3 8 3 8 3 8± ± ±1 1 1and

The last three points are drawn from the vertices of the octant containing (x, y, z).
There are four of these vertices remaining, and we choose to exclude the vertex
farthest from the center. This has the slightly deleterious effect of not reproducing

the tabular data at the eight exterior corners of the table. The value q�S�U�W�(x, y, z)
is returned by QD3DR, where p = IXDER, r = IYDER, and t = IZDER. One should
note that, in general, the function QD3DR is discontinuous at the midplanes of the
mesh.

Example

In this example, the derivatives of sin(x + y + z) at x = y = z = π/5 are
approximated by using QD3DR on a grid of size 21 × 42 × 18 equally spaced

values on the cube [0, 2]�.
 INTEGER LDF, MDF, NXDATA, NYDATA, NZDATA
 PARAMETER (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,
 & MDF=NYDATA)
C
 INTEGER I, IXDER, IYDER, IZDER, J, K, NOUT
 REAL CONST, F, FDATA(NXDATA,NYDATA,NZDATA), FLOAT, FU,
 & FUNC, PI, Q, QD3DR, SIN, X, XDATA(NXDATA), Y,
 & YDATA(NYDATA), Z, ZDATA(NZDATA)
 LOGICAL CHECK
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, FUNC, QD3DR, UMACH
C Define function
 F(X,Y,Z) = SIN(X+Y+Z)
C Set up X-grid

528 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 DO 10 I=1, NXDATA
 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 10 CONTINUE
C Set up Y-grid
 DO 20 J=1, NYDATA
 YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1))
 20 CONTINUE
C Set up Z-grid
 DO 30 K=1, NZDATA
 ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1))
 30 CONTINUE
C Evaluate function on grid
 DO 40 I=1, NXDATA
 DO 40 J=1, NYDATA
 DO 40 K=1, NZDATA
 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K))
 40 CONTINUE
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Check XDATA, YDATA, and ZDATA
 CHECK = .TRUE.
C Get value for PI and set X, Y, and Z
 PI = CONST(’PI’)
 X = PI/5.0
 Y = PI/5.0
 Z = PI/5.0
C Compute derivatives at (X,Y,Z)
C and print results
 DO 50 IXDER=0, 1
 DO 50 IYDER=0, 1
 DO 50 IZDER=0, 1
 Q = QD3DR(IXDER,IYDER,IZDER,X,Y,Z,NXDATA,XDATA,NYDATA,
 & YDATA,NZDATA,ZDATA,FDATA,NXDATA,NYDATA,CHECK)
 FU = FUNC(IXDER,IYDER,IZDER,X,Y,Z)
 WRITE (NOUT,99998) X, Y, Z, IXDER, IYDER, IZDER, FU, Q,
 & (FU-Q)
 50 CONTINUE
C
99998 FORMAT (3F7.4, 3I5, 4X, F7.4, 8X, 2F10.4)
99999 FORMAT (39X, ’(IDX,IDY,IDZ)’, /, 6X, ’X’, 6X, ’Y’, 6X,
 & ’Z’, 3X, ’IDX’, 2X, ’IDY’, 2X, ’IDZ’, 2X, ’F ’,
 & ’(X,Y,Z)’, 3X, ’QD3DR’, 5X, ’ERROR’)
 END
C
 REAL FUNCTION FUNC (IX, IY, IZ, X, Y, Z)
 INTEGER IX, IY, IZ
 REAL X, Y, Z
C
 REAL COS, SIN
 INTRINSIC COS, SIN
C
 IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN
C Define (0,0,0) derivative
 FUNC = SIN(X+Y+Z)
 ELSE IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN
C Define (0,0,1) derivative

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 529

 FUNC = COS(X+Y+Z)
 ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN
C Define (0,1,0,) derivative
 FUNC = COS(X+Y+Z)
 ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN
C Define (0,1,1) derivative
 FUNC = -SIN(X+Y+Z)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN
C Define (1,0,0) derivative
 FUNC = COS(X+Y+Z)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN
C Define (1,0,1) derivative
 FUNC = -SIN(X+Y+Z)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN
C Define (1,1,0) derivative
 FUNC = -SIN(X+Y+Z)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN
C Define (1,1,1) derivative
 FUNC = -COS(X+Y+Z)
 ELSE
 FUNC = 0.0
 END IF
 RETURN
 END

Output
 (IDX,IDY,IDZ)
 X Y Z IDX IDY IDZ F (X,Y,Z) QD3DR ERROR
0.6283 0.6283 0.6283 0 0 0 0.9511 0.9511 -0.0001
0.6283 0.6283 0.6283 0 0 1 -0.3090 -0.3083 -0.0007
0.6283 0.6283 0.6283 0 1 0 -0.3090 -0.3091 0.0000
0.6283 0.6283 0.6283 0 1 1 -0.9511 -0.9587 0.0077
0.6283 0.6283 0.6283 1 0 0 -0.3090 -0.3082 -0.0008
0.6283 0.6283 0.6283 1 0 1 -0.9511 -0.9509 -0.0002
0.6283 0.6283 0.6283 1 1 0 -0.9511 -0.9613 0.0103
0.6283 0.6283 0.6283 1 1 1 0.3090 0.0000 0.3090

SURF/DSURF (Single/Double precision)
Compute a smooth bivariate interpolant to scattered data that is locally a quintic
polynomial in two variables.

Usage
CALL SURF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT,
 SUR, LDSUR)

Arguments

NDATA — Number of data points. (Input)
NDATA must be at least four.

XYDATA — A 2 by NDATA array containing the coordinates of the interpolation
points. (Input)
These points must be distinct. The x-coordinate of the I-th data point is stored in

530 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

XYDATA(1, I) and the y-coordinate of the I-th data point is stored in XYDATA(2,
I).

FDATA — Array of length NDATA containing the interpolation values. (Input)
FDATA(I) contains the value at (XYDATA(1, I), XYDATA(2, I)).

NXOUT — The number of elements in XOUT. (Input)

NYOUT — The number of elements in YOUT. (Input)

XOUT — Array of length NXOUT containing an increasing sequence of points.
(Input)
These points are the x-coordinates of a grid on which the interpolated surface is to
be evaluated.

YOUT — Array of length NYOUT containing an increasing sequence of points.
(Input)
These points are the y-coordinates of a grid on which the interpolated surface is to
be evaluated.

SUR — Matrix of size NXOUT by NYOUT. (Output)
This matrix contains the values of the surface on the XOUT by YOUT grid, i.e.
SUR(I, J) contains the interpolated value at (XOUT(I), YOUT(J)).

LDSUR — Leading dimension of SUR exactly as specified in the dimension
statement of the calling program. (Input)
LDSUR must be at least as large as NXOUT.

Comments

1. Automatic workspace usage is

SURF 31 * NDATA + NXOUT * NYOUT + 6 * NDATA units, or

DSURF 31 * NDATA+ NXOUT * NYOUT + 12 * NDATA units.

Workspace may be explicitly provided, if desired, by use of
S2RF/DS2RF. The reference is

CALL S2RF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT,
 YOUT, SUR, LDSUR, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length 31 * NDATA + NXOUT * NYOUT.

WK — Work array of length 6 * NDATA.

2. Informational errors
Type Code
 4 5 The data point values must be distinct.
 4 6 The XOUT values must be strictly increasing.
 4 7 The YOUT values must be strictly increasing.

3. This method of interpolation reproduces linear functions.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 531

Algorithm

This routine is designed to compute a C � interpolant to scattered data in the
plane. Given the data points

x y f ini i i i

N
, ,1 6< A =1

3R

SURF returns (in SUR, the user-specified grid) the values of the interpolant s. The
computation of s is as follows: First the Delaunay triangulation of the points

x yi i i

N
,1 6< A =1

is computed. On each triangle T in this triangulation, s has the form

s x y c x y x y T
m n

mn
T m n, ,0 5 = ∑ ∀ ∈

+ ≤5

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In
addition, we have

s(xL, yL) = fL for i = 1, …, N

and s is continuously differentiable across the boundaries of neighboring
triangles. These conditions do not exhaust the freedom implied by the above
representation. This additional freedom is exploited in an attempt to produce an
interpolant that is faithful to the global shape properties implied by the data. For
more information on this routine, we refer the reader to the article by Akima
(1978). The grid is specified by the two integer variables NXOUT, NYOUT that
represent, respectively, the number of grid points in the first (second) variable
and by two real vectors that represent, respectively, the first (second) coordinates
of the grid.

Example

In this example, the interpolant to the linear function 3 + 7x + 2y is computed
from 20 data points equally spaced on the circle of radius 3. We then print the
values on a 3 × 3 grid.

 INTEGER LDSUR, NDATA, NXOUT, NYOUT
 PARAMETER (NDATA=20, NXOUT=3, NYOUT=3, LDSUR=NXOUT)
C
 INTEGER I, J, NOUT
 REAL ABS, CONST, COS, F, FDATA(NDATA), FLOAT, PI,
 & SIN, SUR(LDSUR,NYOUT), X, XOUT(NXOUT),
 & XYDATA(2,NDATA), Y, YOUT(NYOUT)
 INTRINSIC ABS, COS, FLOAT, SIN
 EXTERNAL CONST, SURF, UMACH
C Define function
 F(X,Y) = 3.0 + 7.0*X + 2.0*Y
C Get value for PI
 PI = CONST(’PI’)
C Set up X, Y, and F data on a circle
 DO 10 I=1, NDATA
 XYDATA(1,I) = 3.0*SIN(2.0*PI*FLOAT(I-1)/FLOAT(NDATA))

532 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 XYDATA(2,I) = 3.0*COS(2.0*PI*FLOAT(I-1)/FLOAT(NDATA))
 FDATA(I) = F(XYDATA(1,I),XYDATA(2,I))
 10 CONTINUE
C Set up XOUT and YOUT data on [0,1] by
C [0,1] grid.
 DO 20 I=1, NXOUT
 XOUT(I) = FLOAT(I-1)/FLOAT(NXOUT-1)
 20 CONTINUE
 DO 30 I=1, NXOUT
 YOUT(I) = FLOAT(I-1)/FLOAT(NYOUT-1)
 30 CONTINUE
C Interpolate scattered data
 CALL SURF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT, SUR,
 & LDSUR)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99998)
C Print results
 DO 40 I=1, NYOUT
 DO 40 J=1, NXOUT
 WRITE (NOUT,99999) XOUT(J), YOUT(I), SUR(J,I),
 & F(XOUT(J),YOUT(I)),
 & ABS(SUR(J,I)-F(XOUT(J),YOUT(I)))
 40 CONTINUE
99998 FORMAT (’ ’, 10X, ’X’, 11X, ’Y’, 9X, ’SURF’, 6X, ’F(X,Y)’, 7X,
 & ’ERROR’, /)
99999 FORMAT (1X, 5F12.4)
 END

Output
 X Y SURF F(X,Y) ERROR

0.0000 0.0000 3.0000 3.0000 0.0000
0.5000 0.0000 6.5000 6.5000 0.0000
1.0000 0.0000 10.0000 10.0000 0.0000
0.0000 0.5000 4.0000 4.0000 0.0000
0.5000 0.5000 7.5000 7.5000 0.0000
1.0000 0.5000 11.0000 11.0000 0.0000
0.0000 1.0000 5.0000 5.0000 0.0000
0.5000 1.0000 8.5000 8.5000 0.0000
1.0000 1.0000 12.0000 12.0000 0.0000

RLINE/DRLINE (Single/Double precision)
Fit a line to a set of data points using least squares.

Usage
CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)

Arguments

NOBS — Number of observations. (Input)

XDATA — Vector of length NOBS containing the x-values. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 533

YDATA — Vector of length NOBS containing the y-values. (Input)

B0 — Estimated intercept of the fitted line. (Output)

B1 — Estimated slope of the fitted line. (Output)

STAT — Vector of length 12 containing the statistics described below. (Output)

I ISTAT(I)
1 Mean of XDATA
2 Mean of YDATA
3 Sample variance of XDATA
4 Sample variance of YDATA
5 Correlation
6 Estimated standard error of B0

7 Estimated standard error of B1

8 Degrees of freedom for regression
9 Sum of squares for regression
10 Degrees of freedom for error
11 Sum of squares for error
12 Number of (x, y) points containing NaN (not a number) as either the x or

y value

Comments

Informational error
Type Code
 4 1 Each (x, y) point contains NaN (not a number). There are no

valid data.

Algorithm

Routine RLINE fits a line to a set of (x, y) data points using the method of least
squares. Draper and Smith (1981, pages 1−69) discuss the method. The fitted
model is

$ $ $y x= +β β0 1

where

$β0

(stored in B0) is the estimated intercept and

$β1

(stored in B1) is the estimated slope. In addition to the fit, RLINE produces some
summary statistics, including the means, sample variances, correlation, and the
error (residual) sum of squares. The estimated standard errors of

$ $β β0 1and

534 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

are computed under the simple linear regression model. The errors in the model
are assumed to be uncorrelated and with constant variance.

If the x values are all equal, the model is degenerate. In this case, RLINE sets

$β1

to zero and

$β0

to the mean of the y values.

Example

This example fits a line to a set of data discussed by Draper and Smith (1981,
Table 1.1, pages 9−33). The response y is the amount of steam used per month (in
pounds), and the independent variable x is the average atmospheric temperature
(in degrees Fahrenheit).

 INTEGER NOBS
 PARAMETER (NOBS=25)
C
 INTEGER NOUT
 REAL B0, B1, STAT(12), XDATA(NOBS), YDATA(NOBS)
 CHARACTER CLABEL(13)*15, RLABEL(1)*4
 EXTERNAL RLINE, UMACH, WRRRL
C
 DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,
 & 57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,
 & 74.5, 72.1, 58.1, 44.6, 33.4, 28.6/
 DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,
 & 7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09,
 & 8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/
 DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Mean of X’, ’Mean of Y’,
 & ’Variance X’, ’Variance Y’, ’Corr.’, ’Std. Err. B0’,
 & ’Std. Err. B1’, ’DF Reg.’, ’SS Reg.’, ’DF Error’,
 & ’SS Error’, ’Pts. with NaN’/
C
 CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) B0, B1
99999 FORMAT (’ B0 = ’, F7.2, ’ B1 = ’, F9.5)
 CALL WRRRL (’%/STAT’, 1, 12, STAT, 1, 0, ’(12W10.4)’, RLABEL,
 & CLABEL)
C
 END

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 535

Output
B0 = 13.62 B1 = -0.07983

 STAT
Mean of X Mean of Y Variance X Variance Y Corr. Std. Err. B0
 52.6 9.424 298.1 2.659 -0.8452 0.5815

Std. Err. B1 DF Reg. SS Reg. DF Error SS Error Pts. with NaN
0.01052 1 45.59 23 18.22 0

Figure 3-5 Plot of the Data and the Least Squares Line

RCURV/DRCURV (Single/Double precision)
Fit a polynomial curve using least squares.

Usage
CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT)

Arguments

NOBS — Number of observations. (Input)

XDATA — Vector of length NOBS containing the x values. (Input)

536 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

YDATA — Vector of length NOBS containing the y values. (Input)

NDEG — Degree of polynomial. (Input)

B — Vector of length NDEG + 1 containing the coefficients

$β
(Output)
The fitted polynomial is

$ $ $ $ $y x x xk
k= + + + +β β β β0 1 2

2 L

SSPOLY — Vector of length NDEG + 1 containing the sequential sums of squares.
(Output)
SSPOLY(1) contains the sum of squares due to the mean. For i = 1, 2, …, NDEG,

SSPOLY(i + 1) contains the sum of squares due to xL adjusted for the mean, x, x�,

…, and xL��.

STAT — Vector of length 10 containing statistics described below. (Output)

i Statistics
1 Mean of x
2 Mean of y
3 Sample variance of x
4 Sample variance of y
5 R-squared (in percent)
6 Degrees of freedom for regression
7 Regression sum of squares
8 Degrees of freedom for error
9 Error sum of squares
10 Number of data points (x, y) containing NaN (not a number) as a x or y

value

Comments

1. Automatic workspace usage is

RCURV 12 * NOBS + 11 * NDEG + (NDEG + 1) * (NDEG + 3) + 5 units, or

DRCURV 23 * NOBS + 22 * NDEG + 2 * (NDEG + 1) * (NDEG + 3) + 10
units.

Workspace may be explicitly provided, if desired, by use of
R2URV/DR2URV. The reference is

CALL R2URV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY,
 STAT, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * NOBS + 11 * NDEG + 5 + (NDEG + 1)
* (NDEG + 3).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 537

IWK — Work vector of length NOBS.

2. Informational errors
Type Code
 4 3 Each (x, y) point contains NaN (not a number). There

are no valid data.
 4 7 The x values are constant. At least NDEG + 1 distinct x

values are needed to fit a NDEG polynomial.
 3 4 The y values are constant. A zero order polynomial is

fit. High order coefficients are set to zero.
 3 5 There are too few observations to fit the desired

degree polynomial. High order coefficients are set to
zero.

 3 6 A perfect fit was obtained with a polynomial of degree
less than NDEG. High order coefficients are set to zero.

3. If NDEG is greater than 10, the accuracy of the results may be
questionable.

Algorithm

Routine RCURV computes estimates of the regression coefficients in a polynomial
(curvilinear) regression model. In addition to the computation of the fit, RCURV

computes some summary statistics. Sequential sums of squares attributable to
each power of the independent variable (stored in SSPOLY) are computed. These
are useful in assessing the importance of the higher order powers in the fit. Draper
and Smith (1981, pages 101−102) and Neter and Wasserman (1974, pages 278−
287) discuss the interpretation of the sequential sums of squares. The statistic R�
(stored in STAT(5)) is the percentage of the sum of squares of y about its mean
explained by the polynomial curve. Specifically,

R
y y

y y

ii

n

ii

n
2

2

1
2

1

100%=
−

−
=

=

∑
∑

$1 6
1 6

where

$yi

is the fitted y value at xL and

y

(stored in STAT(2)) is the mean of y. This statistic is useful in assessing the

overall fit of the curve to the data. R� must be between 0% and 100%, inclusive.

R� = 100% indicates a perfect fit to the data.

Routine RCURV computes estimates of the regression coefficients in a polynomial
model using orthogonal polynomials as the regressor variables. This
reparameterization of the polynomial model in terms of orthogonal polynomials

538 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

has the advantage that the loss of accuracy resulting from forming powers of the
x-values is avoided. All results are returned to the user for the original model.

The routine RCURV is based on the algorithm of Forsythe (1957). A modification
to Forsythe’s algorithm suggested by Shampine (1975) is used for computing the
polynomial coefficients. A discussion of Forsythe’s algorithm and Shampine’s
modification appears in Kennedy and Gentle (1980, pages 342−347).

Example

A polynomial model is fitted to data discussed by Neter and Wasserman (1974,
pages 279−285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for fourteen similar cafeterias are in the data set.

 INTEGER NDEG, NOBS
 PARAMETER (NDEG=2, NOBS=14)
C
 REAL B(NDEG+1), SSPOLY(NDEG+1), STAT(10), XDATA(NOBS),
 & YDATA(NOBS)
 CHARACTER CLABEL(11)*15, RLABEL(1)*4
 EXTERNAL RCURV, WRRRL, WRRRN
C
 DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Mean of X’, ’Mean of Y’,
 & ’Variance X’, ’Variance Y’, ’R-squared’,
 & ’DF Reg.’, ’SS Reg.’, ’DF Error’, ’SS Error’,
 & ’Pts. with NaN’/
 DATA XDATA/0., 0., 1., 1., 2., 2., 4., 4., 5., 5., 6., 6., 7.,
 & 7./
 DATA YDATA/508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 & 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4/
C
 CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT)
C
 CALL WRRRN (’B’, 1, NDEG+1, B, 1, 0)
 CALL WRRRN (’SSPOLY’, 1, NDEG+1, SSPOLY, 1, 0)
 CALL WRRRL (’%/STAT’, 1, 10, STAT, 1, 0, ’(2W10.4)’, RLABEL,
 & CLABEL)
 END

Output
 B
 1 2 3
503.3 78.9 -4.0

 SSPOLY
 1 2 3
7077152.0 220644.2 4387.7

 STAT
Mean of X Mean of Y Variance X Variance Y R-squared DF Reg.
 3.571 711.0 6.418 17364.8 99.69 2

 SS Reg. DF Error SS Error Pts. with NaN
225031.9 11 710.5 0

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 539

Figure 3-6 Plot of Data and Second Degree Polynomial Fit

FNLSQ/DFNLSQ (Single/Double precision)
Compute a least-squares approximation with user-supplied basis functions.

Usage
CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT,
 WEIGHT, A, SSE)

Arguments

F — User-supplied FUNCTION to evaluate basis functions. The form is F(K, X),
where

K – Number of the basis function. (Input)
K may be equal to 1, 2, …, NBASIS.
X – Argument for evaluation of the K-th basis function. (Input)
F – The function value. (Output)
F must be declared EXTERNAL in the calling program. The data FDATA is
approximated by A(1) * F(1, X) + A(2) * F(2, X) +…+ A(NBASIS) *
F(NBASIS, X) if INTCEP = 0 and is approximated by A(1) + A(2) * F(1,
X) +…+ A(NBASIS + 1) * F(NBASIS, X) if INTCEP = 1.

INTCEP — Intercept option. (Input)

540 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

INTCEP Action
0 No intercept is automatically included in the model.
1 An intercept is automatically included in the model.

NBASIS — Number of basis functions. (Input)

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the abscissas of the data points.
(Input)

FDATA — Array of length NDATA containing the ordinates of the data points.
(Input)

IWT — Weighting option. (Input)

IWT Action
0 Weights of one are assumed.
1 Weights are supplied in WEIGHT.

WEIGHT — Array of length NDATA containing the weights. (Input if IWT = 1)
If IWT = 0, WEIGHT is not referenced and may be dimensioned of length one.

A — Array of length INTCEP + NBASIS containing the coefficients of the
approximation. (Output)
If INTCEP = 1, A(1) contains the intercept. A(INTCEP + I) contains the coefficient
of the I-th basis function.

SSE — Sum of squares of the errors. (Output)

Comments

1. Automatic workspace usage is

FNLSQ (INTCEP + NBASIS)**2 + 4 * (INTCEP + NBASIS) + IWT + 1
units, or

DFNLSQ 2 * (INTCEP +NBASIS)**2 + 8 * (INTCEP + NBASIS) + 2 *
IWT + 2 units.

Workspace may be explicitly provided, if desired, by use of
F2LSQ/DF2LSQ. The reference is

CALL F2LSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA,
 IWT, WEIGHT, A, SSE, WK)

The additional argument is

WK — Work vector of length (INTCEP + NBASIS)**2 + 4 * (INTCEP +
NBASIS) + IWT + 1. On output, the first (INTCEP + NBASIS)**2
elements of WK contain the R matrix from a QR decomposition of the
matrix containing a column of ones (if INTCEP = 1) and the evaluated
basis functions in columns INTCEP + 1 through INTCEP + NBASIS.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 541

2. Informational errors
Type Code
 3 1 Linear dependence of the basis functions exists. One

or more components of A are set to zero.
 3 2 Linear dependence of the constant function and basis

functions exists. One or more components of A are set
to zero.

 4 1 Negative weight encountered.

Algorithm

The routine FNLSQ computes a best least-squares approximation to given
univariate data of the form

x fi i i

N
,1 6< A =1

by M basis functions

Fj j

M= B =1

(where M = NBASIS). In particular, if INTCEP = 0, this routine returns the error
sum of squares SSE and the coefficients a which minimize

w f a F xi
i

N

i j j i
j

M

= =
∑ ∑−

�
��

�
��1 1

2

1 6

where w = WEIGHT, N = NDATA, x = XDATA, and, f = FDATA.

If INTCEP = 1, then an intercept is placed in the model; and the coefficients a,
returned by FNLSQ, minimize the error sum of squares as indicated below.

w f a a F xi
i

N

i j j i
j

M

=
+

=
∑ ∑− −

�
��

�
��1

1 1
1

2

1 6

That is, the first element of the vector a is now the coefficient of the function that
is identically 1 and the coefficients of the FM’s are now aM��.

One additional parameter in the calling sequence for FNLSQ is IWT. If IWT is set
to 0, then wL�= 1 is assumed. If IWT is set to 1, then the user must supply the
weights.

Example

In this example, we fit the following two functions (indexed by δ)

1 + sin x + 7 sin 3x + δε

where ε is random uniform deviate over the range [−1, 1], and δ is 0 for the first
function and 1 for the second. These functions are evaluated at 90 equally

542 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

spaced points on the interval [0, 6]. We use 4 basis functions, sin kx for k = 1, …,
4, with and without the intercept.

 INTEGER NBASIS, NDATA
 PARAMETER (NBASIS=4, NDATA=90)
C
 INTEGER I, INTCEP, IWT, NOUT
 REAL A(NBASIS+1), F, FDATA(NDATA), FLOAT, G, RNOISE,
 & RNUNF, SIN, SSE, WEIGHT(NDATA), X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
 EXTERNAL F, FNLSQ, RNSET, RNUNF, UMACH
C
 G(X) = 1.0 + SIN(X) + 7.0*SIN(3.0*X)
C Set random number seed
 CALL RNSET (1234579)
C Set up data values
 DO 10 I=1, NDATA
 XDATA(I) = 6.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 FDATA(I) = G(XDATA(I))
 10 CONTINUE
 INTCEP = 0
 IWT = 0
C Compute least squares fit with no
C intercept
 CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT, WEIGHT,
 & A, SSE)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99996)
C Write output
 WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS)
C
 INTCEP = 1
C Compute least squares fit with
C intercept
 CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT, WEIGHT,
 & A, SSE)
C Write output
 WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1)
C Introduce noise
 DO 20 I=1, NDATA
 RNOISE = 2.0*RNUNF() - 1.0
 FDATA(I) = FDATA(I) + RNOISE
 20 CONTINUE
 INTCEP = 0
 IWT = 0
C Compute least squares fit with no
C intercept
 CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT, WEIGHT,
 & A, SSE)
C Write heading
 WRITE (NOUT,99997)
C Write output
 WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS)
C
 INTCEP = 1
C Compute least squares fit with
C intercept

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 543

 CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT, WEIGHT,
 & A, SSE)
C Write output
 WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1)
C
99996 FORMAT (//, ’ Without error introduced we have :’, /,
 & ’ SSE Intercept Coefficients ’, /)
99997 FORMAT (//, ’ With error introduced we have :’, /, ’ SSE ’
 & , ’ Intercept Coefficients ’, /)
99998 FORMAT (1X, F8.4, 5X, F9.4, 5X, 4F9.4, /)
99999 FORMAT (1X, F8.4, 14X, 5X, 4F9.4, /)
 END
 REAL FUNCTION F (K, X)
 INTEGER K
 REAL X
C
 REAL SIN
 INTRINSIC SIN
C
 F = SIN(K*X)
 RETURN
 END

Output
Without error introduced we have :
SSE Intercept Coefficients

89.8776 1.0101 0.0199 7.0291 0.0374
 0.0000 1.0000 1.0000 0.0000 7.0000 0.0000

With error introduced we have :
SSE Intercept Coefficients

112.4662 0.9963 -0.0675 6.9825 0.0133
 30.9831 0.9522 0.9867 -0.0864 6.9548 -0.0223

BSLSQ/DBSLSQ (Single/Double precision)
Compute the least-squares spline approximation, and return the B-spline
coefficients.

Usage
CALL BSLSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT,
 NCOEF, BSCOEF)

Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of length NDATA containing the data point ordinates. (Input)

WEIGHT — Array of length NDATA containing the weights. (Input)

544 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

KORDER — Order of the spline. (Input)
KORDER must be less than or equal to NDATA.

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.
(Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)
NCOEF cannot be greater than NDATA.

BSCOEF — Array of length NCOEF containing the B-spline coefficients.
(Output)

Comments

1. Automatic workspace usage is

BSLSQ 4 * NDATA + (3 + NCOEF) * KORDER units, or

DBSLSQ 7 * NDATA + 2 * (3 + NCOEF) * KORDER units.

Workspace may be explicitly provided, if desired, by use of
B2LSQ/DB2LSQ. The reference is

CALL B2LSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER,
 XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3,
 WK4, IWK)

The additional arguments are as follows:

WK1 — Work array of length (3 + NCOEF) * KORDER.

WK2 — Work array of length NDATA.

WK3 — Work array of length NDATA.

WK4 — Work array of length NDATA.

IWK — Work array of length NDATA.

2. Informational errors
Type Code
 4 5 Multiplicity of the knots cannot exceed the order of

the spline.
 4 6 The knots must be nondecreasing.
 4 7 All weights must be greater than zero.
 4 8 The smallest element of the data point array must be

greater than or equal to the KORDth knot.
 4 9 The largest element of the data point array must be

less than or equal to the (NCOEF + 1)st knot.

3. The B-spline representation can be evaluated using BSVAL (page 469),
and its derivative can be evaluated using BSDER (page 471).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 545

Algorithm

The routine BSLSQ is based on the routine L2APPR by de Boor (1978, page 255).
The IMSL routine BSLSQ computes a weighted discrete L� approximation from a

spline subspace to a given data set (xL, fL) for i = 1, …, N (where N = NDATA). In
other words, it finds B-spline coefficients, a = BSCOEF, such that

f a B x wi j j i
j

m

i

N

i−
==
∑∑ 1 6

11

2

is a minimum, where m = NCOEF and BM denotes the j-th B-spline for the given
order, KORDER, and knot sequence, XKNOT. This linear least squares problem is
solved by computing and solving the normal equations. While the normal
equations can sometimes cause numerical difficulties, their use here should not
cause a problem because the B-spline basis generally leads to well-conditioned
banded matrices.

The choice of weights depends on the problem. In some cases, there is a natural
choice for the weights based on the relative importance of the data points. To
approximate a continuous function (if the location of the data points can be
chosen), then the use of Gauss quadrature weights and points is reasonable. This
follows because BSLSQ is minimizing an approximation to the integral

F s dx−I 2

The Gauss quadrature weights and points can be obtained using the IMSL routine
GQRUL (page 621).

Example

In this example, we try to recover a quadratic polynomial using a quadratic spline
with one interior knot from two different data sets. The first data set is generated
by evaluating the quadratic at 50 equally spaced points in the interval (0, 1) and
then adding uniformly distributed noise to the data. The second data set includes
the first data set, and, additionally, the values at 0 and at 1 with no noise added.
Since the first and last data points are uncontaminated by noise, we have chosen

weights equal to 10� for these two points in this second problem. The quadratic,
the first approximation, and the second approximation are then evaluated at 11
equally spaced points. This example illustrates the use of the weights to enforce
interpolation at certain of the data points.

 INTEGER KORDER, NCOEF
 PARAMETER (KORDER=3, NCOEF=4)
C
 INTEGER I, NDATA, NOUT
 REAL ABS, BSCOF1(NCOEF), BSCOF2(NCOEF), BSVAL, F,
 & FDATA1(50), FDATA2(52), FLOAT, RNOISE, RNUNF, S1,
 & S2, WEIGHT(52), X, XDATA1(50), XDATA2(52),
 & XKNOT(KORDER+NCOEF), XT, YT
 INTRINSIC ABS, FLOAT

546 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 EXTERNAL BSLSQ, BSVAL, RNSET, RNUNF, SCOPY, UMACH
C
 DATA WEIGHT/52*1.0/
C Define function
 F(X) = 8.0*X*(1.0-X)
C Set random number seed
 CALL RNSET (12345679)
 NDATA = 50
C Set up interior knots
 DO 10 I=1, NCOEF - KORDER + 2
 XKNOT(I+KORDER-1) = FLOAT(I-1)/FLOAT(NCOEF-KORDER+1)
 10 CONTINUE
C Stack knots
 DO 20 I=1, KORDER - 1
 XKNOT(I) = XKNOT(KORDER)
 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)
 20 CONTINUE
C Set up data points excluding
C the endpoints 0 and 1.
C The function values have noise
C introduced.
 DO 30 I=1, NDATA
 XDATA1(I) = FLOAT(I)/51.0
 RNOISE = (RNUNF()-0.5)
 FDATA1(I) = F(XDATA1(I)) + RNOISE
 30 CONTINUE
C Compute least squares B-spline
C representation.
 CALL BSLSQ (NDATA, XDATA1, FDATA1, WEIGHT, KORDER, XKNOT, NCOEF,
 & BSCOF1)
C Now use same XDATA values but with
C the endpoints included. These
C points will have large weights.
 NDATA = 52
 CALL SCOPY (50, XDATA1, 1, XDATA2(2), 1)
 CALL SCOPY (50, FDATA1, 1, FDATA2(2), 1)
C
 WEIGHT(1) = 1.0E5
 XDATA2(1) = 0.0
 FDATA2(1) = F(XDATA2(1))
 WEIGHT(NDATA) = 1.0E5
 XDATA2(NDATA) = 1.0
 FDATA2(NDATA) = F(XDATA2(NDATA))
C Compute least squares B-spline
C representation.
 CALL BSLSQ (NDATA, XDATA2, FDATA2, WEIGHT, KORDER, XKNOT, NCOEF,
 & BSCOF2)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99998)
C Print the two interpolants
C at 11 points.
 DO 40 I=1, 11
 XT = FLOAT(I-1)/10.0
 YT = F(XT)
C Evaluate splines
 S1 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF1)
 S2 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF2)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 547

 WRITE (NOUT,99999) XT, YT, S1, S2, (S1-YT), (S2-YT)
 40 CONTINUE
C
99998 FORMAT (7X, ’X’, 9X, ’F(X)’, 6X, ’S1(X)’, 5X, ’S2(X)’, 7X,
 & ’F(X)-S1(X)’, 7X, ’F(X)-S2(X)’)
99999 FORMAT (’ ’, 4F10.4, 4X, F10.4, 7X, F10.4)
 END

Output
 X F(X) S1(X) S2(X) F(X)-S1(X) F(X)-S2(X)
0.0000 0.0000 0.0515 0.0000 0.0515 0.0000
0.1000 0.7200 0.7594 0.7490 0.0394 0.0290
0.2000 1.2800 1.3142 1.3277 0.0342 0.0477
0.3000 1.6800 1.7158 1.7362 0.0358 0.0562
0.4000 1.9200 1.9641 1.9744 0.0441 0.0544
0.5000 2.0000 2.0593 2.0423 0.0593 0.0423
0.6000 1.9200 1.9842 1.9468 0.0642 0.0268
0.7000 1.6800 1.7220 1.6948 0.0420 0.0148
0.8000 1.2800 1.2726 1.2863 -0.0074 0.0063
0.9000 0.7200 0.6360 0.7214 -0.0840 0.0014
1.0000 0.0000 -0.1878 0.0000 -0.1878 0.0000

BSVLS/DBSVLS (Single/Double precision)
Compute the variable knot B-spline least squares approximation to given data.

Usage
CALL BSVLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF,
 XGUESS, XKNOT, BSCOEF, SSQ)

Arguments

NDATA — Number of data points. (Input)
NDATA must be at least 2.

XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of length NDATA containing the data point ordinates. (Input)

WEIGHT — Array of length NDATA containing the weights. (Input)

KORDER — Order of the spline. (Input)
KORDER must be less than or equal to NDATA.

NCOEF — Number of B-spline coefficients. (Input)
NCOEF must be less than or equal to NDATA.

XGUESS — Array of length NCOEF + KORDER containing the initial guess of
knots. (Input)
XGUESS must be nondecreasing.

XKNOT — Array of length NCOEF + KORDER containing the (nondecreasing)
knot sequence. (Output)

548 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

BSCOEF — Array of length NCOEF containing the B-spline representation.
(Output)

SSQ — The square root of the sum of the squares of the error. (Output)

Comments

1. Automatic workspace usage is

BSVLS NCOEF * (6 + 2 * KORDER) + KORDER * (7 − KORDER) + 3 *
NDATA + 3 + NDATA units, or

DBSVLS 2 * (NCOEF * (6 + 2 * KORDER) + KORDER * (7 − KORDER) + 3
* NDATA 3) + NDATA units.

Workspace may be explicitly provided, if desired, by use of
B2VLS/DB2VLS. The reference is

CALL B2VLS (NDATA, XDATA, FDATA, WEIGHT, KORDER,
 NCOEF, XGUESS, XKNOT, BSCOEF, SSQ, IWK,
 WK)

The additional arguments are as follows:

IWK — Work array of length NDATA.

WK — Work array of length NCOEF * (6 + 2 * KORDER) + KORDER * (7
− KORDER) + 3 * NDATA + 3.

2. Informational errors
Type Code
 3 12 The knots found to be optimal are stacked more than

KORDER. This indicates fewer knots will produce the
same error sum of squares. The knots have been
separated slightly.

 4 9 The multiplicity of the knots in XGUESS cannot exceed
the order of the spline.

 4 10 XGUESS must be nondecreasing.

Algorithm

The routine BSVLS attempts to find the best placement of knots that will minimize
the leastsquares error to given data by a spline of order k = KORDER with N =
NCOEF coefficients. The user provides the order k of the spline and the number of
coefficients N. For this problem to make sense, it is necessary that N > k. We then
attempt to find the minimum of the functional

F a w f a B xi
i

M

i j j k j
j

N

, , ,t0 5 3 8= −
�
��

�
��= =

∑ ∑
1 1

2

t

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 549

The user must provide the weights w = WEIGHT, the data xL�= XDATA and
fL = FDATA, and M = NDATA. The minimum is taken over all admissible knot
sequences t.

The technique employed in BSVLS uses the fact that for a fixed knot sequence t
the minimization in a is a linear least-squares problem that can be solved by
calling the IMSL routine BSLSQ (page 543). Thus, we can think of our objective
function F as a function of just t by setting

G F a
a

t t0 5 0 5= min ,

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the
new objective function G. In addition to this local method, there is a global
heuristic built into the algorithm that will be useful if the data arise from a smooth
function. This heuristic is based on the routine NEWNOT of de Boor (1978, pages
184 and 258−261).

The user must input an initial guess, tJ = XGUESS, for the knot sequence. This
guess must be a valid knot sequence for the splines of order k with

t t t t1 1 1g
k
g

i N
g

N k
gx i M≤ ≤ ≤ ≤ ≤ ≤ =+ +K K K, , ,

with tJ nondecreasing, and

t ti
g

i k
g i N< =+ 1, ,K

The routine BSVLS returns the B-spline representation of the best fit found by the
algorithm as well as the square root of the sum of squares error in SSQ. If this
answer is unsatisfactory, you may reinitialize BSVLS with the return from BSVLS
to see if an improvement will occur. We have found that this option does not
usually (substantially) improve the result. In regard to execution speed, this
routine can be several orders of magnitude slower than one call to the least-
squares routine BSLSQ.

Example

In this example, we try to fit the function |x − .33| evaluated at 100 equally spaced
points on [0, 1]. We first use quadratic splines with 2 interior knots initially at .2
and .8. The eventual error should be zero since the function is a quadratic spline
with two knots stacked at .33. As a second example, we try to fit the same data
with cubic splines with three interior knots initially located at .1, .2, and, .5.
Again, the theoretical error is zero when the three knots are stacked at .33.

We include a graph of the initial least-squares fit using the IMSL routine BSLSQ
(page 543) for the above quadratic spline example with knots at .2 and .8. This
graph overlays the graph of the spline computed by BSVLS, which is
indistinguishable from the data.

 INTEGER KORD1, KORD2, NCOEF1, NCOEF2, NDATA
 PARAMETER (KORD1=3, KORD2=4, NCOEF1=5, NCOEF2=7, NDATA=100)

550 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

C
 INTEGER I, NOUT
 REAL ABS, BSCOEF(NCOEF2), F, FDATA(NDATA), FLOAT, SSQ,
 & WEIGHT(NDATA), X, XDATA(NDATA), XGUES1(NCOEF1+KORD1),
 & XGUES2(KORD2+NCOEF2), XKNOT(NCOEF2+KORD2)
 INTRINSIC ABS, FLOAT
 EXTERNAL BSVLS, UMACH
C
 DATA XGUES1/3*0.0, .2, .8, 3*1.0001/
 DATA XGUES2/4*0.0, .1, .2, .5, 4*1.0001/
 DATA WEIGHT/NDATA*.01/
C Define function
 F(X) = ABS(X-.33)
C Set up data
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Compute least squares B-spline
C representation with KORD1, NCOEF1,
C and XGUES1.
 CALL BSVLS (NDATA, XDATA, FDATA, WEIGHT, KORD1, NCOEF1, XGUES1,
 & XKNOT, BSCOEF, SSQ)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print heading
 WRITE (NOUT,99998) ’quadratic’
C Print SSQ and the knots
 WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD1+NCOEF1)
C Compute least squares B-spline
C representation with KORD2, NCOEF2,
C and XGUES2.
 CALL BSVLS (NDATA, XDATA, FDATA, WEIGHT, KORD2, NCOEF2, XGUES2,
 & XKNOT, BSCOEF, SSQ)
C Print SSQ and the knots
 WRITE (NOUT,99998) ’cubic’
 WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD2+NCOEF2)
C
99998 FORMAT (’ Piecewise ’, A, /)
99999 FORMAT (’ Square root of the sum of squares : ’, F9.4, /,
 & ’ Knot sequence : ’, /, 1X, 11(F9.4,/,1X))
 END

Output
Piecewise quadratic

Square root of the sum of squares : 0.0008
Knot sequence :
 0.0000
 0.0000
 0.0000
 0.3137
 0.3464
 1.0001
 1.0001
 1.0001

Piecewise cubic

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 551

Square root of the sum of squares : 0.0005
Knot sequence :
 0.0000
 0.0000
 0.0000
 0.0000
 0.3167
 0.3273
 0.3464
 1.0001
 1.0001
 1.0001
 1.0001

Figure 3-7 BSVLS vs. BSLSQ

CONFT/DCONFT (Single/Double precision)
Compute the least-squares constrained spline approximation, returning the B-
spline coefficients.

Usage
CALL CONFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL,
 NHARD, IDER, ITYPE, BL, BU, KORDER, XKNOT,
 NCOEF, BSCOEF)

552 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of size NDATA containing the values to be approximated.
(Input)
FDATA(I) contains the value at XDATA(I).

WEIGHT — Array of length NDATA containing the weights. (Input)

NXVAL — Number of points in the vector XVAL. (Input)

XVAL — Array of length NXVAL containing the abscissas at which the fit is to be
constrained. (Input)

NHARD — Number of entries of XVAL involved in the ‘hard’ constraints.
(Input)
Note: (0 ≤ NHARD ≤ NXVAL). Setting NHARD to zero always results in a fit, while
setting NHARD to NXVAL forces all constraints to be met. The ‘hard’ constraints
must be satisfied or else the routine signals failure. The ‘soft’ constraints need not
be satisfied, but there will be an attempt to satisfy the ‘soft’ constraints. The
constraints must be ordered in terms of priority with the most important
constraints first. Thus, all of the ‘hard’ constraints must preceed the ‘soft’
constraints. If infeasibility is detected among the soft constraints, we satisfy (in
order) as many of the soft constraints as possible.

IDER — Array of length NXVAL containing the derivative value of the spline that
is to be constrained. (Input)
If we want to constrain the integral of the spline over the closed interval (c, d),
then we set IDER(I) = IDER(I + 1) = − 1 and XVAL(I) = c and XVAL(I + 1) = d.
For consistency, we insist that ITYPE(I) = ITYPE(I + 1) .GE. 0 and c .LE. d.
Note that every entry in IDER must be at least − 1.

ITYPE — Array of length NXVAL indicating the types of general constraints.
(Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 553

ITYPE I I

BL I

BU I

BL I

BL I BU I

BL I

BU I

BL I

BL I BU I

() - th Constraint

() =

periodic end conditions

disregard this constraint

1

2

3

4

1 1

1 2

1 3

1 4

10

99

f x

f x

f x

f x

d f t dt

d f t dt

d f t dt

d f t dt

d
i

d
i

d
i

d
i

i c

d

i c

d

i c

d

i c

d

i

i

i

i

1 6
1 6
1 6

1 6

1 6
1 6 0 5
1 6 0 5

0 5 1 6 0 5
1 6 0 5 0 5
1 6 0 5 0 5
1 6 0 5 0 5
1 6 0 5 0 5 0 5

≤

≥

=≤ ≤

= − =

= − ≤

= − ≥

= − ≤ ≤

I
I
I

I

In order to set two point constraints, we must have ITYPE(I) = ITYPE(I + 1) and
ITYPE(I) must be negative.

ITYPE I I

BL I

BU I

BL I

BL I BU I

0 5
0 5 1 6 1 6
1 6 1 6 0 5
1 6 1 6 0 5

0 5 1 6 1 6 0 5

1 6 4 9
1 6 1 6
1 6 1 6

1 6 1 6

−

− = −

− − ≤

− − ≥

− ≤ − ≤

+

+

+

+

+

+

+

+

th Contraint

1

2

3

4

1

1

1

1

1

1

1

1

f x f x

f x f x

f x f x

f x f x

d
i i

d
i

d
i

d
i

d
i

d
i

d
i

i
di

i i

i i

i i

BL — Array of length NXVAL containing the lower limit of the general
constraints, if there is no lower limit on the I-th constraint, then BL(I) is not
referenced. (Input)

BU — Array of length NXVAL containing the upper limit of the general
constraints, if there is no upper limit on the I-th constraint, then BU(I) is not
referenced; if there is no range constraint, BL and BU can share the same storage
locations. (Input)
If the I-th constraint is an equality constraint, BU(I) is not referenced.

KORDER — Order of the spline. (Input)

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.
(Input) The entries of XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

554 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

BSCOEF — Array of length NCOEF containing the B-spline coefficients.
(Output)

Comments

1. Automatic workspace usage is

CONFT (5 * NCOEF * NCOEF + 23 * NCOEF)/2 + (KORDER + 1) * (2 * KORDER +
1) + (2 * NXVAL + KORDER) * (2 * NXVAL + KORDER + NCOEF + 32) + 3
* NDATA + 1 + 4 * NCOEF + NDATA + 30 * (2 * NXVAL + KORDER)

DCONFT 2 * ((5 * NCOEF * NCOEF + 23 * NCOEF)/2 + (KORDER + 1) * (2 *
KORDER + 1) + (2 * NXVAL + KORDER) * (2 * NXVAL + KORDER + NCOEF
+ 32) + 3 * NDATA + 1) + 4 * NCOEF + NDATA + 30 * (2 * NXVAL +
KORDER)

Workspace may be explicitly provided, if desired, by use of C2NFT/DC2NFT. The
reference is

CALL C2NFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL,
 NHARD, IDER, ITYPE, BL, BU, KORDER, XKNOT,
 NCOEF, BSCOEF, H, G, A, RHS, WK, IPERM, IWK)

The additional arguments are as follows:

H — Work array of size NCOEF by NCOEF. Upon output, H contains the Hessian
matrix of the objective function used in the call to QPROG (page 982).

G — Work array of size NCOEF. Upon output, G contains the coefficients of the
linear term used in the call to QPROG.

A — Work array of size (2 * NXVAL + KORDER) by (NCOEF + 1). Upon output, A
contains the constraint matrix used in the call QPROG. The last column of A is used
to keep record of the original order of the constraints.

RHS — Work array of size 2 * NXVAL + KORDER . Upon output, RHS contains the
right hand side of the constraint matrix A used in the call to QPROG.

WK — Work array of size (KORDER + 1) * (2 * KORDER + 1) + (3 * NCOEF *
NCOEF + 13 * NCOEF)/2 + (2 * NXVAL + KORDER +30)*(2*NXVAL + KORDER) +
NDATA + 1.

IPERM — Work array of size NXVAL. Upon output, IPERM contains the
permutaion of the original constraints used to generate the matrix A.

IWK — Work array of size NDATA + 30 * (2 * NXVAL + KORDER) + 4 * NCOEF.

2. Informational errors
Type Code
 3 11 Soft constraints had to be removed in order to get a fit.
 4 12 Multiplicity of the knots cannot exceed the order of

the spline.
 4 13 The knots must be nondecreasing.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 555

 4 14 The smallest element of the data point array must be
greater than or equal to the KORD-th knot.

 4 15 The largest element of the data point array must be
less than or equal to the (NCOEF + 1)st knot.

 4 16 All weights must be greater than zero.
 4 17 The hard constraints could not be met.
 4 18 The abscissas of the constrained points must lie within

knot interval.
 4 19 The upperbound must be greater than or equal to the

lowerbound for a range constaint.
 4 20 The upper limit of integration must be greater than the

lower limit of integration for constraints involving the
integral of the approximation.

Algorithm

The routine CONFT produces a constrained, weighted least-squares fit to data from
a spline subspace. Constraints involving one point, two points, or integrals over
an interval are allowed. The types of constraints supported by the routine are of
four types.

E f f y

f y f y

f t dt

p
j

p

j
p

j
p

y

y

p

p p

p

p

=

= −

=

=

+

+

+

I

3 8

3 8 3 8
3 8
3 8 3 8
0 5

or

or

or periodic end conditions

1

1

1

An interval, IS, (which may be a point, a finite interval , or semi-infinite interval)
is associated with each of these constraints.

The input for this routine consists of several items, first, the data set (xL, fL) for

 i = 1, …, N (where N = NDATA), that is the data which is to be fit. Second, we
have the weights to be used in the least squares fit (w = WEIGHT). The vector
XVAL of length NXVAL contains the abscissas of the points involved in specifying
the constraints. The algorithm tries to satisfy all the constraints, but if the
constraints are inconsistent then it will drop constraints, in the reverse order
specified, until either a consistent set of constraints is found or the “hard”
constraints are determined to be inconsistent (the “hard” constraints are those
involving XVAL(1), …, XVAL(NHARD)). Thus, the algorithm satisfies as many
constraints as possible in the order specified by the user. In the case when
constraints are dropped, the user will receive a message explaining how many
constraints had to be dropped to obtain the fit. The next several arguments are
related to the type of constraint and the constraint interval. The last four
arguments determine the spline solution. The user chooses the spline subspace

556 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

(KORDER, XKNOT, and NCOEF), and the routine returns the B-spline coefficients in
BSCOEF.

Let nI denote the number of feasible constraints as described above. Then, the
routine solves the problem.

f a B x w

E a B I p n

i j j i
j

m

i

N

i

p j j
j

m

p f

−

�
!

"
$
∈ =

==

=

∑∑

∑

1 6
11

2

1

1subject to , ,K

This linearly constrained least-squares problem is treated as a quadratic program
and is solved by invoking the IMSL routine QPROG (page 959).

The choice of weights depends on the data uncertainty in the problem. In some
cases, there is a natural choice for the weights based on the estimates of errors in
the data points.

Determining feasibility of linear constraints is a numerically sensitive task. If you
encounter difficulties, a quick fix would be to widen the constraint intervals IS.

Example 1

This is a simple application of CONFT. We generate data from the function

x x

2 2
+ �

�
�
�sin

contaminated with random noise and fit it with cubic splines. The function is
increasing so we would hope that our least-squares fit would also be increasing.
This is not the case for the unconstrained least squares fit generated by BSLSQ
(page 543). We then force the derivative to be greater than 0 at NXVAL = 15
equally spaced points and call CONFT. The resulting curve is monotone. We print
the error for the two fits averaged over 100 equally spaced points.

 INTEGER KORDER, NCOEF, NDATA, NXVAL
 PARAMETER (KORDER=4, NCOEF=8, NDATA=15, NXVAL=15)
C
 INTEGER I, IDER(NXVAL), ITYPE(NXVAL), NHARD, NOUT
 REAL ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA), BSVAL,
 & BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,
 & GRDSIZ, RNUNF, SIN, WEIGHT(NDATA), X, XDATA(NDATA),
 & XKNOT(KORDER+NDATA), XVAL(NXVAL)
 INTRINSIC ABS, FLOAT, SIN
 EXTERNAL BSLSQ, BSVAL, CONFT, RNSET, RNUNF, SSET, UMACH
C
 F1(X) = .5*X + SIN(.5*X)
C Initialize random number generator
C and get output unit number.
 CALL RNSET (234579)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 557

 CALL UMACH (2, NOUT)
C Set all weights to one.
 CALL SSET (NDATA, 1.0, WEIGHT, 1)
C Compute original XDATA and FDATA
C with random noise.
 GRDSIZ = 10.0
 DO 10 I=1, NDATA
 XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1)))
 FDATA(I) = F1(XDATA(I)) + (RNUNF()-.5)
 10 CONTINUE
C Compute knots
 DO 20 I=1, NCOEF - KORDER + 2
 XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))
 &)
 20 CONTINUE
 DO 30 I=1, KORDER - 1
 XKNOT(I) = XKNOT(KORDER)
 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)
 30 CONTINUE
C
C Compute BSLSQ fit.
 CALL BSLSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT, NCOEF,
 & BSCLSQ)
C Construct the constraints for
C CONFT.
 DO 40 I=1, NXVAL
 XVAL(I) = GRDSIZ*FLOAT(I-1)/FLOAT(NXVAL-1)
 ITYPE(I) = 3
 IDER(I) = 1
 BL(I) = 0.0
 40 CONTINUE
C Call CONFT
 NHARD = 0
 CALL CONFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL, NHARD,
 & IDER, ITYPE, BL, BU, KORDER, XKNOT, NCOEF, BSCNFT)
C Compute the average error
C of 100 points in the interval.
 ERRLSQ = 0.0
 ERRNFT = 0.0
 DO 50 I=1, 100
 X = GRDSIZ*FLOAT(I-1)/99.0
 ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)
 &)
 ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)
 &)
 50 CONTINUE
C Print results
 WRITE (NOUT,99998) ERRLSQ/100.0
 WRITE (NOUT,99999) ERRNFT/100.0
C
99998 FORMAT (’ Average error with BSLSQ fit: ’, F8.5)
99999 FORMAT (’ Average error with CONFT fit: ’, F8.5)
 END

Output
Average error with BSLSQ fit: 0.20250
Average error with CONFT fit: 0.14334

558 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Figure 3-8 CONFT vs. BSLSQ Forcing Monotonicity

Example 2

We now try to recover the function

1

1 4+ x

from noisy data. We first try the unconstrained least-squares fit using BSLSQ
(page 543). Finding that fit somewhat unsatisfactory, we apply several constraints
using CONFT. First, notice that the unconstrained fit oscillates through the true
function at both ends of the interval. This is common for flat data. To remove this
oscillation, we constrain the cubic spline to have zero second derivative at the
first and last four knots. This forces the cubic spline to reduce to a linear
polynomial on the first and last three knot intervals. In addition, we constrain the
fit (which we will call s) as follows:

s

s x dx

s s

− ≥

≤

− =
−I

7 0

2 3

7 7
7

7

0 5
0 5
0 5 0 5

.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 559

Notice that the last constraint was generated using the periodic option (requiring
only the zeroeth derivative to be periodic). We print the error for the two fits
averaged over 100 equally spaced points.

 INTEGER KORDER, NCOEF, NDATA, NXVAL
 PARAMETER (KORDER=4, NCOEF=13, NDATA=51, NXVAL=12)
C
 INTEGER I, IDER(NXVAL), ITYPE(NXVAL), NHARPT, NOUT
 REAL ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA), BSVAL,
 & BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,
 & GRDSIZ, RNUNF, WEIGHT(NDATA), X, XDATA(NDATA),
 & XKNOT(KORDER+NDATA), XVAL(NXVAL)
 INTRINSIC ABS, FLOAT
 EXTERNAL BSLSQ, BSVAL, CONFT, RNSET, RNUNF, SSET, UMACH
C
 F1(X) = 1.0/(1.0+X**4)
C Initialize random number generator
C and get output unit number.
 CALL UMACH (2, NOUT)
 CALL RNSET (234579)
C Set all weights to one.
 CALL SSET (NDATA, 1.0, WEIGHT, 1)
C Compute original XDATA and FDATA
C with random noise.
 GRDSIZ = 14.0
 DO 10 I=1, NDATA
 XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1))) - GRDSIZ/2.0
 FDATA(I) = F1(XDATA(I)) + 0.125*(RNUNF()-.5)
 10 CONTINUE
C Compute KNOTS
 DO 20 I=1, NCOEF - KORDER + 2
 XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))
 &) - GRDSIZ/2.0
 20 CONTINUE
 DO 30 I=1, KORDER - 1
 XKNOT(I) = XKNOT(KORDER)
 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)
 30 CONTINUE
C Compute BSLSQ fit
 CALL BSLSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT, NCOEF,
 & BSCLSQ)
C Construct the constraints for
C CONFT
 DO 40 I=1, 4
 XVAL(I) = XKNOT(KORDER+I-1)
 XVAL(I+4) = XKNOT(NCOEF-3+I)
 ITYPE(I) = 1
 ITYPE(I+4) = 1
 IDER(I) = 2
 IDER(I+4) = 2
 BL(I) = 0.0
 BL(I+4) = 0.0
 40 CONTINUE
C
 XVAL(9) = -7.0
 ITYPE(9) = 3
 IDER(9) = 0
 BL(9) = 0.0
C

560 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 XVAL(10) = -7.0
 ITYPE(10) = 2
 IDER(10) = -1
 BU(10) = 2.3
C
 XVAL(11) = 7.0
 ITYPE(11) = 2
 IDER(11) = -1
 BU(11) = 2.3
C
 XVAL(12) = -7.0
 ITYPE(12) = 10
 IDER(12) = 0
C Call CONFT
 CALL CONFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL, NHARPT,
 & IDER, ITYPE, BL, BU, KORDER, XKNOT, NCOEF, BSCNFT)
C Compute the average error
C of 100 points in the interval.
 ERRLSQ = 0.0
 ERRNFT = 0.0
 DO 50 I=1, 100
 X = GRDSIZ*FLOAT(I-1)/99.0 - GRDSIZ/2.0
 ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)
 &)
 ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)
 &)
 50 CONTINUE
C Print results
 WRITE (NOUT,99998) ERRLSQ/100.0
 WRITE (NOUT,99999) ERRNFT/100.0
C
99998 FORMAT (’ Average error with BSLSQ fit: ’, F8.5)
99999 FORMAT (’ Average error with CONFT fit: ’, F8.5)
 END

Output
Average error with BSLSQ fit: 0.01783
Average error with CONFT fit: 0.01339

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 561

Figure 3-9 CONFT vs. BSLSQ Approximating 1/(1 + x�)

BSLS2/DBSLS2 (Single/Double precision)
Compute a two-dimensional tensor-product spline approximant using least
squares, returning the tensor-product B-spline coefficients.

Usage
CALL BSLS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,
 KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,
 XWEIGH, YWEIGH, BSCOEF)

Arguments

NXDATA — Number of data points in the X-direction. (Input)

XDATA — Array of length NXDATA containing the data points in the X-direction.
(Input)
XDATA must be nondecreasing.

NYDATA — Number of data points in the Y-direction. (Input)

YDATA — Array of length NYDATA containing the data points in the Y-direction.
(Input)
YDATA must be nondecreasing.

562 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

FDATA — Array of size NXDATA by NYDATA containing the values on the X − Y
grid to be interpolated. (Input)
FDATA(I, J) contains the value at (XDATA(I), YDATA(I)).

LDF — Leading dimension of FDATA exactly as specified in the dimension
statement of calling program. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length KXORD + NXCOEF containing the knots in the X-
direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length KYORD + NYCOEF containing the knots in the Y-
direction. (Input)
YKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

XWEIGH — Array of length NXDATA containing the positive weights of XDATA.
(Input)

YWEIGH — Array of length NYDATA containing the positive weights of YDATA.
(Input)

BSCOEF — Array of length NXCOEF * NYCOEF that contains the tensor product
B-spline coefficients. (Output)
BSCOEF is treated internally as an array of size NXCOEF by NYCOEF.

Comments

1. Automatic workspace usage is

BSLS2 (NXCOEF + 1) * NYDATA + KXORD * NXCOEF + KYORD *
NYCOEF + 3 * MAX(KXOR, KYORD) units, or

DBSLS2 2 * ((NXCOEF + 1) * NYDATA + KXORD * NXCOEF + KYORD *
NYCOEF + 3 * MAX(KXORD, KYORD)) units.

Workspace may be explicitly provided, if desired, by use of B2LS2/DB2LS2. The
reference is

CALL B2LS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,
 KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,
 XWEIGH, YWEIGH, BSCOEF, WK)

The additional argument is

WK — Work array of length (NXCOEF + 1) * NYDATA + KXORD * NXCOEF +
KYORD * NYCOEF + 3 * MAX(KXORD, KYORD).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 563

2. Informational errors
Type Code
 3 14 There may be less than one digit of accuracy in the

least squares fit. Try using higher precision if possible.
 4 5 Multiplicity of the knots cannot exceed the order of

the spline.
 4 6 The knots must be nondecreasing.
 4 7 All weights must be greater than zero.
 4 9 The data point abscissae must be nondecreasing.
 4 10 The smallest element of the data point array must be

greater than or equal to the K_ORDth knot.
 4 11 The largest element of the data point array must be

less than or equal to the (N_COEF + 1)st knot.

Algorithm

The routine BSLS2 computes the coefficients of a tensor-product spline least-
squares approximation to weighted tensor-product data. The input for this
subroutine consists of data vectors to specify the tensor-product grid for the data,
two vectors with the weights, the values of the surface on the grid, and the
specification for the tensor-product spline. The grid is specified by the two
vectors x = XDATA and y = YDATA of length n = NXDATA and m = NYDATA,
respectively. A two-dimensional array f = FDATA contains the data values that are
to be fit. The two vectors w[= XWEIGH and w\ = YWEIGH contain the weights for
the weighted least-squares problem. The information for the approximating
tensor-product spline must also be provided. This information is contained in
k[= KXORD, t[= XKNOT, and N = NXCOEF for the spline in the first variable, and
in k\ = KYORD , t\ = YKNOT and M = NYCOEF for the spline in the second variable.
The coefficients of the resulting tensor-product spline are returned in c = BSCOEF,
which is an N * M array. The procedure computes coefficients by solving the
normal equations in tensor-product form as discussed

in de Boor (1978, Chapter 17). The interested reader might also want to study the
paper by E. Grosse (1980).

The final result produces coefficients c minimizing

w i w j c B x y fx
j

m

i

n

y kl kl i j ij
l

M

k

N

== ==
∑∑ ∑∑ −

�
!

"
$##11 11

2

0 5 0 5 3 8,

where the function BNO is the tensor-product of two B-splines of order k[and k\.
Specifically, we have

B x y B x B ykl k k l kx x y y
, , , , ,0 5 0 5 0 5= t t

The spline

564 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

c Bkl
l

M

k

N

kl
==
∑∑

11

can be evaluated using BS2VL (page 479) and its partial derivatives can be
evaluated using BS2DR (page 480).

Example

The data for this example arise from the function e[sin(x + y) + ε on the
rectangle [0, 3] × [0, 5]. Here, ε is a uniform random variable with range
[−1, 1]. We sample this function on a 100 × 50 grid and then try to recover it by
using cubic splines in the x variable and quadratic splines in the y variable. We

print out the values of the function e[sin(x + y) on a 3 × 5 grid and compare these
values with the values of the tensor-product spline that was computed using the
IMSL routine BSLS2.

 INTEGER KXORD, KYORD, LDF, NXCOEF, NXDATA, NXVEC, NYCOEF,
 & NYDATA, NYVEC
 PARAMETER (KXORD=4, KYORD=3, NXCOEF=15, NXDATA=100, NXVEC=4,
 & NYCOEF=7, NYDATA=50, NYVEC=6, LDF=NXDATA)
C
 INTEGER I, J, NOUT
 REAL BSCOEF(NXCOEF,NYCOEF), EXP, F, FDATA(NXDATA,NYDATA),
 & FLOAT, RNOISE, RNUNF, SIN, VALUE(NXVEC,NYVEC), X,
 & XDATA(NXDATA), XKNOT(NXCOEF+KXORD), XVEC(NXVEC),
 & XWEIGH(NXDATA), Y, YDATA(NYDATA),
 & YKNOT(NYCOEF+KYORD), YVEC(NYVEC), YWEIGH(NYDATA)
 INTRINSIC EXP, FLOAT, SIN
 EXTERNAL BS2GD, BSLS2, RNSET, RNUNF, SSET, UMACH
C Define function
 F(X,Y) = EXP(X)*SIN(X+Y)
C Set random number seed
 CALL RNSET (1234579)
C Set up X knot sequence.
 DO 10 I=1, NXCOEF - KXORD + 2
 XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1))
 10 CONTINUE
 XKNOT(NXCOEF+1) = XKNOT(NXCOEF+1) + 0.001
C Stack knots.
 DO 20 I=1, KXORD - 1
 XKNOT(I) = XKNOT(KXORD)
 XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1)
 20 CONTINUE
C Set up Y knot sequence.
 DO 30 I=1, NYCOEF - KYORD + 2
 YKNOT(I+KYORD-1) = 5.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1))
 30 CONTINUE
 YKNOT(NYCOEF+1) = YKNOT(NYCOEF+1) + 0.001
C Stack knots.
 DO 40 I=1, KYORD - 1
 YKNOT(I) = YKNOT(KYORD)
 YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1)
 40 CONTINUE
C Set up X-grid.
 DO 50 I=1, NXDATA

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 565

 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 50 CONTINUE
C Set up Y-grid.
 DO 60 I=1, NYDATA
 YDATA(I) = 5.0*(FLOAT(I-1)/FLOAT(NYDATA-1))
 60 CONTINUE
C Evaluate function on grid and
C introduce random noise in [1,-1].
 DO 70 I=1, NYDATA
 DO 70 J=1, NXDATA
 RNOISE = 2.0*RNUNF() - 1.0
 FDATA(J,I) = F(XDATA(J),YDATA(I)) + RNOISE
 70 CONTINUE
C Set all weights equal to 1.
 CALL SSET (NXDATA, 1.0E0, XWEIGH, 1)
 CALL SSET (NYDATA, 1.0E0, YWEIGH, 1)
C Compute least squares approximation.
 CALL BSLS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD,
 & KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, XWEIGH, YWEIGH,
 & BSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)
C Print interpolated values
C on [0,3] x [0,5].
 DO 80 I=1, NXVEC
 XVEC(I) = FLOAT(I-1)
 80 CONTINUE
 DO 90 I=1, NYVEC
 YVEC(I) = FLOAT(I-1)
 90 CONTINUE
C Evaluate spline
 CALL BS2GD (0, 0, NXVEC, XVEC, NYVEC, YVEC, KXORD, KYORD, XKNOT,
 & YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, NXVEC)
 DO 110 I=1, NXVEC
 DO 100 J=1, NYVEC
 WRITE (NOUT,’(5F15.4)’) XVEC(I), YVEC(J),
 & F(XVEC(I),YVEC(J)), VALUE(I,J),
 & (F(XVEC(I),YVEC(J))-VALUE(I,J))
 100 CONTINUE
 110 CONTINUE
99999 FORMAT (13X, ’X’, 14X, ’Y’, 10X, ’F(X,Y)’, 9X, ’S(X,Y)’, 10X,
 & ’Error’)
 END

Output
 X Y F(X,Y) S(X,Y) Error
0.0000 0.0000 0.0000 0.2782 -0.2782
0.0000 1.0000 0.8415 0.7762 0.0653
0.0000 2.0000 0.9093 0.8203 0.0890
0.0000 3.0000 0.1411 0.1391 0.0020
0.0000 4.0000 -0.7568 -0.5705 -0.1863
0.0000 5.0000 -0.9589 -1.0290 0.0701
1.0000 0.0000 2.2874 2.2678 0.0196
1.0000 1.0000 2.4717 2.4490 0.0227
1.0000 2.0000 0.3836 0.4947 -0.1111
1.0000 3.0000 -2.0572 -2.0378 -0.0195

566 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

1.0000 4.0000 -2.6066 -2.6218 0.0151
1.0000 5.0000 -0.7595 -0.7274 -0.0321
2.0000 0.0000 6.7188 6.6923 0.0265
2.0000 1.0000 1.0427 0.8492 0.1935
2.0000 2.0000 -5.5921 -5.5885 -0.0035
2.0000 3.0000 -7.0855 -7.0955 0.0099
2.0000 4.0000 -2.0646 -2.1588 0.0942
2.0000 5.0000 4.8545 4.7339 0.1206
3.0000 0.0000 2.8345 2.5971 0.2373
3.0000 1.0000 -15.2008 -15.1079 -0.0929
3.0000 2.0000 -19.2605 -19.1698 -0.0907
3.0000 3.0000 -5.6122 -5.5820 -0.0302
3.0000 4.0000 13.1959 12.6659 0.5300
3.0000 5.0000 19.8718 20.5170 -0.6452

BSLS3/DBSLS3 (Single/Double precision)
Compute a three-dimensional tensor-product spline approximant using least
squares, returning the tensor-product B-spline coefficients.

Usage
CALL BSLS3 (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA,
 FDATA, LDFDAT, MDFDAT, KXORD, KYORD, KZORD,
 XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF,
 XWEIGH, YWEIGH, ZWEIGH, BSCOEF)

Arguments

NXDATA — Number of data points in the x-direction. (Input)
NXDATA must be greater than or equal to NXCOEF.

XDATA — Array of length NXDATA containing the data points in the x-direction.
(Input)
XDATA must be nondecreasing.

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be greater than or equal to NYCOEF.

YDATA — Array of length NYDATA containing the data points in the y-direction.
(Input)
YDATA must be nondecreasing.

NZDATA — Number of data points in the z-direction. (Input)
NZDATA must be greater than or equal to NZCOEF.

ZDATA — Array of length NZDATA containing the data points in the z-direction.
(Input)
ZDATA must be nondecreasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to
be interpolated. (Input)
FDATA(I, J, K) contains the value at (XDATA(I), YDATA(J), ZDATA(K)).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 567

LDFDAT — Leading dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)

MDFDAT — Second dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)

KXORD — Order of the spline in the x-direction. (Input)

KYORD — Order of the spline in the y-direction. (Input)

KZORD — Order of the spline in the z-direction. (Input)

XKNOT — Array of length KXORD + NXCOEF containing the knots in the x-
direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length KYORD + NYCOEF containing the knots in the y-
direction. (Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length KZORD + NZCOEF containing the knots in the z-
direction. (Input)
ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the x-direction. (Input)

NYCOEF — Number of B-spline coefficients in the y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the z-direction. (Input)

XWEIGH — Array of length NXDATA containing the positive weights of XDATA.
(Input)

YWEIGH — Array of length NYDATA containing the positive weights of YDATA.
(Input)

ZWEIGH — Array of length NZDATA containing the positive weights of ZDATA.
(Input)

BSCOEF — Array of length NXCOEF*NYCOEF*NZCOEF that contains the tensor
product B-spline coefficients. (Output)

Comments

1. Automatic workspace usage is

BSLS3 NYCOEF * (NZDATA + KYORD + NZCOEF) + (NZDATA * (1 +
NYDATA)NXCOEF * (KXORD + NYDATA * NZDATA) + KZORD *
NZCOEF + 3 * MAX0(KXORD, KYORD, KZORD) units, or

DBSLS3 2 * (NYCOEF * (NZDATA + KYORD + NZCOEF) + NZDATA * (1 +
NYDATA) + NXCOEF * (KXORD + NYDATA * NZDATA) + KZORD *
NZCOEF + 3 * MAX0(KXORD, KYORD, KZORD) units.

Workspace may be explicitly provided, if desired, by use of
B2LS3/DB2LS3. The reference is

568 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

CALL B2LS3 (NXDATA, XDATA, NYDATA, YDATA, FDATA,
 LDFDAT, KXORD, KYORD, XKNOT, YKNOT,
 NXCOEF, NYCOEF, XWEIGH, YWEIGH, BSCOEF,
 WK)

The additional argument is

WK — Work array of length NYCOEF * (NZDATA + KYORD + NZCOEF) +
NZDATA * (1 + NYDATA) + NXCOEF * (KXORD + NYDATA * NZDATA) +
KZORD * NZCOEF + 3 * MAX0(KXORD, KYORD, KZORD).

2. Informational errors
Type Code
 3 13 There may be less than one digit of accuracy in the

least squares fit. Try using higher precision if possible.
 4 7 Multiplicity of knots cannot exceed the order of the

spline.
 4 8 The knots must be nondecreasing.
 4 9 All weights must be greater than zero.
 4 10 The data point abscissae must be nondecreasing.
 4 11 The smallest element of the data point array must be

greater than or equal to the K_ORDth knot.
 4 12 The largest element of the data point array must be

less than or equal to the (N_COEF + 1)st knot.

Algorithm

The routine BSLS3 computes the coefficients of a tensor-product spline least-
squares approximation to weighted tensor-product data. The input for this
subroutine consists of data vectors to specify the tensor-product grid for the data,
three vectors with the weights, the values of the surface on the grid, and the
specification for the tensor-product spline. The grid is specified by the three
vectors x = XDATA, y = YDATA, and z = ZDATA of length k = NXDATA, l = NYDATA
, and m = NYDATA, respectively. A three-dimensional array f = FDATA contains
the data values which are to be fit. The three vectors w[= XWEIGH, w\ = YWEIGH,
and w] = ZWEIGH contain the weights for the weighted least-squares problem. The
information for the approximating tensor-product spline must also be provided.
This information is contained in k[= KXORD, t[= XKNOT, and K = NXCOEF for the
spline in the first variable, in k\ = KYORD, t\ = YKNOT and L = NYCOEF for the
spline in the second variable, and in k] = KZORD, t] = ZKNOT and M = NZCOEF for
the spline in the third variable.

The coefficients of the resulting tensor product spline are returned in c = BSCOEF,
which is an K × L × M array. The procedure computes coefficients by solving the
normal equations in tensor-product form as discussed in de Boor (1978, Chapter
17). The interested reader might also want to study the paper by E. Grosse
(1980).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 569

The final result produces coefficients c minimizing

w i w j w p c B x y z fx
p

m

j

l

i l

k

y z stu stu i j p ijp
u

M

t

L

s

K

=== ===
∑∑∑ ∑∑∑ −

�
!

"
$##11 111

2

0 5 0 5 0 5 3 8, ,

where the function BVWX is the tensor-product of three B-splines of order k[, k\, and
k]. Specifically, we have

B x y z B x B y B zstu s k t k u kx x y y z z
, , , , , , , ,0 5 0 5 0 5 0 5= t t t

The spline

c Bstu stu
u

M

t

L

s

K

===
∑∑∑

111

can be evaluated at one point using BS3VL (page 490) and its partial derivatives
can be evaluated using BS3DR (page 491). If the values on a grid are desired then
we recommend BS3GD (page 495).

Example

The data for this example arise from the function e�\�]� sin(x + y) + ε on the
rectangle [0, 3] × [0, 2] × [0, 1]. Here, ε is a uniform random variable with range
[−.5, .5]. We sample this function on a 4 × 3 × 2 grid and then try to recover it by
using tensor-product cubic splines in all variables. We print out the values of the

function e�\�]� sin(x + y) on a 4 × 3 × 2 grid and compare these values with the
values of the tensor-product spline that was computed using the IMSL routine
BSLS3.

 INTEGER KXORD, KYORD, KZORD, LDFDAT, MDFDAT, NXCOEF, NXDATA,

 & NXVAL, NYCOEF, NYDATA, NYVAL, NZCOEF, NZDATA, NZVAL
 PARAMETER (KXORD=4, KYORD=4, KZORD=4, NXCOEF=8, NXDATA=15,
 & NXVAL=4, NYCOEF=8, NYDATA=15, NYVAL=3, NZCOEF=8,
 & NZDATA=15, NZVAL=2, LDFDAT=NXDATA, MDFDAT=NYDATA)
C
 INTEGER I, J, K, NOUT
 REAL BSCOEF(NXCOEF,NYCOEF,NZCOEF), EXP, F,
 & FDATA(NXDATA,NYDATA,NZDATA), FLOAT, RNOISE, RNUNF,
 & SIN, SPXYZ(NXVAL,NYVAL,NZVAL), X, XDATA(NXDATA),
 & XKNOT(NXCOEF+KXORD), XVAL(NXVAL), XWEIGH(NXDATA), Y,
 & YDATA(NYDATA), YKNOT(NYCOEF+KYORD), YVAL(NYVAL),
 & YWEIGH(NYDATA), Z, ZDATA(NZDATA),
 & ZKNOT(NZCOEF+KZORD), ZVAL(NZVAL), ZWEIGH(NZDATA)
C INTRINSIC EXP,FLOAT,SIN
 INTRINSIC EXP, FLOAT, SIN
 EXTERNAL BS3GD, RNSET, RNUNF, SSET, UMACH, BSLS3
C Define a function
 F(X,Y,Z) = EXP(Y-Z)*SIN(X+Y)
C
 CALL RNSET (1234579)
 CALL UMACH (2, NOUT)
C Set up knot sequences

570 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

C X-knots
 DO 10 I=1, NXCOEF - KXORD + 2
 XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1))
 10 CONTINUE
 DO 20 I=1, KXORD - 1
 XKNOT(I) = XKNOT(KXORD)
 XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1)
 20 CONTINUE
C Y-knots
 DO 30 I=1, NYCOEF - KYORD + 2
 YKNOT(I+KYORD-1) = 2.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1))
 30 CONTINUE
 DO 40 I=1, KYORD - 1
 YKNOT(I) = YKNOT(KYORD)
 YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1)
 40 CONTINUE
C Z-knots
 DO 50 I=1, NZCOEF - KZORD + 2
 ZKNOT(I+KZORD-1) = 1.0*(FLOAT(I-1)/FLOAT(NZCOEF-KZORD+1))
 50 CONTINUE
 DO 60 I=1, KZORD - 1
 ZKNOT(I) = ZKNOT(KZORD)
 ZKNOT(I+NZCOEF+1) = ZKNOT(NZCOEF+1)
 60 CONTINUE
C Set up X-grid.
 DO 70 I=1, NXDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 70 CONTINUE
C Set up Y-grid.
 DO 80 I=1, NYDATA
 YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1))
 80 CONTINUE
C Set up Z-grid
 DO 90 I=1, NZDATA
 ZDATA(I) = 1.0*(FLOAT(I-1)/FLOAT(NZDATA-1))
 90 CONTINUE
C Evaluate the function on the grid
C and add noise.
 DO 100 I=1, NXDATA
 DO 100 J=1, NYDATA
 DO 100 K=1, NZDATA
 RNOISE = RNUNF() - 0.5
 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) + RNOISE
 100 CONTINUE
C Set all weights equal to 1.0
 CALL SSET (NXDATA, 1.0E0, XWEIGH, 1)
 CALL SSET (NYDATA, 1.0E0, YWEIGH, 1)
 CALL SSET (NZDATA, 1.0E0, ZWEIGH, 1)
C Compute least-squares
 CALL BSLS3 (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, FDATA,
 & LDFDAT, MDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT,
 & ZKNOT, NXCOEF, NYCOEF, NZCOEF, XWEIGH, YWEIGH,
 & ZWEIGH, BSCOEF)
C Set up grid for evaluation.
 DO 110 I=1, NXVAL
 XVAL(I) = FLOAT(I-1)
 110 CONTINUE
 DO 120 I=1, NYVAL
 YVAL(I) = FLOAT(I-1)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 571

 120 CONTINUE
 DO 130 I=1, NZVAL
 ZVAL(I) = FLOAT(I-1)
 130 CONTINUE
C Evaluate on the grid.
 CALL BS3GD (0, 0, 0, NXVAL, XVAL, NYVAL, YVAL, NZVAL, ZVAL,
 & KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF,
 & NYCOEF, NZCOEF, BSCOEF, SPXYZ, NXVAL, NYVAL)
C Print results.
 WRITE (NOUT,99998)
 DO 140 I=1, NXVAL
 DO 140 J=1, NYVAL
 DO 140 K=1, NZVAL
 WRITE (NOUT,99999) XVAL(I), YVAL(J), ZVAL(K),
 & F(XVAL(I),YVAL(J),ZVAL(K)),
 & SPXYZ(I,J,K), F(XVAL(I),YVAL(J),ZVAL(K)
 &) - SPXYZ(I,J,K)
 140 CONTINUE
99998 FORMAT (8X, ’X’, 9X, ’Y’, 9X, ’Z’, 6X, ’F(X,Y,Z)’, 3X,
 & ’S(X,Y,Z)’, 4X, ’Error’)
99999 FORMAT (’ ’, 3F10.3, 3F11.4)
 END

Output
 X Y Z F(X,Y,Z) S(X,Y,Z) Error
0.000 0.000 0.000 0.0000 0.1987 -0.1987
0.000 0.000 1.000 0.0000 0.1447 -0.1447
0.000 1.000 0.000 2.2874 2.2854 0.0019
0.000 1.000 1.000 0.8415 1.0557 -0.2142
0.000 2.000 0.000 6.7188 6.4704 0.2484
0.000 2.000 1.000 2.4717 2.2054 0.2664
1.000 0.000 0.000 0.8415 0.8779 -0.0365
1.000 0.000 1.000 0.3096 0.2571 0.0524
1.000 1.000 0.000 2.4717 2.4015 0.0703
1.000 1.000 1.000 0.9093 0.8995 0.0098
1.000 2.000 0.000 1.0427 1.1330 -0.0902
1.000 2.000 1.000 0.3836 0.4951 -0.1115
2.000 0.000 0.000 0.9093 0.8269 0.0824
2.000 0.000 1.000 0.3345 0.3258 0.0087
2.000 1.000 0.000 0.3836 0.3564 0.0272
2.000 1.000 1.000 0.1411 0.1905 -0.0494
2.000 2.000 0.000 -5.5921 -5.5362 -0.0559
2.000 2.000 1.000 -2.0572 -1.9659 -0.0913
3.000 0.000 0.000 0.1411 0.4841 -0.3430
3.000 0.000 1.000 0.0519 -0.4257 0.4776
3.000 1.000 0.000 -2.0572 -1.9710 -0.0862
3.000 1.000 1.000 -0.7568 -0.8479 0.0911
3.000 2.000 0.000 -7.0855 -7.0957 0.0101
3.000 2.000 1.000 -2.6066 -2.1650 -0.4416

572 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

CSSED/DCSSED (Single/Double precision)
Smooth one-dimensional data by error detection.

Usage
CALL CSSED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, SDATA)

Arguments

NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the abscissas of the data points.
(Input)

FDATA — Array of length NDATA containing the ordinates (function values) of
the data points. (Input)

DIS — Proportion of the distance the ordinate in error is moved to its
interpolating curve. (Input)
It must be in the range 0.0 to 1.0. A suggested value for DIS is one.

SC — Stopping criterion. (Input)
SC should be greater than or equal to zero. A suggested value for SC is zero.

MAXIT — Maximum number of iterations allowed. (Input)

SDATA — Array of length NDATA containing the smoothed data. (Output)

Comments

1. Automatic workspace usage is

CSSED 6 * NDATA + 30 units, or
DCSSED 10 * NDATA + 60 units.

Workspace may be explicitly provided, if desired, by use of
C2SED/DC2SED. The reference is

CALL C2SED (NDATA, XDATA, FDATA, DIS, SC, MAXIT,
 SDATA, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 4 * NDATA + 30.

IWK — Work array of length 2 * NDATA.

2. Informational error
Type Code
 3 1 The maximum number of iterations allowed has been

reached.

3. The arrays FDATA and SDATA may the the same.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 573

Algorithm

The routine CSSED is designed to smooth a data set that is mildly contaminated
with isolated errors. In general, the routine will not work well if more than 25%
of the data points are in error. The routine CSSED is based on an algorithm of
Guerra and Tapia (1974).

Setting NDATA = n, FDATA = f, SDATA = s and XDATA = x, the algorithm proceeds
as follows. Although the user need not input an ordered XDATA sequence, we will
assume that x is increasing for simplicity. The algorithm first sorts the XDATA
values into an increasing sequence and then continues. A cubic spline interpolant
is computed for each of the 6-point data sets (initially setting s = f)

(xM, sM) j = i − 3, …, i + 3 j ≠ i,

where i = 4, …, n − 3 using CSAKM (page 432). For each i the interpolant, which
we will call SL, is compared with the current value of sL, and a ‘point energy’ is
computed as

peL�= SL(xL) − sL

Setting sc = SC, the algorithm terminates either if MAXIT iterations have taken
place or if

pe sc x x i ni i i≤ − = −+ −3 3 6 4 34 9 / , ,K

If the above inequality is violated for any i, then we update the i-th element of s
by setting sL = sL + d(peL), where d = DIS. Note that neither the first three nor the
last three data points are changed. Thus, if these points are inaccurate, care must
be taken to interpret the results.

The choice of the parameters d, sc and MAXIT are crucial to the successful usage
of this subroutine. If the user has specific information about the extent of the
contamination, then he should choose the parameters as follows: d = 1, sc = 0 and
MAXIT to be the number of data points in error. On the other hand, if no such
specific information is available, then choose d = .5, MAXIT ≤ 2n, and

sc
s s

x xn
= −

−
.

max min
5

11 6
In any case, we would encourage the user to experiment with these values.

Example

We take 91 uniform samples from the function 5 + (5 + t� sin t)/t on the interval
[1, 10]. Then, we contaminate 10 of the samples and try to recover the original
function values.

 INTEGER NDATA
 PARAMETER (NDATA=91)
C
 INTEGER I, MAXIT, NOUT, ISUB(10)

574 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 REAL DIS, F, FDATA(91), SC, SDATA(91), SIN, X, XDATA(91),
 & RNOISE(10)
 INTRINSIC SIN
 EXTERNAL CSSED, UMACH
C
 DATA ISUB/6, 17, 26, 34, 42, 49, 56, 62, 75, 83/
 DATA RNOISE/2.5, -3.0, -2.0, 2.5, 3.0, -2.0, -2.5, 2.0, -2.0, 3.0/
C
 F(X) = (X*X*SIN(X)+5.0)/X + 5.0
C EX. #1; No specific information
C available
 DIS = 0.5
 SC = 0.56
 MAXIT = 182
C Set values for XDATA and FDATA
 XDATA(1) = 1.0
 FDATA(1) = F(XDATA(1))
 DO 10 I=2, NDATA
 XDATA(I) = XDATA(I-1) + .1
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Contaminate the data
 DO 20 I=1, 10
 FDATA(ISUB(I)) = FDATA(ISUB(I)) + RNOISE(I)
 20 CONTINUE
C Smooth data
 CALL CSSED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, SDATA)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99997)
C Write data
 DO 30 I=1, 10
 WRITE (NOUT,99999) F(XDATA(ISUB(I))), FDATA(ISUB(I)),
 & SDATA(ISUB(I))
 30 CONTINUE
C EX. #2; Specific information
C available
 DIS = 1.0
 SC = 0.0
 MAXIT = 10
C A warning message is produced
C because the maximum number of
C iterations is reached.
C
C Smooth data
 CALL CSSED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, SDATA)
C Write heading
 WRITE (NOUT,99998)
C Write data
 DO 40 I=1, 10
 WRITE (NOUT,99999) F(XDATA(ISUB(I))), FDATA(ISUB(I)),
 & SDATA(ISUB(I))
 40 CONTINUE
C
99997 FORMAT (’ Case A - No specific information available’, /,
 & ’ F(X) F(X)+NOISE SDATA(X)’, /)
99998 FORMAT (’ Case B - Specific information available’, /,
 & ’ F(X) F(X)+NOISE SDATA(X)’, /)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 575

99999 FORMAT (’ ’, F7.3, 8X, F7.3, 11X, F7.3)
 END

Output
Case A - No specific information available
 F(X) F(X)+NOISE SDATA(X)

 9.830 12.330 9.870
 8.263 5.263 8.215
 5.201 3.201 5.168
 2.223 4.723 2.264
 1.259 4.259 1.308
 3.167 1.167 3.138
 7.167 4.667 7.131
10.880 12.880 10.909
12.774 10.774 12.708
 7.594 10.594 7.639

 *** WARNING ERROR 1 from CSSED. Maximum number of iterations limit MAXIT
 *** =10 exceeded. The best answer found is returned.
Case B - Specific information available
 F(X) F(X)+NOISE SDATA(X)

 9.830 12.330 9.831
 8.263 5.263 8.262
 5.201 3.201 5.199
 2.223 4.723 2.225
 1.259 4.259 1.261
 3.167 1.167 3.170
 7.167 4.667 7.170
10.880 12.880 10.878
12.774 10.774 12.770
 7.594 10.594 7.592

CSSMH/DCSSMH (Single/Double precision)
Compute a smooth cubic spline approximation to noisy data.

Usage
CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK,
 CSCOEF)

Arguments

NDATA — Number of data points. (Input)
NDATA must be at least 2.

XDATA — Array of length NDATA containing the data point abscissas. (Input)
XDATA must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

576 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

WEIGHT — Array of length NDATA containing estimates of the standard
deviations of FDATA. (Input)
All elements of WEIGHT must be positive.

SMPAR — A nonnegative number which controls the smoothing. (Input)
The spline function S returned is such that the sum from I = 1 to NDATA of
((S(XDATA(I))FDATA(I)) / WEIGHT(I))**2 is less than or equal to SMPAR. It is
recommended that SMPAR lie in the confidence interval of this sum, i.e., NDATA −
SQRT(2 * NDATA).LE. SMPAR.LE. NDATA + SQRT(2 * NDATA).

BREAK — Array of length NDATA containing the breakpoints for the piecewise
cubic representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the
cubic pieces. (Output)

Comments

1. Automatic workspace usage is

CSSMH 9 * NDATA + 5 units, or
DCSSMH 17 * NDATA + 10 units.

Workspace may be explicitly provided, if desired, by use of
C2SMH/DC2SMH. The reference is

CALL C2SMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR,
 BREAK, CSCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 8 * NDATA + 5.

IWK — Work array of length NDATA.

2. Informational errors
Type Code
 3 1 The maximum number of iterations has been reached.

The best approximation is returned.
 4 3 All weights must be greater than zero.

3. The cubic spline can be evaluated using CSVAL (page 440); its derivative
can be evaluated using CSDER (page 441).

Algorithm

The routine CSSMH is designed to produce a C� cubic spline approximation to a
data set in which the function values are noisy. This spline is called a smoothing
spline. It is a natural cubic spline with knots at all the data abscissas x = XDATA,

but it does not interpolate the data (xL, fL). The smoothing spline S is the unique C�
function which minimizes

′′I S x dx
a

b 0 52

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 577

subject to the constraint

S x f

w
i i

ii

N 1 6 −
≤

=
∑

1

2

σ

where w = WEIGHT, σ = SMPAR is the smoothing parameter, and N = NDATA.

Recommended values for σ depend on the weights w. If an estimate for the
standard deviation of the error in the value fL is available, then wL�should be set to

this value and the smoothing parameter σ should be chosen in the confidence
interval corresponding to the left side of the above inequality. That is,

N N N N− ≤ ≤ +2 2σ
The routine CSSMH is based on an algorithm of Reinsch (1967). This algorithm is
also discussed in de Boor (1978, pages 235−243).

Example

In this example, function values are contaminated by adding a small “random”
amount to the correct values. The routine CSSMH is used to approximate the
original, uncontaminated data.

 INTEGER NDATA
 PARAMETER (NDATA=300)
C
 INTEGER I, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), CSVAL, ERROR, F,
 & FDATA(NDATA), FLOAT, FVAL, RNUNF, SDEV, SMPAR, SQRT,
 & SVAL, WEIGHT(NDATA), X, XDATA(NDATA), XT
 INTRINSIC FLOAT, SQRT
 EXTERNAL CSSMH, CSVAL, RNSET, RNUNF, SSET, UMACH
C
 F(X) = 1.0/(.1+(3.0*(X-1.0))**4)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Set the random number seed
 CALL RNSET (1234579)
C Contaminate the data
 DO 20 I=1, NDATA
 FDATA(I) = FDATA(I) + 2.0*RNUNF() - 1.0
 20 CONTINUE
C Set the WEIGHT vector
 SDEV = 1.0/SQRT(3.0)
 CALL SSET (NDATA, SDEV, WEIGHT, 1)
 SMPAR = NDATA
C Smooth the data
 CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK, CSCOEF)
C Get output unit number
 CALL UMACH (2, NOUT)
C Write heading
 WRITE (NOUT,99999)

578 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

C Print 10 values of the function.
 DO 30 I=1, 10
 XT = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1))
C Evaluate the spline
 SVAL = CSVAL(XT,NDATA-1,BREAK,CSCOEF)
 FVAL = F(XT)
 ERROR = SVAL - FVAL
 WRITE (NOUT,’(4F15.4)’) XT, FVAL, SVAL, ERROR
 30 CONTINUE
C
99999 FORMAT (12X, ’X’, 9X, ’Function’, 7X, ’Smoothed’, 10X,
 & ’Error’)
 END

Output
 X Function Smoothed Error
 0.0000 0.0123 0.1118 0.0995
 0.3010 0.0514 0.0646 0.0131
 0.6020 0.4690 0.2972 -0.1718
 0.9030 9.3312 8.7022 -0.6289
 1.2040 4.1611 4.7887 0.6276
 1.5050 0.1863 0.2718 0.0856
 1.8060 0.0292 0.1408 0.1116
 2.1070 0.0082 0.0826 0.0743
 2.4080 0.0031 0.0076 0.0045
 2.7090 0.0014 -0.1789 -0.1803

CSSCV/DCSSCV (Single/Double precision)
Compute a smooth cubic spline approximation to noisy data using cross-
validation to estimate the smoothing parameter.

Usage
CALL CSSCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF)

Arguments

NDATA — Number of data points. (Input)
NDATA must be at least 3.

XDATA — Array of length NDATA containing the data point abscissas. (Input)
XDATA must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

IEQUAL — A flag alerting the subroutine that the data is equally spaced.
(Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise
cubic representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the
cubic pieces. (Output)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 579

Comments

1. Automatic workspace usage is

CSSCV 10 * NDATA + 14 units, or
DCSSCV 19 * NDATA + 28 units.

Workspace may be explicitly provided, if desired, by use of
C2SCV/DC2SCV. The reference is

CALL C2SCV (NDATA, XDATA, FDATA, IEQUAL, BREAK,
 CSCOEF, WK, SDWK, IPVT)

The additional arguments are as follows:

WK — Work array of length 7 * (NDATA + 2).

SDWK — Work array of length 2 * NDATA.

IPVT — Work array of length NDATA.

2. Informational error
Type Code
 4 2 Points in the data point abscissas array, XDATA, must

be distinct.

Algorithm

The routine CSSCV is designed to produce a C� cubic spline approximation to a
data set in which the function values are noisy. This spline is called a smoothing
spline. It is a natural cubic spline with knots at all the data abscissas x = XDATA,
but it does not interpolate the data (xL, fL). The smoothing spline SV is the unique

C� function that minimizes

′′I S x dx
a

b
σ 0 52

subject to the constraint

S x fi i
i

N

σ σ1 6 − ≤
=
∑

1

2

where σ is the smoothing parameter and N = NDATA. The reader should consult
Reinsch (1967) for more information concerning smoothing splines. The IMSL
subroutine CSSMH (page 575) solves the above problem when the user provides
the smoothing parameter σ. This routine attempts to find the ‘optimal’ smoothing
parameter using the statistical technique known as cross-validation. This means
that (in a very rough sense) one chooses the value of σ so that the smoothing
spline (SV) best approximates the value of the data at xL, if it is computed using all

the data except the i-th; this is true for all i = 1, …, N. For more information on
this topic, we refer the reader to Craven and Wahba (1979).

580 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Example

In this example, function values are computed and are contaminated by adding a
small “random” amount. The routine CSSCV is used to try to reproduce the
original, uncontaminated data.

 INTEGER NDATA
 PARAMETER (NDATA=300)
C
 INTEGER I, IEQUAL, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), CSVAL, ERROR, F,
 & FDATA(NDATA), FLOAT, FVAL, RNUNF, SVAL, X,
 & XDATA(NDATA), XT
 INTRINSIC FLOAT
 EXTERNAL CSSCV, CSVAL, RNSET, RNUNF, UMACH
C
 F(X) = 1.0/(.1+(3.0*(X-1.0))**4)
C
 CALL UMACH (2, NOUT)
C Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
C Introduce noise on [-.5,.5]
C Contaminate the data
 CALL RNSET (1234579)
 DO 20 I=1, NDATA
 FDATA(I) = FDATA(I) + 2.0*RNUNF() - 1.0
 20 CONTINUE
C
C Set IEQUAL=1 for equally spaced data
 IEQUAL = 1
C Smooth data
 CALL CSSCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF)
C Print results
 WRITE (NOUT,99999)
 DO 30 I=1, 10
 XT = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 SVAL = CSVAL(XT,NDATA-1,BREAK,CSCOEF)
 FVAL = F(XT)
 ERROR = SVAL - FVAL
 WRITE (NOUT,’(4F15.4)’) XT, FVAL, SVAL, ERROR
 30 CONTINUE
99999 FORMAT (12X, ’X’, 9X, ’Function’, 7X, ’Smoothed’, 10X,
 & ’Error’)
 END

Output
 X Function Smoothed Error
 0.0000 0.0123 0.2528 0.2405
 0.3010 0.0514 0.1054 0.0540
 0.6020 0.4690 0.3117 -0.1572
 0.9030 9.3312 8.9461 -0.3850
 1.2040 4.1611 4.6847 0.5235
 1.5050 0.1863 0.3819 0.1956
 1.8060 0.0292 0.1168 0.0877
 2.1070 0.0082 0.0658 0.0575

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 581

 2.4080 0.0031 0.0395 0.0364
 2.7090 0.0014 -0.2155 -0.2169

RATCH/DRATCH (Single/Double precision)
Compute a rational weighted Chebyshev approximation to a continuous function
on an interval.

Usage
CALL RATCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR)

Arguments

F — User-supplied FUNCTION to be approximated. The form is F(X), where
X – Independent variable. (Input)
F – The function value. (Output)

F must be declared EXTERNAL in the calling program.

PHI — User-supplied FUNCTION to supply the variable transformation which
must be continuous and monotonic. The form is PHI(X), where

X – Independent variable. (Input)
PHI – The function value. (Output)

PHI must be declared EXTERNAL in the calling program.
WEIGHT — User-supplied FUNCTION to scale the maximum error. It must be
continuous and nonvanishing on the closed interval (A, B). The form is
WEIGHT(X), where

X – Independent variable. (Input)
WEIGHT – The function value. (Output)

WEIGHT must be declared EXTERNAL in the calling program.

A — Lower end of the interval on which the approximation is desired. (Input)

B — Upper end of the interval on which the approximation is desired. (Input)

N — The degree of the numerator. (Input)

M — The degree of the denominator. (Input)

P — Vector of length N + 1 containing the coefficients of the numerator
polynomial. (Output)

Q — Vector of length M + 1 containing the coefficients of the denominator
polynomial. (Output)

ERROR — Min-max error of approximation. (Output)

Comments

1. Automatic workspace usage is

RATCH (N + M + 8) * (N + M + 2) + N + M + 2 units, or
DRATCH 2 * (N + M + 8) * (N + M + 2) + N + M + 2 units.

582 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Workspace may be explicitly provided, if desired, by use of
R2TCH/DR2TCH. The reference is

CALL R2TCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR,
 ITMAX, IWK, WK)

The additional arguments are as follows:

ITMAX — Maximum number of iterations. (Input)
The default value is 20.

IWK — Workspace vector of length (N + M + 2). (Workspace)

WK — Workspace vector of length (N + M + 8) * (N + M + 2).
(Workspace)

2. Informational errors
Type Code
 3 1 The maximum number of iterations has been reached.

The routine R2TCH may be called directly to set a
larger value for ITMAX.

 3 2 The error was reduced as far as numerically possible.
A good approximation is returned in P and Q, but this
does not necessarily give the Chebyshev
approximation.

 4 3 The linear system that defines P and Q was found to be
algorithmically singular. This indicates the possibility
of a degenerate approximation.

 4 4 A sequence of critical points that was not monotonic
generated. This indicates the possibility of a
degenerate approximation.

 4 5 The value of the error curve at some critical point is
too large. This indicates the possibility of poles in the
rational function.

 4 6 The weight function cannot be zero on the closed
interval (A, B).

Algorithm

The routine RATCH is designed to compute the best weighted Lg�(Chebyshev)
approximant to a given function. Specifically, given a weight function
w = WEIGHT, a monotone function φ = PHI, and a function f to be approximated
on the interval [a, b], the subroutine RATCH returns the coefficients (in P and Q)
for a rational approximation to f on [a, b]. The user must supply the degree of the
numerator N and the degree of the denominator M of the rational function

RM
N

The goal is to produce coefficients which minimize the expression

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation • 583

f R

w

f x
P x

Q x

w x
M
N

x a b

i
i

i

N

i
i

i

M
−

=

−

∈

−
=

+

−
=

+
∑
∑

: ,
max

0 5 0 5
0 5

0 5

φ

φ

1
1

1

1
1

1

Notice that setting φ(x) = x yields ordinary rational approximation. A typical use
of the function φ occurs when one wants to approximate an even function on a
symmetric interval, say [−a, a] using ordinary rational functions. In this case, it is

known that the answer must be an even function. Hence, one can set φ(x) = x�,
only approximate on [0, a], and decrease by one half the degrees in the numerator
and denominator.

The algorithm implemented in this subroutine is designed for fast execution. It
assumes that the best approximant has precisely N + M + 2 equi-oscillations. That
is, that there exist N + M + 2 points t� < … < t1�0�� satisfying

e e
f R

wi i
M
N

t t1 6 1 6= − = ±
−

+1

Such points are called alternants. Unfortunately, there are many instances in
which the best rational approximant to the given function has either fewer
alternants or more alternants. In this case, it is not expected that this subroutine
will perform well. For more information on rational Chebyshev approximation,
the reader can consult Cheney (1966). The subroutine is based on work of Cody,
Fraser, and Hart (1968).

Example

In this example, we compute the best rational approximation to the gamma
function, Γ, on the interval [2, 3] with weight function w = 1 and N = M = 2. We
display the maximum error and the coefficients. This problem is taken from the
paper of Cody, Fraser, and Hart (1968). We compute in double precision due to
the conditioning of this problem.

 INTEGER M, N
 PARAMETER (M=2, N=2)
C
 INTEGER NOUT
 DOUBLE PRECISION A, B, ERROR, F, P(N+1), PHI, Q(M+1), WEIGHT
 EXTERNAL F, PHI, RATCH, UMACH, WEIGHT
C
 A = 2.0D0
 B = 3.0D0
C Compute double precision rational
C approximation
 CALL DRATCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print P, Q and min-max error
 WRITE (NOUT,’(1X,A)’) ’In double precision we have:’
 WRITE (NOUT,99999) ’P = ’, P

584 • Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 WRITE (NOUT,99999) ’Q = ’, Q
 WRITE (NOUT,99999) ’ERROR = ’, ERROR
99999 FORMAT (’ ’, A, 5X, 3F20.12, /)
 END
C---
C
 DOUBLE PRECISION FUNCTION F (X)
 DOUBLE PRECISION X
C
 DOUBLE PRECISION DGAMMA
 EXTERNAL DGAMMA
C
 F = DGAMMA(X)
 RETURN
 END
C---
C
 DOUBLE PRECISION FUNCTION PHI (X)
 DOUBLE PRECISION X
C
 PHI = X
 RETURN
 END
C---
C
 DOUBLE PRECISION FUNCTION WEIGHT (X)
 DOUBLE PRECISION X
C
 DOUBLE PRECISION DGAMMA
 EXTERNAL DGAMMA
C
 WEIGHT = DGAMMA(X)
 RETURN
 END

Output
In double precision we have:
P = 1.265583562487 -0.650585004466 0.197868699191

Q = 1.000000000000 -0.064342721236 -0.028851461855

ERROR = -0.000026934190

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 585

Chapter 4: Integration and
Differentiation

Routines
4.1. Univariate Quadrature

Adaptive general-purpose endpoint singularitiesQDAGS 589
Adaptive general purpose ... QDAG 591
Adaptive general-purpose points of singularityQDAGP 594
Adaptive general-purpose infinite interval............................ QDAGI 598
Adaptive weighted oscillatory (trigonometric).....................QDAWO 601
Adaptive weighted Fourier (trigonometric) QDAWF 604
Adaptive weighted algebraic endpoint singularities QDAWS 607
Adaptive weighted Cauchy principal value.........................QDAWC 610
Nonadaptive general purpose... QDNG 613

4.2. Multidimensional Quadrature
Two-dimensional quadrature (iterated integral)TWODQ 614
Adaptive N-dimensional quadrature
over a hyper-rectangle .. QAND 619

4.3. Gauss Rules and Three-term Recurrences
Gauss quadrature rule for classical weights GQRUL 621
Gauss quadrature rule from recurrence coefficientsGQRCF 625
Recurrence coefficients for classical weights RECCF 628
Recurrence coefficients from quadrature rule.....................RECQR 630
Fejer quadrature rule ...FQRUL 632

4.4. Differentiation
Approximation to first, second, or third derivativeDERIV 636

586 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Usage Notes

Univariate Quadrature

The first nine routines described in this chapter are designed to compute
approximations to integrals of the form

f x w x dx
a

b 0 5 0 5I
The weight function w is used to incorporate known singularities (either algebraic
or logarithmic), to incorporate oscillations, or to indicate that a Cauchy principal
value is desired. For general purpose integration, we recommend the use of
QDAGS (page 589) (even if no endpoint singularities are present). If more
efficiency is desired, then the use of QDAG (page 591) (or QDAG*) should be
considered. These routines are organized as follows:

• w = 1

− QDAGS

− QDAG

− QDAGP

− QDAGI

− QDNG

• w(x) = sin ωx or w(x) = cos ωx

− QDAWO(for a finite interval)

− QDAWF(for an infinite interval)

• w(x) = (x − a)a(b − x)b ln(x − a) ln(b −x), where the ln factors are optional

− QDAWS

• w(x) = 1/(x −c) Cauchy principal value

− QDAWC

The calling sequences for these routines are very similar. The function to be
integrated is always F; the lower and upper limits are, respectively, A and B. The
requested absolute error ε is ERRABS, while the requested relative error ρ is
ERRREL. These quadrature routines return two numbers of interest, namely,
RESULT and ERREST, which are the approximate integral R and the error estimate
E, respectively. These numbers are related as follows:

f x w x dx R E f x w x dx
a

b

a

b0 5 0 5 0 5 0 5I I− ≤ ≤ %&'
()*max ,ε ρ

One situation that occasionally arises in univariate quadrature concerns the
approximation of integrals when only tabular data are given. The routines

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 587

described above do not directly address this question. However, the standard
method for handling this problem is first to interpolate the data and then to
integrate the interpolant. This can be accomplished by using the IMSL spline
interpolation routines described in Chapter 3 with one of the Chapter 3
integration routines CSINT (page 423), BSINT (page 450), or PPITG (page 512).

Multivariate Quadrature

Two routines are described in this chapter that are of use in approximating certain
multivariate integrals. In particular, the routine TWODQ returns an approximation
to an iterated two-dimensional integral of the form

f x y dy dx
g x

h x

a

b
,0 50

0
)

)II
The second routine, QAND, returns an approximation to the integral of a function
of n variables over a hyper-rectangle

L K Kf x x dx dxna

b

a

b
n

n

n
1 1

1

1 , ,1 6II
If one has two- or three-dimensional tensor-product tabular data, use the IMSL
spline interpolation routines BS2IN (page 459) or BS3IN (page 464), followed by
the IMSL spline integration routines BS2IG (page 487) or BS3IG (page 500) that
are described in Chapter 3.

Gauss rules and three-term recurrences

The routines described in this section deal with the constellation of problems
encountered in Gauss quadrature. These problems arise when quadrature
formulas, which integrate polynomials of the highest degree possible, are
computed. Once a member of a family of seven weight functions is specified, the
routine GQRUL (page 621) produces the points {xL} and weights {wL} for i = 1, …,
N that satisfy

f x w x dx f x w
a

b
i

i

N

i0 5 0 5 1 6I ∑=
=1

for all functions f that are polynomials of degree less than 2N. The weight
functions w may be selected from the following table:

588 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

w x

x

x

e

x x

e x

x

x

x

0 5
0 5
0 5
0 5
0 5

0 5 0 5 0 5
0 5

0 5 0 5

Interval Name

1

1 1 1 1

1 1 1

1 1 1 1

0

1

2

2

2

−
−

− −

−∞ ∞
+ − −

∞
−∞ ∞

−

−

1,1

/ - Chebyshev 1st kind

Chebyshev 2nd kind

Hermite

Jacobi

Generalized Laguerre

cosh Hyperbolic cosine

Legendre

,

,

,

,

,

/

α β

α

Where permissible, GQRUL will also compute Gauss-Radau and Gauss-Lobatto
quadrature rules. The routine RECCF (page 628) produces the three-term
recurrence relation for the monic orthogonal polynomials with respect to the
above weight functions.

Another routine, GQRCF (page 625), produces the Gauss, Gauss-Radau, or Gauss-
Lobatto quadrature rule from the three-term recurrence relation. This means
Gauss rules for general weight functions may be obtained if the three-term
recursion for the orthogonal polynomials is known. The routine RECQR
(page 630) is an inverse to GQRCF in the sense that it produces the recurrence
coefficients given the Gauss quadrature formula.

The last routine described in this section, FQRUL (page 632), generates the Fejér
quadrature rules for the following family of weights:

w x

w x x

w x b x x a

w x b x x a x a

w x b x x a b x

0 5
0 5 0 5
0 5 0 5 0 5
0 5 0 5 0 5 0 5
0 5 0 5 0 5 0 5

=
= −

= − −

= − − −

= − − −

1

1 /

ln

ln

α
α β

α β

α β

Numerical differentiation

We provide one routine, DERIV (page 636), for numerical differentiation. This
routine provides an estimate for the first, second, or third derivative of a user-
supplied function.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 589

QDAGS/DQDAGS (Single/Double precision)
Integrate a function (which may have endpoint singularities).

Usage
CALL QDAGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X), where
X − Independent variable. (Input)
F − The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Automatic workspace usage is

QDAGS 2500 units, or
DQDAGS 4500 units.

Workspace may be explicitly provided, if desired, by use of
Q2AGS/DQ2AGS. The reference is

CALL Q2AGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST
 MAXSUB, NEVAL, NSUBIN, ALIST, BLIST,
 RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 500 is used by QDAGS.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left
endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right
endpoints. (Output)

590 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

RLIST — Array of length MAXSUB containing approximations to the
NSUBIN integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the
NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let k be
NSUBIN if NSUBIN ≤ (MAXSUB/2 + 2);
MAXSUB + 1 − NSUBIN otherwise.
The first k locations contain pointers to the error estimates over the
subintervals such that ELIST(IORD(1)), …, ELIST(IORD(k)) form a
decreasing sequence.

2. Informational errors
Type Code
 4 1 The maximum number of subintervals allowed has

been reached.
 3 2 Roundoff error, preventing the requested tolerance

from being achieved, has been detected.
 3 3 A degradation in precision has been detected.
 3 4 Roundoff error in the extrapolation table, preventing

the requested tolerance from being achieved, has been
detected.

 4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAGS attempts to find RESULT such that
|EXACT − RESULT| ≤ max(ERRABS, ERRREL * |EXACT|). To specify only
a relative error, set ERRABS to zero. Similarly, to specify only an
absolute error, set ERRREL to zero.

Algorithm

The routine QDAGS is a general-purpose integrator that uses a globally adaptive
scheme to reduce the absolute error. It subdivides the interval [A, B] and uses a
21-point Gauss-Kronrod rule to estimate the integral over each subinterval. The
error for each subinterval is estimated by comparison with the 10-point Gauss
quadrature rule. This routine is designed to handle functions with endpoint
singularities. However, the performance on functions, which are well-behaved at
the endpoints, is quite good also. In addition to the general strategy described in
QDAG (page 591), this routine uses an extrapolation procedure known as the ε-
algorithm. The routine QDAGS is an implementation of the routine QAGS, which is
fully documented by Piessens et al. (1983). Should QDAGS fail to produce
acceptable results, then either IMSL routines QDAG or QDAG* may be appropriate.
These routines are documented in this chapter.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 591

Example

The value of

ln /

0

1 1 2 4I − = −x x dx0 5
is estimated. The values of the actual and estimated error are machine dependent.

 INTEGER NOUT
 REAL A, ABS, B, ERRABS, ERREST, ERROR, ERRREL, EXACT, F,
 & RESULT
 INTRINSIC ABS
 EXTERNAL F, QDAGS, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration
 A = 0.0
 B = 1.0
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.001
 CALL QDAGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST)
C Print results
 EXACT = -4.0
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /,
 & ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
C
 REAL FUNCTION F (X)
 REAL X
 REAL ALOG, SQRT
 INTRINSIC ALOG, SQRT
 F = ALOG(X)/SQRT(X)
 RETURN
 END

Output
Computed = -4.000 Exact = -4.000

Error estimate = 2.782E-04 Error = 4.292E-06

QDAG/DQDAG (Single/Double precision)
Integrate a function using a globally adaptive scheme based on Gauss-Kronrod
rules.

Usage
CALL QDAG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST)

592 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X), where
X − Independent variable. (Input)
F − The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

IRULE — Choice of quadrature rule. (Input)
The Gauss-Kronrod rule is used with the following points:

IRULE Points
1 7-15
2 10-21
3 15-31
4 20-41
5 25-51
6 30-61

IRULE = 2 is recommended for most functions. If the function has a peak
singularity, use IRULE = 1. If the function is oscillatory, use IRULE = 6.

RESULT — Estimate of the integral from A to B of F. (Output)

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Automatic workspace usage is

QDAG 2500 units, or
DQDAG 4500 units.

Workspace may be explicitly provided, if desired, by use of
Q2AG/DQ2AG. The reference is

CALL Q2AG (F, A, B, ERRABS, ERRREL, IRULE, RESULT,
 ERREST, MAXSUB, NEVAL, NSUBIN, ALIST,
 BLIST, RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 500 is used by QDAG.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 593

ALIST — Array of length MAXSUB containing a list of the NSUBIN left
endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right
endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the
NSUBIN integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the
NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 −
NSUBIN otherwise. The first K locations contain pointers to the error
estimates over the corresponding subintervals, such that
ELIST(IORD(1)), …, ELIST(IORD(K)) form a decreasing sequence.

2. Informational errors
Type Code
 4 1 The maximum number of subintervals allowed has

been reached.
 3 2 Roundoff error, preventing the requested tolerance

from being achieved, has been detected.
 3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, QDAG attempts to find RESULT such that
ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

Algorithm

The routine QDAG is a general-purpose integrator that uses a globally adaptive
scheme in order to reduce the absolute error. It subdivides the interval [A, B] and
uses a (2k + 1)-point Gauss-Kronrod rule to estimate the integral over each
subinterval. The error for each subinterval is estimated by comparison with the k-
point Gauss quadrature rule. The subinterval with the largest estimated error is
then bisected and the same procedure is applied to both halves. The bisection
process is continued until either the error criterion is satisfied, roundoff error is
detected, the subintervals become too small, or the maximum number of
subintervals allowed is reached. The routine QDAG is based on the subroutine QAG

by Piessens et al. (1983).

Should QDAG fail to produce acceptable results, then one of the IMSL routines
QDAG* may be appropriate. These routines are documented in this chapter.

594 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Example

The value of

xe dx ex = +I 2

0

2
1

is estimated. Since the integrand is not oscillatory, IRULE = 1 is used. The values
of the actual and estimated error are machine dependent.

 INTEGER IRULE, NOUT
 REAL A, ABS, B, ERRABS, ERREST, ERROR, ERRREL, EXACT, EXP,
 & F, RESULT
 INTRINSIC ABS, EXP
 EXTERNAL F, QDAG, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration
 A = 0.0
 B = 2.0
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.001
C Parameter for non-oscillatory
C function
 IRULE = 1
 CALL QDAG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST)
C Print results
 EXACT = 1.0 + EXP(2.0)
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /,
 & ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
C
 REAL FUNCTION F (X)
 REAL X
 REAL EXP
 INTRINSIC EXP
 F = X*EXP(X)
 RETURN
 END

Output
Computed = 8.389 Exact = 8.389

Error estimate = 5.000E-05 Error = 9.537E-07

QDAGP/DQDAGP (Single/Double precision)
Integrate a function with singularity points given.

Usage
CALL QDAGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT,
 ERREST)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 595

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X), where
X − Independent variable. (Input)
F − The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

NPTS — Number of break points given. (Input)

POINTS — Array of length NPTS containing breakpoints in the range of
integration. (Input)
Usually these are points where the integrand has singularities.

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Automatic workspace usage is

QDAGP 2704 + 2 * NPTS units, or
DQDAGP 4506 + 3 * NPTS units.

Workspace may be explicitly provided, if desired, by use of
Q2AGP/DQ2AGP. The reference is

CALL Q2AGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL,
 RESULT, ERREST, MAXSUB, NEVAL, NSUBIN,
 ALIST, BLIST, RLIST, ELIST, IORD, LEVEL,
 WK, IWK)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 450 is used by QDAGP.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left
endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right
endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the
NSUBIN integrals over the intervals defined by ALIST, BLIST. (Output)

596 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

ELIST — Array of length MAXSUB containing the error estimates of the
NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 −
NSUBIN otherwise. The first K locations contain pointers to the error
estimates over the subintervals, such that ELIST(IORD(1)), …,
ELIST(IORD(K)) form a decreasing sequence.

LEVEL — Array of length MAXSUB, containing the subdivision levels of
the subinterval. (Output)
That is, if (AA, BB) is a subinterval of (P1, P2) where P1 as well as P2 is
a user-provided break point or integration limit, then (AA, BB) has level L
if ABS(BB − AA) = ABS(P2 − P1) * 2**(−L).

WK — Work array of length NPTS + 2.

IWK — Work array of length NPTS + 2.

2. Informational errors
Type Code
 4 1 The maximum number of subintervals allowed has

been reached.
 3 2 Roundoff error, preventing the requested tolerance

from being achieved, has been detected.
 3 3 A degradation in precision has been detected.
 3 4 Roundoff error in the extrapolation table, preventing

the requested tolerance from being achieved, has been
detected.

 4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAGP attempts to find RESULT such that
ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

Algorithm

The routine QDAGP uses a globally adaptive scheme in order to reduce the
absolute error. It initially subdivides the interval [A, B] into NPTS + 1 user-
supplied subintervals and uses a 21-point Gauss-Kronrod rule to estimate the
integral over each subinterval. The error for each subinterval is estimated by
comparison with the 10-point Gauss quadrature rule. This routine is designed to
handle endpoint as well as interior singularities. In addition to the general strategy
described in the IMSL routine QDAG (page 591), this routine employs an
extrapolation procedure known as the ε-algorithm. The routine QDAGP is an
implementation of the subroutine QAGP, which is fully documented by Piessens et
al. (1983).

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 597

Example

The value of

x x x dx3 2 2

0

3
1 2 61 2

77
4

7 27ln ln ln− − = + −I 3 83 8
is estimated. The values of the actual and estimated error are machine dependent.
Note that this subroutine never evaluates the user-supplied function at the user-
supplied breakpoints.

 INTEGER NOUT, NPTS
 REAL A, ABS, ALOG, B, ERRABS, ERREST, ERROR, ERRREL,
 & EXACT, F, POINTS(2), RESULT, SQRT
 INTRINSIC ABS, ALOG, SQRT
 EXTERNAL F, QDAGP, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration
 A = 0.0
 B = 3.0
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.01
C Set singularity parameters
 NPTS = 2
 POINTS(1) = 1.0
 POINTS(2) = SQRT(2.0)
 CALL QDAGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT,
 & ERREST)
C Print results
 EXACT = 61.0*ALOG(2.0) + 77.0/4.0*ALOG(7.0) - 27.0
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /,
 & ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
C
 END
C
 REAL FUNCTION F (X)
 REAL X
 REAL ABS, ALOG
 INTRINSIC ABS, ALOG
 F = X**3*ALOG(ABS((X*X-1.0)*(X*X-2.0)))
 RETURN
 END

Output
Computed = 52.741 Exact = 52.741

Error estimate = 5.062E-01 Error = 6.218E-04

598 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

QDAGI/DQDAGI (Single/Double precision)
Integrate a function over an infinite or semi-infinite interval.

Usage
CALL QDAGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT,
 ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is
F(X), where

X − Independent variable. (Input)
F − The function value. (Output)

F must be declared EXTERNAL in the calling program.

BOUND — Finite bound of the integration range. (Input)
Ignored if INTERV = 2.

INTERV — Flag indicating integration interval. (Input)

INTERV Interval
−1 (−∞, BOUND)
1 (BOUND, + ∞)
2 (−∞, + ∞)

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Automatic workspace usage is

QDAGI 2500 units, or
DQDAGI 4500 units.

Workspace may be explicitly provided, if desired, by use of
Q2AGI/DQ2AGI. The reference is

CALL Q2AGI (F, BOUND, INTERV, ERRABS, ERRREL,
 RESULT, ERREST, MAXSUB, NEVAL, NSUBIN,
 ALIST, BLIST, RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 500 is used by QDAGI.

NEVAL — Number of evaluations of F. (Output)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 599

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left
endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right
endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the
NSUBIN integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the
NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN .LE.(MAXSUB/2 + 2), MAXSUB + 1 −
NSUBIN otherwise. The first K locations contain pointers to the error
estimates over the subintervals, such that ELIST(IORD(1)), …,
ELIST(IORD(K)) form a decreasing sequence.

2. Informational errors
Type Code
 4 1 The maximum number of subintervals allowed has

been reached.
 3 2 Roundoff error, preventing the requested tolerance

from being achieved, has been detected.
 3 3 A degradation in precision has been detected.
 3 4 Roundoff error in the extrapolation table, preventing

the requested tolerance from being achieved, has been
detected.

 4 5 Integral is divergent or slowly convergent.

3. If EXACT is the exact value, QDAGI attempts to find RESULT such that
ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

Algorithm

The routine QDAGI uses a globally adaptive scheme in an attempt to reduce the
absolute error. It initially transforms an infinite or semi-infinite interval into the
finite interval [0, 1]. Then, QDAGI uses a 21-point Gauss-Kronrod rule to estimate
the integral and the error. It bisects any interval with an unacceptable error
estimate and continues this process until termination. This routine is designed to
handle endpoint singularities. In addition to the general strategy described in
QDAG (page 591), this subroutine employs an extrapolation procedure known as
the ε-algorithm. The routine QDAGI is an implementation of the subroutine QAGI,
which is fully documented by Piessens et al. (1983).

600 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Example

The value of

ln lnx

x
dx

0 5
0 5

0 5
1 10

10
2020 +

= −∞I π

is estimated. The values of the actual and estimated error are machine dependent.
Note that we have requested an absolute error of 0 and a relative error of .001.
The effect of these requests, as documented in Comment 3 above, is to ignore the
absolute error requirement.

 INTEGER INTERV, NOUT
 REAL ABS, ALOG, ATAN, BOUND, ERRABS, ERREST, ERROR,
 & ERRREL, EXACT, F, PI, RESULT, CONST
 INTRINSIC ABS, ALOG
 EXTERNAL F, QDAGI, UMACH, CONST
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration
 BOUND = 0.0
 INTERV = 1
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.001
 CALL QDAGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT, ERREST)
C Print results
 PI = CONST(’PI’)
 EXACT = -PI*ALOG(10.)/20.
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3//’ Error ’,
 & ’estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
C
 REAL FUNCTION F (X)
 REAL X
 REAL ALOG
 INTRINSIC ALOG
 F = ALOG(X)/(1.+(10.*X)**2)
 RETURN
 END

Output
Computed = -0.362 Exact = -0.362

Error estimate = 2.652E-06 Error = 5.960E-08

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 601

QDAWO/DQDAWO (Single/Double precision)
Integrate a function containing a sine or a cosine.

Usage
CALL QDAWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, RESULT,
 ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X), where
X − Independent variable. (Input)
F − The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight
1 COS(OMEGA * X)
2 SIN(OMEGA * X)

OMEGA — Parameter in the weight function. (Input)

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

RESULT — Estimate of the integral from A to B of F * WEIGHT. (Output)

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Automatic workspace usage is

QDAWO 2865 units, or
DQDAWO 4950 units.

Workspace may be explicitly provided, if desired, by use of
Q2AWO/DQ2AWO. The reference is

CALL Q2AWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL,
 RESULT, ERREST, MAXSUB, MAXCBY, NEVAL,
 NSUBIN, ALIST, BLIST, RLIST, ELIST,
 IORD, NNLOG, WK)

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)
A value of 390 is used by QDAWO.

602 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

MAXCBY — Upper bound on the number of Chebyshev moments which
can be stored. That is, for the intervals of lengths ABS(B − A) * 2**(−L),
L = 0, 1, …, MAXCBY − 2, MAXCBY.GE.1. The routine QDAWO uses 21.
(Input)

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left
endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right
endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the
NSUBIN integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the
NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. Let K be NSUBIN if NSUBIN.LE.
(MAXSUB/2 + 2), MAXSUB + 1 − NSUBIN otherwise. The first K locations
contain pointers to the error estimates over the subintervals, such that
ELIST(IORD(1)), …, ELIST(IORD(K)) form a decreasing sequence.
(Output)

NNLOG — Array of length MAXSUB containing the subdivision levels of
the subintervals, i.e. NNLOG(I) = L means that the subinterval numbered
I is of length ABS(B − A) * (1− L). (Output)

WK — Array of length 25 * MAXCBY. (Workspace)

2. Informational errors
Type Code
 4 1 The maximum number of subintervals allowed has

been reached.
 3 2 Roundoff error, preventing the requested tolerance

from being achieved, has been detected.
 3 3 A degradation in precision has been detected.
 3 4 Roundoff error in the extrapolation table, preventing

the requested tolerances from being achieved, has
been detected.

 4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAWO attempts to find RESULT such that
ABS(EXACT − RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 603

Algorithm

The routine QDAWO uses a globally adaptive scheme in an attempt to reduce the
absolute error. This routine computes integrals whose integrands have the special
form w(x) f(x), where w(x) is either cos ωx or sin ωx. Depending on the length of
the subinterval in relation to the size of ω, either a modified Clenshaw-Curtis
procedure or a Gauss-Kronrod 7/15 rule is employed to approximate the integral
on a subinterval. In addition to the general strategy described for the IMSL
routine QDAG (page 591), this subroutine uses an extrapolation procedure known
as the ε-algorithm. The routine QDAWO is an implementation of the subroutine
QAWO, which is fully documented by Piessens et al. (1983).

Example

The value of

ln sinx x dx0 5 0 5
0

1
10I π

is estimated. The values of the actual and estimated error are machine dependent.
Notice that the log function is coded to protect for the singularity at zero.

 INTEGER IWEIGH, NOUT
 REAL A, ABS, B, CONST, ERRABS, ERREST, ERROR, ERRREL,
 & EXACT, F, OMEGA, PI, RESULT
 INTRINSIC ABS
 EXTERNAL CONST, F, QDAWO, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration
 A = 0.0
 B = 1.0
C Weight function = sin(10.*pi*x)
 IWEIGH = 2
 PI = CONST(’PI’)
 OMEGA = 10.*PI
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.001
 CALL QDAWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, RESULT,
 & ERREST)
C Print results
 EXACT = -0.1281316
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /,
 & ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
C
 REAL FUNCTION F (X)
 REAL X
 REAL ALOG
 INTRINSIC ALOG
 IF (X .EQ. 0.) THEN
 F = 0.0

604 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 ELSE
 F = ALOG(X)
 END IF
 RETURN
 END

Output
Computed = -0.128 Exact = -0.128

Error estimate = 7.504E-05 Error = 5.260E-06

QDAWF/DQDAWF (Single/Double precision)
Compute a Fourier integral.

Usage
CALL QDAWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X), where
X − Independent variable. (Input)
F − The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight
1 COS(OMEGA * X)
2 SIN(OMEGA * X)

OMEGA — Parameter in the weight function. (Input)

ERRABS — Absolute accuracy desired. (Input)

RESULT — Estimate of the integral from A to infinity of F * WEIGHT. (Output)

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Automatic workspace usage is

QDAWF 2865 units, or
DQDAWF 4950 units.

Workspace may be explicitly provided, if desired, by use of
Q2AWF/DQ2AWF. The reference is

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 605

CALL Q2AWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT,
 ERREST, MAXCYL, MAXSUB, MAXCBY, NEVAL,
 NCYCLE, RSLIST, ERLIST, IERLST, NSUBIN,
 WK, IWK)

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)
A value of 365 is used by QDAWF.

MAXCYL — Maximum number of cycles allowed. (Input)
MAXCYL must be at least 3. QDAWF uses 50.

MAXCBY — Maximum number of Chebyshev moments allowed.
(Input)
QDAWF uses 21.

NEVAL — Number of evaluations of F. (Output)

NCYCLE — Number of cycles used. (Output)

RSLIST — Array of length MAXCYL containing the contributions to the
integral over the interval (A + (k − 1) * C, A + k * C), for k = 1, …,
NCYCLE. (Output)
C = (2 * INT(ABS(OMEGA)) + 1) * PI/ABS(OMEGA).

ERLIST — Array of length MAXCYL containing the error estimates for
the intervals defined in RSLIST. (Output)

IERLST — Array of length MAXCYL containing error flags for the
intervals defined in RSLIST. (Output)

IERLST(K) Meaning
1 The maximum number of subdivisions (MAXSUB) has

been achieved on the K-th cycle.
2 Roundoff error prevents the desired accuracy from

being achieved on the K-th cycle.
3 Extremely bad integrand behavior occurs at some

points of the K-th cycle.
4 Integration procedure does not converge (to the

desired accuracy) due to roundoff in the extrapolation
procedure on the K-th cycle. It is assumed that the
result on this interval is the best that can be obtained.

5 Integral over the K-th cycle is divergent or slowly
convergent.

NSUBIN — Number of subintervals generated. (Output)

WK — Work array of length 4 * MAXSUB + 25 * MAXCBY.

IWK — Work array of length 2 * MAXSUB.

606 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

2. Informational errors
Type Code
 3 1 Bad integrand behavior occurred in one or more

cycles.
 4 2 Maximum number of cycles allowed has been reached.
 3 3 Extrapolation table constructed for convergence

acceleration of the series formed by the integral
contributions of the cycles does not converge to the
requested accuracy.

3. If EXACT is the exact value, QDAWF attempts to find RESULT such that
ABS(EXACT − RESULT) .LE. ERRABS.

Algorithm

The routine QDAWF uses a globally adaptive scheme in an attempt to reduce the
absolute error. This routine computes integrals whose integrands have the special
form w(x) f(x), where w(x) is either cos ωx or sin ωx. The integration interval is
always semi-infinite of the form [A, ∞]. These Fourier integrals are approximated
by repeated calls to the IMSL routine QDAWO (page 601) followed by
extrapolation. The routine QDAWF is an implementation of the subroutine QAWF,
which is fully documented by Piessens et al. (1983).

Example

The value of

x x dx−∞
=I 1 2

0
2 1/ cos /π0 5

is estimated. The values of the actual and estimated error are machine dependent.
Notice that F is coded to protect for the singularity at zero.

 INTEGER IWEIGH, NOUT
 REAL A, ABS, CONST, ERRABS, ERREST, ERROR, EXACT, F,
 & OMEGA, PI, RESULT
 INTRINSIC ABS
 EXTERNAL CONST, F, QDAWF, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set lower limit of integration
 A = 0.0
C Select weight W(X) = COS(PI*X/2)
 IWEIGH = 1
 PI = CONST(’PI’)
 OMEGA = PI/2.0
C Set error tolerance
 ERRABS = 0.001
 CALL QDAWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST)
C Print results
 EXACT = 1.0
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 607

99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /,
 & ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
C
 REAL FUNCTION F (X)
 REAL X
 REAL SQRT
 INTRINSIC SQRT
 IF (X .GT. 0.0) THEN
 F = 1.0/SQRT(X)
 ELSE
 F = 0.0
 END IF
 RETURN
 END

Output
Computed = 1.000 Exact = 1.000

Error estimate = 6.267E-04 Error = 2.205E-06

QDAWS/DQDAWS (Single/Double precision)
Integrate a function with algebraic-logarithmic singularities.

Usage
CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETA, ERRABS, ERRREL,
 RESULT, ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X), where
X − Independent variable. (Input)
F − The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)
B must be greater than A

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight
1 (X − A)**ALPHA * (B − X)**BETA
2 (X − A)**ALPHA * (B − X)**BETA * LOG(X − A)
3 (X − A)**ALPHA * (B − X)**BETA * LOG(B − X)
4 (X − A)**ALPHA * (B − X)**BETA * LOG (X − A) * LOG (B − X)

ALPHA — Parameter in the weight function. (Input)
ALPHA must be greater than −1.0.

608 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

BETA — Parameter in the weight function. (Input)
BETA must be greater than −1.0.

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

RESULT — Estimate of the integral from A to B of F * WEIGHT. (Output)

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Automatic workspace usage is

QDAWS 2500 units, or
DQDAWS 4500 units.

Workspace may be explicitly provided, if desired, by use of
Q2AWS/DQ2AWS. The reference is

CALL Q2AWS (F, A, B, IWEIGH, ALPHA, BETA, ERRABS,
 ERRREL, RESULT, ERREST, MAXSUB, NEVAL,
 NSUBIN, ALIST, BLIST, RLIST, ELIST,
 IORD)

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)
A value of 500 is used by QDAWS.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left
endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right
endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the
NSUBIN integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the
NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. Let K be NSUBIN if NSUBIN.LE.
(MAXSUB/2 + 2), MAXSUB + 1 − NSUBIN otherwise. The first K locations
contain pointers to the error estimates over the subintervals, such that
ELIST(IORD(1)), …, ELIST(IORD(K)) form a decreasing sequence.
(Output)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 609

2. Informational errors
Type Code
4 1 The maximum number of subintervals allowed has

been reached.
3 2 Roundoff error, preventing the requested tolerance

from being achieved, has been detected.
3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, QDAWS attempts to find RESULT such that
ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

Algorithm

The routine QDAWS uses a globally adaptive scheme in an attempt to reduce the
absolute error. This routine computes integrals whose integrands have the special
form w(x) f(x), where w(x) is a weight function described above. A combination
of modified Clenshaw-Curtis and Gauss-Kronrod formulas is employed. In
addition to the general strategy described for the IMSL routine QDAG (page 591),
this routine uses an extrapolation procedure known as the ε-algorithm. The
routine QDAWS is an implementation of the routine QAWS, which is fully
documented by Piessens et al. (1983).

Example

The value of

1 1
3 2 4

90

1 1 2
+ − = −I x x x x dx0 50 5 0 5 0 5/

ln
ln

is estimated. The values of the actual and estimated error are machine dependent.
 INTEGER IWEIGH, NOUT
 REAL A, ABS, ALOG, ALPHA, B, BETA, ERRABS, ERREST, ERROR,
 & ERRREL, EXACT, F, RESULT
 INTRINSIC ABS, ALOG
 EXTERNAL F, QDAWS, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration
 A = 0.0
 B = 1.0
C Select weight
 ALPHA = 1.0
 BETA = 0.5
 IWEIGH = 2
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.001
 CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETA, ERRABS, ERRREL,
 & RESULT, ERREST)
C Print results

610 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 EXACT = (3.*ALOG(2.)-4.)/9.
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /,
 & ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
C
 REAL FUNCTION F (X)
 REAL X
 REAL SQRT
 INTRINSIC SQRT
 F = SQRT(1.0+X)
 RETURN
 END

Output
Computed = -0.213 Exact = -0.213

Error estimate = 1.261E-08 Error = 2.980E-08

QDAWC/DQDAWC (Single/Double precision)
Integrate a function F(X)/(X − C) in the Cauchy principal value sense.

Usage
CALL QDAWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X), where
X − Independent variable. (Input)
F − The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

C — Singular point. (Input)
C must not equal A or B.

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

RESULT — Estimate of the integral from A to B of F(X)/(X − C). (Output)

ERREST — Estimate of the absolute value of the error. (Output)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 611

Comments

1. Automatic workspace usage is

QDAWC 2500 units, or
DQDAWC 4500 units.

Workspace may be explicitly provided, if desired, by use of
Q2AWC/DQ2AWC. The reference is

CALL Q2AWC (F, A, B, C, ERRABS, ERRREL, RESULT,
 ERREST, MAXSUB, NEVAL, NSUBIN, ALIST,
 BLIST, RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 500 is used by QDAWC.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left
endpoints. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right
endpoints. (Output)

RLIST — Array of length MAXSUB containing approximations to the
NSUBIN integrals over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the
NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 −
NSUBIN otherwise. The first K locations contain pointers to the error
estimates over the subintervals, such that ELIST(IORD(1)), …,
ELIST(IORD(K)) form a decreasing sequence.

2. Informational errors
Type Code
 4 1 The maximum number of subintervals allowed has

been reached.
 3 2 Roundoff error, preventing the requested tolerance

from being achieved, has been detected.
 3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, QDAWC attempts to find RESULT such that
ABS(EXACT − RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

612 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Algorithm

The routine QDAWC uses a globally adaptive scheme in an attempt to reduce the
absolute error. This routine computes integrals whose integrands have the special
form w(x) f(x), where w(x) = 1/(x − c). If c lies in the interval of integration, then
the integral is interpreted as a Cauchy principal value. A combination of modified
Clenshaw-Curtis and Gauss-Kronrod formulas are employed. In addition to the
general strategy described for the IMSL routine QDAG (page 591), this routine
uses an extrapolation procedure known as the ε-algorithm. The routine QDAWC is
an implementation of the subroutine QAWC, which is fully documented by Piessens
et al. (1983).

Arguments

The Cauchy principal value of

1

5 6

125 631

1831

5

x x
dx

+
=

−I 3 8
0 5ln /

is estimated. The values of the actual and estimated error are machine dependent.
 INTEGER NOUT
 REAL A, ABS, ALOG, B, C, ERRABS, ERREST, ERROR, ERRREL,
 & EXACT, F, RESULT
 INTRINSIC ABS, ALOG
 EXTERNAL F, QDAWC, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration and C
 A = -1.0
 B = 5.0
 C = 0.0
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.001
 CALL QDAWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST)
C Print results
 EXACT = ALOG(125./631.)/18.
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /,
 & ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
C
 REAL FUNCTION F (X)
 REAL X
 F = 1.0/(5.*X**3+6.0)
 RETURN
 END

Output
Computed = -0.090 Exact = -0.090

Error estimate = 2.235E-06 Error = 2.980E-08

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 613

QDNG/DQDNG (Single/Double precision)
Integrate a smooth function using a nonadaptive rule.

Usage
CALL QDNG (F, A, B, ERRABS, ERRREL, RESULT, ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X), where
X – Independent variable. (Input)
F – The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Informational error
Type Code
 4 1 The maximum number of steps allowed have been

taken. The integral is too difficult for QDNG.

2. If EXACT is the exact value, QDNG attempts to find RESULT such that
ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

3. This routine is designed for efficiency, not robustness. If the above error
is encountered, try QDAGS.

Algorithm

The routine QDNG is designed to integrate smooth functions. This routine
implements a nonadaptive quadrature procedure based on nested Paterson rules of
order 10, 21, 43, and 87. These rules are positive quadrature rules with degree of
accuracy 19, 31, 64, and 130, respectively. The routine QDNG applies these rules
successively, estimating the error, until either the error estimate satisfies the user-
supplied constraints or the last rule is applied. The routine QDNG is based on the
routine QNG by Piessens et al. (1983).

614 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

This routine is not very robust, but for certain smooth functions it can be efficient.
If QDNG should not perform well, we recommend the use of the IMSL routine
QDAGS (page 589).

Example

The value of

xe dx ex = +I 2

0

2
1

is estimated. The values of the actual and estimated error are machine dependent.
 INTEGER NOUT
 REAL A, ABS, B, ERRABS, ERREST, ERROR, ERRREL, EXACT, EXP,
 & F, RESULT
 INTRINSIC ABS, EXP
 EXTERNAL F, QDNG, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration
 A = 0.0
 B = 2.0
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.001
 CALL QDNG (F, A, B, ERRABS, ERRREL, RESULT, ERREST)
C Print results
 EXACT = 1.0 + EXP(2.0)
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /,
 & ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
C
 REAL FUNCTION F (X)
 REAL X
 REAL EXP
 INTRINSIC EXP
 F = X*EXP(X)
 RETURN
 END

Output
Computed = 8.389 Exact = 8.389

Error estimate = 5.000E-05 Error = 9.537E-07

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 615

TWODQ/DTWODQ (Single/Double precision)
Compute a two-dimensional iterated integral.

Usage
CALL TWODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT,
 ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(X, Y), where
X – First argument of F. (Input)
Y – Second argument of F. (Input)
F – The function value. (Output)

F must be declared EXTERNAL in the calling program.

A — Lower limit of outer integral. (Input)

B — Upper limit of outer integral. (Input)

G — User-supplied FUNCTION to evaluate the lower limits of the inner integral.
The form is G(X), where

X – Only argument of G. (Input)
G – The function value. (Output)

G must be declared EXTERNAL in the calling program.

H — User-supplied FUNCTION to evaluate the upper limits of the inner integral.
The form is H(X), where

X – Only argument of H. (Input)
H – The function value. (Output)

H must be declared EXTERNAL in the calling program.

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

IRULE — Choice of quadrature rule. (Input)
The Gauss-Kronrod rule is used with the following points:

IRULE Points
1 7-15
2 10-21
3 15-31
4 20-41
5 25-51
6 30-61

If the function has a peak singularity, use IRULE = 1. If the function is oscillatory,
use IRULE = 6.

RESULT — Estimate of the integral from A to B of F. (Output)

616 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Automatic workspace usage is

TWODQ 2500 units, or
DTWODQ 4500 units.

Workspace may be explicitly provided, if desired, by use of
T2ODQ/DT2ODQ. The reference is

CALL T2ODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE,
 RESULT, ERREST, MAXSUB, NEVAL, NSUBIN,
 ALIST, BLIST, RLIST, ELIST, IORD, WK,
 IWK)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 250 is used by TWODQ.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated in the outer integral.
(Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left
endpoints for the outer integral. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right
endpoints for the outer integral. (Output)

RLIST — Array of length MAXSUB containing approximations to the
NSUBIN integrals over the intervals defined by ALIST, BLIST,
pertaining only to the outer integral. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the
NSUBIN values in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 −
NSUBIN otherwise. Then the first K locations contain pointers to the
error estimates over the corresponding subintervals, such that
ELIST(IORD(1)), …, ELIST(IORD(K)) form a decreasing sequence.

WK — Work array of length 4 * MAXSUB, needed to evaluate the inner
integral.

IWK — Work array of length MAXSUB, needed to evaluate the inner
integral.

2. Informational errors
Type Code
 4 1 The maximum number of subintervals allowed has

been reached.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 617

 3 2 Roundoff error, preventing the requested tolerance
from being achieved, has been detected.

 3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, TWODQ attempts to find RESULT such that
ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

Algorithm

The routine TWODQ approximates the two-dimensional iterated integral

f x y dy dx
g x

h x

a

b
,0 50

0
)

)II
with the approximation returned in RESULT. An estimate of the error is returned
in ERREST. The approximation is achieved by iterated calls to QDAG (page 591).
Thus, this algorithm will share many of the characteristics of the routine QDAG. As
in QDAG, several options are available. The absolute and relative error must be
specified, and in addition, the Gauss-Kronrod pair must be specified (IRULE).
The lower-numbered rules are used for less smooth integrands while the higher-
order rules are more efficient for smooth (oscillatory) integrands.

Example 1

In this example, we approximate the integral

y x y dy dxcos +II 2

1

3

0

1 3 8
The value of the error estimate is machine dependent.

 INTEGER IRULE, NOUT
 REAL A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT
 EXTERNAL F, G, H, TWODQ, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Set limits of integration
 A = 0.0
 B = 1.0
C Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.01
C Parameter for oscillatory function
 IRULE = 6
 CALL TWODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT, ERREST)
C Print results
 WRITE (NOUT,99999) RESULT, ERREST
99999 FORMAT (’ Result =’, F8.3, 13X, ’ Error estimate = ’, 1PE9.3)
 END
C
 REAL FUNCTION F (X, Y)
 REAL X, Y
 REAL COS

618 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 INTRINSIC COS
 F = Y*COS(X+Y*Y)
 RETURN
 END
C
 REAL FUNCTION G (X)
 REAL X
 G = 1.0
 RETURN
 END
C
 REAL FUNCTION H (X)
 REAL X
 H = 3.0
 RETURN
 END

Output
Result = -0.514 Error estimate = 3.065E-06

Example 2

We modify the above example by assuming that the limits for the inner integral
depend on x and, in particular, are g(x) = −2x and h(x) = 5x. The integral now
becomes

y x y dy dx
x

x
cos +

−II 2

2

5

0

1 3 8
The value of the error estimate is machine dependent.

C Declare F, G, H
 INTEGER IRULE, NOUT
 REAL A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT
 EXTERNAL F, G, H, TWODQ, UMACH
C
 CALL UMACH (2, NOUT)
C Set limits of integration
 A = 0.0
 B = 1.0
C Set error tolerances
 ERRABS = 0.001
 ERRREL = 0.0
C Parameter for oscillatory function
 IRULE = 6
 CALL TWODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT, ERREST)
C Print results
 WRITE (NOUT,99999) RESULT, ERREST
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Error estimate = ’, 1PE9.3)
 END
 REAL FUNCTION F (X, Y)
 REAL X, Y
C
 REAL COS
 INTRINSIC COS
C
 F = Y*COS(X+Y*Y)
 RETURN

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 619

 END
 REAL FUNCTION G (X)
 REAL X
C
 G = -2.0*X
 RETURN
 END
 REAL FUNCTION H (X)
 REAL X
C
 H = 5.0*X
 RETURN
 END

Output
Computed = -0.083 Error estimate = 2.095E-06

QAND/DQAND (Single/Double precision)
Integrate a function on a hyper-rectangle.

Usage
CALL QAND (F, N, A, B, ERRABS, ERRREL, MAXFCN, RESULT,
 ERREST)

Arguments

F — User-supplied FUNCTION to be integrated. The form is F(N, X), where
N – The dimension of the hyper-rectangle. (Input)
X – The independent variable of dimension N. (Input)
F – The value of the integrand at X. (Output)

F must be declared EXTERNAL in the calling program.

N — The dimension of the hyper-rectangle. (Input)
N must be less than or equal to 20.

A — Vector of length N. (Input)
Lower limits of integration.

B — Vector of length N. (Input)
Upper limits of integration.

ERRABS — Absolute accuracy desired. (Input)

ERRREL — Relative accuracy desired. (Input)

MAXFCN — Approximate maximum number of function evaluations to be
permitted. (Input)

MAXFCN cannot be greater than 2561.

RESULT — Estimate of the integral from A to B of F. (Output)
The integral of F is approximated over the N-dimensional hyper-rectangle
A.LE.X.LE.B.

620 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

ERREST — Estimate of the absolute value of the error. (Output)

Comments

1. Informational errors
Type Code

 3 1 MAXFCN was set greater than 2561.
 4 2 The maximum number of function evaluations has

been reached, and convergence has not been attained.

2. If EXACT is the exact value, QAND attempts to find RESULT such that
ABS(EXACT − RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To
specify only a relative error, set ERRABS to zero. Similarly, to specify
only an absolute error, set ERRREL to zero.

Algorithm

The routine QAND approximates the n-dimensional iterated integral

K K K
a

b
na

b
nf x x dx dx

n

n

1

1
1 1I I , ,1 6

with the approximation returned in RESULT. An estimate of the error is returned
in ERREST. The approximation is achieved by iterated applications of product
Gauss formulas. The integral is first estimated by a two-point tensor product
formula in each direction. Then for i = 1, …, n the routine calculates a new
estimate by doubling the number of points in the i-th direction, but halving the
number immediately afterwards if the new estimate does not change appreciably.
This process is repeated until either one complete sweep results in no increase in
the number of sample points in any dimension, or the number of Gauss points in
one direction exceeds 256, or the number of function evaluations needed to
complete a sweep would exceed MAXFCN.

Example 1

In this example, we approximate the integral of

e
x x x− + +1

2
2
2

3
24 9

on an expanding cube. The values of the error estimates are machine dependent.
The exact integral over

R3 3 2is π /

 INTEGER I, J, MAXFCN, N, NOUT
 REAL A(3), B(3), CONST, ERRABS, ERREST, ERRREL, F, RESULT
 EXTERNAL F, QAND, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C
 N = 3
 MAXFCN = 100000
C Set error tolerances

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 621

 ERRABS = 0.0001
 ERRREL = 0.001
C
 DO 20 I=1, 6
 CONST = I/2.0
C Set limits of integration
C As CONST approaches infinity, the
C answer approaches PI**1.5
 DO 10 J=1, 3
 A(J) = -CONST
 B(J) = CONST
 10 CONTINUE
 CALL QAND (F, N, A, B, ERRABS, ERRREL, MAXFCN, RESULT, ERREST)
 WRITE (NOUT,99999) CONST, RESULT, ERREST
 20 CONTINUE
99999 FORMAT (1X, ’For CONST = ’, F4.1, ’, result = ’, F7.3, ’ with ’,
 & ’error estimate ’, 1PE10.3)
 RETURN
 END
C
 REAL FUNCTION F (N, X)
 INTEGER N
 REAL X(N)
 REAL EXP
 INTRINSIC EXP
 F = EXP(-(X(1)*X(1)+X(2)*X(2)+X(3)*X(3)))
 RETURN
 END

Output
For CONST = 0.5, result = 0.785 with error estimate 3.934E-06
For CONST = 1.0, result = 3.332 with error estimate 2.100E-03
For CONST = 1.5, result = 5.021 with error estimate 1.192E-05
For CONST = 2.0, result = 5.491 with error estimate 2.413E-04
For CONST = 2.5, result = 5.561 with error estimate 4.232E-03
For CONST = 3.0, result = 5.568 with error estimate 2.580E-04

GQRUL/DGQRUL (Single/Double precision)
Compute a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various
classical weight functions.

Usage
CALL GQRUL (N, IWEIGH, ALPHA, BETA, NFIX, QXFIX, QX, QW)

Arguments

N — Number of quadrature points. (Input)

IWEIGH — Index of the weight function. (Input)

622 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

IWEIGH WT X0 5
0 5
0 5
0 5
0 5

0 5 0 5 0 5
0 5

0 5 0 5

Interval Name

1 1 1 1

2 1 1 1 1

1 1 1

1 1 1 1

0

7 1

2

2

2

− +
− − +

− − +

−∞ + ∞
− + − +

+ ∞

−∞ + ∞

−

−

,

/ ,

,

,

,

,

/ ,

Legendre

Chebyshev 1st kind

3 Chebyshev 2nd kind

4 Hermite

5 Jacobi

6 Generalized
Laguerre

cosh

X

X

e

X X

e X

X

X

X

α β

α

COSH

ALPHA — Parameter used in the weight function with some values of IWEIGH,
otherwise it is ignored. (Input)

BETA — Parameter used in the weight function with some values of IWEIGH,

otherwise it is ignored. (Input)

NFIX — Number of fixed quadrature points. (Input)
NFIX = 0, 1 or 2. For the usual Gauss quadrature rules, NFIX = 0.

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset
quadrature point(s). (Input)

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

Comments

1. Automatic workspace usage is

GQRUL N units, or
DGQRUL 2 * N units.

Workspace may be explicitly provided, if desired, by use of
G2RUL/DG2RUL. The reference is

CALL G2RUL (N, IWEIGH, ALPHA, BETA, NFIX, QXFIX, QX,
 QW, WK)

The additional argument is

WK — Work array of length N.

2. If IWEIGH specifies the weight WT(X) and the interval (a, b), then
approximately

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 623

F X WT X dX F QX I QW I
a

b

I

N

0 5 0 5 0 51 6 0 5I ∑=
=

*
1

*

3. Gaussian quadrature is always the method of choice when the function
F(X) behaves like a polynomial. Gaussian quadrature is also useful on
infinite intervals (with appropriate weight functions), because other
techniques often fail.

4. The weight function 1/cosh(X) behaves like a polynomial near zero and

like e_;_�far from zero.

Algorithm

The routine GQRUL produces the points and weights for the Gauss, Gauss-Radau,
or Gauss-Lobatto quadrature formulas for some of the most popular weights. In
fact, it is slightly more general than this suggests because the extra one or two
points that may be specified do not have to lie at the endpoints of the interval.
This routine is a modification of the subroutine GAUSSQUADRULE (Golub and
Welsch 1969).

In the simple case when NFIX = 0, the routine returns points in x = QX and
weights in w = QW so that

f x w x dx f x w
a

b
i

i

N

i0 5 0 5 1 6I ∑=
=1

for all functions f that are polynomials of degree less than 2N.

If NFIX = 1, then one of the above xL equals the first component of QXFIX.
Similarly, if NFIX = 2, then two of the components of x will equal the first two
components of QXFIX. In general, the accuracy of the above quadrature formula
degrades when NFIX increases. The quadrature rule will integrate all functions f
that are polynomials of degree less than 2N − NFIX.

Example 1

In this example, we obtain the classical Gauss-Legendre quadrature formula,
which is accurate for polynomials of degree less than 2N, and apply this when N =

6 to the function x8 on the interval [−1, 1]. This quadrature rule is accurate for
polynomials of degree less than 12.

 PARAMETER (N=6)
 INTEGER I, IWEIGH, NFIX, NOUT
 REAL ALPHA, ANSWER, BETA, QW(N), QX(N), QXFIX(2), SUM
 EXTERNAL GQRUL, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C
 IWEIGH = 1
 ALPHA = 0.0
 BETA = 0.0

624 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 NFIX = 0
C Get points and weights from GQRUL
 CALL GQRUL (N, IWEIGH, ALPHA, BETA, NFIX, QXFIX, QX, QW)
C Write results from GQRUL
 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)
99998 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/))
C Evaluate the integral from these
C points and weights
 SUM = 0.0
 DO 10 I=1, N
 SUM = SUM + QX(I)**8*QW(I)
 10 CONTINUE
 ANSWER = SUM
 WRITE (NOUT,99999) ANSWER
99999 FORMAT (/, ’ The quadrature result making use of these ’,
 & ’points and weights is ’, 1PE10.4, ’.’)
 END

Output
QX(1) = -0.9325 QW(1) = 0.17132
QX(2) = -0.6612 QW(2) = 0.36076
QX(3) = -0.2386 QW(3) = 0.46791
QX(4) = 0.2386 QW(4) = 0.46791
QX(5) = 0.6612 QW(5) = 0.36076
QX(6) = 0.9325 QW(6) = 0.17132

The quadrature result making use of these points and weights is 2.2222E-01.

Example 2

We modify Example 1 by requiring that both endpoints be included in the

quadrature formulas and again apply the new formulas to the function x8 on the
interval [−1, 1]. This quadrature rule is accurate for polynomials of degree less
than 10.

 PARAMETER (N=6)
 INTEGER I, IWEIGH, NFIX, NOUT
 REAL ALPHA, ANSWER, BETA, QW(N), QX(N), QXFIX(2), SUM
 EXTERNAL GQRUL, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C
 IWEIGH = 1
 ALPHA = 0.0
 BETA = 0.0
 NFIX = 2
 QXFIX(1) = -1.0
 QXFIX(2) = 1.0
C Get points and weights from GQRUL
 CALL GQRUL (N, IWEIGH, ALPHA, BETA, NFIX, QXFIX, QX, QW)
C Write results from GQRUL
 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)
99998 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/))
C Evaluate the integral from these
C points and weights
 SUM = 0.0
 DO 10 I=1, N

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 625

 SUM = SUM + QX(I)**8*QW(I)
 10 CONTINUE
 ANSWER = SUM
 WRITE (NOUT,99999) ANSWER
99999 FORMAT (/, ’ The quadrature result making use of these ’,
 & ’points and weights is ’, 1PE10.4, ’.’)
 END

Output
QX(1) = -1.0000 QW(1) = 0.06667
QX(2) = -0.7651 QW(2) = 0.37847
QX(3) = -0.2852 QW(3) = 0.55486
QX(4) = 0.2852 QW(4) = 0.55486
QX(5) = 0.7651 QW(5) = 0.37847
QX(6) = 1.0000 QW(6) = 0.06667

The quadrature result making use of these points and weights is 2.2222E-01.

GQRCF/DGQRCF (Single/Double precision)
Compute a Gauss, Gauss-Radau or Gauss-Lobatto quadrature rule given the
recurrence coefficients for the monic polynomials orthogonal with respect to the
weight function.

Usage
CALL GQRCF (N, B, C, NFIX, QXFIX, QX, QW)

Arguments

N — Number of quadrature points. (Input)

B — Array of length N containing the recurrence coefficients. (Input)
See Comments for definitions.

C — Array of length N containing the recurrence coefficients. (Input)
See Comments for definitions.

NFIX — Number of fixed quadrature points. (Input)
NFIX = 0, 1 or 2. For the usual Gauss quadrature rules NFIX = 0.

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset
quadrature point(s). (Input)

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

Comments

1. Automatic workspace usage is

GQRCF N units, or
DGQRCF 2 * N units.

626 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Workspace may be explicitly provided, if desired, by use of
G2RCF/DG2RCF. The reference is

CALL G2RCF (N, B, C, NFIX, QXFIX, QX, QW, WK)

The additional argument is

WK — Work array of length N.

2. Informational error
Type Code
 4 1 No convergence in 100 iterations.

3. The recurrence coefficients B(I) and C(I) define the monic polynomials
via the relation P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2).
C(1) contains the zero-th moment

WT X dX()I
of the weight function. Each element of C must be greater than zero.

4. If WT(X) is the weight specified by the coefficients and the interval is (a,
b), then approximately

F X WT X dX F QX I QW I
a

b

I

N

0 5 0 5 0 51 6 0 5I ∑=
=

* *
1

5. Gaussian quadrature is always the method of choice when the function
F(X) behaves like a polynomial. Gaussian quadrature is also useful on
infinite intervals (with appropriate weight functions) because other
techniques often fail.

Algorithm

The routine GQRCF produces the points and weights for the Gauss, Gauss-Radau,
or Gauss-Lobatto quadrature formulas given the three-term recurrence relation for
the orthogonal polynomials. In particular, it is assumed that the orthogonal
polynomials are monic, and hence, the three-term recursion may be written as

p x x b p x c p x i Ni i i i i0 5 1 6 0 5 0 5= − −− −1 2 1for = , ,K

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of
pL is i and that pL�is monic. In order for the recurrence to give rise to a sequence of
orthogonal polynomials (with respect to a nonnegative measure), it is necessary
and sufficient that cL > 0. This routine is a modification of the subroutine
GAUSSQUADRULE (Golub and Welsch 1969). In the simple case when NFIX = 0,
the routine returns points in x = QX and weights in w = QW so that

f x w x dx f x w
a

b
i

i

N

i0 5 0 5 1 6I ∑=
=1

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 627

for all functions f that are polynomials of degree less than 2N. Here, w is any
weight function for which the above recurrence produces the orthogonal
polynomials pL on the interval [a, b] and w is normalized by

w x dx c
a

b 0 5I = 1

If NFIX = 1, then one of the above xL equals the first component of QXFIX.
Similarly, if NFIX = 2, then two of the components of x will equal the first two
components of QXFIX. In general, the accuracy of the above quadrature formula
degrades when NFIX increases. The quadrature rule will integrate all functions f
that are polynomials of degree less than 2N − NFIX.

Example

We compute the Gauss quadrature rule (with N = 6) for the Chebyshev weight, (1

+ x2)(-1/2), from the recurrence coefficients. These coefficients are obtained by a
call to the IMSL routine RECCF (page 628).

 PARAMETER (N=6)
 INTEGER I, NFIX, NOUT
 REAL B(N), C(N), QW(N), QX(N), QXFIX(2)
 EXTERNAL GQRCF, RECCF, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Recursion coefficients will come from
C routine RECCF.
C The call to RECCF finds recurrence
C coefficients for Chebyshev
C polynomials of the 1st kind.
 IWEIGH = 1
 ALPHA = 0.0
 BETA = 0.0
 CALL RECCF (N, IWEIGH, ALPHA, BETA, B, C)
C
 NFIX = 0
C The call to GQRCF will compute the
C quadrature rule from the recurrence
C coefficients determined above.
 CALL GQRCF (N, B, C, NFIX, QXFIX, QX, QW)
 WRITE (NOUT,99999) (I,QX(I),I,QW(I),I=1,N)
99999 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/))
C
 END

Output
QX(1) = -0.9325 QW(1) = 0.17132
QX(2) = -0.6612 QW(2) = 0.36076
QX(3) = -0.2386 QW(3) = 0.46791
QX(4) = 0.2386 QW(4) = 0.46791
QX(5) = 0.6612 QW(5) = 0.36076
QX(6) = 0.9325 QW(6) = 0.17132

628 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

RECCF/DRECCF (Single/Double precision)
Compute recurrence coefficients for various monic polynomials.

Usage
CALL RECCF (N, IWEIGH, ALPHA, BETA, B, C)

Arguments

N — Number of recurrence coefficients. (Input)

IWEIGH — Index of the weight function. (Input)

IWEIGH WT X0 5
0 5
0 5
0 5
0 5

0 5 0 5 0 5
0 5

0 5 0 5

Interval Name

1 1 1 1

2 1 1 1 1

1 1 1

1 1 1 1

0

7 1

2

2

2

− +
− − +

− − +

−∞ + ∞
− + − +

+ ∞

−∞ + ∞

−

−

,

/ ,

,

,

,

,

/ ,

Legendre

Chebyshev 1st kind

3 Chebyshev 2nd kind

4 Hermite

5 Jacobi

6 Generalized
Laguerre

cosh

X

X

e

X X

e X

X

X

X

α β

α

COSH

ALPHA — Parameter used in the weight function with some values of IWEIGH,
otherwise it is ignored. (Input)

BETA — Parameter used in the weight function with some values of IWEIGH,
otherwise it is ignored. (Input)

B — Array of length N containing recurrence coefficients. (Output)

C — Array of length N containing recurrence coefficients. (Output)

Comments

The recurrence coefficients B(I) and C(I) define the monic polynomials via the
relation P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2). The zero-th
moment

WT X dX()I4 9
of the weight function is returned in C(1).

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 629

Algorithm

The routine RECCF produces the recurrence coefficients for the orthogonal
polynomials for some of the most important weights. It is assumed that the
orthogonal polynomials are monic; hence, the three-term recursion may be written
as

p x x b p x c p x i Ni i i i i0 5 1 6 0 5 0 5= − −− −1 2 1for = , , K

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of
pL is i and that pL is monic. In order for the recurrence to give rise to a sequence of
orthogonal polynomials (with respect to a nonnegative measure), it is necessary
and sufficient that cL > 0.

Example

Here, we obtain the well-known recurrence relations for the first six monic
Legendre polynomials, Chebyshev polynomials of the first kind, and Laguerre
polynomials.

 PARAMETER (N=6)
 INTEGER I, IWEIGH, NOUT
 REAL ALPHA, B(N), BETA, C(N)
 EXTERNAL RECCF, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C
 ALPHA = 0.0
 BETA = 0.0
C
 IWEIGH = 1
 CALL RECCF (N, IWEIGH, ALPHA, BETA, B, C)
 WRITE (NOUT,99996)
 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)
C
 IWEIGH = 2
 CALL RECCF (N, IWEIGH, ALPHA, BETA, B, C)
 WRITE (NOUT,99997)
 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)
C
 IWEIGH = 6
 CALL RECCF (N, IWEIGH, ALPHA, BETA, B, C)
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)
C
99996 FORMAT (1X, ’Legendre’)
99997 FORMAT (/, 1X, ’Chebyshev, first kind’)
99998 FORMAT (/, 1X, ’Laguerre’)
99999 FORMAT (6(6X,’B(’,I1,’) = ’,F8.4,7X,’C(’,I1,’) = ’,F8.5,/))
 END

Output
Legendre
B(1) = 0.0000 C(1) = 2.00000
B(2) = 0.0000 C(2) = 0.33333
B(3) = 0.0000 C(3) = 0.26667

630 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

B(4) = 0.0000 C(4) = 0.25714
B(5) = 0.0000 C(5) = 0.25397
B(6) = 0.0000 C(6) = 0.25253

Chebyshev, first kind
B(1) = 0.0000 C(1) = 3.14159
B(2) = 0.0000 C(2) = 0.50000
B(3) = 0.0000 C(3) = 0.25000
B(4) = 0.0000 C(4) = 0.25000
B(5) = 0.0000 C(5) = 0.25000
B(6) = 0.0000 C(6) = 0.25000

Laguerre
B(1) = 1.0000 C(1) = 1.00000
B(2) = 3.0000 C(2) = 1.00000
B(3) = 5.0000 C(3) = 4.00000
B(4) = 7.0000 C(4) = 9.00000
B(5) = 9.0000 C(5) = 16.00000
B(6) = 11.0000 C(6) = 25.00000

RECQR/DRECQR (Single/Double precision)
Compute recurrence coefficients for monic polynomials given a quadrature rule.

Usage
CALL RECQR (N, QX, QW, NTERM, B, C)

Arguments

N — Number of quadrature points. (Input)

QX — Array of length N containing the quadrature points. (Input)

QW — Array of length N containing the quadrature weights. (Input)

NTERM — Number of recurrence coefficients. (Input)
NTERM must be less than or equal to N.

B — Array of length NTERM containing recurrence coefficients. (Output)

C — Array of length NTERM containing recurrence coefficients. (Output)

Comments

1. Automatic workspace usage is

RECQR 2 * N units, or
DRECQR 4 * N units.

Workspace may be explicitly provided, if desired, by use of
R2CQR/DR2CQR. The reference is

CALL R2CQR (N, QX, QW, NTERM, B, C, WK)

The additional argument is

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 631

WK — Work array of length 2 * N.

2. The recurrence coefficients B(I) and C(I) define the monic polynomials
via the relation P(I) = (X − B(I + 1)) * P(I − 1) − C(I + 1) * P(I − 2).
The zero-th moment

WT X dX()I4 9
of the weight function is returned in C(1).

Algorithm

The routine RECQR produces the recurrence coefficients for the orthogonal
polynomials given the points and weights for the Gauss quadrature formula. It is
assumed that the orthogonal polynomials are monic; hence the three-term
recursion may be written

p x x b p x c p x i Ni i i i i0 5 1 6 0 5 0 5= − −− −1 2 1for = , , K

where p0 = 1 and p-1 = 0. It is obvious from this representation that the degree of
pL is i and that pL is monic. In order for the recurrence to give rise to a sequence of
orthogonal polynomials (with respect to a nonnegative measure), it is necessary
and sufficient that cL > 0.

This routine is an inverse routine to GQRCF (page 625). Given the recurrence
coefficients, the routine GQRCF produces the corresponding Gauss quadrature
formula, whereas the routine RECQR produces the recurrence coefficients given
the quadrature formula.

Example

To illustrate the use of RECQR, we will input a simple choice of recurrence
coefficients, call GQRCF for the quadrature formula, put this information into
RECQR, and recover the recurrence coefficients.

 PARAMETER (N=5)
 INTEGER I, J, NFIX, NOUT, NTERM
 REAL B(N), C(N), FLOAT, QW(N), QX(N), QXFIX(2)
 INTRINSIC FLOAT
 EXTERNAL GQRCF, RECQR, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
 NFIX = 0
C Set arrays B and C of recurrence
C coefficients
 DO 10 J=1, N
 B(J) = FLOAT(J)
 C(J) = FLOAT(J)/2.0
 10 CONTINUE
 WRITE (NOUT,99995)
99995 FORMAT (1X, ’Original recurrence coefficients’)
 WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N)
99996 FORMAT (5(6X,’B(’,I1,’) = ’,F8.4,7X,’C(’,I1,’) = ’,F8.5,/))
C

632 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

C The call to GQRCF will compute the
C quadrature rule from the recurrence
C coefficients given above.
C
 CALL GQRCF (N, B, C, NFIX, QXFIX, QX, QW)
 WRITE (NOUT,99997)
99997 FORMAT (/, 1X, ’Quadrature rule from the recurrence coefficients’
 &)
 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)
99998 FORMAT (5(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/))
C
C Call RECQR to recover the original
C recurrence coefficients
 NTERM = N
 CALL RECQR (N, QX, QW, NTERM, B, C)
 WRITE (NOUT,99999)
99999 FORMAT (/, 1X, ’Recurrence coefficients determined by RECQR’)
 WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N)
C
 END

Output
Original recurrence coefficients
B(1) = 1.0000 C(1) = 0.50000
B(2) = 2.0000 C(2) = 1.00000
B(3) = 3.0000 C(3) = 1.50000
B(4) = 4.0000 C(4) = 2.00000
B(5) = 5.0000 C(5) = 2.50000

Quadrature rule from the recurrence coefficients
QX(1) = 0.1525 QW(1) = 0.25328
QX(2) = 1.4237 QW(2) = 0.17172
QX(3) = 2.7211 QW(3) = 0.06698
QX(4) = 4.2856 QW(4) = 0.00790
QX(5) = 6.4171 QW(5) = 0.00012

Recurrence coefficients determined by RECQR
B(1) = 1.0000 C(1) = 0.50000
B(2) = 2.0000 C(2) = 1.00000
B(3) = 3.0000 C(3) = 1.50000
B(4) = 4.0000 C(4) = 2.00000
B(5) = 5.0000 C(5) = 2.50000

FQRUL/DFQRUL (Single/Double precision)
Compute a Fejér quadrature rule with various classical weight functions.

Usage
CALL FQRUL (N, A, B, IWEIGH, ALPHA, BETA, QX, QW)

Arguments

N — Number of quadrature points. (Input)

A — Lower limit of integration. (Input)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 633

B — Upper limit of integration. (Input)
B must be greater than A.

IWEIGH — Index of the weight function. (Input)

IWEIGH WT(X)
1 1
2 1/(X − ALPHA)

3 (B − X)a (X − A)b

4 (B − X)a (X − A)b log(X − A)

5 (B − X)a (X − A)b log(B − X)

ALPHA — Parameter used in the weight function (except if IWEIGH = 1, it is
ignored). (Input)
If IWEIGH = 2, then it must satisfy A.LT.ALPHA.LT.B. If IWEIGH = 3, 4, or 5,
then ALPHA must be greater than −1.

BETA — Parameter used in the weight function (ignored if IWEIGH = 1 or 2).
(Input)
BETA must be greater than −1.0.

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

Comments

1. Automatic workspace usage is

FQRUL 3 * N + 15 units, or
DFQRUL 6 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
F2RUL/DF2RUL. The reference is

CALL F2RUL (N, A, B, IWEIGH, ALPHA, BETA, QX, QW,
 WK)

The additional argument is

WK — Work array of length 3 * N + 15.

2. If IWEIGH specifies the weight WT(X) and the interval (A, B), then
approximately

F X WT X dX F QX I QW I
A

B

I

N

0 5 0 5 0 51 6 0 5I ∑=
=

* *
1

3. The routine FQRUL uses an FFT, so it is most efficient when N is the
product of small primes.

634 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Algorithm

The routine FQRUL produces the weights and points for the Fejér quadrature rule.
Since this computation is based on a quarter-wave cosine transform, the
computations are most efficient when N, the number of points, is a product of
small primes. These quadrature formulas may be an intermediate step in a more
complicated situation, see for instance Gautschi and Milovanofic (1985).

The Fejér quadrature rules are based on polynomial interpolation. First, choose
classical abscissas (in our case, the Gauss points for the Chebyshev weight

function (1 − x2)-1/2), then derive the quadrature rule for a different weight. In
order to keep the presentation simple, we will describe the case where the interval
of integration is [−1, 1] even though FQRUL allows rescaling to an arbitrary
interval [a, b].

We are looking for quadrature rules of the form

Q f w f xj
j

N

j0 5 3 8:=
=
∑

1

where the

{ }x j j
N
=1

are the zeros of the N-th Chebyshev polynomial (of the first kind)
T1 (x) = cos(N arccos x). The weights in the quadrature rule Q are chosen so that,
for all polynomials p of degree less than N,

Q p w p x p x w x dxj
j

N

j0 5 3 8 0 5 0 5= =
=

−∑ I
1

1

1

for some weight function w. In FQRUL, the user has the option of choosing w from
five families of functions with various algebraic and logarithmic endpoint
singularities.

These Fejér rules are important because they can be computed using specialized
FFT quarter-wave transform routines. This means that rules with a large number
of abscissas may be computed efficiently. If we insert TO��for p in the above
formula, we obtain

Q T w T x T x w x dxl j
j

N

l j l1 6 3 8 0 5 0 5= =
=

−∑ I
1

1

1

for l = 0, …, N − 1. This is a system of linear equations for the unknown weights
wM that can be simplified by noting that

x
j

N
j Nj = − =cos , ,

2 1

2
1

0 5π
K

and hence,

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 635

T x w x dx w T x

w
l j

N

l j
j

N

l j

j
j

N

−
=

=

I ∑

∑

=

= −

1

1

1

1

2 1

2

0 5 0 5 3 8

0 5
cos

π

The last expression is the cosine quarter-wave forward transform for the sequence

{ }wj j
N
=1

that is implemented in Chapter 6 under the name QCOSF (page 791). More
importantly, QCOSF has an inverse QCOSB (page 793). It follows that if the
integrals on the left in the last expression can be computed, then the Fejér rule can
be derived efficiently for highly composite integers N utilizing QCOSB. For more
information on this topic, consult Davis and Rabinowitz (1984, pages 84−86) and
Gautschi (1968, page 259).

Example

Here, we obtain the Fejér quadrature rules using 10, 100, and 200 points. With
these rules, we get successively better approximations to the integral

x x dx
0

1 241
1

41I =sin π
π3 8

 PARAMETER (NMAX=200)
 INTEGER I, IWEIGH, K, N, NFIX, NOUT
 REAL A, ALPHA, ANSWER, B, BETA, CONST, F, QW(NMAX),
 & QX(NMAX), SIN, SUM, X, PI, ERROR
 INTRINSIC SIN, ABS
 EXTERNAL CONST, FQRUL, UMACH
C
 F(X) = X*SIN(41.0*PI*X**2)
C Get output unit number
 CALL UMACH (2, NOUT)
C
 PI = CONST(’PI’)
 DO 20 K=1, 3
 IF (K .EQ. 1) N = 10
 IF (K .EQ. 2) N = 100
 IF (K .EQ. 3) N = 200
 A = 0.0
 B = 1.0
 IWEIGH = 1
 ALPHA = 0.0
 BETA = 0.0
 NFIX = 0
C Get points and weights from FQRUL
 CALL FQRUL (N, A, B, IWEIGH, ALPHA, BETA, QX, QW)
C Evaluate the integral from these
C points and weights
 SUM = 0.0

636 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 DO 10 I=1, N
 SUM = SUM + F(QX(I))*QW(I)
 10 CONTINUE
 ANSWER = SUM
 ERROR = ABS(ANSWER - 1.0/(41.0*PI))
 WRITE (NOUT,99999) N, ANSWER, ERROR
 20 CONTINUE
C
99999 FORMAT (/, 1X, ’When N = ’, I3, ’, the quadrature result making ’
 & , ’use of these points ’, /, ’ and weights is ’, 1PE11.4,
 & ’, with error ’, 1PE9.2, ’.’)
 END

Output
When N = 10, the quadrature result making use of these points and weights
is -1.6523E-01, with error 1.73E-01.

When N = 100, the quadrature result making use of these points and weights
is 7.7637E-03, with error 2.79E-08.

When N = 200, the quadrature result making use of these points and weights
is 7.7636E-03, with error 1.40E-08.

DERIV/DDERIV (Single/Double precision)
Compute the first, second or third derivative of a user-supplied function.

Usage
DERIV(FCN, KORDER, X, BGSTEP, TOL)

Arguments

FCN — User-supplied FUNCTION whose derivative at X will be computed. The
form is FCN(X), where

X – Independent variable. (Input)
FCN – The function value. (Output)

FCN must be declared EXTERNAL in the calling program.

KORDER — Order of the derivative desired (1, 2 or 3). (Input)

X — Point at which the derivative is to be evaluated. (Input)

BGSTEP — Beginning value used to compute the size of the interval used in
computing the derivative. (Input)
The interval used is the closed interval (X − 4 * BGSTEP, X + 4 * BGSTEP).
BGSTEP must be positive.

TOL — Relative error desired in the derivative estimate. (Input)

DERIV — Estimate of the first (KORDER = 1), second (KORDER = 2) or third
(KORDER = 3) derivative of FCN at X. (Output)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 637

Comments

1. Informational errors
Type Code
 3 2 Roundoff error became dominant before estimates

converged. Increase precision and/or increase BGSTEP.
 4 1 Unable to achieve desired tolerance in derivative

estimation. Increase precision, increase TOL and/or
change BGSTEP. If this error continues, the function
may not have a derivative at X.

2. Convergence is assumed when

2
3
− − <D2 D1 TOL

for two successive derivative estimates D1 and D2.

3. The initial step size, BGSTEP, must be chosen small enough that FCN is
defined and reasonably smooth in the interval (X − 4 * BGSTEP, X + 4 *
BGSTEP), yet large enough to avoid roundoff problems.

Algorithm

DERIV produces an estimate to the first, second, or third derivative of a function.
The estimate originates from first computing a spline interpolant to the input
function using values within the interval (X − 4.0 * BGSTEP, X + 4.0 * BGSTEP),
then differentiating the spline at X.

Example 1

In this example, we obtain the approximate first derivative of the function

f(x) = −2 sin(3x/2)

at the point x = 2.
 INTEGER KORDER, NCOUNT, NOUT
 REAL BGSTEP, DERIV, DERV, FCN, TOL, X
 EXTERNAL DERIV, FCN, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C
 X = 2.0
 BGSTEP = 0.2
 TOL = 0.01
 KORDER = 1
 NCOUNT = 1
 DERV = DERIV(FCN,KORDER,X,BGSTEP,TOL)
 WRITE (NOUT,99999) DERV
99999 FORMAT (/, 1X, ’First derivative of FCN is ’, 1PE10.3)
 END
C
 REAL FUNCTION FCN (X)
 REAL X

638 • Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 REAL SIN
 INTRINSIC SIN
 FCN = -2.0*SIN(1.5*X)
 RETURN
 END

Output
First derivative of FCN is 2.970E+00

Example 2

In this example, we attempt to approximate in single precision the third derivative
of the function

f(x) = 2x4 + 3x

at the point x = 0.75. Although the function is well-behaved near x = 0.75, finding
derivatives is often computationally difficult on 32-bit machines. The difficulty is
overcome in double precision.

 INTEGER KORDER, NOUT
 REAL BGSTEP, DERIV, DERV, FCN, TOL, X
 DOUBLE PRECISION DBGSTE, DDERIV, DDERV, DFCN, DTOL, DX
 EXTERNAL DDERIV, DERIV, DFCN, ERSET, FCN, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Turn off stopping due to error
C condition
 CALL ERSET (0, -1, 0)
C
 X = 0.75
 BGSTEP = 0.1
 TOL = 0.01
 KORDER = 3
C In single precision, on a 32-bit
C machine, the following attempt
C produces an error message
 DERV = DERIV(FCN,KORDER,X,BGSTEP,TOL)
C In double precision, we get good
C results
 DX = 0.75D0
 DBGSTE = 0.1D0
 DTOL = 0.01D0
 KORDER = 3
 DDERV = DDERIV(DFCN,KORDER,DX,DBGSTE,DTOL)
 WRITE (NOUT,99999) DDERV
99999 FORMAT (/, 1X, ’The third derivative of DFCN is ’, 1PD10.4)
 END
C
 REAL FUNCTION FCN (X)
 REAL X
 FCN = 2.0*X**4 + 3.0*X
 RETURN
 END
C
 DOUBLE PRECISION FUNCTION DFCN (X)
 DOUBLE PRECISION X
 DFCN = 2.0D0*X**4 + 3.0D0*X

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation • 639

 RETURN
 END

Output
*** FATAL ERROR 1 from DERIV. Unable to achieve desired tolerance.
*** Increase precision, increase TOL = 1.000000E-02 and/or change
*** BGSTEP = 1.000000E-01. If this error continues the function
*** may not have a derivative at X = 7.500000E-01

The third derivative of DFCN is 3.6000D+01

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 641

Chapter 5: Differential Equations

Routines
5.1. First-Order Ordinary Differential Equations

5.1.1 Solution of the Initial-Value Problem for ODEs
Runge-Kutta method... IVPRK 645
Runge-Kutta method, various ordersIVMRK 652
Adams or Gear method... IVPAG 646

5.1.2 Solution of the Boundary-Value Problem for ODEs
Finite-difference method ..BVPFD 678
Multiple-shooting method.. BVPMS 689

5.1.3 Solution of Differential-Algebraic Systems
Petzold-Gear method.. DASPG 696

5.2. Partial Differential Equations

5.2.1 Solution of Systems of PDEs in One Dimension
Method of lines with a Hermite cubic basisMOLCH 717

5.2.2 Solution of a PDE in Two and Three Dimensions
Two-dimensional fast Poisson solver................................... FPS2H 734
Three-dimensional fast Poisson solver FPS3H 739

5.3. Sturm-Liouville Problems
Eigenvalues, eigenfunctions,
and spectral density functions... SLEIG 745
Indices of eigenvalues.. SLCNT 757

Usage Notes
A differential equation is an equation involving one or more dependent
variables (called yL or uL), their derivatives, and one or more independent
variables (called t, x, and y). Users will typically need to relabel their own model
variables so that they correspond to the variables used in the solvers described
here. A differential equation with one independent variable is called an ordinary
differential equation (ODE). A system of equations involving derivatives in one
independent variable and other dependent variables is called a differential-

642 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

algebraic system. A differential equation with more than one independent
variable is called a partial differential equation (PDE). The order of a differential
equation is the highest order of any of the derivatives in the equation. When the
user’s model contains derivatives of order higher than the value one, it is usually
necessary to substitute for dependent variables with higher order derivatives in
order to use most of the software in this chapter.

Ordinary differential equations

It is convenient to use the vector notation below. We denote the number of
equations as the value N. The problem statement is abbreviated by writing it as a
system of first-order ODEs

y t y t y t f t y f t y f t yN
T

N
T0 5 0 5 0 5 0 5 0 5 0 5= =1 1, , , , , , , ,K K

The problem becomes

′ = =y
dy t

dt
f t y

0 5 0 5,

with initial values y (t0). Values of y(t) for t > t0 or t < t0 are required. The
routines IVPRK, page 645, IVMRK, page 652, and IVPAG, page 646, solve the IVP
for systems of ODEs of the form y′ = f (t, y) with y(t = t0) specified. Here, f is a
user supplied function that must be evaluated at any set of values (t, y1, …, y1); i

= 1, …, N. The routines IVPAG and DASPG, page 696, will also solve implicit
systems of the form Ay′ = f (t, y) where A is a user supplied matrix. For IVPAG,
the matrix A must be nonsingular.

The system y′ = f (t, y) is said to be stiff if some of the eigenvalues of the Jacobian
matrix {∂ fL/∂ yM} are large, with negative real parts. This is often the case for
differential equations representing the behavior of physical systems such as
chemical reactions proceeding to equilibrium where subspecies effectively
complete their reaction in different epochs. An alternate model concerns
discharging capacitors such that different parts of the system have widely varying
decay rates (or time constants). This definition of stiffness, based on the
eigenvalues of the Jacobian matrix, is not satisfactory. Users typically identify
stiff systems by the fact that numerical differential equation solvers such as
IVPRK, page 645, are inefficient, or else they fail. The most common inefficiency
is that a large number of evaluations of the functions fL are required. In such cases,
use routine IVPAG, page 661, or DASPG, page 696. For more about stiff systems,
see Gear (1971, Chapter 11) or Shampine and Gear (1979).

In the boundary value problem (BVP) for ODEs, constraints on the dependent
variables are given at the endpoints of the interval of interest, [a, b]. The routines
BVPFD, page 678, and BVPMS, page 689, solve the BVP for systems of the form y′
(t) = f (t, y), subject to the conditions

hL(y1(a), …, y1(a), y1(b), …, y1(b)) = 0 i = 1, …, N

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 643

Here, f and h = [h1, …, h1]7 are user-supplied functions.

Differential-algebraic equations

Frequently, it is not possible or not convenient to express the model of a
dynamical system as a set of ODEs. Rather, an implicit equation is available in
the form

g t y y y y i Ni N N, , , , , , , ,K K K′ ′ = =1 0 11 6
The gL are user-supplied functions. The system is abbreviated as

g t y y g t y y g t y yN
T

, , , , , , , ,′ = ′ ′ =0 5 0 5 0 51 0K

Initial conditions for this problem include both y(t0) and y′(t0). Any system of
ODEs can be trivially written as a differential-algebraic system by defining

g t y y f t y y, , ,′ = − ′0 5 0 5
The routine DASPG, page 696, solves differential-algebraic systems of index 1 or
index 0. For a definition of index of a differential-algebraic system, see (Brenan
et al. 1989). Also, see Gear and Petzold (1984) for an outline of the computing
methods used.

Partial differential equations

The routine MOLCH, page 717, solves the IVP problem for systems of the form

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u

t
f x t u u

u

x

u

x

u

x

u

x
i

i N
N N=

�
��

�
��, , , , , , , , , ,1

1
2

1
2

2

2K K K

subject to the boundary conditions

α β ∂
∂

γ

α β ∂
∂

γ

1 1 1

2 2 2

i
i

i i

i
i

i i

u a
u

x
a t

u b
u

x
b t

0 0

0 0

0 5 0 5 0 5

0 5 0 5 0 5

))

))

+ =

+ =

and subject to the initial conditions

uL(x, t = t0) = gL(x)

for i = 1, …, N. Here, fL, gL,

α βj
i

j
i0 0)), and

are user-supplied, j = 1, 2.

The routines FPS2H, page 734, and FPS3H, page 739, solve Laplace’s, Poisson’s,
or Helmholtz’s equation in two or three dimensions. FPS2H uses a fast Poisson
method to solve a PDE of the form

644 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

∂
∂

∂
∂

2

2

2

2
u

x

u

y
cu f x y+ + = ,0 5

over a rectangle, subject to boundary conditions on each of the four sides. The
scalar constant c and the function f are user specified. FPS3H solves the three-
dimensional analogue of this problem.

Summary

The following table summarizes the types of problems handled by the routines in
this chapter. With the exception of FPS2H and FPS3H, the routines can handle
more than one differential equation.

Problem Consideration Routine

Ay′= f(t, y)
y(t0) = y0

A is a general, symmetric positive
definite, band or symmetric positive
definite band matrix.

IVPAG
page 646

Stiff or expensive to evaluate
f (t, y), banded Jacobian or finely
space output needed.

IVPAG

page 646

y′ = f(t, y),
y (t0) = y0

High accuracy needed and not stiff.
(Use Adams methods)

IVPAG

page 646

Moderate accuracy needed and not
stiff.

IVPRK

page 645

y′ = f(t, y)
h(y(a), y(b)) = 0

BVP solver using finite differences BVPFD

page 678

BVP solver using multiple shooting BVPMS

page 689

g(t, y, y′) = 0
y(t0), y′(t0) given

Stiff, differential-algebraic solver
for systems of index 1 or 0.

DASPG

page 696

ut = f(x, t, u, u[, u[[)
α1u(a) + β1u[(a) = γ1(t)
α2u(b) + β2u[(b) = γ2(t)

Method of lines using cubic splines
and ODEs

MOLCH

page 717

u[[+ u\\ + cu = f(x, y) on a
rectangle, given u or uQ on
each edge.

Fast Poisson solver FPS2H

page 734

u[[+ u\\ + u]] + cu = f(x, y, z)
on a box, given u or uQ on
each face

Fast Poisson solver FPS3H

page 739

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 645

Problem Consideration Routine

− ′ ′ + =

− ′

= ′ − ′ ′

+ ′ =

pu qu ru

u a pu a

u a pu a

u b pu b

0 5
0 5 0 51 6

0 5 0 51 62 7
0 5 0 51 6

λ

α α

λ α α

β β

,

1 2

1 2

1 2 0

Sturm-Liouville problems SLEIG
page 745

IVPRK/DIVPRK (Single/Double precision)
Solve an initial-value problem for ordinary differential equations using the
Runge-Kutta-Verner fifth-order and sixth-order method.

Usage
CALL IVPRK (IDO, N, FCN, T, TEND, TOL, PARAM, Y)

Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State
1 Initial entry
2 Normal re-entry
3 Final call to release workspace
4 Return because of interrupt 1
5 Return because of interrupt 2 with step accepted
6 Return because of interrupt 2 with step rejected

Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2,
and this value is used for all but the last call that is made with IDO = 3. This final
call is used to release workspace, which was automatically allocated by the initial
call with IDO = 1. No integration is performed on this final call. See Comment 3
for a description of the other interrupts.

N — Number of differential equations. (Input)

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is CALL

FCN (N, T, Y, YPRIME), where
N – Number of equations. (Input)
T – Independent variable, t. (Input)
Y – Array of size N containing the dependent variable values, y.
(Input)
YPRIME – Array of size N containing the values of the vector y′
evaluated at (t, y). (Output)

FCN must be declared EXTERNAL in the calling program.

T — Independent variable. (Input/Output)
On input, T contains the initial value. On output, T is replaced by TEND unless
error conditions have occurred. See IDO for details.

646 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

TEND — Value of t where the solution is required. (Input)
The value TEND may be less than the initial value of t.

TOL — Tolerance for error control. (Input)
An attempt is made to control the norm of the local error such that the global
error is proportional to TOL.

PARAM — A floating-point array of size 50 containing optional parameters.
(Input/ Output)
If a parameter is zero, then a default value is used. These default values are given
below. Parameters that concern values of step size are applied in the direction of
integration. The following parameters must be set by the user:

PARAM Meaning

1 HINIT Initial value of the step size. Default: 10.0 * MAX (AMACH
(1), AMACH(4) * MAX(ABS(TEND), ABS(T)))

2 HMIN Minimum value of the step size. Default: 0.0

3 HMAX Maximum value of the step size. Default: 2.0

4 MXSTEP Maximum number of steps allowed. Default: 500

5 MXFCN Maximum number of function evaluations allowed. Default:
No enforced limit.

6 Not used.

7 INTRP1 If nonzero, then return with IDO = 4 before each step. See
Comment 3. Default: 0.

8 INTRP2 If nonzero, then return with IDO = 5 after every successful
step and with IDO = 6 after every unsuccessful step. See
Comment 3. Default: 0.

9 SCALE A measure of the scale of the problem, such as an
approximation to the average value of a norm of the
Jacobian matrix along the solution. Default: 1.0

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 647

10 INORM Switch determining error norm. In the following, eL is the
absolute value of an estimate of the error in yL(t). Default: 0.

0 − min(absolute error, relative error) = max(eL/wL); i = 1, …
, N, where wL = max(|yL(t)|, 1.0).

1 − absolute error = max(eL), i = 1 …, N.

2− max(eL/wL), i = 1 …, N where wL = max(|yL (t)|, FLOOR),
and FLOOR is PARAM(11).

3 − Scaled Euclidean norm defined as

 YMAX =
=∑ e wi ii

N 2 2
1

/

where wL�= max(|yL (t)|, 1.0). Other definitions of YMAX can
be specified by the user, as explained in Comment 1.

11 FLOOR Used in the norm computation associated with parameter
INORM. Default: 1.0.

12−30 Not used.

The following entries in PARAM are set by the program.
PARAM Meaning

31 HTRIAL Current trial step size.

32 HMINC Computed minimum step size allowed.

33 HMAXC Computed maximum step size allowed.

34 NSTEP Number of steps taken.

35 NFCN Number of function evaluations used.

36−50 Not used.

Y — Array of size N of dependent variables. (Input/Output)
On input, Y contains the initial values. On output, Y contains the approximate
solution.

Comments

1. Automatic workspace usage is

IVPRK 10N units, or
DIVPRK 20N units.

Workspace may be explicitly provided, if desired, by use of
I2PRK/DI2PRK. The reference is

CALL I2PRK (IDO, N, FCN, T, TEND, TOL, PARAM, Y,
 VNORM, WK)

The additional arguments are as follows:

648 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

VNORM — A Fortran SUBROUTINE to compute the norm of the error.
(Input)
The routine may be provided by the user, or the IMSL routine
I3PRK/DI3PRK may be used. In either case, the name must be declared
in a Fortran EXTERNAL statement. If usage of the IMSL routine is
intended, then the name I3PRK/DI3PRK should be used. The usage of
the error norm routine is CALL VNORM (N, V, Y, YMAX, ENORM), where

Arg Definition
N Number of equations. (Input)
V Array of size N containing the vector whose norm is to be

computed. (Input)
Y Array of size N containing the values of the dependent variable.

(Input)
YMAX Array of size N containing the maximum values of |y(t)|.

(Input)
ENORM Norm of the vector V. (Output)

VNORM must be declared EXTERNAL in the calling program.

WK — Work array of size 10N using the working precision. The
contents of WK must not be changed from the first call with IDO = 1 until
after the final call with IDO = 3.

2. Informational errors
Type Code
 4 1 Cannot satisfy error condition. The value of TOL may

be too small.
 4 2 Too many function evaluations needed.
 4 3 Too many steps needed. The problem may be stiff.

3. If PARAM(7) is nonzero, the subroutine returns with IDO = 4 and will
resume calculation at the point of interruption if re-entered with IDO = 4.
If PARAM(8) is nonzero, the subroutine will interrupt the calculations
immediately after it decides whether or not to accept the result of the
most recent trial step. The values used are IDO = 5 if the routine plans to
accept, or IDO = 6 if it plans to reject the step. The values of IDO may be
changed by the user (by changing IDO from 6 to 5) in order to force
acceptance of a step that would otherwise be rejected. Some parameters
the user might want to examine after return from an interrupt are IDO,
HTRIAL, NSTEP, NFCN, T, and Y. The array Y contains the newly
computed trial value for y(t), accepted or not.

Algorithm

Routine IVPRK finds an approximation to the solution of a system of first-order
differential equations of the form y0 = f (t, y) with given initial data. The routine
attempts to keep the global error proportional to a user-specified tolerance. This
routine is efficient for nonstiff systems where the derivative evaluations are not
expensive.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 649

The routine IVPRK is based on a code designed by Hull, Enright and Jackson
(1976, 1977). It uses Runge-Kutta formulas of order five and six developed by J.
H. Verner.

Example 1

Consider a predator-prey problem with rabbits and foxes. Let r be the density of
rabbits and let f be the density of foxes. In the absence of any predator-prey
interaction, the rabbits would increase at a rate proportional to their number, and
the foxes would die of starvation at a rate proportional to their number.
Mathematically,

r ′ = 2r

f ′ = − f

The rate at which the rabbits are eaten by the foxes is 2r f, and the rate at which
the foxes increase, because they are eating the rabbits, is r f. So, the model to be
solved is

r ′ = 2r − 2r f

f ′ = − f + r f

The initial conditions are r(0) = 1 and f(0) = 3 over the interval 0 ≤ t ≤ 10.

In the program Y(1) = r and Y(2) = f. Note that the parameter vector PARAM is first
set to zero with IMSL routine SSET (page 1037). Then, absolute error control is
selected by setting PARAM(10) = 1.0.

The last call to IVPRK with IDO = 3 deallocates IMSL workspace allocated on the
first call to IVPRK. It is not necessary to release the workspace in this example
because the program ends after solving a single problem. The call to release
workspace is made as a model of what would be needed if the program included
further calls to IMSL routines.

 INTEGER MXPARM, N
 PARAMETER (MXPARM=50, N=2)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT
 REAL PARAM(MXPARM), T, TEND, TOL, Y(N)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL IVPRK, SSET, UMACH, FCN
C
 CALL UMACH (2, NOUT)
C Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 3.0
C Set error tolerance
 TOL = 0.0005
C Set PARAM to default
 CALL SSET (MXPARM, 0.0, PARAM, 1)
C Select absolute error control
 PARAM(10) = 1.0
C Print header

650 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 WRITE (NOUT,99999)
 IDO = 1
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 1
 TEND = ISTEP
 CALL IVPRK (IDO, N, FCN, T, TEND, TOL, PARAM, Y)
 IF (ISTEP .LE. 10) THEN
 WRITE (NOUT,’(I6,3F12.3)’) ISTEP, T, Y
C Final call to release workspace
 IF (ISTEP .EQ. 10) IDO = 3
 GO TO 10
 END IF
99999 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’)
 END
 SUBROUTINE FCN (N, T, Y, YPRIME)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPRIME(N)
C
 YPRIME(1) = 2.0*Y(1) - 2.0*Y(1)*Y(2)
 YPRIME(2) = -Y(2) + Y(1)*Y(2)
 RETURN
 END

Output
 ISTEP Time Y1 Y2
 1 1.000 0.078 1.465
 2 2.000 0.085 0.578
 3 3.000 0.292 0.250
 4 4.000 1.449 0.187
 5 5.000 4.046 1.444
 6 6.000 0.176 2.256
 7 7.000 0.066 0.908
 8 8.000 0.148 0.367
 9 9.000 0.655 0.188
10 10.000 3.157 0.352

Example 2

This is a mildly stiff problem (F2) from the test set of Enright and Pryce (1987).
It is included here because it illustrates the inefficiency of requiring more function
evaluations with a nonstiff solver, for a requested accuracy, than would be
required using a stiff solver. Also, see IVPAG, page 646, Example 2, where the
problem is solved using a BDF method. The number of function evaluations may
vary, depending on the accuracy and other arithmetic characteristics of the
computer. The test problem has n = 2 equations:

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 651

′ = − − +

′ = − + −

=
=
=
=
=
=

y y y y k y

y k y k y y

y

y

k

k

k

tend

1 1 1 2 1 2

2 2 2 3 2 1

1

2

1

2

3

1

0 1

0 0

3

0 01020408

240

1 6
0 5
0 5

294

.

 INTEGER MXPARM, N
 PARAMETER (MXPARM=50, N=2)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT
 REAL PARAM(MXPARM), T, TEND, TOL, Y(N)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL IVPRK, SSET, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN
C
 CALL UMACH (2, NOUT)
C Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 0.0
C Set error tolerance
 TOL = 0.001
C Set PARAM to default
 CALL SSET (MXPARM, 0.0, PARAM, 1)
C Select absolute error control
 PARAM(10) = 1.0
C Print header
 WRITE (NOUT,99998)
 IDO = 1
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 24
 TEND = ISTEP
 CALL IVPRK (IDO, N, FCN, T, TEND, TOL, PARAM, Y)
 IF (ISTEP .LE. 240) THEN
 WRITE (NOUT,’(I6,3F12.3)’) ISTEP/24, T, Y
C Final call to release workspace
 IF (ISTEP .EQ. 240) IDO = 3
 GO TO 10
 END IF
C Show number of function calls.
 WRITE (NOUT,99999) PARAM(35)
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’)

652 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

99999 FORMAT (4X, ’Number of fcn calls with IVPRK =’, F6.0)
 END
 SUBROUTINE FCN (N, T, Y, YPRIME)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPRIME(N)
C SPECIFICATIONS FOR DATA VARIABLES
 REAL AK1, AK2, AK3
C
 DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/
C
 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)
 YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1)
 RETURN
 END

Output
ISTEP Time Y1 Y2
 1 24.000 0.688 0.002
 2 48.000 0.634 0.002
 3 72.000 0.589 0.002
 4 96.000 0.549 0.002
 5 120.000 0.514 0.002
 6 144.000 0.484 0.002
 7 168.000 0.457 0.002
 8 192.000 0.433 0.001
 9 216.000 0.411 0.001
10 240.000 0.391 0.001
Number of fcn calls with IVPRK = 2153.

IVMRK/DIVMRK (Single/Double precision)
Solve an initial-value problem y′ = f(t, y) for ordinary differential equations using
Runge-Kutta pairs of various orders.

Usage
CALL IVMRK (IDO, N, FCN, T, TEND, Y, YPRIME)

Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State
 1 Initial entry
 2 Normal re-entry
 3 Final call to release workspace
 4 Return after a step
 5 Return for function evaluation (reverse communication)

Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2,
and this value is used for all but the last call that is made with IDO = 3. This final
call is used to release workspace, which was automatically allocated by the initial
call with IDO = 1.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 653

N — Number of differential equations. (Input)

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is
CALL FCN (N, T, Y, YPRIME), where
N — Number of equations. (Input)
T — Independent variable. (Input)
Y — Array of size N containing the dependent variable values, y. (Input)
YPRIME — Array of size N containing the values of the vector y′ evaluated at
(t, y). (Output)
FCN must be declared EXTERNAL in the calling program.

T — Independent variable. (Input/Output)
On input, T contains the initial value. On output, T is replaced by TEND unless
error conditions have occurred.

TEND — Value of t where the solution is required. (Input)
The value of TEND may be less than the initial value of t.

Y — Array of size N of dependent variables. (Input/Output)
On input, Y contains the initial values. On output, Y contains the approximate
solution.

YPRIME — Array of size N containing the values of the vector y’ evaluated at (t,
y). (Output)

Comments

1. Automatic workspace is

IVMRK 42N + 50 units, or
DIVMRK 84N + 100 units.

Workspace may be explicitly provided, if desired, by use of
I2MRK/DI2MRK. The reference is

CALL I2MRK (IDO, N, FCN, T, TEND, TOL, THRES, PARAM,
 Y, YPRIME, TOL, THRES, PARAM, YMAX,
 RMSERR, WORK)

The additional arguments are as follows:

TOL — Tolerance for error control. (Input)

THRES — Array of size N. (Input)
THRES(I) is a threshold for solution component Y(I). It is chosen so
that the value of Y(L) is not important when Y(L) is smaller in magnitude
than THRES(L). THRES(L) must be greater than or equal to
sqrt(amach(4)).

PARAM — A floating-point array of size 50 containing optional
parameters. (Input/Output)
If a parameter is zero, then a default value is used. These default values
are given below. The following parameters must be set by the user:

654 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

PARAM Meaning
1 HINIT Initial value of the step size. Must be chosen such that

0.01 ≥ HINIT ≥ 10.0 amach(4). Default: automatic
selection of stepsize.

2 METHOD Specify which Runge-Kutta pair is to be used.
1 - use the (2, 3) pair
2 - use the (4, 5) pair
3 - use the (7, 8) pair.

Default: METHOD = 1 if 10�� ≥ tol > 10��
METHOD = 2 if 10�� ≥ tol > 10��
METHOD = 3 if 10�� ≥ tol

3 ERREST ERREST = 1 attempts to assess the true error, the
difference between the numerical solution and the
true solution. The cost of this is roughly twice the cost
of the integration itself with METHOD = 2 or
METHOD = 3, and three times with METHOD = 1.
Default: ERREST = 0.

4 INTRP If nonzero, then return the IDO = 4 before each step.
See Comment 3. Default: 0

5 RCSTAT If nonzero, then reverse communication is used to get
derivative information. See Comment 4. Default: 0.

6 - 30 Not used

The following entries are set by the program:
31 HTRIAL Current trial step size.
32 NSTEP Number of steps taken.
33 NFCN Number of function evaluations.
34 ERRMAX The maximum approximate weighted true error taken

over all solution components and all steps from T
through the current integration point.

35 TERRMX First value of the independent variable where an
approximate true error attains the maximum value
ERRMAX.

YMAX Array of size N, where YMAX(L) is the largest value of
ABS(Y(L)) computed at any step in the integration so far.

RMSERR — Array of size N where RMSERR(L) approximates the RMS
average of the true error of the numerical solution for the L-th solution
component, L = 1,..., N. The average is taken over all steps from T

through the current integration point. RMSERR is accessed and set only if
PARAM(3) = 1.

WORK — Floating point work array of size 39N using the working
precision. The contents of WORK must not be changed from the first call
with IDO = 1 until after the final call with IDO = 3.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 655

2. Informational errors
Type Code
 4 1 It does not appear possible to achieve the accuracy

specified by TOL and THRES(*) using the current
precision and METHOD. A larger value for METHOD, if
possible, will permit greater accuracy with this
precision. The integration must be restarted.

 4 2 The global error assessment may not be reliable
beyond the current integration point T. This may occur
because either too little or too much accuracy has been
requested or because f(t, y) is not smooth enough for
values of t just past TEND and current values of the
solution y. This return does not mean that you cannot
integrate past TEND, rather that you cannot do it with
PARAM(3) = 1.

3 If PARAM(4) is nonzero, the subroutine returns with IDO = 4 and will
resume calculation at the point of interruption if re-entered with IDO = 4.
Some parameters the user might want to examine are IDO, HTRIAL,
NSTEP, NFCN, T, and Y. The array Y contains the newly computed trial
value for y(t), accepted or not.

4 If PARAM(5) is nonzero, the subroutine will return with IDO = 5. At this
time, evaluate the derivatives at T, place the result in YPRIME, and call
IVMRK again. The dummy function I40RK/DI40RK may be used in place
of FCN.

Algorithm

Routine IVMRK finds an approximation to the solution of a system of first-order
differential equations of the form y′ = f(t, y) with given initial data. Relative local
error is controlled according to a user-supplied tolerance. For added efficiency,
three Runge-Kutta formula pairs, of orders 3, 5, and 8, are available.

Optionally, the values of the vector y′ can be passed to IVMRK by reverse
communication, avoiding the user-supplied subroutine FCN. Reverse
communication is especially useful in applications that have complicated
algorithmic requirement for the evaluations of f(t, y). Another option allows
assessment of the global error in the integration.

The routine IVMRK is based on the codes contained in RKSUITE, developed by R.
W. Brankin, I. Gladwell, and L. F. Shampine (1991).

Example 1

This example integrates the small system (A.2.B2) from the test set of Enright
and Pryce (1987):

656 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

′ = − +
′ = − +
′ = −

=
=
=

y y y

y y y y

y y y

y

y

y

1 1 2

2 1 2 3

3 2 3

1

2

3

2

0 2

0 0

0 1

0 5
0 5
0 5

 INTEGER N
 PARAMETER (N=3)
c Specifications for local variables
 INTEGER IDO
 REAL T, TEND, Y(N), YPRIME(N)
 EXTERNAL FCN

c Set initial conditions
 T = 0.0
 TEND = 20.0
 Y(1) = 2.0
 Y(2) = 0.0
 Y(3) = 1.0
 IDO = 1
 CALL IVMRK (IDO, N, FCN, T, TEND, Y, YPRIME)
c
c Final call to release workspace
 IDO = 3
 CALL IVMRK (IDO, N, FCN, T, TEND, Y, YPRIME)
c
 CALL WRRRN (’Y’, N, 1, Y, N, 0)
 END
c
 SUBROUTINE FCN (N, T, Y, YPRIME)
c Specifications for arguments
 INTEGER N
 REAL T, Y(*), YPRIME(*)
c
 YPRIME(1) = -Y(1) + Y(2)
 YPRIME(2) = Y(1) - 2.0*Y(2) + Y(3)
 YPRIME(3) = Y(2) - Y(3)
 RETURN
 END

Output
 Y
1 1.000
2 1.000
3 1.000

Example 2

This problem is the same mildly stiff problem (A.1.F2) from the test set of
Enright and Pryce as Example 2 for IVPRK, page 645.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 657

′ = − − +

′ = − + −

=
=
=
=
=
=

y y y y k y

y k y k y y

y

y

k

k

k

tend

1 1 1 2 1 2

2 2 2 3 2 1

1

2

1

2

3

1

0 1

0 0

294

3

0 01020408

240

1 6
0 5
0 5

.

Although not a stiff solver, one notes the greater efficiency of IVMRK over IVPRK,
in terms of derivative evaluations. Reverse communication is also used in this
example. Users will find this feature particularly helpful if their derivative
evaluation scheme is difficult to isolate in a separate subroutine.

 INTEGER N
 PARAMETER (N=2)
c Specifications for local variables
 INTEGER IDO, ISTEP, LWORK, NOUT
 REAL PARAM(50), RMSERR(N), T, TEND, THRES(N), TOL,
 & WORK(1000), Y(N), YMAX(N), YPRIME(N)
 REAL AK1, AK2, AK3
 SAVE AK1, AK2, AK3
c Specifications for intrinsics
 INTRINSIC SQRT
 REAL SQRT
c Specifications for subroutines
 EXTERNAL I2MRK, I40RK, SSET
c Specifications for functions
 EXTERNAL AMACH
 REAL AMACH
c
 DATA AK1, AK2, AK3/294.0, 3.0, 0.01020408/
c
 CALL UMACH (2, NOUT)
c Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 0.0
c Set tolerance for error control,
c threshold vector and parameter
c vector
 TOL = .001
 CALL SSET (N, SQRT(AMACH(4)), THRES, 1)
 CALL SSET (N, 0.0, PARAM, 1)
 LWORK = 1000
c Turn on derivative evaluation by
c reverse communication
 PARAM(5) = 1
 IDO = 1
 ISTEP = 24
c Print header
 WRITE (NOUT,99998)
 10 CONTINUE
 TEND = ISTEP

658 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 CALL I2MRK (IDO, N, I40RK, T, TEND, Y, YPRIME, TOL, THRES, PARAM,
 & YMAX, RMSERR, WORK, LWORK)
 IF (IDO .EQ. 5) THEN
c Evaluate derivatives
c
 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)
 YPRIME(2) = -AK2*Y(2) + AK3*(1.0-Y(2))*Y(1)
 GO TO 10
 ELSE IF (ISTEP .LE. 240) THEN
c
c Integrate to 10 equally spaced points
c
 WRITE (NOUT,’(I6,3F12.3)’) ISTEP/24, T, Y
 IF (ISTEP .EQ. 240) IDO = 3
 ISTEP = ISTEP + 24
 GO TO 10
 END IF
c Show number of derivative evaluations
c
 WRITE (NOUT,99999) PARAM(33)
99998 FORMAT (3X, ’ISTEP’, 5X, ’TIME’, 9X, ’Y1’, 10X, ’Y2’)
99999 FORMAT (/, 4X, ’NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK =’,

 & F6.0)
 END

Output
ISTEP TIME Y1 Y2
1 24.000 0.688 0.002
2 48.000 0.634 0.002
3 72.000 0.589 0.002
4 96.000 0.549 0.002
5 120.000 0.514 0.002
6 144.000 0.484 0.002
7 168.000 0.457 0.002
8 192.000 0.433 0.001
9 216.000 0.411 0.001
10 240.000 0.391 0.001
NUMBER OF DERIVATIVE EVALUATIONS WITH IVMRK = 1375.

Example 3

This example demonstrates how exceptions may be handled. The problem is from
Enright and Pryce (A.2.F1), and has discontinuities. We choose this problem to
force a failure in the global error estimation scheme, which requires some
smoothness in y. We also request an initial relative error tolerance which happens
to be unsuitably small in this precision.

If the integration fails because of problems in global error assessment, the
assessment option is turned off, and the integration is restarted. If the integration
fails because the requested accuracy is not achievable, the tolerance is increased,
and global error assessment is requested. The reason error assessment is turned on
is that prior assessment failures may have been due more in part to an overly
stringent tolerance than lack of smoothness in the derivatives.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 659

When the integration is successful, the example prints the final relative error
tolerance, and indicates whether or not global error estimation was possible.

′ =

′ =
− + +

− + −

%
&K
'K
=
=
=

= ≤

y y

y
ay a y x

ay a y x

y

y

a

x x

1 2

2

2
2 2

1

2
2 2

1

1

2

2 1

2 1

0 0

0 0

0 1

π

π

3 8
3 8

0 5
0 5

,

,

.

even

odd

largest integer
 INTEGER N
 PARAMETER (N=2)
c Specifications for local variables
 INTEGER IDO, LWORK, NOUT
 REAL PARAM(50), RMSERR(N), T, TEND, THRES(N), TOL,
 & WORK(100), Y(N), YMAX(N), YPRIME(N)
c
c Specifications for intrinsics
 INTRINSIC SQRT
 REAL SQRT
c Specifications for subroutines
c
 EXTERNAL ERSET, I2MRK, SSET, UMACH, WRRRN
c
c Specifications for functions
 EXTERNAL AMACH, FCN, IERCD
 INTEGER IERCD
 REAL AMACH
c
c
 CALL UMACH (2, NOUT)
c Turn off stopping for FATAL errors
 CALL ERSET (4, -1, 0)
c Initialize input, turn on global
c error assessment
 LWORK = 100
 TOL = SQRT(AMACH(4))
 CALL SSET (50, 0.0E0, PARAM, 1)
 CALL SSET (N, SQRT(AMACH(4)), THRES, 1)
 TEND = 20.0E0
 PARAM(3) = 1
c
 10 CONTINUE
c Set initial values
 T = 0.0E0
 Y(1) = 0.0E0
 Y(2) = 0.0E0
 IDO = 1
 CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,
 & YMAX, RMSERR, WORK, LWORK)
 IF (IERCD() .EQ. 32) THEN
c Unable to achieve requested

660 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

c accuracy, so increase tolerance.
c Activate global error assessment
 TOL = 10.0*TOL
 PARAM(3) = 1
 WRITE (NOUT,99995) TOL
 GO TO 10
 ELSE IF (IERCD() .EQ. 34) THEN
c Global error assessment has failed,
c cannot continue from this point,
c so restart integration
 WRITE (NOUT,99996)
 PARAM(3) = 0
 GO TO 10
 END IF
c
c Final call to release workspace
 IDO = 3
 CALL I2MRK (IDO, N, FCN, T, TEND, Y, YPRIME, TOL, THRES, PARAM,
 & YMAX, RMSERR, WORK, LWORK)
c
c Summarize status
 WRITE (NOUT,99997) TOL
 IF (PARAM(3) .EQ. 1) THEN
 WRITE (NOUT,99998)
 ELSE
 WRITE (NOUT,99999)
 END IF
 CALL WRRRN (’Y’, N, 1, Y, N, 0)
c
99995 FORMAT (/, ’CHANGING TOLERANCE TO ’, E9.3, ’ AND RESTARTING ...’
 & , /, ’ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT’, /)
99996 FORMAT (/, ’DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...’
 & , /)
99997 FORMAT (/, 72(’-’), //, ’SOLUTION OBTAINED WITH TOLERANCE = ’,
 & E9.3)
99998 FORMAT (’GLOBAL ERROR ASSESSMENT IS AVAILABLE’)
99999 FORMAT (’GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE’)
c
 END
c
 SUBROUTINE FCN (N, T, Y, YPRIME)
c Specifications for arguments
 INTEGER N
 REAL T, Y(*), YPRIME(*)
c Specifications for local variables
 REAL A
 REAL PI
 LOGICAL FIRST
 SAVE FIRST, PI
c Specifications for intrinsics
 INTRINSIC INT, MOD
 INTEGER INT, MOD
c Specifications for functions
 EXTERNAL CONST
 REAL CONST
c
 DATA FIRST/.TRUE./
c
 IF (FIRST) THEN

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 661

 PI = CONST(’PI’)
 FIRST = .FALSE.
 END IF
c
 A = 0.1E0
 YPRIME(1) = Y(2)
 IF (MOD(INT(T),2) .EQ. 0) THEN
 YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) + 1.0E0
 ELSE
 YPRIME(2) = 2.0E0*A*Y(2) - (PI*PI+A*A)*Y(1) - 1.0E0
 END IF
 RETURN
 END

Output
 *** FATAL ERROR 34 from i2mrk. The global error assessment may not
 *** be reliable for T past 9.994749E-01. The integration is
 *** being terminated.

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...

 *** FATAL ERROR 32 from i2mrk. In order to satisfy the error
 *** requirement I6MRK would have to use a step size of
 *** 3.647129E- 06 at TNOW = 9.999932E-01. This is too small
 *** for the current precision.

CHANGING TOLERANCE TO 0.345E-02 AND RESTARTING ...
ALSO (RE)ENABLING GLOBAL ERROR ASSESSMENT

 *** FATAL ERROR 34 from i2mrk. The global error assessment may
 *** not be reliable for T past 9.986024E-01. The integration
 *** is being terminated.

DISABLING GLOBAL ERROR ASSESSMENT AND RESTARTING ...

--

SOLUTION OBTAINED WITH TOLERANCE = 0.345E-02
GLOBAL ERROR ASSESSMENT IS NOT AVAILABLE

 Y
 1 -12.30
 2 0.95

662 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

IVPAG/DIVPAG (Single/Double precision)
Solve an initial-value problem for ordinary differential equations using either
Adams-Moulton’s or Gear’s BDF method.

Usage
CALL IVPAG (IDO, N, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y)

Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State
1 Initial entry
2 Normal re-entry
3 Final call to release workspace
4 Return because of interrupt 1
5 Return because of interrupt 2 with step accepted
6 Return because of interrupt 2 with step rejected
7 Return for new value of matrix A.

Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and
this value is then used for all but the last call that is made with IDO = 3. This final
call is only used to release workspace, which was automatically allocated by the
initial call with IDO = 1. See Comment 5 for a description of the interrupts.

When IDO = 7, the matrix A at t must be recomputed and IVPAG/DIVPAG called
again. No other argument (including IDO) should be changed. This value of IDO

is returned only if PARAM(19) = 2.

N — Number of differential equations. (Input)

FCN — User-supplied SUBROUTINE to evaluate functions. The usage is
CALL FCN (N, T, Y, YPRIME), where

N – Number of equations. (Input)
T – Independent variable, t. (Input)
Y – Array of size N containing the dependent variable values, y.
(Input)
YPRIME – Array of size N containing the values of the vector y′
evaluated at (t, y). (Output)
See Comment 3.

FCN must be declared EXTERNAL in the calling program.

FCNJ — User-supplied SUBROUTINE to compute the Jacobian. The usage is
CALL FCNJ (N, T, Y, DYPDY) where

N – Number of equations. (Input)
T – Independent variable, t. (Input)
Y – Array of size N containing the dependent variable values, y(t).
(Input)

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 663

DYPDY – An array, with data structure and type determined by
PARAM(14) = MTYPE, containing the required partial derivatives ∂fL/∂yM.
(Output)
These derivatives are to be evaluated at the current values of (t, y).
When the Jacobian is dense, MTYPE = 0 or = 2, the leading dimension of
DYPDY has the value N. When the Jacobian matrix is banded, MTYPE = 1,
and the leading dimension of DYPDY has the value 2 * NLC + NUC + 1. If
the matrix is banded positive definite symmetric, MTYPE = 3, and the
leading dimension of DYPDY has the value NUC + 1.

FCNJ must be declared EXTERNAL in the calling program. If
PARAM(19) = IATYPE is nonzero, then FCNJ should compute the Jacobian of the
righthand side of the equation Ay′ = f(t, y). The subroutine FCNJ is used only if
PARAM(13) = MITER = 1.

A — Matrix structure used when the system is implicit. (Input)
The matrix A is referenced only if PARAM(19) = IATYPE is nonzero. Its data
structure is determined by PARAM(14) = MTYPE. The matrix A must be
nonsingular and MITER must be 1 or 2. See Comment 3.

T — Independent variable, t. (Input/Output)
On input, T contains the initial independent variable value. On output, T is
replaced by TEND unless error or other normal conditions arise. See IDO for
details.

TEND — Value of t = tend where the solution is required. (Input)
The value tend may be less than the initial value of t.

TOL — Tolerance for error control. (Input)
An attempt is made to control the norm of the local error such that the global
error is proportional to TOL.

PARAM — A floating-point array of size 50 containing optional parameters.
(Input/Output)
If a parameter is zero, then the default value is used. These default values are
given below. Parameters that concern values of the step size are applied in the
direction of integration. The following parameters must be set by the user:

PARAM Meaning

1 HINIT Initial value of the step size H. Always nonnegative.
Default: 0.001|tend − t0|.

2 HMIN Minimum value of the step size H. Default: 0.0.

3 HMAX Maximum value of the step size H. Default: No limit,
beyond the machine scale, is imposed on the step size.

4 MXSTEP Maximum number of steps allowed. Default: 500.

5 MXFCN Maximum number of function evaluations allowed. Default:
No enforced limit.

664 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

PARAM Meaning

6 MAXORD Maximum order of the method. Default: If Adams-Moulton
method is used, then 12. If Gear’s or BDF method is used,
then 5. The defaults are the maximum values allowed.

7 INTRP1 If this value is set nonzero, the subroutine will return before
every step with IDO = 4. See Comment 5. Default: 0.

8 INTRP2 If this value is nonzero, the subroutine will return after
every successful step with IDO = 5 and return with IDO = 6
after every unsuccessful step. See Comment 5. Default: 0

9 SCALE A measure of the scale of the problem, such as an
approximation to the average value of a norm of the
Jacobian along the solution. Default: 1.0

10 INORM Switch determining error norm. In the following, eL is the
absolute value of an estimate of the error in yL(t).
Default: 0.

0 — min(absolute error, relative error) = max(eL/wL); i = 1,

…, N, where wL = max(|yL(t)|, 1.0).

1 — absolute error = max(eL), i = 1 …, N.

2 — max(eL�/ wL), i = 1 …, N where wL = max(|yL(t)|,
FLOOR), and FLOOR is the value PARAM(11).

3 — Scaled Euclidean norm defined as

 YMAX =
=∑ e wi ii

N 2 2
1

/

where wL�= max(|yL(t)|, 1.0). Other definitions of YMAX can
be specified by the user, as explained in Comment 1.

11 FLOOR Used in the norm computation associated the parameter
INORM. Default: 1.0.

12 METH Integration method indicator.

1 = METH selects the Adams-Moulton method.

2 = METH selects Gear’s BDF method.

Default: 1.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 665

PARAM Meaning

13 MITER Nonlinear solver method indicator.

Note: If the problem is stiff and a chord or modified Newton
method is most efficient, use MITER = 1 or = 2.

0 = MITER selects functional iteration. The value IATYPE
must be set to zero with this option.

1 = MITER selects a chord method with a user-provided
Jacobian.

2 = MITER selects a chord method with a divided-
difference Jacobian.

3 = MITER selects a chord method with the Jacobian
replaced by a diagonal matrix based on a directional
derivative. The value IATYPE must be set to zero with this
option.

Default: 0.

14 MTYPE Matrix type for A (if used) and the Jacobian (if MITER = 1
or = 2). When both are used, A and the Jacobian must be of
the same type.

0 = MTYPE selects full matrices.

1 = MTYPE selects banded matrices.

2 = MTYPE selects symmetric positive definite matrices.

3 = MTYPE selects banded symmetric positive definite
matrices.

Default: 0.

15 NLC Number of lower codiagonals, used if MTYPE = 1.

Default: 0.

16 NUC Number of upper codiagonals, used if MTYPE = 1 or
MTYPE = 3.

Default: 0.

17 Not used.

18 EPSJ Relative tolerance used in computing divided difference
Jacobians.

Default: SQRT(AMACH(4)) .

19 IATYPE Type of the matrix A.

0 = IATYPE implies A is not used (the system is explicit).

1 = IATYPE if A is a constant matrix.

2 = IATYPE if A depends on t.

Default: 0.

666 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

PARAM Meaning

20 LDA Leading dimension of array A exactly as specified in the
dimension statement in the calling program. Used if
IATYPE is not zero.

Default:

N if MTYPE = 0 or = 2
NUC + NLC + 1 if MTYPE = 1
NUC + 1 if MTYPE = 3

21−30 Not used.

The following entries in the array PARAM are set by the program:
PARAM Meaning

31 HTRIAL Current trial step size.

32 HMINC Computed minimum step size.

33 HMAXC Computed maximum step size.

34 NSTEP Number of steps taken.

35 NFCN Number of function evaluations used.

36 NJE Number of Jacobian evaluations.

37−50 Not used.

Y — Array of size N of dependent variables, y(t). (Input/Output)
On input, Y contains the initial values, y(t0). On output, Y contains the
approximate solution, y(t).

Comments

1. Automatic workspace usage is

IVPAG 4N + NMETH + NPW + NIPVT, or
DIVPAG 8N + 2 * NMETH + 2 * NPW + NIPVT units.

Here,

NMETH = 13N if METH is 1,

NMETH = 6N if METH is 2.

NPW = 2N + NPWM + NPWA

where

NPWM = 0 if MITER is 0 or 3,

NPWM = N2 if MITER is 1 or 2, and if MTYPE is 0 or 2.

NPWM = N(2 * NLC + NUC + 1) if MITER is 1 or 2 and MTYPE = 1.

NPWM = N(NLC + 1) if MITER is 1 or 2 and if MTYPE = 3.

NPWA = 0 if IATYPE is 0.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 667

NPWA = N2 if IATYPE is nonzero and MTYPE = 0,

NPWA = N(2 * NLC + NUC + 1) if IATYPE is nonzero and MTYPE = 1

NIPVT = N if MITER is 1 or 2 and MTYPE is 0 or 1,

NIPVT = 1, otherwise.

Workspace and a user-supplied error norm subroutine may be explicitly
provided, if desired, by use of I2PAG/DI2PAG. The reference is

CALL I2PAG (IDO, N, FCN, FCNJ, A, T, TEND, TOL,
 PARAM, Y, YTEMP, YMAX, ERROR, SAVE1,
 SAVE2, PW, IPVT, VNORM)

None of the additional array arguments should be changed from the first
call with IDO = 1 until after the final call with IDO = 3. The additional
arguments are as follows:

YTEMP — Array of size NMETH. (Workspace)

YMAX — Array of size N containing the maximum Y-values computed
so far. (Output)

ERROR — Array of size N containing error estimates for each
component of Y. (Output)

SAVE1 — Array of size N. (Workspace)

SAVE2 — Array of size N. (Workspace)

PW — Array of size NPW. PW is used both to store the Jacobian and as
workspace. (Workspace)

IPVT — Array of size N. (Workspace)

VNORM — A Fortran SUBROUTINE to compute the norm of the error.
(Input)
The routine may be provided by the user, or the IMSL routine
I3PRK/DI3PRK may be used. In either case, the name must be declared
in a Fortran ENTERNAL statement. If usage of the IMSL routine is
intended, then the name I3PRK/DI3PRK should be specified. The usage
of the error norm routine is
CALL VNORM (N, V, Y, YMAX, ENORM) where

Arg. Definition
N Number of equations. (Input)
V Array of size N containing the vector whose norm is to be

computed. (Input)
Y Array of size N containing the values of the dependent variable.

(Input)
YMAX Array of size N containing the maximum values of |y (t)|.

(Input)
ENORM Norm of the vector V. (Output)

VNORM must be declared EXTERNAL in the calling program.

668 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

2. Informational errors
Type Code
 4 1 After some initial success, the integration was halted

by repeated error-test failures.
 4 2 The maximum number of function evaluations have

been used.
 4 3 The maximum number of steps allowed have been

used. The problem may be stiff.
 4 4 On the next step T + H will equal T. Either TOL is too

small, or the problem is stiff.
Note: If the Adams-Moulton method is the one used in
the integration, then users can switch to the BDF
methods. If the BDF methods are being used, then
these comments are gratuitous and indicate that the
problem is too stiff for this combination of method and
value of TOL.

 4 5 After some initial success, the integration was halted
by a test on TOL.

 4 6 Integration was halted after failing to pass the error
test even after dividing the initial step size by a factor
of 1.0E + 10. The value TOL may be too small.

 4 7 Integration was halted after failing to achieve corrector
convergence even after dividing the initial step size by
a factor of 1.0E + 10. The value TOL may be too
small.

 4 8 IATYPE is nonzero and the input matrix A multiplying
y′ is singular.

3. Both explicit systems, of the form y′ = f (t, y), and implicit systems,
Ay′ = f (t, y), can be solved. If the system is explicit, then PARAM(19) =
0; and the matrix A is not referenced. If the system is implicit, then
PARAM(14) determines the data structure of the array A. If PARAM(19) =
1, then A is assumed to be a constant matrix. The value of A used on the
first call (with IDO = 1) is saved until after a call with IDO = 3. The
value of A must not be changed between these calls. If PARAM(19) = 2,
then the matrix is assumed to be a function of t.

4. If MTYPE is greater than zero, then MITER must equal 1 or 2.

5. If PARAM(7) is nonzero, the subroutine returns with IDO= 4 and will
resume calculation at the point of interruption if re-entered with
IDO = 4. If PARAM(8) is nonzero, the subroutine will interrupt
immediately after decides to accept the result of the most recent trial
step. The value IDO = 5 is returned if the routine plans to accept, or
IDO = 6 if it plans to reject. The value IDO may be changed by the user
(by changing IDO from 6 to 5) to force acceptance of a step that would
otherwise be rejected. Relevant parameters to observe after return from

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 669

an interrupt are IDO, HTRIAL, NSTEP, NFCN, NJE, T and Y. The array Y
contains the newly computed trial value y(t).

Algorithm

The routine IVPAG solves a system of first-order ordinary differential equations
of the form y′ = f (t, y) or Ay′ = f (t, y) with initial conditions where A is a square
nonsingular matrix of order N. Two classes of implicit linear multistep methods
are available. The first is the implicit Adams-Moulton method (up to order
twelve); the second uses the backward differentiation formulas BDF (up to order
five). The BDF method is often called Gear’s stiff method. In both cases, because
basic formulas are implicit, a system of nonlinear equations must be solved at
each step. The deriviative matrix in this system has the form
L = A + ηJ where η is a small number computed by IVPAG and J is the Jacobian.
When it is used, this matrix is computed in the user-supplied routine FCNJ or else
it is approximated by divided differences as a default. Using defaults, A is the
identity matrix. The data structure for the matrix L may be identified to be real
general, real banded, symmetric positive definite, or banded symmetric positive
definite. The default structure for L is real general.

Example 1

Euler’s equation for the motion of a rigid body not subject to external forces is

′ = =

′ = − =

′ = − =

y y y y

y y y y

y y y y

1 2 3 1

2 1 3 2

3 1 2 3

0 0

0 1

0 51 0 1

0 5
0 5

0 5.

Its solution is, in terms of Jacobi elliptic functions, y1(t) = sn(t; k), y2(t) = cn(t; k),

y3(t) = dn(t; k) where k2 = 0.51. The Adams-Moulton method of IVPAG is used to
solve this system, since this is the default. All parameters are set to defaults.

The last call to IVPAG with IDO = 3 releases IMSL workspace that was reserved
on the first call to IVPAG. It is not necessary to release the workspace in this
example because the program ends after solving a single problem. The call to
release workspace is made as a model of what would be needed if the program
included further calls to IMSL routines.

Because PARAM(13) = MITER = 0, functional iteration is used and so subroutine
FCNJ is never called. It is included only because the calling sequence for IVPAG

requires it.
 INTEGER N, NPARAM
 PARAMETER (N=3, NPARAM=50)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, IEND, NOUT
 REAL A(1,1), PARAM(NPARAM), T, TEND, TOL, Y(N)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL IVPAG, SSET, UMACH

670 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN, FCNJ
C Initialize
 CALL SSET (NPARAM, 0.0, PARAM, 1)
C
 IDO = 1
 T = 0.0
 Y(1) = 0.0
 Y(2) = 1.0
 Y(3) = 1.0
 TOL = 1.0E-6
C Write title
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
C Integrate ODE
 IEND = 0
 10 CONTINUE
 IEND = IEND + 1
 TEND = IEND
C The array a(*,*) is not used.
 CALL IVPAG (IDO, N, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y)
 IF (IEND .LE. 10) THEN
 WRITE (NOUT,99999) T, Y
C Finish up
 IF (IEND .EQ. 10) IDO = 3
 GO TO 10
 END IF
99998 FORMAT (11X, ’T’, 14X, ’Y(1)’, 11X, ’Y(2)’, 11X, ’Y(3)’)
99999 FORMAT (4F15.5)
 END
C
 SUBROUTINE FCN (N, X, Y, YPRIME)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X, Y(N), YPRIME(N)
C
 YPRIME(1) = Y(2)*Y(3)
 YPRIME(2) = -Y(1)*Y(3)
 YPRIME(3) = -0.51*Y(1)*Y(2)
 RETURN
 END
C
 SUBROUTINE FCNJ (N, X, Y, DYPDY)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X, Y(N), DYPDY(N,*)
C This subroutine is never called
 RETURN
 END

Output
 T Y(1) Y(2) Y(3)
 1.00000 0.80220 0.59705 0.81963
 2.00000 0.99537 -0.09615 0.70336
 3.00000 0.64141 -0.76720 0.88892
 4.00000 -0.26961 -0.96296 0.98129
 5.00000 -0.91173 -0.41079 0.75899
 6.00000 -0.95751 0.28841 0.72967

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 671

 7.00000 -0.42877 0.90342 0.95197
 8.00000 0.51092 0.85963 0.93106
 9.00000 0.97567 0.21926 0.71730
10.00000 0.87790 -0.47884 0.77906

Example 2

The BDF method of IVPAG is used to solve Example 2 of IVPRK, page 645. We
set PARAM(12) = 2 to designate the BDF method. A chord or modified Newton
method, with the Jacobian computed by divided differences, is used to solve the
nonlinear equations. Thus, we set PARAM(13) = 2. The number of evaluations of y′
is printed after the last output point, showing the efficiency gained when using a
stiff solver compared to using IVPRK on this problem. The number of evaluations
may vary, depending on the accuracy and other arithmetic characteristics of the
computer.

 INTEGER MXPARM, N
 PARAMETER (MXPARM=50, N=2)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER MABSE, MBDF, MSOLVE
 PARAMETER (MABSE=1, MBDF=2, MSOLVE=2)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT
 REAL A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL IVPAG, SSET, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN, FCNJ
C
 CALL UMACH (2, NOUT)
C Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 0.0
C Set error tolerance
 TOL = 0.001
C Set PARAM to defaults
 CALL SSET (MXPARM, 0.0, PARAM, 1)
C Select absolute error control
 PARAM(10) = MABSE
C Select BDF method
 PARAM(12) = MBDF
C Select chord method and
C a divided difference Jacobian.
 PARAM(13) = MSOLVE
C Print header
 WRITE (NOUT,99998)
 IDO = 1
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 24
 TEND = ISTEP
C The array a(*,*) is not used.
 CALL IVPAG (IDO, N, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y)
 IF (ISTEP .LE. 240) THEN
 WRITE (NOUT,’(I6,3F12.3)’) ISTEP/24, T, Y
C Final call to release workspace

672 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 IF (ISTEP .EQ. 240) IDO = 3
 GO TO 10
 END IF
C Show number of function calls.
 WRITE (NOUT,99999) PARAM(35)
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’)
99999 FORMAT (4X, ’Number of fcn calls with IVPAG =’, F6.0)
 END
 SUBROUTINE FCN (N, T, Y, YPRIME)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPRIME(N)
C SPECIFICATIONS FOR SAVE VARIABLES
 REAL AK1, AK2, AK3
 SAVE AK1, AK2, AK3
C
 DATA AK1, AK2, AK3/294.0E0, 3.0E0, 0.01020408E0/
C
 YPRIME(1) = -Y(1) - Y(1)*Y(2) + AK1*Y(2)
 YPRIME(2) = -AK2*Y(2) + AK3*(1.0E0-Y(2))*Y(1)
 RETURN
 END
 SUBROUTINE FCNJ (N, T, Y, DYPDY)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), DYPDY(N,*)
C
 RETURN
 END

Output
ISTEP Time Y1 Y2
 1 24.000 0.689 0.002
 2 48.000 0.636 0.002
 3 72.000 0.590 0.002
 4 96.000 0.550 0.002
 5 120.000 0.515 0.002
 6 144.000 0.485 0.002
 7 168.000 0.458 0.002
 8 192.000 0.434 0.001
 9 216.000 0.412 0.001
10 240.000 0.392 0.001
Number of fcn calls with IVPAG = 73.

Example 3

The BDF method of IVPAG is used to solve the so-called Robertson problem:

′ = − + =

′ = − ′ − ′ =

′ = =

= = = × ≤ ≤

y c y c y y y

y y y y

y c y y

c c c t

1 1 1 2 2 3 1

2 1 3 2

3 3 2
2

3

1 2
4

3
7

0 1

0 0

0 0

0 04 10 3 10 0 10

0 5
0 5
0 5

. , ,

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 673

Output is obtained after each unit of the independent variable. A user-provided

subroutine for the Jacobian matrix is used. An absolute error tolerance of 10-5 is
required.

 INTEGER MXPARM, N
 PARAMETER (MXPARM=50, N=3)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER MABSE, MBDF, MSOLVE
 PARAMETER (MABSE=1, MBDF=2, MSOLVE=1)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT
 REAL A(1,1), PARAM(MXPARM), T, TEND, TOL, Y(N)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL IVPAG, SSET, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN, FCNJ
C
 CALL UMACH (2, NOUT)
C Set initial conditions
 T = 0.0
 Y(1) = 1.0
 Y(2) = 0.0
 Y(3) = 0.0
C Set error tolerance
 TOL = 1.0E-5
C Set PARAM to defaults
 CALL SSET (MXPARM, 0.0, PARAM, 1)
C Select absolute error control
 PARAM(10) = MABSE
C Select BDF method
 PARAM(12) = MBDF
C Select chord method and
C a user-provided Jacobian.
 PARAM(13) = MSOLVE
C Print header
 WRITE (NOUT,99998)
 IDO = 1
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 1
 TEND = ISTEP
C The array a(*,*) is not used.
 CALL IVPAG (IDO, N, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y)
 IF (ISTEP .LE. 10) THEN
 WRITE (NOUT,’(I6,F12.2,3F13.5)’) ISTEP, T, Y
C Final call to release workspace
 IF (ISTEP .EQ. 10) IDO = 3
 GO TO 10
 END IF
99998 FORMAT (4X, ’ISTEP’, 5X, ’Time’, 9X, ’Y1’, 11X, ’Y2’, 11X,
 & ’Y3’)
 END
 SUBROUTINE FCN (N, T, Y, YPRIME)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPRIME(N)
C SPECIFICATIONS FOR SAVE VARIABLES
 REAL C1, C2, C3

674 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 SAVE C1, C2, C3
C
 DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/
C
 YPRIME(1) = -C1*Y(1) + C2*Y(2)*Y(3)
 YPRIME(3) = C3*Y(2)**2
 YPRIME(2) = -YPRIME(1) - YPRIME(3)
 RETURN
 END
 SUBROUTINE FCNJ (N, T, Y, DYPDY)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), DYPDY(N,*)
C SPECIFICATIONS FOR SAVE VARIABLES
 REAL C1, C2, C3
 SAVE C1, C2, C3
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSET
C
 DATA C1, C2, C3/0.04E0, 1.0E4, 3.0E7/
C Clear array to zero
 CALL SSET (N**2, 0.0, DYPDY, 1)
C Compute partials
 DYPDY(1,1) = -C1
 DYPDY(1,2) = C2*Y(3)
 DYPDY(1,3) = C2*Y(2)
 DYPDY(3,2) = 2.0*C3*Y(2)
 DYPDY(2,1) = -DYPDY(1,1)
 DYPDY(2,2) = -DYPDY(1,2) - DYPDY(3,2)
 DYPDY(2,3) = -DYPDY(1,3)
 RETURN
 END

Output
 ISTEP Time Y1 Y2 Y3
 1 1.00 0.96647 0.00003 0.03350
 2 2.00 0.94164 0.00003 0.05834
 3 3.00 0.92191 0.00002 0.07806
 4 4.00 0.90555 0.00002 0.09443
 5 5.00 0.89153 0.00002 0.10845
 6 6.00 0.87928 0.00002 0.12070
 7 7.00 0.86838 0.00002 0.13160
 8 8.00 0.85855 0.00002 0.14143
 9 9.00 0.84959 0.00002 0.15039
10 10.00 0.84136 0.00002 0.15862

Example 4

Solve the partial differential equation

e
u

t

u

x
t− =∂

∂
∂
∂

2

2

with the initial condition

u(t = 0, x) = sin x

and the boundary conditions

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 675

u(t, x = 0) = u(t, x = π) = 0

on the square [0, 1] × [0, π], using the method of lines with a piecewise-linear

Galerkin discretization. The exact solution is u(t, x) = exp(1 − eW) sin x. The
interval [0, π] is divided into equal intervals by choosing breakpoints
xN = kπ/(N + 1) for k = 0, …, N + 1. The unknown function u(t, x) is
approximated by

c t xkk

N
k=∑ 1

0 5 0 5φ

where φN (x) is the piecewiselinear function that equals 1 at xN and is zero at all of
the other breakpoints. We approximate the partial differential equation by a
system of N ordinary differential equations, A dc/dt = Rc where A and R are
matrices of order N. The matrix A is given by

A e x x dx

e h i j

e h i jij
t

i j

t

t= = ±−

−

−I φ φ
π 0 5 0 5
0

2 3

6 1

0

/

/

if =

if =

otherwise

where h = 1/(N + 1) is the mesh spacing. The matrix R is given by

R x x dx x x dx

h i j

h i jij i j i j= ′′ = − ′ ′ =
−

= ±I Iφ φ φ φ
π π

0 0

2

1 1

0

0 5 0 5 0 5 0 5
/

/

if =

if

otherwise

The integrals involving

′′φi

are assigned the values of the integrals on the right-hand side, by using the
boundary values and integration by parts. Because this system may be stiff,
Gear’s BDF method is used.

In the following program, the array Y(1:N) corresponds to the vector of
coefficients, c. Note that Y contains N + 2 elements; Y(0) and Y(N + 1) are used to
store the boundary values. The matrix A depends on t so we set PARAM(19) = 2
and evaluate A when IVPAG returns with IDO = 7. The subroutine FCN computes
the vector Rc, and the subroutine FCNJ computes R. The matrices A and R are
stored as band-symmetric positive-definite structures having one upper co-
diagonal.

 INTEGER LDA, N, NPARAM, NUC
 PARAMETER (N=9, NPARAM=50, NUC=1, LDA=NUC+1)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER NSTEP
 PARAMETER (NSTEP=4)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IATYPE, IDO, IMETH, INORM, ISTEP, MITER, MTYPE
 REAL A(LDA,N), C, HINIT, PARAM(NPARAM), PI, T, TEND, TMAX,
 & TOL, XPOINT(0:N+1), Y(0:N+1)

676 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 CHARACTER TITLE*10
C SPECIFICATIONS FOR COMMON /COMHX/
 COMMON /COMHX/ HX
 REAL HX
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC EXP, REAL, SIN
 REAL EXP, REAL, SIN
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL IVPAG, SSET, WRRRN
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CONST, FCN, FCNJ
 REAL CONST
C Initialize PARAM
 HINIT = 1.0E-3
 INORM = 1
 IMETH = 2
 MITER = 1
 MTYPE = 3
 IATYPE = 2
 CALL SSET (NPARAM, 0.0, PARAM, 1)
 PARAM(1) = HINIT
 PARAM(10) = INORM
 PARAM(12) = IMETH
 PARAM(13) = MITER
 PARAM(14) = MTYPE
 PARAM(16) = NUC
 PARAM(19) = IATYPE
C Initialize other arguments
 PI = CONST(’PI’)
 HX = PI/REAL(N+1)
 CALL SSET (N-1, HX/6., A(1,2), LDA)
 CALL SSET (N, 2.*HX/3., A(2,1), LDA)
 DO 10 I=0, N + 1
 XPOINT(I) = I*HX
 Y(I) = SIN(XPOINT(I))
 10 CONTINUE
 TOL = 1.0E-6
 T = 0.0
 TMAX = 1.0
C Integrate ODE
 IDO = 1
 ISTEP = 0
 20 CONTINUE
 ISTEP = ISTEP + 1
 TEND = TMAX*REAL(ISTEP)/REAL(NSTEP)
 30 CALL IVPAG (IDO, N, FCN, FCNJ, A, T, TEND, TOL, PARAM, Y(1))
C Set matrix A
 IF (IDO .EQ. 7) THEN
 C = EXP(-T)
 CALL SSET (N-1, C*HX/6., A(1,2), LDA)
 CALL SSET (N, 2.*C*HX/3., A(2,1), LDA)
 GO TO 30
 END IF
 IF (ISTEP .LE. NSTEP) THEN
C Print solution
 WRITE (TITLE,’(A,F5.3,A)’) ’U(T=’, T, ’)’
 CALL WRRRN (TITLE, 1, N+2, Y, 1, 0)
C Final call to release workspace
 IF (ISTEP .EQ. NSTEP) IDO = 3

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 677

 GO TO 20
 END IF
 END
C
 SUBROUTINE FCN (N, T, Y, YPRIME)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(*), YPRIME(N)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I
C SPECIFICATIONS FOR COMMON /COMHX/
 COMMON /COMHX/ HX
 REAL HX
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSCAL
C
 YPRIME(1) = -2.0*Y(1) + Y(2)
 DO 10 I=2, N - 1
 YPRIME(I) = -2.0*Y(I) + Y(I-1) + Y(I+1)
 10 CONTINUE
 YPRIME(N) = -2.0*Y(N) + Y(N-1)
 CALL SSCAL (N, 1.0/HX, YPRIME, 1)
 RETURN
 END
C
 SUBROUTINE FCNJ (N, T, Y, DYPDY)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(*), DYPDY(2,*)
C SPECIFICATIONS FOR COMMON /COMHX/
 COMMON /COMHX/ HX
 REAL HX
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSET
C
 CALL SSET (N-1, 1.0/HX, DYPDY(1,2), 2)
 CALL SSET (N, -2.0/HX, DYPDY(2,1), 2)
 RETURN
 END

Output
 U(T=0.250)
 1 2 3 4 5 6 7 8
0.0000 0.2321 0.4414 0.6076 0.7142 0.7510 0.7142 0.6076

 9 10 11
0.4414 0.2321 0.0000

 U(T=0.500)
 1 2 3 4 5 6 7 8
0.0000 0.1607 0.3056 0.4206 0.4945 0.5199 0.4945 0.4206

 9 10 11
0.3056 0.1607 0.0000

678 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 U(T=0.750)
 1 2 3 4 5 6 7 8
0.0000 0.1002 0.1906 0.2623 0.3084 0.3243 0.3084 0.2623

 9 10 11
0.1906 0.1002 0.0000

 U(T=1.000)
 1 2 3 4 5 6 7 8
0.0000 0.0546 0.1039 0.1431 0.1682 0.1768 0.1682 0.1431

 9 10 11
0.1039 0.0546 0.0000

BVPFD/DBVPFD (Single/Double precision)
Solve a (parameterized) system of differential equations with boundary conditions
at two points, using a variable order, variable step size finite difference method
with deferred corrections.

Usage
CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, N,
 NLEFT, NCUPBC, TLEFT, TRIGHT, PISTEP, TOL,
 NINIT, TINIT, YINIT, LDYINI, LINEAR, PRINT,
 MXGRID, NFINAL, TFINAL, YFINAL, LDYFIN, ERREST)

Arguments

FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is
CALL FCNEQN (N, T, Y, P, DYDT), where

N – Number of differential equations. (Input)
T – Independent variable, t. (Input)
Y – Array of size N containing the dependent variable values, y(t).
(Input)
P – Continuation parameter, p. (Input)
See Comment 3.
DYDT – Array of size N containing the derivatives y′(t). (Output)

The name FCNEQN must be declared EXTERNAL in the calling program.

FCNJAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is
CALL FCNJAC (N, T, Y, P, DYPDY), where

N – Number of differential equations. (Input)
T – Independent variable, t. (Input)
Y – Array of size N containing the dependent variable values. (Input)
P – Continuation parameter, p. (Input)
See Comments 3.
DYPDY – N by N array containing the partial derivatives aL�M = ∂ fL�/ ∂ yM

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 679

evaluated at (t, y). The values aL,M are returned in DYPDY(i, j).
(Output)

The name FCNJAC must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The
usage is CALL FCNBC (N, YLEFT, YRIGHT, P, H), where

N – Number of differential equations. (Input)
YLEFT – Array of size N containing the values of the dependent
variable at the left endpoint. (Input)
YRIGHT – Array of size N containing the values of the dependent
variable at the right endpoint. (Input)
P – Continuation parameter, p. (Input)
See Comment 3.
H – Array of size N containing the boundary condition residuals.
(Output)
The boundary conditions are defined by hL�= 0; for i = 1, …, N. The left
endpoint conditions must be defined first, then, the conditions involving
both endpoints, and finally the right endpoint conditions.

The name FCNBC must be declared EXTERNAL in the calling program.

FCNPEQ — User-supplied SUBROUTINE to evaluate the partial derivative of y′
with respect to the parameter p. The usage is
CALL FCNPEQ (N, T, Y, P, DYPDP), where

N – Number of differential equations. (Input)
T – Dependent variable, t. (Input)
Y – Array of size N containing the dependent variable values. (Input)
P – Continuation parameter, p. (Input)
See Comment 3.
DYPDP – Array of size N containing the partial derivatives aL�M = ∂fL�/∂yM
evaluated at (t, y). The values aL�M are returned in DYPDY(i, j).
(Output)

The name FCNPEQ must be declared EXTERNAL in the calling program.

FCNPBC — User-supplied SUBROUTINE to evaluate the derivative of the
boundary conditions with respect to the parameter p. The usage is
CALL FCNPBC (N, YLEFT, YRIGHT, P, H), where

N – Number of differential equations. (Input)
YLEFT – Array of size N containing the values of the dependent
variable at the left endpoint. (Input)
YRIGHT – Array of size N containing the values of the dependent
variable at the right endpoint. (Input)
P – Continuation parameter, p. (Input)
See Comment 3.
H – Array of size N containing the derivative of fL with respect to p.
(Output)

The name FCNPBC must be declared EXTERNAL in the calling program.

680 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

N — Number of differential equations. (Input)

NLEFT — Number of initial conditions. (Input)
The value NLEFT must be greater than or equal to zero and less than N.

NCUPBC — Number of coupled boundary conditions. (Input)
The value NLEFT + NCUPBC must be greater than zero and less than or equal to N.

TLEFT — The left endpoint. (Input)

TRIGHT — The right endpoint. (Input)

PISTEP — Initial increment size for p. (Input)
If this value is zero, continuation will not be used in this problem. The routines
FCNPEQ and FCNPBC will not be called.

TOL — Relative error control parameter. (Input)
The computations stop when ABS(ERROR(J, I))/MAX(ABS(Y(J, I)), 1.0).LT.TOL
for all J = 1, …, N and I = 1, …, NGRID. Here, ERROR(J, I) is the estimated error
in Y(J, I).

NINIT — Number of initial grid points, including the endpoints. (Input)
It must be at least 4.

TINIT — Array of size NINIT containing the initial grid points. (Input)

YINIT — Array of size N by NINIT containing an initial guess for the values of Y

at the points in TINIT. (Input)

LDYINI — Leading dimension of YINIT exactly as specified in the dimension
statement of the calling program. (Input)

LINEAR — Logical .TRUE. if the differential equations and the boundary
conditions are linear. (Input)

PRINT — Logical .TRUE. if intermediate output is to be printed. (Input)

MXGRID — Maximum number of grid points allowed. (Input)

NFINAL — Number of final grid points, including the endpoints. (Output)

TFINAL — Array of size MXGRID containing the final grid points. (Output)
Only the first NFINAL points are significant.

YFINAL — Array of size N by MXGRID containing the values of Y at the points in
TFINAL. (Output)

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension
statement of the calling program. (Input)

ERREST — Array of size N. (Output)
ERREST(J) is the estimated error in Y(J).

Comments

1. Automatic workspace usage is

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 681

BVPFD N(3N * MXGRID + 4N + 1) + MXGRID * (7N + 2) + 2N * MXGRID
+ N + MXGRID

DBVPFD 2N(3N * MXGRID + 4N + 1) + 2 * MXGRID(7N + 2) + 2N *
MXGRID + N + MXGRID

Workspace may be explicitly provided, if desired, by use of
B2PFD/DB2PFD. The reference is

CALL B2PFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC,
 N, NLEFT, NCUPBC, TLEFT, TRIGHT, PISTEP,
 TOL, NINIT, TINIT, YINIT, LDYINI,
 LINEAR, PRINT, MXGRID, NFINAL, TFINAL,
 YFINAL, LDYFIN, ERREST, RWORK, IWORK)

The additional arguments are as follows:

RWORK — Floating-point work array of size N(3N * MXGRID + 4N + 1)
+ MXGRID * (7N + 2).

IWORK — Integer work array of size 2N * MXGRID + N + MXGRID.

2. Informational errors
Type Code
 4 1 More than MXGRID grid points are needed to solve the

problem.
 4 2 Newton’s method diverged.
 3 3 Newton’s method reached roundoff error level.

3. If the value of PISTEP is greater than zero, then the routine BVPFD

assumes that the user has embedded the problem into a one-parameter
family of problems:

y′ = y′(t, y, p)

h(yWOHIW, yWULJKW, p) = 0

such that for p = 0 the problem is simple. For p = 1, the original problem
is recovered. The routine BVPFD automatically attempts to increment
from p = 0 to p = 1. The value PISTEP is the beginning increment used
in this continuation. The increment will usually be changed by routine
BVPFD, but an arbitrary minimum of 0.01 is imposed.

4. The vectors TINIT and TFINAL may be the same.

5. The arrays YINIT and YFINAL may be the same.

Algorithm

The routine BVPFD is based on the subprogram PASVA3 by M. Lentini and V.
Pereyra (see Pereyra 1978). The basic discretization is the trapezoidal rule over
a nonuniform mesh. This mesh is chosen adaptively, to make the local error
approximately the same size everywhere. Higher-order discretizations are
obtained by deferred corrections. Global error estimates are produced to control

682 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

the computation. The resulting nonlinear algebraic system is solved by Newton’s
method with step control. The linearized system of equations is solved by a
special form of Gauss elimination that preserves the sparseness.

Example 1

This example solves the third-order linear equation

′′′ − ′′ + ′ − =y y y y t2 sin

subject to the boundary conditions y(0) = y(2π) and y′(0) = y′(2π) = 1. (Its
solution is y = sin t.) To use BVPFD, the problem is reduced to a system of first-
order equations by defining y1 = y, y2 = y′ and y3 = y″. The resulting system is

′ = − =

′ = − =

′ = − + + − =

y y y

y y y y

y y y y t y

1 2 2

2 3 1 1

3 3 2 1 2

0 1 0

0 2 0

2 2 1 0

0 5
0 5 0 5
0 5

π

πsin

Note that there is one boundary condition at the left endpoint t = 0 and one
boundary condition coupling the left and right endpoints. The final boundary
condition is at the right endpoint. The total number of boundary conditions must
be the same as the number of equations (in this case 3).

Note that since the parameter p is not used in the call to BVPFD, the routines
FCNPEQ and FCNPBC are not needed. Therefore, in the call to BVPFD, FCNEQN
and FCNBC were used in place of FCNPEQ and FCNPBC.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT
 PARAMETER (MXGRID=45, NEQNS=3, NINIT=10, LDYFIN=NEQNS,
 & LDYINI=NEQNS)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, NCUPBC, NFINAL, NLEFT, NOUT
 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT),
 & TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID),
 & YINIT(LDYINI,NINIT)
 LOGICAL LINEAR, PRINT
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT
 REAL FLOAT
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL BVPFD, SSET, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CONST, FCNBC, FCNEQN, FCNJAC
 REAL CONST, FCNBC, FCNEQN, FCNJAC
C Set parameters
 NLEFT = 1
 NCUPBC = 1
 TOL = .001
 TLEFT = 0.0
 TRIGHT = 2.0*CONST(’PI’)
 PISTEP = 0.0
 PRINT = .FALSE.
 LINEAR = .TRUE.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 683

C Define TINIT
 DO 10 I=1, NINIT
 TINIT(I) = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1)
 10 CONTINUE
C Set YINIT to zero
 DO 20 I=1, NINIT
 CALL SSET (NEQNS, 0.0, YINIT(1,I), 1)
 20 CONTINUE
C Solve problem
 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NEQNS, NLEFT,
 & NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT,
 & YINIT, LDYINI, LINEAR, PRINT, MXGRID, NFINAL,
 & TFINAL, YFINAL, LDYFIN, ERREST)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1,
 & NFINAL)
 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’, 13X, ’Y3’)
99998 FORMAT (I5, 1P4E15.6)
99999 FORMAT (’ Error estimates’, 4X, 1P3E15.6)
 END
 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDX)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYDX(NEQNS)
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC SIN
 REAL SIN
C Define PDE
 DYDX(1) = Y(2)
 DYDX(2) = Y(3)
 DYDX(3) = 2.0*Y(3) - Y(2) + Y(1) + SIN(T)
 RETURN
 END
 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)
C Define d(DYDX)/dY
 DYPDY(1,1) = 0.0
 DYPDY(1,2) = 1.0
 DYPDY(1,3) = 0.0
 DYPDY(2,1) = 0.0
 DYPDY(2,2) = 0.0
 DYPDY(2,3) = 1.0
 DYPDY(3,1) = 1.0
 DYPDY(3,2) = -1.0
 DYPDY(3,3) = 2.0
 RETURN
 END
 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)
C Define boundary conditions
 F(1) = YLEFT(2) - 1.0
 F(2) = YLEFT(1) - YRIGHT(1)

684 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 F(3) = YRIGHT(2) - 1.0
 RETURN
 END

Output
 I T Y1 Y2 Y3
 1 0.000000E+00 -1.123191E-04 1.000000E+00 6.242319E05
 2 3.490659E-01 3.419107E-01 9.397087E-01 -3.419580E01
 3 6.981317E-01 6.426908E-01 7.660918E-01 -6.427230E-01
 4 1.396263E+00 9.847531E-01 1.737333E-01 -9.847453E-01
 5 2.094395E+00 8.660529E-01 -4.998747E-01 -8.660057E-01
 6 2.792527E+00 3.421830E-01 -9.395474E-01 -3.420648E-01
 7 3.490659E+00 -3.417234E-01 -9.396111E-01 3.418948E-01
 8 4.188790E+00 -8.656880E-01 -5.000588E-01 8.658733E-01
 9 4.886922E+00 -9.845794E-01 1.734571E-01 9.847518E-01
10 5.585054E+00 -6.427721E-01 7.658258E-01 6.429526E-01
11 5.934120E+00 -3.420819E-01 9.395434E-01 3.423986E-01
12 6.283185E+00 -1.123186E-04 1.000000E+00 6.743190E-04
Error estimates 2.840430E-04 1.792939E-04 5.588399E-04

Example 2

In this example, the following nonlinear problem is solved:

y″ − y3 + (1 + sin2 t) sin t = 0

with y(0) = y(π) = 0. Its solution is y = sin t. As in Example 1, this equation is
reduced to a system of first-order differential equations by defining y1 = y and
y2 = y′. The resulting system is

′ = =

′ = − + =

y y y

y y t t y

1 2 1

2 1
3 2

1

0 0

1 0

0 5
3 8 0 5sin sin π

In this problem, there is one boundary condition at the left endpoint and one at
the right endpoint; there are no coupled boundary conditions.

Note that since the parameter p is not used, in the call to BVPFD the routines
FCNPEQ and FCNPBC are not needed. Therefore, in the call to BVPFD, FCNEQN
and FCNBC were used in place of FCNPEQ and FCNPBC.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT
 PARAMETER (MXGRID=45, NEQNS=2, NINIT=12, LDYFIN=NEQNS,
 & LDYINI=NEQNS)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, NCUPBC, NFINAL, NLEFT, NOUT
 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TINIT(NINIT),
 & TLEFT, TOL, TRIGHT, YFINAL(LDYFIN,MXGRID),
 & YINIT(LDYINI,NINIT)
 LOGICAL LINEAR, PRINT
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT
 REAL FLOAT
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL BVPFD, UMACH

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 685

C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CONST, FCNBC, FCNEQN, FCNJAC
 REAL CONST
C Set parameters
 NLEFT = 1
 NCUPBC = 0
 TOL = .001
 TLEFT = 0.0
 TRIGHT = CONST(’PI’)
 PISTEP = 0.0
 PRINT = .FALSE.
 LINEAR = .FALSE.
C Define TINIT and YINIT
 DO 10 I=1, NINIT
 TINIT(I) = TLEFT + (I-1)*(TRIGHT-TLEFT)/FLOAT(NINIT-1)
 YINIT(1,I) = 0.4*(TINIT(I)-TLEFT)*(TRIGHT-TINIT(I))
 YINIT(2,I) = 0.4*(TLEFT-TINIT(I)+TRIGHT-TINIT(I))
 10 CONTINUE
C Solve problem
 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNEQN, FCNBC, NEQNS, NLEFT,
 & NCUPBC, TLEFT, TRIGHT, PISTEP, TOL, NINIT, TINIT,
 & YINIT, LDYINI, LINEAR, PRINT, MXGRID, NFINAL,
 & TFINAL, YFINAL, LDYFIN, ERREST)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1,
 & NFINAL)
 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’)
99998 FORMAT (I5, 1P3E15.6)
99999 FORMAT (’ Error estimates’, 4X, 1P2E15.6)
 END
 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYDT(NEQNS)
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC SIN
 REAL SIN
C Define PDE
 DYDT(1) = Y(2)
 DYDT(2) = Y(1)**3 - SIN(T)*(1.0+SIN(T)**2)
 RETURN
 END
 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)
C Define d(DYDT)/dY
 DYPDY(1,1) = 0.0
 DYPDY(1,2) = 1.0
 DYPDY(2,1) = 3.0*Y(1)**2
 DYPDY(2,2) = 0.0
 RETURN
 END
 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS

686 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)
C Define boundary conditions
 F(1) = YLEFT(1)
 F(2) = YRIGHT(1)
 RETURN
 END

Output
 I T Y1 Y2
 1 0.000000E+00 0.000000E+00 9.999277E-01
 2 2.855994E-01 2.817682E-01 9.594315E-01
 3 5.711987E-01 5.406458E-01 8.412407E-01
 4 8.567980E-01 7.557380E-01 6.548904E-01
 5 1.142397E+00 9.096186E-01 4.154530E-01
 6 1.427997E+00 9.898143E-01 1.423307E-01
 7 1.713596E+00 9.898143E-01 -1.423307E-01
 8 1.999195E+00 9.096185E-01 -4.154530E-01
 9 2.284795E+00 7.557380E-01 -6.548903E-01
10 2.570394E+00 5.406460E-01 -8.412405E-01
11 2.855994E+00 2.817683E-01 -9.594313E-01
12 3.141593E+00 0.000000E+00 -9.999274E-01
Error estimates 3.906105E-05 7.124186E-05

Example 3

In this example, the following nonlinear problem is solved:

′′ − = −�
�

�
� − −�

�
�
�y y t t3

2 3 840

9

1

2

1

2

/

with y(0) = y(1) = π/2. As in the previous examples, this equation is reduced to a
system of first-order differential equations by defining y1 = y and y2 = y′. The
resulting system is

′ = =

′ = − −�
�

�
� + −�

�
�
� =

y y y

y y t t y

1 2 1

2 1
3

2 3 8

1

0 2

40

9

1

2

1

2
1 2

0 5
0 5

π

π

/

/
/

The problem is embedded in a family of problems by introducing the parameter p
and by changing the second differential equation to

′ = + −�
�

�
� − −�

�
�
�y py t t2 1

3
2 3 840

9

1

2

1

2

/

At p = 0, the problem is linear; and at p = 1, the original problem is recovered.
The derivatives ∂y′/∂p must now be specified in the subroutine FCNPEQ. The
derivatives ∂f/∂p are zero in FCNPBC.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER LDYFIN, LDYINI, MXGRID, NEQNS, NINIT
 PARAMETER (MXGRID=45, NEQNS=2, NINIT=5, LDYFIN=NEQNS,
 & LDYINI=NEQNS)
C SPECIFICATIONS FOR LOCAL VARIABLES

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 687

 INTEGER NCUPBC, NFINAL, NLEFT, NOUT
 REAL ERREST(NEQNS), PISTEP, TFINAL(MXGRID), TLEFT, TOL,
 & XRIGHT, YFINAL(LDYFIN,MXGRID)
 LOGICAL LINEAR, PRINT
C SPECIFICATIONS FOR SAVE VARIABLES
 INTEGER I, J
 REAL TINIT(NINIT), YINIT(LDYINI,NINIT)
 SAVE I, J, TINIT, YINIT
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL BVPFD, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNEQN, FCNJAC, FCNPBC, FCNPEQ
C
 DATA TINIT/0.0, 0.4, 0.5, 0.6, 1.0/
 DATA ((YINIT(I,J),J=1,NINIT),I=1,NEQNS)/0.15749, 0.00215, 0.0,
 & 0.00215, 0.15749, -0.83995, -0.05745, 0.0, 0.05745, 0.83995/
C Set parameters
 NLEFT = 1
 NCUPBC = 0
 TOL = .001
 TLEFT = 0.0
 XRIGHT = 1.0
 PISTEP = 0.1
 PRINT = .FALSE.
 LINEAR = .FALSE.
C
 CALL BVPFD (FCNEQN, FCNJAC, FCNBC, FCNPEQ, FCNPBC, NEQNS, NLEFT,
 & NCUPBC, TLEFT, XRIGHT, PISTEP, TOL, NINIT, TINIT,
 & YINIT, LDYINI, LINEAR, PRINT, MXGRID, NFINAL,
 & TFINAL, YFINAL, LDYFIN, ERREST)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) (I,TFINAL(I),(YFINAL(J,I),J=1,NEQNS),I=1,
 & NFINAL)
 WRITE (NOUT,99999) (ERREST(J),J=1,NEQNS)
99997 FORMAT (4X, ’I’, 7X, ’T’, 14X, ’Y1’, 13X, ’Y2’)
99998 FORMAT (I5, 1P3E15.6)
99999 FORMAT (’ Error estimates’, 4X, 1P2E15.6)
 END
 SUBROUTINE FCNEQN (NEQNS, T, Y, P, DYDT)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYDT(NEQNS)
C Define PDE
 DYDT(1) = Y(2)
 DYDT(2) = P*Y(1)**3 + 40./9.*((T-0.5)**2)**(1./3.) - (T-0.5)**8
 RETURN
 END
 SUBROUTINE FCNJAC (NEQNS, T, Y, P, DYPDY)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)
C Define d(DYDT)/dY
 DYPDY(1,1) = 0.0
 DYPDY(1,2) = 1.0
 DYPDY(2,1) = P*3.*Y(1)**2
 DYPDY(2,2) = 0.0
 RETURN

688 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 END
 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)
C SPECIFICATIONS FOR LOCAL VARIABLES
 REAL PI
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CONST
 REAL CONST
C Define boundary conditions
 PI = CONST(’PI’)
 F(1) = YLEFT(1) - PI/2.0
 F(2) = YRIGHT(1) - PI/2.0
 RETURN
 END
 SUBROUTINE FCNPEQ (NEQNS, T, Y, P, DYPDP)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL T, P, Y(NEQNS), DYPDP(NEQNS)
C Define d(DYDT)/dP
 DYPDP(1) = 0.0
 DYPDP(2) = Y(1)**3
 RETURN
 END
 SUBROUTINE FCNPBC (NEQNS, YLEFT, YRIGHT, P, DFDP)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), DFDP(NEQNS)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSET
C Define dF/dP
 CALL SSET (NEQNS, 0.0, DFDP, 1)
 RETURN
 END

Output
 I T Y1 Y2
 1 0.000000E+00 1.570796E+00 -1.949336E+00
 2 4.444445E-02 1.490495E+00 -1.669567E+00
 3 8.888889E-02 1.421951E+00 -1.419465E+00
 4 1.333333E-01 1.363953E+00 -1.194307E+00
 5 2.000000E-01 1.294526E+00 -8.958461E-01
 6 2.666667E-01 1.243628E+00 -6.373191E-01
 7 3.333334E-01 1.208785E+00 -4.135206E-01
 8 4.000000E-01 1.187783E+00 -2.219351E-01
 9 4.250000E-01 1.183038E+00 -1.584200E-01
10 4.500000E-01 1.179822E+00 -9.973146E-02
11 4.625000E-01 1.178748E+00 -7.233893E-02
12 4.750000E-01 1.178007E+00 -4.638248E-02
13 4.812500E-01 1.177756E+00 -3.399763E-02
14 4.875000E-01 1.177582E+00 -2.205547E-02
15 4.937500E-01 1.177480E+00 -1.061177E-02
16 5.000000E-01 1.177447E+00 -1.479182E-07
17 5.062500E-01 1.177480E+00 1.061153E-02
18 5.125000E-01 1.177582E+00 2.205518E-02
19 5.187500E-01 1.177756E+00 3.399727E-02
20 5.250000E-01 1.178007E+00 4.638219E-02

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 689

21 5.375000E-01 1.178748E+00 7.233876E-02
22 5.500000E-01 1.179822E+00 9.973124E-02
23 5.750000E-01 1.183038E+00 1.584199E-01
24 6.000000E-01 1.187783E+00 2.219350E-01
25 6.666667E-01 1.208786E+00 4.135205E-01
26 7.333333E-01 1.243628E+00 6.373190E-01
27 8.000000E-01 1.294526E+00 8.958461E-01
28 8.666667E-01 1.363953E+00 1.194307E+00
29 9.111111E-01 1.421951E+00 1.419465E+00
30 9.555556E-01 1.490495E+00 1.669566E+00
31 1.000000E+00 1.570796E+00 1.949336E+00
Error estimates 3.448358E-06 5.549869E-05

BVPMS/DBVPMS (Single/Double precision)
Solve a (parameterized) system of differential equations with boundary conditions
at two points, using a multiple-shooting method.

Usage
CALL BVPMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT, TRIGHT,
 DTOL, BTOL, MAXIT, NINIT, TINIT, YINIT, LDYINI,
 NMAX, NFINAL, TFINAL, YFINAL, LDYFIN)

Arguments

FCNEQN — User-supplied SUBROUTINE to evaluate derivatives. The usage is
CALL FCNEQN (NEQNS, T, Y, P, DYDT), where

NEQNS – Number of equations. (Input)
T – Independent variable, t. (Input)
Y – Array of length NEQNS containing the dependent variable. (Input)
P – Continuation parameter used in solving highly nonlinear problems.
(Input)
See Comment 4.
DYDT – Array of length NEQNS containing y′ at T. (Output)

The name FCNEQN must be declared EXTERNAL in the calling program.

FCNJAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage is
CALL FCNJAC (NEQNS, T, Y, P, DYPDY), where

NEQNS – Number of equations. (Input)
T – Independent variable. (Input)
Y – Array of length NEQNS containing the dependent variable. (Input)
P – Continuation parameter used in solving highly nonlinear problems.
(Input)
See Comment 4.
DYPDY – Array of size NEQNS by NEQNS containing the Jacobian.
(Output)
The entry DYPDY(i, j) contains the partial derivative ∂ fL/∂ yM evaluated
at (t, y).

The name FCNJAC must be declared EXTERNAL in the calling program.

690 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The
usage is CALL FCNBC (NEQNS, YLEFT, YRIGHT, P, H), where

NEQNS – Number of equations. (Input)
YLEFT – Array of length NEQNS containing the values of Y at TLEFT.
(Input)
YRIGHT – Array of length NEQNS containing the values of Y at
TRIGHT. (Input)
P – Continuation parameter used in solving highly nonlinear problems.
(Input)
See Comment 4.
H – Array of length NEQNS containing the boundary function values.
(Output)
The computed solution satisfies (within BTOL) the conditions hL�= 0,

i = 1, …, NEQNS.

The name FCNBC must be declared EXTERNAL in the calling program.

NEQNS — Number of differential equations. (Input)

TLEFT — The left endpoint. (Input)

TRIGHT — The right endpoint. (Input)

DTOL — Differential equation error tolerance. (Input)
An attempt is made to control the local error in such a way that the global error is
proportional to DTOL.

BTOL — Boundary condition error tolerance. (Input)
The computed solution satisfies the boundary conditions, within BTOL tolerance.

MAXIT — Maximum number of Newton iterations allowed. (Input)
Iteration stops if convergence is achieved sooner. Suggested values are
MAXIT = 2 for linear problems and MAXIT = 9 for nonlinear problems.

NINIT — Number of shooting points supplied by the user. (Input)
It may be 0. A suggested value for the number of shooting points is 10.

TINIT — Vector of length NINIT containing the shooting points supplied by the
user. (Input)
If NINIT = 0, then TINIT is not referenced and the routine chooses all of the
shooting points. This automatic selection of shooting points may be expensive
and should only be used for linear problems. If NINIT is nonzero, then the points
must be an increasing sequence with TINIT(1) = TLEFT and TINIT(NINIT) =
TRIGHT.

YINIT — Array of size NEQNS by NINIT containing an initial guess for the
values of Y at the points in TINIT. (Input)
YINIT is not referenced if NINIT = 0.

LDYINI — Leading dimension of YINIT exactly as specified in the dimension
statement of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 691

NMAX — Maximum number of shooting points to be allowed. (Input)
If NINIT is nonzero, then NMAX must equal NINIT. It must be at least 2.

NFINAL — Number of final shooting points, including the endpoints. (Output)

TFINAL — Vector of length NMAX containing the final shooting points.
(Output)
Only the first NFINAL points are significant.

YFINAL — Array of size NEQNS by NMAX containing the values of Y at the points
in TFINAL. (Output)

LDYFIN — Leading dimension of YFINAL exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

BVPMS NEQNS * (NEQNS + 1)(NMAX + 12) + 2 * NEQNS + 30
DBVPMS 2 * NEQNS * (NEQNS + 1)(NMAX + 12) + 3 * NEQNS + 60

Workspace may be explicitly provided, if desired, by use of
B2PMS/DB2PMS. The reference is

CALL B2PMS (FCNEQN, FCNJAC, FCNBC, NEQNS, TLEFT,
 TRIGHT, DTOL, BTOL, MAXIT, NINIT, TINIT,
 YINIT, LDYINI, NMAX, NFINAL, TFINAL,
 YFINAL, LDYFIN, WORK, IWK)

The additional arguments are as follows:

WORK — Work array of length NEQNS * (NEQNS + 1)(NMAX + 12) +
NEQNS + 30.

IWK — Work array of length NEQNS.

2. Informational errors
Type Code
 1 5 Convergence has been achieved; but to get acceptably

accurate approximations to y(t), it is often necessary to
start an initial-value solver, for example IVPRK (page
645), at the nearest TFINAL(i) point to t with
t ≥ TFINAL (i). The vectors YFINAL(j, i), j = 1, …,
NEQNS are used as the initial values.

 4 1 The initial-value integrator failed. Relax the tolerance
DTOL or see Comment 3.

 4 2 More than NMAX shooting points are needed for
stability.

 4 3 Newton’s iteration did not converge in MAXIT

iterations. If the problem is linear, do an extra
iteration. If this error still occurs, check that the

692 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

routine FCNJAC is giving the correct derivatives. If this
does not fix the problem, see Comment 3.

 4 4 Linear-equation solver failed. The problem may not
have a unique solution, or the problem may be highly
nonlinear. In the latter case, see Comment 3.

3. Many linear problems will be successfully solved using program-
selected shooting points. Nonlinear problems may require user effort and
input data. If the routine fails, then increase NMAX or parameterize the
problem. With many shooting points the program essentially uses a
finite-difference method, which has less trouble with nonlinearities than
shooting methods. After a certain point, however, increasing the number
of points will no longer help convergence. To parameterize the problem,
see Comment 4.

4. If the problem to be solved is highly nonlinear, then to obtain
convergence it may be necessary to embed the problem into a one-
parameter family of boundary value problems, y′ = f(t, y, p), h(y(tD,
tE, p)) = 0 such that for p = 0, the problem is simple, e.g., linear; and for
p = 1, the stated problem is solved. The routine BVPMS/DBVPMS
automatically moves the parameter from p = 0 toward p = 1.

5. This routine is not recommended for stiff systems of differential
equations.

Algorithm

Define N = NEQNS, M = NFINAL, tD = TLEFT and tE = TRIGHT. The routine
BVPMS uses a multiple-shooting technique to solve the differential equation
system y′ = f (t, y) with boundary conditions of the form

hN(y1(tD), …, y1 (tD), y1(tE), …, y1 (tE)) = 0 for k = 1, …, N

A modified version of IVPRK, page 645, is used to compute the initial-value
problem at each “shot.” If there are M shooting points (including the endpoints tD
and tE), then a system of NM simultaneous nonlinear equations must be solved.
Newton’s method is used to solve this system, which has a Jacobian matrix with a
“periodic band” structure. Evaluation of the NM functions and the NM × NM
(almost banded) Jacobian for one iteration of Newton’s method is accomplished
in one pass from tD to tE of the modified IVPRK, operating on a system of N(N +
1) differential equations. For most problems, the total amount of work should not
be highly dependent on M. Multiple shooting avoids many of the serious ill-
conditioning problems that plague simple shooting methods. For more details on
the algorithm, see Sewell (1982).

The boundary functions should be scaled so that all components hN are of
comparable magnitude since the absolute error in each is controlled.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 693

Example

The differential equations that model an elastic beam are (see Washizu 1968,
pages 142−143):

M
NM
EI

L

EIW M

EA U W N

N

xx

xx

x x

x

x− + =

+ =

+ − =

=

0 5

3 8

0

0

2 0

0

0
2 /

where U is the axial displacement, W is the transverse displacement, N is the
axial force, M is the bending moment, E is the elastic modulus, I is the moment
of inertia, A0 is the cross-sectional area, and L(x) is the transverse load.

Assume we have a clamped cylindrical beam of radius 0.1in, a length of 10in, and

an elastic modulus E = 10.6 × 106 lb/in2. Then, I = 0.784 × 10-4, and

A0 = π10-2 in2, and the boundary conditions are U = W = W[= 0 at each end. If
we let y1 = U, y2 = N/EA0,

y3 = W, y4 = W[, y5 = M/EI , and y6 = M[/EI, then the above nonlinear equations
can be written as a system of six first-order equations.

′ = −

′ =
′ =
′ = −
′ =

′ = −

y y
y

y

y y

y y

y y

y
y y x

1 2
4
2

2

3 4

4 5

5 6

6
0 2 5

2
0

A
I

L
EI
0 5

The boundary conditions are y1 = y3 = y4 = 0 at x = 0 and at x = 10. The loading
function is L(x) = −2, if 3 ≤ x ≤ 7, and is zero elsewhere.

The material parameters, A0 = A0, I = AI, and E, are passed to the evaluation
subprograms using the common block PARAM.

 INTEGER LDY, NEQNS, NMAX
 PARAMETER (NEQNS=6, NMAX=21, LDY=NEQNS)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, MAXIT, NFINAL, NINIT, NOUT

694 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 REAL TOL, X(NMAX), XLEFT, XRIGHT, Y(LDY,NMAX)
C SPECIFICATIONS FOR COMMON /PARAM/
 COMMON /PARAM/ A0, AI, E
 REAL A0, AI, E
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC REAL
 REAL REAL
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL BVPMS, SSET, UMACH,
 & FCNBC, FCNEQN, FCNJAC
C Set material parameters
 A0 = 3.14E-2
 AI = 0.784E-4
 E = 10.6E6
C Set parameters for BVPMS
 XLEFT = 0.0
 XRIGHT = 10.0
 TOL = 1.0E-4
 MAXIT = 19
 NINIT = NMAX
C Define the shooting points
 DO 10 I=1, NINIT
 X(I) = XLEFT + REAL(I-1)/REAL(NINIT-1)*(XRIGHT-XLEFT)
 CALL SSET (NEQNS, 0.0, Y(1,I), 1)
 10 CONTINUE
C Solve problem
 CALL BVPMS (FCNEQN, FCNJAC, FCNBC, NEQNS, XLEFT, XRIGHT, TOL,
 & TOL, MAXIT, NINIT, X, Y, LDY, NMAX, NFINAL, X, Y,
 & LDY)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(26X,A/12X,A,10X,A,7X,A)’) ’Displacement’,
 & ’X’, ’Axial’, ’Transvers’//
 & ’e’
 WRITE (NOUT,’(F15.1,1P2E15.3)’) (X(I),Y(1,I),Y(3,I),I=1,NFINAL)
 END
 SUBROUTINE FCNEQN (NEQNS, X, Y, P, DYDX)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL X, P, Y(NEQNS), DYDX(NEQNS)
C SPECIFICATIONS FOR LOCAL VARIABLES
 REAL FORCE
C SPECIFICATIONS FOR COMMON /PARAM/
 COMMON /PARAM/ A0, AI, E
 REAL A0, AI, E
C Define derivatives
 FORCE = 0.0
 IF (X.GT.3.0 .AND. X.LT.7.0) FORCE = -2.0
 DYDX(1) = Y(2) - P*0.5*Y(4)**2
 DYDX(2) = 0.0
 DYDX(3) = Y(4)
 DYDX(4) = -Y(5)
 DYDX(5) = Y(6)
 DYDX(6) = P*A0*Y(2)*Y(5)/AI - FORCE/E/AI
 RETURN
 END
 SUBROUTINE FCNBC (NEQNS, YLEFT, YRIGHT, P, F)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 695

 REAL P, YLEFT(NEQNS), YRIGHT(NEQNS), F(NEQNS)
C SPECIFICATIONS FOR COMMON /PARAM/
 COMMON /PARAM/ A0, AI, E
 REAL A0, AI, E
C Define boundary conditions
 F(1) = YLEFT(1)
 F(2) = YLEFT(3)
 F(3) = YLEFT(4)
 F(4) = YRIGHT(1)
 F(5) = YRIGHT(3)
 F(6) = YRIGHT(4)
 RETURN
 END
 SUBROUTINE FCNJAC (NEQNS, X, Y, P, DYPDY)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NEQNS
 REAL X, P, Y(NEQNS), DYPDY(NEQNS,NEQNS)
C SPECIFICATIONS FOR COMMON /PARAM/
 COMMON /PARAM/ A0, AI, E
 REAL A0, AI, E
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SSET
C Define partials, d(DYDX)/dY
 CALL SSET (NEQNS**2, 0.0, DYPDY, 1)
 DYPDY(1,2) = 1.0
 DYPDY(1,4) = -P*Y(4)
 DYPDY(3,4) = 1.0
 DYPDY(4,5) = -1.0
 DYPDY(5,6) = 1.0
 DYPDY(6,2) = P*Y(5)*A0/AI
 DYPDY(6,5) = P*Y(2)*A0/AI
 RETURN
 END

Output
 Displacement
 X Axial Transverse
 0.0 1.631E-11 -8.677E-10
 5.0 1.914E-05 -1.273E-03
 10.0 2.839E-05 -4.697E-03
 15.0 2.461E-05 -9.688E-03
 20.0 1.008E-05 -1.567E-02
 25.0 -9.550E-06 -2.206E-02
 30.0 -2.721E-05 -2.830E-02
 35.0 -3.644E-05 -3.382E-02
 40.0 -3.379E-05 -3.811E-02
 45.0 -2.016E-05 -4.083E-02
 50.0 -4.414E-08 -4.176E-02
 55.0 2.006E-05 -4.082E-02
 60.0 3.366E-05 -3.810E-02
 65.0 3.627E-05 -3.380E-02
 70.0 2.702E-05 -2.828E-02
 75.0 9.378E-06 -2.205E-02
 80.0 -1.021E-05 -1.565E-02
 85.0 -2.468E-05 -9.679E-03
 90.0 -2.842E-05 -4.692E-03
 95.0 -1.914E-05 -1.271E-03
100.0 0.000E+00 0.000E+00

696 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

DASPG/DDASPG (Single/Double precision)
Solve a first order differential-algebraic system of equations, g(t, y, y′) = 0, using
the Petzold−Gear BDF method.

Usage
CALL DASPG (N, T, TOUT, IDO, Y, YPR, GCN)

Arguments

N — Number of differential equations. (Input)

T — Independent variable, t. (Input/Output)
Set T to the starting value t0 at the first step.

TOUT — Final value of the independent variable. (Input)
Update this value when re-entering after output, IDO = 2.

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State
1 Initial entry
2 Normal re-entry after obtaining output
3 Release workspace
4 Return because of an error condition

The user sets IDO = 1 or IDO = 3. All other values of IDO are defined as output.
The initial call is made with IDO = 1 and T = t0. The routine then sets IDO = 2,
and this value is used for all but the last entry that is made with IDO = 3. This call
is used to release workspace and other final tasks. Values of IDO larger than 4
occur only when calling the second-level routine D2SPG and using the options
associated with reverse communication.

Y — Array of size N containing the dependent variable values, y. This array must
contain initial values. (Input/Output)

YPR — Array of size N containing derivative values, y′. This array must contain
initial values. (Input/Output)
The routine will solve for consistent values of y′ to satisfy the equations at the
starting point.

GCN — User-supplied SUBROUTINE to evaluate g(t, y, y′). The usage is
CALL GCN (N, T, Y, YPR, GVAL), where GCN must be declared EXTERNAL
in the calling program. The routine will solve for values of y′(t0) so that
g(t0, y, y′) = 0. The user can signal that g is not defined at requested values of
(t, y, y′) using an option. This causes the routine to reduce the step size or else
quit.

GVAL – Array of size N containing the function values, g(t, y, y′).
(Output)

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 697

Comments

Users can often get started using the routine DASPG/DDASPG without reading
beyond this point in the documentation. There is often no reason to use options
when getting started. Those readers who do not want to use options can turn
directly to the first two examples. The following tables give numbers and key
phrases for the options. A detailed guide to the options is given below in
Comment 2.

Value Brief or Key Phrase for INTEGER Option

6 INTEGER option numbers

7 Floating-point option numbers

IN(1) First call to DASPG, D2SPG

IN(2) Scalar or vector tolerances

IN(3) Return for output at intermediate steps

IN(4) Creep up on special point, TSTOP

IN(5) Provide (analytic) partial derivative formulas

IN(6) Maximum number of steps

IN(7) Control maximum step size

IN(8) Control initial step size

IN(9) Not Used

IN(10) Constrain dependent variables

IN(11) Consistent initial data

IN(12-15) Not Used

IN(16) Number of equations

IN(17) What routine did, if any errors

IN(18) Maximum BDF order

IN(19) Order of BDF on next move

IN(20) Order of BDF on previous move

IN(21) Number of steps

IN(22) Number of g evaluations

IN(23) Number of derivative matrix evaluations

IN(24) Number of error test failures

IN(25) Number of convergence test failures

IN(26) Reverse communiction for g

IN(27) Where is g stored?

IN(28) Panic flag

IN(29) Reverse communication, for partials

698 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

Value Brief or Key Phrase for INTEGER Option

IN(30) Where are partials stored?

IN(31) Reverse communication, for solving

IN(32) Not Used

IN(33) Where are vector tolerances stored?

IN(34) Is partial derivative array allocated?

IN(35) User’s work arrays sizes are checked

IN(36-50) Not used

Table 1. Key Phrases for Floating-Point Options

Value Brief or Key Phrase for Floating-Point Option

INR(1) Value of t

INR(2) Farthest internal t vaue of integration

INR(3) Value of TOUT

INR(4) A stopping point of integration before TOUT

INR(5) Values of two scalars ATOL, RTOL

INR(6) Initial step size to use

INR(7) Maximum step allowed

INR(8) Condition number reciprocal

INR(9) Value of cM�for partials

INR(10) Step size on the next move

INR(11) Step size on the previous move

INR(12-20) Not Used

Table 2. Number and Key Phrases for Floating-Point Options

1. Automatic workspace usage is

DASPG 76 + (MAXORD + 6)N + (N + K)N(1 - L) units, or
DDASPG 117 + 2((MAXORD + 6)N + (N + K)N(1 - L)) + N units.

The default value for MAXORD is 5. The value for the nonnegative integer
K is determined by option 16 of LSLRG (page 12), values IVAL(3) and
IVAL(4). The default value for K does not exceed 1. The default value
for L is 0. With option IN(34), L can be replaced by 1. This reduction in
the amount of work space required by the routine is provided for users
who are going to save their partial derivative matrix and solve their own
linear algebraic equations using reverse communication.

Workspace may be explicitly provided, and many of the options utilized
by directly calling D2SPG/DD2SPG. The reference is

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 699

CALL D2SPG (N, T, TOUT, IDO, Y, YPR, GCN, JGCN, IWK,
 WK)

The additional arguments are as follows:

IDO State
5 Return for evaluation of g(t, y, y′)
6 Return for evaluation of matrix A = [∂g/∂y + cM∂g/∂y′]
7 Return for factorization of the matrix A = [∂g/∂y + cM∂g/∂y′]
8 Return for solution of A∆y = ∆g

These values of IDO occur only when calling the second-level routine
D2SPG and using options associated with reverse communication. The
routine D2SPG/DD2SPG is reentered.

GCN — A Fortran SUBROUTINE to compute g(t, y, y′). This routine is
normally provided by the user. That is the default case. The dummy
IMSL routine DGSPG/DDGSPG may be used as this argument when g(t, y,
y′) is evaluated by reverse communication. In either case, a name must
be declared in a Fortran EXTERNAL statement. If usage of the dummy
IMSL routine is intended, then the name DGSPG/DDGSPG should be
specified. The dummy IMSL routine will never be called under this
optional usage of reverse communication. An example of reverse
communication for evaluation of g is given in Example 4.

JGCN — A Fortran SUBROUTINE to compute partial derivatives of
g(t, y, y′). This routine may be provided by the user. The dummy IMSL
routine DJSPG/DDJSPG may be used as this argument when partial
derivatives are computed using divided differences. This is the default.
The dummy routine is not called under default conditions. If partial
derivatives are to be explicitly provided, the routine JGCN must be
written by the user or reverse communication can be used. An example
of reverse communication for evaluation of the partials is given in
Example 4.

If the user writes a routine with the fixed name DJSPG/DDJSPG, then
partial derivatives can be provided while calling DASPG. An option is
used to signal that formulas for partial derivatives are being supplied.
This is illustrated in Example 3. The name of the partial derivative
routine must be declared in a Fortran EXTERNAL statement when calling
D2SPG. If usage of the dummy IMSL routine is intended, then the name
DJSPG/DDJSPG should be specified for this EXTERNAL name. Whenever
the user provides partial derivative evaluation formulas, by whatever
means, that must be noted with an option. Usage of the derivative
evaluation routine is CALL JGCN (N, T, Y, YPR, CJ, PDG, LDPDG) where

700 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

Arg Definition
N Number of equations. (Input)
T Independent variable, t. (Input)
Y Array of size N containing the values of the dependent

variables, y. (Input)
YPR Array of size N containing the values of the derivatives, y′.

(Input)
CJ The value cM used in computing the partial derivatives returned

in PDG. (Input)
PDG Array of size LDPDG * N containing the partial derivatives A = [

∂g/∂y + cM∂g/∂y′]. Each nonzero derivative entry aLM is returned
in the array location PDG(i, j). The array contents are zero
when the routine is called. Thus, only the nonzero derivatives
have to be defined in the routine JGCN. (Output)

LDPDG The leading dimension of PDG. Normally, this value is N. It is a
value larger than N under the conditions explained in option 16
of LSLRG (page 12).

JGCN must be declared EXTERNAL in the calling program.

IWK — Work array of integer values. The size of this array is 35 + N.
The contents of IWK must not be changed from the first call with IDO = 1
until after the final call with IDO = 3.

WK — Work array of floating-point values in the working precision.
The size of this array is 41 + (MAXORD + 6)N + (N + K)N(1 − L) where K
is determined from the values IVAL(3) and IVAL(4) of option 16 of
LSLRG (page 1173). The value of L is 0 unless option IN(34) is used to
avoid allocation of the array containing the partial derivatives. With the
use of this option, L can be set to 1. The contents of array WK must not be
changed from the first call with IDO = 1 until after the final call.

2. Integer and Floating-Point Options with Chapter 10 Options Manager

The routine DASPG allows the user access to many interface parameters
and internal working variables by the use of options. The options
manager subprograms IUMAG (page 1173), SUMAG (page 1175) and
DUMAG (page 1178), are used to change options from their default values
or obtain the current values of required parameters.

Options of type INTEGER:

6 This is the list of numbers used for INTEGER options. Users
will typically call this option first to get the numbers, IN(I), I =
1, 50. This option has 50 entries. The default values are IN(I) =
I + 50, I = 1, 50.

7 This is the list of numbers used for REAL and DOUBLE
PRECISION options. Users will typically call this option first

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 701

to get the numbers, INR(I), I = 1,20. This option has 20
entries. The default values are INR(I) = I + 50, I = 1, 20.

IN(1) This is the first call to the routine DASPG or D2SPG. Value is 0
for the first call, 1 for further calls. Setting IDO = 1 resets this
option to its default. Default value is 0.

IN(2) This flag controls the kind of tolerances to be used for the
solution. Value is 0 for scalar values of absolute and relative
tolerances applied to all components. Value is 1 when arrays
for both these quantities are specified. In this case, the option
IN(33) is used to get the offset into WK where the 2N array
values are to be placed: all ATOL values followed by all RTOL
values. This offset is defined after the call to the routine D2SPG
so users will have to call the options manager at a convenient
place in the GCN routine or during reverse communication.
Default value is 0.

IN(3) This flag controls when the code returns to the user with output
values of y and y′. If the value is 0, it returns to the user at T =
TOUT only. If the value is 1, it returns to the user at an internal
working step. Default value is 0.

IN(4) This flag controls whether the code should integrate past a
special point, TSTOP, and then interpolate to get y and y′at
TOUT. If the value is 0, this is permitted. If the value is 1, the
code assumes the equations either change on the alternate side
of TSTOP or they are undefined there. In this case, the code
creeps up to TSTOP in the direction of integration. The value of
TSTOP is set with option INR(4). Default value is 0.

IN(5) This flag controls whether partial derivatives are computed
using divided onesided differences, or they are to be computed
using user-supplied evaluation formulas. If the value is 0, use
divided differences. If the value is 1, use formulas for the
partial derivatives. See Example 3 for an illustration of one way
to do this. Default value is 0.

IN(6) The maximum number of steps. Default value is 500.

IN(7) This flag controls a maximum magnitude constraint for the step
size. If the value is 0, the routine picks its own maximum. If the
value is 1, a maximum is specified by the user. That value is set
with option number INR(7). Default value is 0.

IN(8) This flag controls an initial value for the step size. If the value
is 0, the routine picks its own initial step size. If the value is 1, a
starting step size is specified by the user. That value is set with
option number INR(6). Default value is 0.

IN(9) Not used. Default value is 0.

702 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

IN(10) This flag controls attempts to constrain all components to be
nonnegative. If the value is 0, no constraints are enforced. If
value is 1, constraint is enforced. Default value is 0.

IN(11) This flag controls whether the initial values (t, y, y′) are
consistent. If the value is 0, g(t, y, y′) = 0 at the initial point. If
the value is 1, the routine will try to solve for y′ to make this
equation satisfied. Default value is 1.

IN(12-15) Not used. Default value is 0 for each option.

IN(16) The number of equations in the system, n. Default value is 0.

IN(17) This value reports what the routine did. Default value is 0.

Value Explanation

1 A step was taken in the intermediate output mode. The value
TOUT has not been reached.

2 The integration to exactly TSTOP was completed.

3 The integration to TSTOP was completed by stepping past TSTOP
and interpolating to evaluate y and y′.

−1 Too many steps taken.

−2 Error tolerances are too small.

−3 A pure relative error tolerance can’t be satisfied.

−6 There were repeated error test failures on the last step.

−7 The BDF corrector equation solver did not converge.

−8 The matrix of partial derivatives is singular.

−10 The BDF corrector equation solver did not converge because the
evaluation failure flag was raised.

−11 The evaluation failure flag was raised to quit.

−12 The iteration for the initial vaule of y′ did not converge.

−33 There is a fatal error, perhaps caused by invalid input.

Table 3. What the Routine DASPG or D2SPG Did

IN(18) The maximum order of BDF formula the routine should use.
Default value is 5.

IN(19) The order of the BDF method the routine will use on the next
step. Default value is IMACH(5).

IN(20) The order of the BDF method used on the last step. Default
value is IMACH(5).

IN(21) The number of steps taken so far. Default value is 0.

IN(22) The number of times that g has been evaluated. Default value is
0.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 703

IN(23) The number of times that the partial derivative matrix has been
evaluated. Default value is 0.

IN(24) The total number of error test failures so far. Default value is 0.

IN(25) The total number of convergence test failures so far. This
includes singular iteration matrices. Default value is 0.

IN(26) Use reverse communication to evaluate g when this value is 0.
If the value is 1, forward communication is used. Use the
routine D2SPG for reverse communication. With reverse
communication, a return will be made with IDO = 5. Compute
the value of g, place it into the array WK at the offset obtained
with option IN(27), and re-enter the routine. Default value is 1.

IN(27) The user is to store the evaluated function g during reverse
communication in the work array WK using this value as an
offset. Default value is IMACH(5).

IN(28) This value is a “panic flag.” After an evaluation of g, this value
is checked. The value of g is used if the flag is 0. If it has the
value −1, the routine reduces the step size and possibly the
order of the BDF. If the value is −2, the routine returns control
to the user immediately. This option is also used to signal a
singular or poorly conditioned partial derivative matrix
encountered during the factor phase in reverse communication.
Use a nonzero value when the matrix is singular. Default value
is 0.

IN(29) Use reverse communication to evaluate the partial derivative
matrix when this value is 0. If the value is 1, forward
communication is used. Use the routine D2SPG for reverse
communication. With reverse communication, a return will be
made with IDO = 6. Compute the partial derivative matrix A
and re-enter the routine. If forward communication is used for
the linear solver, return the partials using the offset into the
array WK. This offset value is obtained with option IN(30).
Default value is 1.

IN(30) The user is to store the values of the partial derivative matrix A
by columns in the work array WK using this value as an offset.
The option 16 for LSLRG is used here to compute the row
dimension of the internal working array that contains A. Users
can also choose to store this matrix in some convenient form in
their calling program if they are providing linear system solving
using reverse communication. See options IN(31) and IN(34).
Default value is IMACH(5).

704 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

IN(31) Use reverse communication to solve the linear system
A∆y = ∆g if this value is 0. If the value is 1, use forward
communication into the routines L2CRG (page 15) and LFSRG
(page 20) for the linear system solving. Return the solution
using the offset into the array WK where g is stored. This offset
value is obtained with option IN(27). With reverse
communication, a return will be made with IDO = 7 for
factorization of A and with IDO = 8 for solving the system. Re-
enter the routine in both cases. If the matrix A is singular or
poorly conditioned, raise the “panic flag,” option IN(28),
during the factorization. Default value is 1.

IN(32) Not used. Default value is 0.

IN(33) The user is to store the vector of values for ATOL and RTOL in
the array WK using this value as an offset. The routine D2SPG

must be called before this value is defined.

IN(34) This flag is used if the user has not allocated storage for the
matrix A in the array WK. If the value is 0, storage is allocated.
If the value is 1, storage was not allocated. In this case, the user
must be using reverse communication to evaluate the partial
derivative matrix and to solve the linear systems
A∆y = ∆g. Default value is 0.

IN(35) These two values are the sizes of the arrays IWK and WK
allocated in the users program. The values are checked against
the program requirements. These checks are made only if the
values are positive. Users will normally set this option when
directly calling D2SPG. Default values are (0, 0).

Options of type REAL or DOUBLE PRECISION:

INR(1) The value of the independent variable, t. Default value is
AMACH(6).

INR(2) The farthest working t point the integration has reached.
Default value is AMACH(6) .

INR(3) The current value of TOUT. Default value is AMACH(6).

INR(4) The next special point, TSTOP, before reaching TOUT. Default
value is AMACH(6). Used with option IN(4).

INR(5) The pair of scalar values ATOL and RTOL that apply to the error
estimates of all components of y. Default values for both are
SQRT(AMACH(4)).

INR(6) The initial step size if DASPG is not to compute it internally.
Default value is AMACH(6).

INR(7) The maximum step size allowed. Default value is AMACH(2).

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 705

INR(8) This value is the reciprocal of the condition number of the
matrix A. It is defined when forward communication is used to
solve for the linear updates to the BDF corrector equation. No
further program action, such as declaring a singular system,
based on the condition number. Users can declare the system to
be singular by raising the “panic flag” using option IN(28).
Default value is AMACH(6).

INR(9) The value of cM used in the partial derivative matrix for reverse
communication evaluation. Default value is AMACH(6).

INR(10)The step size to be attempted on the next move. Default value is
AMACH(6).

INR(11) The step size taken on the previous move. Default value is
AMACH(6).

4. Norm Function Subprogram

The routine DASPG uses a weighted Euclidean-RMS norm to measure the
size of the estimated error in each step. This is done using a FUNCTION

subprogram: REAL FUNCTION D10PG (N, V, WT). This routine
returns the value of the RMS weighted norm given by:

D10PG = −
=∑N v wti ii

N1 2

1
/1 6

Users can replace this function with one of their own choice. This should
be done only for problem-related reasons.

Algorithm

Routine DASPG finds an approximation to the solution of a system of differential-
algebraic equations g(t, y, y′) = 0, with given initial data for y and
y′. The routine uses BDF formulas, appropriate for systems of stiff ODEs, and
attempts to keep the global error proportional to a user-specified tolerance. See
Brenan et al. (1989). This routine is efficient for stiff systems of index 1 or index
0. See Brenan et al. (1989) for a definition of index. Users are encouraged to use
DOUBLE PRECISION accuracy on machines with a short REAL precision accuracy.
The examples given below are in REAL accuracy because of the desire for
consistency with the rest of IMSL MATH/LIBRARY examples. The routine
DASPG is based on the code DASSL designed by L. Petzold (1982-1990).

Example 1

The Van der Pol equation u″ + µ(u2 − 1) u′ + u = 0, µ > 0, is a single ordinary
differential equation with a periodic limit cycle. See Hartman (1964, page 181).
For the value µ = 5, the equations are integrated from t = 0 until the limit has
clearly developed at t = 26. The (arbitrary) initial conditions used here are
u(0) = 2 and u′(0) = − 2/3. Except for these initial conditions and the final t
value, this is problem (E2) of the Enright and Pryce (1987) test package. This

706 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

equation is solved as a differential-algebraic system by defining the first-order
system:

ε µ

ε

=
=

= − ′ =

= − − + ′ =

1

0

1 0

1

1 2 1

2 1
2

2 1 2

/

y u

g y y

g y y y y3 8 1 6
Note that the initial condition for

′y2

in the sample program is not consistent, g2 ≠ 0 at t = 0. The routine DASPG solves
for this starting value. No options need to be changed for this usage. The set of
pairs (u(tM), u′(tM)) are accumulated for the 260 values tM = 0.1, 26, (0.1).

 INTEGER N, NP
 PARAMETER (N=2, NP=260)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER ISTEP, NOUT, NSTEP
 REAL DELT, T, TEND, U(NP), UPR(NP), Y(N), YPR(N)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL DASPG, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL GCN
C Define initial data
 IDO = 1
 T = 0.0
 TEND = 26.0
 DELT = 0.1
 NSTEP = TEND/DELT
C Initial values
 Y(1) = 2.0
 Y(2) = -2.0/3.0
C Initial derivatives
 YPR(1) = Y(2)
 YPR(2) = 0.
C Write title
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
C Integrate ODE/DAE
 ISTEP = 0
 10 CONTINUE
 ISTEP = ISTEP + 1
 CALL DASPG (N, T, T+DELT, IDO, Y, YPR, GCN)
C Save solution for plotting
 IF (ISTEP .LE. NSTEP) THEN
 U(ISTEP) = Y(1)
 UPR(ISTEP) = YPR(1)
C Release work space
 IF (ISTEP .EQ. NSTEP) IDO = 3
 GO TO 10
 END IF
 WRITE (NOUT,99999) TEND, Y, YPR
99998 FORMAT (11X, ’T’, 14X, ’Y(1)’, 11X, ’Y(2)’, 10X, ’Y’’(1)’, 10X,
 & ’Y’’(2)’)

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 707

99999 FORMAT (5F15.5)
C Start plotting
C CALL SCATR (NSTEP, U, UPR)
C CALL EFSPLT (0, ’ ’)
 STOP
 END
C
 SUBROUTINE GCN (N, T, Y, YPR, GVAL)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPR(N), GVAL(N)
C SPECIFICATIONS FOR LOCAL VARIABLES
 REAL EPS
C
 EPS = 0.2
C
 GVAL(1) = Y(2) - YPR(1)
 GVAL(2) = (1.0-Y(1)**2)*Y(2) - EPS*(Y(1)+YPR(2))
 RETURN
 END

Output
 T Y(1) Y(2) Y’(1) Y’(2)
26.00000 1.45330 -0.24486 -0.24713 -0.09399

Figure 5-1 Van der Pol Cycle, (u(t), u′(t)), µ = 5.

708 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

Example 2

The first-order equations of motion of a point-mass m suspended on a massless
wire of length l under the influence of gravity force, mg and tension value λ, in
Cartesian coordinates, (p, q), are

′ =
′ =
′ = −
′ = − −

+ − =

p u

q v

mu p

mv q mg

p q

λ
λ

2 2 2 0l

This is a genuine differential-algebraic system. The problem, as stated, has an
index number equal to the value 3. Thus, it cannot be solved with DASPG directly.
Unfortunately, the fact that the index is greater than 1 must be deduced indirectly.
Typically there will be an error processed which states that the (BDF) corrector
equation did not converge. The user then differentiates and replaces the constraint
equation. This example is transformed to a problem of index number of value 1
by differentiating the last equation twice. This resulting equation, which replaces
the given equation, is the total energy balance:

m u v mgq()2 2 2 0+ − − =l λ
With initial conditions and systematic definitions of the dependent variables, the
system becomes:

p q u v

y p

y q

y u

y v

y

0 0 0 0 0 0

1

2

3

4

5

0 5 0 5 0 5 0 5 0 5= = = = =
=
=
=
=
=

l, λ

λ

g y y

g y y

g y y my

g y y mg my

g m y y mgy y

1 3 1

2 4 2

3 1 5 3

4 2 5 4

5 3
2

4
2

2
2

5

0

0

0

0

0

= − ′ =
= − ′ =
= − − ′ =
= − − − ′ =

= + − − =3 8 l

The problem is given in English measurement units of feet, pounds, and
seconds. The wire has length 6.5 ft, and the mass at the end is 98 lb. Usage of
the software does not require it, but standard or “SI” units are used in the

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 709

numerical model. This conversion of units is done as a first step in the user-
supplied evaluation routine, GCN. A set of initial conditions, corresponding to the
pendulum starting in a horizontal position, are provided as output for the input
signal of n = 0. The maximum magnitude of the tension parameter,
λ(t) = y5(t), is computed at the output points, t = 0.1, π, (0.1). This extreme value
is converted to English units and printed.

 INTEGER N
 PARAMETER (N=5)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, ISTEP, NOUT, NSTEP
 REAL DELT, GVAL(N), MAXLB, MAXTEN, T, TEND, TMAX, Y(N),
 & YPR(N)
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC ABS
 REAL ABS
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL CUNIT, DASPG, GCN, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CONST
 REAL CONST
C Define initial data
 IDO = 1
 T = 0.0
 TEND = CONST(’pi’)
 DELT = 0.1
 NSTEP = TEND/DELT
 CALL UMACH (2, NOUT)
C Get initial conditions
 CALL GCN (0, T, Y, YPR, GVAL)
 ISTEP = 0
 MAXTEN = 0.
 10 CONTINUE
 ISTEP = ISTEP + 1
 CALL DASPG (N, T, T+DELT, IDO, Y, YPR, GCN)
 IF (ISTEP .LE. NSTEP) THEN
C Note max tension value
 IF (ABS(Y(5)) .GT. ABS(MAXTEN)) THEN
 TMAX = T
 MAXTEN = Y(5)
 END IF
 IF (ISTEP .EQ. NSTEP) IDO = 3
 GO TO 10
 END IF
C Convert to English units
 CALL CUNIT (MAXTEN, ’kg/s**2’, MAXLB, ’lb/s**2’)
C Print maximum tension
 WRITE (NOUT,99999) MAXLB, TMAX
99999 FORMAT (’ Extreme string tension of’, F10.2, ’ (lb/s**2)’,
 & ’ occurred at ’, ’time ’, F10.2)
 END
C
 SUBROUTINE GCN (N, T, Y, YPR, GVAL)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(*), YPR(*), GVAL(*)
C SPECIFICATIONS FOR LOCAL VARIABLES
 REAL FEETL, GRAV, LENSQ, MASSKG, MASSLB, METERL, MG

710 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

C SPECIFICATIONS FOR SAVE VARIABLES
 LOGICAL FIRST
 SAVE FIRST
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL CUNIT
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CONST
 REAL CONST
C
 DATA FIRST/.TRUE./
C
 IF (FIRST) GO TO 20
 10 CONTINUE
C Define initial conditions
 IF (N .EQ. 0) THEN
C The pendulum is horizontal
C with these initial y values
 Y(1) = METERL
 Y(2) = 0.
 Y(3) = 0.
 Y(4) = 0.
 Y(5) = 0.
 YPR(1) = 0.
 YPR(2) = 0.
 YPR(3) = 0.
 YPR(4) = 0.
 YPR(5) = 0.
 RETURN
 END IF
C Compute residuals
 GVAL(1) = Y(3) - YPR(1)
 GVAL(2) = Y(4) - YPR(2)
 GVAL(3) = -Y(1)*Y(5) - MASSKG*YPR(3)
 GVAL(4) = -Y(2)*Y(5) - MASSKG*YPR(4) - MG
 GVAL(5) = MASSKG*(Y(3)**2+Y(4)**2) - MG*Y(2) - LENSQ*Y(5)
 RETURN
C Convert from English to
C Metric units:
 20 CONTINUE
 FEETL = 6.5
 MASSLB = 98.0
C Change to meters
 CALL CUNIT (FEETL, ’ft’, METERL, ’meter’)
C Change to kilograms
 CALL CUNIT (MASSLB, ’lb’, MASSKG, ’kg’)
C Get standard gravity
 GRAV = CONST(’StandardGravity’)
 MG = MASSKG*GRAV
 LENSQ = METERL**2
 FIRST = .FALSE.
 GO TO 10
 END

Output
Extreme string tension of 1457.24 (lb/s**2) occurred at time 2.50

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 711

Example 3

In this example, we solve a stiff ordinary differential equation (E5) from the test
package of Enright and Pryce (1987). The problem is nonlinear with nonreal
eigenvalues. It is included as an example because it is a stiff problem, and its
partial derivatives are provided in the usersupplied routine with the fixed name
DJSPG. Users who require a variable routine name for partial derivatives can use
the routine D2SPG. Providing explicit formulas for partial derivatives is an
important consideration for problems where evaluations of the function
g(t, y, y′) are expensive. Signaling that a derivative matrix is provided requires a
call to the Chapter 10 options manager utility, IUMAG. In addition, an initial
integration step-size is given for this test problem. A signal for this is passed
using the options manager routine IUMAG. The error tolerance is changed from
the defaults to a pure absolute tolerance of 0.1 * SQRT(AMACH(4)). Also see
IUMAG (page 1178), SUMAG, page 1175, and DUMAG, page 1178 for further details
about the options manager routines.

 INTEGER N
 PARAMETER (N=4)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, INUM, IPUT, IRNUM
 PARAMETER (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IDO, IN(50), INR(20), IOPT(2), IVAL(2), NOUT
 REAL C0, SVAL(3), T, TEND, Y(N), YPR(N)
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL DASPG, IUMAG, SUMAG, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL GCN
C Define initial data
 IDO = 1
 T = 0.0
 TEND = 1000.0
C Initial values
 C0 = 1.76E-3
 Y(1) = C0
 Y(2) = 0.
 Y(3) = 0.
 Y(4) = 0.
C Initial derivatives
 YPR(1) = 0.
 YPR(2) = 0.
 YPR(3) = 0.
 YPR(4) = 0.
C Get option numbers
 IOPT(1) = INUM
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IN)
 IOPT(1) = IRNUM
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, INR)
C Provide initial step
 IOPT(1) = INR(6)
 SVAL(1) = 5.0E-5
C Provide absolute tolerance
 IOPT(2) = INR(5)
 SVAL(2) = 0.1*SQRT(AMACH(4))
 SVAL(3) = 0.0

712 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 CALL SUMAG (’math’, ICHAP, IPUT, 2, IOPT, SVAL)
C Using derivatives and
 IOPT(1) = IN(5)
 IVAL(1) = 1
C providing initial step
 IOPT(2) = IN(8)
 IVAL(2) = 1

 CALL IUMAG (’math’, ICHAP, IPUT, 2, IOPT, IVAL)
C Write title
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
C Integrate ODE/DAE
 CALL DASPG (N, T, TEND, IDO, Y, YPR, GCN)
 WRITE (NOUT,99999) T, Y, YPR
C Reset floating options
C to defaults
 IOPT(1) = -INR(5)
 IOPT(2) = -INR(6)
C
 CALL SUMAG (’math’, ICHAP, IPUT, 2, IOPT, SVAL)
C Reset integer options
C to defaults
 IOPT(1) = -IN(5)
 IOPT(2) = -IN(8)
C
 CALL IUMAG (’math’, ICHAP, IPUT, 2, IOPT, IVAL)

99998 FORMAT (11X, ’T’, 14X, ’Y followed by Y’’’)
99999 FORMAT (F15.5/(4F15.5))
 END
C
 SUBROUTINE GCN (N, T, Y, YPR, GVAL)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL T, Y(N), YPR(N), GVAL(N)
C SPECIFICATIONS FOR LOCAL VARIABLES
 REAL C1, C2, C3, C4
C
 C1 = 7.89E-10
 C2 = 1.1E7
 C3 = 1.13E9
 C4 = 1.13E3
C
 GVAL(1) = -C1*Y(1) - C2*Y(1)*Y(3) - YPR(1)
 GVAL(2) = C1*Y(1) - C3*Y(2)*Y(3) - YPR(2)
 GVAL(3) = C1*Y(1) - C2*Y(1)*Y(3) + C4*Y(4) - C3*Y(2)*Y(3) -
 & YPR(3)
 GVAL(4) = C2*Y(1)*Y(3) - C4*Y(4) - YPR(4)
 RETURN
 END
 SUBROUTINE DJSPG (N, T, Y, YPR, CJ, PDG, LDPDG)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N, LDPDG
 REAL T, CJ, Y(N), YPR(N), PDG(LDPDG,N)
C SPECIFICATIONS FOR LOCAL VARIABLES
 REAL C1, C2, C3, C4

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 713

C
 C1 = 7.89E-10
 C2 = 1.1E7
 C3 = 1.13E9
 C4 = 1.13E3
C
 PDG(1,1) = -C1 - C2*Y(3) - CJ
 PDG(1,3) = -C2*Y(1)
 PDG(2,1) = C1
 PDG(2,2) = -C3*Y(3) - CJ
 PDG(2,3) = -C3*Y(2)
 PDG(3,1) = C1 - C2*Y(3)
 PDG(3,2) = -C3*Y(3)
 PDG(3,3) = -C2*Y(1) - C3*Y(2) - CJ
 PDG(3,4) = C4
 PDG(4,1) = C2*Y(3)
 PDG(4,3) = C2*Y(1)
 PDG(4,4) = -C4 - CJ
 RETURN
 END

Output
 T Y followed by Y’
1000.00000
 0.00162 0.00000 0.00000 0.00000
 0.00000 0.00000 0.00000 0.00000

Example 4

In this final example, we compute the solution of n = 10 ordinary differential

equations, g = Hy − y′, where y(0) = y0 = (1, 1, …, 1)7. The value

i
n

iy t=∑ 1 0 5
is evaluated at t = 1. The constant matrix H has entries hL�M�= min(j − i, 0) so it is
lower Hessenberg. We use reverse communication for the evaluation of the
following intermediate quantities:

1. The function g,

2. The partial derivative matrix A = ∂g/∂y + cM∂g/∂y′ = H − cM�I,

3. The solution of the linear system A∆y = ∆g.

In addition to the use of reverse communication, we evaluate the partial
derivatives using formulas. No storage is allocated in the floating-point work
array for the matrix. Instead, the matrix A is stored in an array A within the main
program unit. Signals for this organization are passed using the routine IUMAG

(page 1178).

An algorithm appropriate for this matrix, Givens transformations applied from the
right side, is used to factor the matrix A. The rotations are reconstructed during
the solve step. See SROTG (page 1045) for the formulas.

The routine D2SPG stores the value of cM. We get it with a call to the options
manager routine SUMAG (page 1175). A pointer, or offset into the work array, is

714 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

obtained as an integer option. This gives the location of g and ∆g. The solution
vector ∆y replaces ∆g at that location. Caution: If a user writes code wherein g is
computed with reverse communication and partials are evaluated with divided
differences, then there will be two distinct places where g is to be stored. This
example shows a correct place to get this offset.

This example also serves as a prototype for large, structured (possibly nonlinear)
DAE problems where the user must use special methods to store and factor the
matrix A and solve the linear system A∆y = ∆g. The word “factor” is used literally
here. A user could, for instance, solve the system using an iterative method.
Generally, the factor step can be any preparatory phase required for a later solve
step.

 INTEGER N
 PARAMETER (N=10)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, INUM, IPUT, IRNUM
 PARAMETER (ICHAP=5, IGET=1, INUM=6, IPUT=2, IRNUM=7)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IDO, IN(50), INR(20), IOPT(6), IVAL(7), IWK(35+N),
 & J, NOUT
 REAL A(N,N), GVAL(N), H(N,N), SC, SS, SUMY, SVAL(1), T,
 & TEND, WK(41+11*N), Y(N), YPR(N), Z
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC ABS, SQRT
 REAL ABS, SQRT
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL D2SPG, IUMAG, SAXPY, SCOPY, SGEMV, SROT, SROTG, SSET,
 & SUMAG, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL DGSPG, DJSPG
C Define initial data
 IDO = 1
 T = 0.0E0
 TEND = 1.0E0
C Initial values
 CALL SSET (N, 1.0E0, Y, 1)
 CALL SSET (N, 0.0, YPR, 1)
C Initial lower Hessenberg matrix
 CALL SSET (N*N, 0.0E0, H, 1)
 DO 20 I=1, N - 1
 DO 10 J=1, I + 1
 H(I,J) = J - I
 10 CONTINUE
 20 CONTINUE
 DO 30 J=1, N
 H(N,J) = J - N
 30 CONTINUE
C Get integer option numbers
 IOPT(1) = INUM
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IN)
C Get floating point option numbers
 IOPT(1) = IRNUM
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, INR)
C Set for reverse communication
C evaluation of g.
 IOPT(1) = IN(26)

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 715

 IVAL(1) = 0
C Set for evaluation of partial
C derivatives.
 IOPT(2) = IN(5)
 IVAL(2) = 1
C Set for reverse communication
C evaluation of partials.
 IOPT(3) = IN(29)
 IVAL(3) = 0
C Set for reverse communication
C solution of linear equations.
 IOPT(4) = IN(31)
 IVAL(4) = 0
C Storage for the partial
C derivative array not allocated.
 IOPT(5) = IN(34)
 IVAL(5) = 1
C Set the sizes of IWK, WK
C for internal checking.
 IOPT(6) = IN(35)
 IVAL(6) = 35 + N
 IVAL(7) = 41 + 11*N
C ’Put’ integer options.
 CALL IUMAG (’math’, ICHAP, IPUT, 6, IOPT, IVAL)
C Write problem title.
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
C Integrate ODE/DAE. Use
C dummy IMSL external names.
 40 CONTINUE
 CALL D2SPG (N, T, TEND, IDO, Y, YPR, DGSPG, DJSPG, IWK, WK)
C Find where g goes.
C (It only goes in one place
C here, but can vary if
C divided differences are used
C for partial derivatives.)
 IOPT(1) = IN(27)
 CALL IUMAG (’math’, ICHAP, IGET, 1, IOPT, IVAL)
C Direct user response.
 GO TO (50, 180, 60, 50, 90, 100, 130, 150), IDO
 50 CONTINUE
C This should not occur.
 WRITE (NOUT,*) ’ Unexpected return with IDO = ’, IDO
 60 CONTINUE
C Reset options to defaults
 DO 70 I=1, 50
 IN(I) = -IN(I)
 70 CONTINUE
 CALL IUMAG (’math’, ICHAP, IPUT, 50, IN, IVAL)
 DO 80 I=1, 20
 INR(I) = -INR(I)
 80 CONTINUE
 CALL SUMAG (’math’, ICHAP, IPUT, 20, INR, SVAL)
 STOP
 90 CONTINUE
C Return came for g evaluation.
 CALL SCOPY (N, YPR, 1, GVAL, 1)
 CALL SGEMV (’NO’, N, N, 1.0E0, H, N, Y, 1, -1.0E0, GVAL, 1)
C Put g into place.

716 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 CALL SCOPY (N, GVAL, 1, WK(IVAL(1)), 1)
 GO TO 40
 100 CONTINUE
C Return came for partial
C derivative evaluation.
 110 CALL SCOPY (N*N, H, 1, A, 1)
C Get value of c_j for partials.
 IOPT(1) = INR(9)
 CALL SUMAG (’math’, ICHAP, IGET, 1, IOPT, SVAL)
C Subtract c_j from diagonals
C to compute (partials for y’)*c_j.
 DO 120 I=1, N
 A(I,I) = A(I,I) - SVAL(1)
 120 CONTINUE
 GO TO 40
 130 CONTINUE
C Return came for factorization
 DO 140 J=1, N - 1
C Construct and apply Givens
C transformations.
 CALL SROTG (A(J,J), A(J,J+1), SC, SS)
 CALL SROT (N-J, A(J+1,1), 1, A(J+1,J+1), 1, SC, SS)
 140 CONTINUE
 GO TO 40
 150 CONTINUE
C Return came to solve the system
 CALL SCOPY (N, WK(IVAL(1)), 1, GVAL, 1)
 DO 160 J=1, N - 1
 GVAL(J) = GVAL(J)/A(J,J)
 CALL SAXPY (N-J, -GVAL(J), A(J+1,J), 1, GVAL(J+1), 1)
 160 CONTINUE
 GVAL(N) = GVAL(N)/A(N,N)
C Reconstruct Givens rotations
 DO 170 J=N - 1, 1, -1
 Z = A(J,J+1)
 IF (ABS(Z) .LT. 1.0E0) THEN
 SC = SQRT(1.0E0-Z**2)
 SS = Z
 ELSE IF (ABS(Z) .GT. 1.0E0) THEN
 SC = 1.0E0/Z
 SS = SQRT(1.0E0-SC**2)
 ELSE
 SC = 0.0E0
 SS = 1.0E0
 END IF
 CALL SROT (1, GVAL(J), 1, GVAL(J+1), 1, SC, SS)
 170 CONTINUE
 CALL SCOPY (N, GVAL, 1, WK(IVAL(1)), 1)
 GO TO 40
C
 180 CONTINUE
 SUMY = 0.E0
 DO 190 I=1, N
 SUMY = SUMY + Y(I)
 190 CONTINUE
 WRITE (NOUT,99999) TEND, SUMY
C Finish up internally
 IDO = 3
 GO TO 40

99998 FORMAT (11X, ’T’, 6X, ’Sum of Y(i), i=1,n’)
99999 FORMAT (2F15.5)
 END

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 717

Output
 T Sum of Y(i), i=1,n
1.00000 65.17058

MOLCH/DMOLCH (Single/Double precision)
Solve a system of partial differential equations of the form uW = f(x, t, u, u[, u[[)
using the method of lines. The solution is represented with cubic Hermite
polynomials.

Usage
CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK,
 TOL, HINIT, Y, LDY)

Arguments

IDO — Flag indicating the state of the computation. (Input/Output)

IDO State
1 Initial entry
2 Normal reentry
3 Final call, release workspace

Normally, the initial call is made with IDO = 1. The routine then sets IDO = 2, and
this value is then used for all but the last call that is made with IDO = 3.

FCNUT — User-supplied SUBROUTINE to evaluate the function uW. The usage is
CALL FCNUT (NPDES, X, T, U, UX, UXX, UT), where

NPDES – Number of equations. (Input)
X – Space variable, x. (Input)
T – Time variable, t. (Input)
U – Array of length NPDES containing the dependent variable values,
u. (Input)
UX – Array of length NPDES containing the first derivatives u[�
(Input)
UXX – Array of length NPDES containing the second derivative u[[.
(Input)
UT – Array of length NPDES containing the computed derivatives, uW.
(Output)

The name FCNUT must be declared EXTERNAL in the calling program.

FCNBC — User-supplied SUBROUTINE to evaluate the boundary conditions. The
boundary conditions accepted by MOLCH are αN�uN + βN�u[≡ γN. Note: Users must

supply the values αN and βN, which determine the values γN. Since the γN

718 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

can depend on t, values of γ′N are also required. Users must supply these values.
The usage is CALL FCNBC (NPDES, X, T, ALPHA, BETA, GAMMAP),
where

NPDES – Number of equations. (Input)
X – Space variable, x. This value directs which boundary condition to
compute. (Input)
T – Time variable, t. (Input)
ALPHA – Array of length NPDES containing the αN values. (Output)

BETA – Array of length NPDES containing the βN values. (Output)
GAMMAP – Array of length NPDES containing the values of the
derivatives,

d

dt
k

k
γ γ= ′

(Output)

The name FCNBC must be declared EXTERNAL in the calling program.

NPDES — Number of differential equations. (Input)

T — Independent variable, t. (Input/Output)
On input, T supplies the initial time, t0. On output, T is set to the value to which
the integration has been updated. Normally, this new value is TEND.

TEND — Value of t = tend at which the solution is desired. (Input)

NX — Number of mesh points or lines. (Input)

XBREAK — Array of length NX containing the break points for the cubic Hermite
splines used in the x discretization. (Input)
The points in the array XBREAK must be strictly increasing. The values XBREAK(1)
and XBREAK(NX) are the endpoints of the interval.

TOL — Differential equation error tolerance. (Input)
An attempt is made to control the local error in such a way that the global relative
error is proportional to TOL.

HINIT — Initial step size in the t integration. (Input)
This value must be nonnegative. If HINIT is zero, an initial step size of
0.001|tend − t0| will be arbitrarily used. The step will be applied in the direction
of integration.

Y — Array of size NPDES by NX containing the solution. (Input/Output)
The array Y contains the solution as Y(k, i) = uN(x, tend) at x = XBREAK(i). On
input, Y contains the initial values. It MUST satisfy the boundary conditions. On
output, Y contains the computed solution.
There is an optional application of MOLCH that uses derivative values, u[(x, t0).
The user allocates twice the space for Y to pass this information. The optional
derivative information is input as

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 719

Y k i NX, ,+ =0 5 1 6∂
∂
u

x
x tk

0

at x = X(i). The array Y contains the optional derivative values as output:

Y k i NX, ,+ =0 5 0 5∂
∂
u

x
x tendk

at x = X(i). To signal that this information is provided, use an options manager
call as outlined in Comment 3 and illustrated in Examples 3 and 4.

LDY — Leading dimension of Y exactly as specified in the dimension statement
of the calling program. (Input)

Comments

1. Automatic workspace usage is

MOLCH 2NX * NPDES(12 * NPDES2 + 21 * NPDES + 10)

DMOLCH 2NX * NPDES(24 * NPDES2 + 42 * NPDES + 19)

Workspace may be explicitly provided, if desired, by use of
M2LCH/DM2LCH. The reference is

CALL M2LCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX,
 XBREAK, TOL, HINIT, Y, LDY, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 2NX * NPDES(12 * NPDES2 + 21 * NPDES +
9). WK should not be changed between calls to M2LCH.

IWK — Work array of length 2NX * NPDES. IWK should not be changed
between calls to M2LCH.

2. Informational errors
Type Code
 4 1 After some initial success, the integration was halted

by repeated error test failures.
 4 2 On the next step, X + H will equal X. Either TOL is too

small or the problem is stiff.
 4 3 After some initial success, the integration was halted

by a test on TOL.
 4 4 Integration was halted after failing to pass the error

test even after reducing the step size by a factor of
1.0E + 10. TOL may be too small.

 4 5 Integration was halted after failing to achieve corrector
convergence even after reducing the step size by a
factor of 1.0E + 10. TOL may be too small.

3. Optional usage with Chapter 10 Option Manager

11 This option consists of the parameter PARAM, an array with 50
components. See IVPAG (page 646) for a more complete

720 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

documentation of the contents of this array. To reset this
option, use the subprogram SUMAG (page 1175) for single
precision, and DUMAG (page 1178) for double precision. The
entry PARAM(1) is assigned the initial step, HINIT. The entries
PARAM(15) and PARAM(16) are assigned the values equal to the
number of lower and upper diagonals that will occur in the
Newton method for solving the BDF corrector equations. The
value PARAM(17) = 1 is used to signal that the x derivatives of
the initial data are provided in the the array Y. The output
values PARAM(31)-PARAM(36) , showing technical data about
the ODE integration, are available with another option manager
subroutine call. This call is made after the storage for MOLCH is
released. The default values for the first 20 entries of PARAM are
(0, 0, amach(2), 500., 0., 5., 0, 0, 1., 3., 1., 2., 2., 1., amach(6),
amach(6), 0, sqrt(amach(4)), 1., 0.). Entries 21−50 are
defaulted to amach(6).

Algorithm

Let M = NPDES, N = NX and xL = XBREAK(I). The routine MOLCH uses the method
of lines to solve the partial differential equation system

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

u

t
f x t u u

u

x

u

x

u

x

u

x
k

k M
M M=

�
��

�
��, , , , , , ,1

1
2

1
2

2

2K K K

with the initial conditions

uN = uN(x, t) at t = t0

and the boundary conditions

α β ∂
∂

γk k k
k

Nu
u

x
k x x x x+ = = =at and at 1

for k = 1, …, M.

Cubic Hermite polynomials are used in the x variable approximation so that the
trial solution is expanded in the series

$, , ,u x t a t x t xk i k i i k i
i

M

b0 5 0 5 0 5 0 5 0 52 7= +
=
∑ φ ψ

1

where φL(x) and ψL(x) are the standard basis functions for the cubic Hermite

polynomials with the knots x1 < x2 < … < x1. These are piecewise cubic
polynomials with continuous first derivatives. At the breakpoints, they satisfy

φ δ ψ

φ ψ δ

i l il i l

i
l

i
l il

x x

d

dx
x

d

dx
x

1 6 1 6
1 6 1 6

= =

= =

0

0

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 721

According to the collocation method, the coefficients of the approximation are
obtained so that the trial solution satisfies the differential equation at the two
Gaussian points in each subinterval,

p x x x

p x x x

j j j j

j j j j

2 1 1

2 1

3 3

6

3 3

6

− +

+

= + − −

= + − +

3 8

3 8
for j = 1, …, N. The collocation approximation to the differential equation is

da

dt
p

db

dt
p

f p t u p u p u p u p

i k
i j

i k
i j

k j j M j xx j M xx j

, ,

, , $, , $, , $, , $

φ ψ3 8 3 8
3 8 3 8 1 6 3 8 1 6 3 84 9

+ =

1 1K K K

for k = 1, …, M and j = 1, …, 2(N − 1).

This is a system of 2M(N − 1) ordinary differential equations in 2M N unknown
coefficient functions, aL�N and bL�N. This system can be written in the matrix−vector
form as A dc/dt = F (t, y) with c(t0) = c0 where c is a vector of coefficients of
length 2M N and c0 holds the initial values of the coefficients. The last 2M
equations are obtained by differentiating the boundary conditions

α β γ
k

k
k

k kda

dt

db

dt

d

dt
+ =

for k = 1, …, M.

The initial conditions uN(x, t0) must satisfy the boundary conditions. Also, the

γN(t) must be continuous and have a smooth derivative, or the boundary
conditions will not be properly imposed for t > t0.

If αN = βN = 0, it is assumed that no boundary condition is desired for the k-th
unknown at the left endpoint. A similar comment holds for the right endpoint.
Thus, collocation is done at the endpoint. This is generally a useful feature for
systems of first-order partial differential equations.

If the number of partial differential equations is M = 1 and the number of
breakpoints is N = 4, then

722 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

A

p p p p

p p p p

p p p p

p p p p

p p p p

p p p p

=

�

!

"

$

###########

α β
φ ψ φ ψ
φ ψ φ ψ

φ ψ φ ψ
φ ψ φ ψ

φ ψ φ ψ
φ ψ φ ψ

α β

1 1

1 1 1 1 2 1 2 1

1 2 1 2 2 2 2 2

3 3 3 3 4 3 4 3

3 4 3 4 4 4 4 4

5 5 5 5 6 5 6 5

5 6 5 6 6 6 6 6

4 4

1 6 1 6 1 6 1 6
1 6 1 6 1 6 1 6

1 6 1 6 1 6 1 6
1 6 1 6 1 6 1 6

1 6 1 6 1 6 1 6
1 6 1 6 1 6 1 6

The vector c is

c = [a1, b1, a2, b2, a3, b3, a4, b4]7

and the right-side F is

F x f p f p f p f p f p f p x
T

= ′ ′γ γ1 1 2 3 4 5 6 41 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6, , , , , , ,

If M > 1, then each entry in the above matrix is replaced by an M × M diagonal
matrix. The element α1 is replaced by diag(α1,1, …, α1,M). The elements α1, β1
and β1 are handled in the same manner. The φL(pM) and ψL(pM) elements are

replaced by φL(pM)I0 and ψL(pM)I0 where I0 is the identity matrix of order M. See
Madsen and Sincovec (1979) for further details about discretization errors and
Jacobian matrix structure.

The input/output array Y contains the values of the aN�L. The initial values of the
bN�L are obtained by using the IMSL cubic spline routine CSINT (page 423) to
construct functions

$,u x tk 01 6
such that

$,u x t ak i ki01 6 =

The IMSL routine CSDER, page 441, is used to approximate the values

dU

dx
x t bk

i k i

$
, ,01 6 ≡

There is an optional usage of MOLCH that allows the user to provide the initial
values of bN�L.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 723

The order of matrix A is 2M N and its maximum bandwidth is 6M − 1. The band
structure of the Jacobian of F with respect to c is the same as the band structure of
A. This system is solved using a modified version of IVPAG, page 661. Some of
the linear solvers were removed. Numerical Jacobians are used exclusively. The
algorithm is unchanged. Gear’s BDF method is used as the default because the
system is typically stiff.

We now present four examples of PDEs that illustrate how users can interface
their problems with IMSL PDE solving software. The examples are small and not
indicative of the complexities that most practitioners will face in their
applications. A set of seven sample application problems, some of them with
more than one equation, is given in Sincovec and Madsen (1975). Two further
examples are given in Madsen and Sincovec (1979).

Example 1

The normalized linear diffusion PDE, uW = u[[, 0 ≤ x ≤ 1, t > t0, is solved. The
initial values are t0 = 0, u(x, t0) = u0 = 1. There is a “zero-flux” boundary
condition at x = 1, namely u[(1, t) = 0, (t > t0). The boundary value of u(0, t) is
abruptly changed from u0 to the value u1 = 0.1. This transition is completed by t =
td = 0.09.

Due to restrictions in the type of boundary conditions sucessfully processed by
MOLCH, it is necessary to provide the derivative boundary value function γ′ at
x = 0 and at x = 1. The function γ at x = 0 makes a smooth transition from the
value u0 at t = t0 to the value u1 at t = td. We compute the transition phase for γ′ by
evaluating a cubic interpolating polynomial. For this purpose, the function
subprogram CSDER, page 441, is used. The interpolation is performed as a first
step in the user-supplied routine FCNBC. The function and derivative values γ(t0)
= u0, γ′(t0) = 0, γ(td) = u1, and γ′(td) = 0, are used as input to routine C2HER, to
obtain the coefficients evaluated by CSDER. Notice that γ′(t) = 0, t > td. The
evaluation routine CSDER will not yield this value so logic in the routine FCNBC

assigns γ′(t) = 0, t > td.
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=1, NX=8, LDY=NPDES)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IDO, J, NOUT, NSTEP
 REAL HINIT, T, TEND, TOL, XBREAK(NX), Y(LDY,NX)
 CHARACTER TITLE*19
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT
 REAL FLOAT
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL MOLCH, UMACH, WRRRN
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNUT
 REAL FCNBC, FCNUT
C Set breakpoints and initial
C conditions

724 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 U0 = 1.0
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
 Y(1,I) = U0
 10 CONTINUE
C Set parameters for MOLCH
 TOL = SQRT(AMACH(4))
 HINIT = 0.01*TOL
 T = 0.0
 IDO = 1
 NSTEP = 10
 CALL UMACH (2, NOUT)
 J = 0
 20 CONTINUE
 J = J + 1
 TEND = FLOAT(J)/FLOAT(NSTEP)
C This puts more output for small
C t values where action is fastest.
 TEND = TEND**2
C Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL,
 & HINIT, Y, LDY)
 IF (J .LE. NSTEP) THEN
C Print results
 WRITE (TITLE,’(A,F4.2)’) ’Solution at T =’, T
 CALL WRRRN (TITLE, NPDES, NX, Y, LDY, 0)
C Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 GO TO 20
 END IF
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
C
C Define the PDE
 UT(1) = UXX(1)
 RETURN
 END
 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BETA, GAMP)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BETA(*), GAMP(*)
C SPECIFICATIONS FOR PARAMETERS
 REAL TDELTA, U0, U1
 PARAMETER (TDELTA=0.09, U0=1.0, U1=0.1)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IWK(2), NDATA
 REAL DFDATA(2), FDATA(2), XDATA(2)
C SPECIFICATIONS FOR SAVE VARIABLES
 REAL BREAK(2), CSCOEF(4,2)
 LOGICAL FIRST
 SAVE BREAK, CSCOEF, FIRST
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL C2HER, WRRRN
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CSDER
 REAL CSDER

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 725

C
 DATA FIRST/.TRUE./
C
 IF (FIRST) GO TO 20
 10 CONTINUE
C
C
C Define the boundary conditions
 IF (X .EQ. 0.0) THEN
C These are for x=0.
 ALPHA(1) = 1.0
 BETA(1) = 0.0
 GAMP(1) = 0.
C If in the boundary layer,
C compute nonzero gamma prime.
 IF (T .LE. TDELTA) GAMP(1) = CSDER(1,T,1,BREAK,CSCOEF)
 ELSE
C These are for x=1.
 ALPHA(1) = 0.0
 BETA(1) = 1.0
 GAMP(1) = 0.0
 END IF
 RETURN
 20 CONTINUE
C Compute the boundary layer data.
 NDATA = 2
 XDATA(1) = 0.0
 XDATA(2) = TDELTA
 FDATA(1) = U0
 FDATA(2) = U1
 DFDATA(1) = 0.0
 DFDATA(2) = 0.0
C Do Hermite cubic interpolation.
 CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK, CSCOEF, IWK)
 FIRST = .FALSE.
 GO TO 10
 END

Output
 Solution at T =0.01
 1 2 3 4 5 6 7 8
0.969 0.997 1.000 1.000 1.000 1.000 1.000 1.000

 Solution at T =0.04
 1 2 3 4 5 6 7 8
0.625 0.871 0.963 0.991 0.998 1.000 1.000 1.000

 Solution at T =0.09
 1 2 3 4 5 6 7 8
0.1000 0.4603 0.7171 0.8673 0.9437 0.9781 0.9917 0.9951

 Solution at T =0.16
 1 2 3 4 5 6 7 8
0.1000 0.3131 0.5072 0.6682 0.7893 0.8709 0.9168 0.9316

 Solution at T =0.25
 1 2 3 4 5 6 7 8
0.1000 0.2568 0.4046 0.5355 0.6429 0.7224 0.7710 0.7874

726 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 Solution at T =0.36
 1 2 3 4 5 6 7 8
0.1000 0.2176 0.3293 0.4292 0.5126 0.5751 0.6139 0.6270

 Solution at T =0.49
 1 2 3 4 5 6 7 8
0.1000 0.1852 0.2661 0.3386 0.3992 0.4448 0.4731 0.4827

 Solution at T =0.64
 1 2 3 4 5 6 7 8
0.1000 0.1588 0.2147 0.2649 0.3067 0.3382 0.3578 0.3644

 Solution at T =0.81
 1 2 3 4 5 6 7 8
0.1000 0.1387 0.1754 0.2084 0.2360 0.2567 0.2696 0.2739

 Solution at T =1.00
 1 2 3 4 5 6 7 8
0.1000 0.1242 0.1472 0.1679 0.1851 0.1981 0.2062 0.2089

Example 2

Here, we solve Problem C from Sincovec and Madsen (1975). The equation is of
diffusion-convection type with discontinuous coefficients. This problem
illustrates a simple method for programming the evaluation routine for the
derivative, uW. Note that the weak discontinuities at x = 0.5 are not evaluated in
the expression for uW. The problem is defined as

u u t x D x u x v x u x

x t

t = = −

∈ >

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂/ / / /

, ,

0 51 6 0 5
0 1 0

D x
x

x
0 5 =

≤ <
< ≤

%&'
5 0 0 5

1 0 5 1 0

if

if

.

. .

v x
x

x

u x
x

x

u t u t

0 5

0 5
0 5 0 5

=
≤ <

< ≤
%&'

=
=
>

%&'
= =

1000 0 0 0 5

1 0 5 1 0

0
1 0

0 0

0 1 1 0

. .

. .

,

, , ,

if

if

 if

 if

C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=1, NX=100, LDY=NPDES)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IDO, J, NOUT, NSTEP
 REAL HINIT, T, TEND, TOL, XBREAK(NX), Y(LDY,NX)
 CHARACTER TITLE*19
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT
 REAL FLOAT
C SPECIFICATIONS FOR SUBROUTINES

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 727

 EXTERNAL MOLCH, UMACH, WRRRN
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCNBC, FCNUT
 REAL FCNBC, FCNUT
C Set breakpoints and initial
C conditions
 U0 = 1.0
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
 Y(1,I) = 0.
 10 CONTINUE
 Y(1,1) = U0
C Set parameters for MOLCH
 TOL = SQRT(AMACH(4))
 HINIT = 0.01*TOL
 T = 0.0
 IDO = 1
 NSTEP = 10
 CALL UMACH (2, NOUT)
 J = 0
 20 CONTINUE
 J = J + 1
 TEND = FLOAT(J)/FLOAT(NSTEP)
C Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL,
 & HINIT, Y, LDY)
C Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 IF (J.LE. NSTEP) GO TO 20
C Print results
 WRITE (TITLE,’(A,F4.2)’) ’Solution at T =’, T
 CALL WRRRN (TITLE, NPDES, NX, Y, LDY, 0)
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
C
C Define the PDE
C This is the nonlinear
C diffusion-convection with
C discontinuous coefficients.
 IF (X .LE. 0.5) THEN
 D = 5.0
 V = 1000.0
 ELSE
 D = 1.0
 V = 1.0
 END IF
 UT(1) = D*UXX(1) - V*UX(1)
 RETURN
 END
 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BETA, GAMP)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BETA(*), GAMP(*)
C SPECIFICATIONS FOR PARAMETERS
 ALPHA(1) = 1.0
 BETA(1) = 0.0

728 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 GAMP(1) = 0.0
 RETURN
 END

Output
 Solution at T =1.00
 1 2 3 4 5 6 7 8 9 10
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 11 12 13 14 15 16 17 18 19 20
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 21 22 23 24 25 26 27 28 29 30
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 31 32 33 34 35 36 37 38 39 40
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

 41 42 43 44 45 46 47 48 49 50
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997

 51 52 53 54 55 56 57 58 59 60
0.984 0.969 0.953 0.937 0.921 0.905 0.888 0.872 0.855 0.838

 61 62 63 64 65 66 67 68 69 70
0.821 0.804 0.786 0.769 0.751 0.733 0.715 0.696 0.678 0.659

 71 72 73 74 75 76 77 78 79 80
0.640 0.621 0.602 0.582 0.563 0.543 0.523 0.502 0.482 0.461

 81 82 83 84 85 86 87 88 89 90
0.440 0.419 0.398 0.376 0.354 0.332 0.310 0.288 0.265 0.242

 91 92 93 94 95 96 97 98 99 100
0.219 0.196 0.172 0.148 0.124 0.100 0.075 0.050 0.025 0.000

Example 3

In this example, using MOLCH, we solve the linear normalized diffusion PDE uW =
u[[but with an optional usage that provides values of the derivatives, u[, of the
initial data. Due to errors in the numerical derivatives computed by spline
interpolation, more precise derivative values are required when the initial data is
u(x, 0) = 1 + cos[(2n − 1)πx], n > 1. The boundary conditions are “zero flux”
conditions u[(0, t) = u[(1, t) = 0 for t > 0. Note that the initial data is compatible
with these end conditions since the derivative function

u x
du x

dx
n n xx ,

,
sin0

0
2 1 2 10 5 0 5 0 5 0 5= = − − −π π

vanishes at x = 0 and x = 1.

The example illustrates the use of the IMSL options manager subprograms
SUMAG, page 1175 or, for double precision, DUMAG, page 1178, to reset the array
PARAM used for control of the specialized version of IVPAG that integrates the
system of ODEs. This optional usage signals that the derivative of the initial

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 729

data is passed by the user. The values u(x, tend) and u[(x, tend) are output at the
breakpoints with the optional usage.

C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=1, NX=10, LDY=NPDES)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, IPUT, KPARAM
 PARAMETER (ICHAP=5, IGET=1, IPUT=2, KPARAM=11)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IACT, IDO, IOPT(1), J, JGO, N, NOUT, NSTEP
 REAL ARG, HINIT, PARAM(50), PI, T, TEND, TOL, XBREAK(NX),
 & Y(LDY,2*NX)
 CHARACTER TITLE*36
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC COS, FLOAT, SIN, SQRT
 REAL COS, FLOAT, SIN, SQRT
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL MOLCH, SUMAG, UMACH, WRRRN
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL AMACH, CONST, FCNBC, FCNUT
 REAL AMACH, CONST, FCNBC, FCNUT
C Set breakpoints and initial
C conditions.
 N = 5
 PI = CONST(’pi’)
 IOPT(1) = KPARAM
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)
 ARG = (2.*N-1)*PI
C Set function values.
 Y(1,I) = 1. + COS(ARG*XBREAK(I))
C Set first derivative values.
 Y(1,I+NX) = -ARG*SIN(ARG*XBREAK(I))
 10 CONTINUE
C Set parameters for MOLCH
 TOL = SQRT(AMACH(4))
 HINIT = 0.01*TOL
 T = 0.0
 IDO = 1
 NSTEP = 10
 CALL UMACH (2, NOUT)
 J = 0
C Get and reset the PARAM array
C so that user-provided derivatives
C of the initial data are used.
 JGO = 1
 IACT = IGET
 GO TO 70
 20 CONTINUE
C This flag signals that
C derivatives are passed.
 PARAM(17) = 1.
 JGO = 2
 IACT = IPUT
 GO TO 70
 30 CONTINUE
C Look at output at steps
C of 0.001.

730 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 TEND = 0.
 40 CONTINUE
 J = J + 1
 TEND = TEND + 0.001
C Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL,
 & HINIT, Y, LDY)
 IF (J .LE. NSTEP) THEN
C Print results
 WRITE (TITLE,’(A,F5.3)’) ’Solution and derivatives at T =’, T
 CALL WRRRN (TITLE, NPDES, 2*NX, Y, LDY, 0)
C Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 GO TO 40
 END IF
C Show, for example, the maximum
C step size used.
 JGO = 3
 IACT = IGET
 GO TO 70
 50 CONTINUE
 WRITE (NOUT,*) ’ Maximum step size used is: ’, PARAM(33)
C Reset option to defaults
 JGO = 4
 IAC = IPUT
 IOPT(1) = -IOPT(1)
 GO TO 70
 60 CONTINUE
 STOP
C Internal routine to work options
 70 CONTINUE
 CALL SUMAG (’math’, ICHAP, IACT, 1, IOPT, PARAM)
 GO TO (20, 30, 50, 60), JGO
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
C
C Define the PDE
 UT(1) = UXX(1)
 RETURN
 END
 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BETA, GAMP)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BETA(*), GAMP(*)
C
 ALPHA(1) = 0.0
 BETA(1) = 1.0
 GAMP(1) = 0.0
 RETURN
 END

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 731

Output
 Solution and derivatives at T =0.001
 1 2 3 4 5 6 7 8 9 10
 1.483 0.517 1.483 0.517 1.483 0.517 1.483 0.517 1.483 0.517

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.002
 1 2 3 4 5 6 7 8 9 10
 1.233 0.767 1.233 0.767 1.233 0.767 1.233 0.767 1.233 0.767

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.003
 1 2 3 4 5 6 7 8 9 10
 1.113 0.887 1.113 0.887 1.113 0.887 1.113 0.887 1.113 0.887

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.004
 1 2 3 4 5 6 7 8 9 10
 1.054 0.946 1.054 0.946 1.054 0.946 1.054 0.946 1.054 0.946

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.005
 1 2 3 4 5 6 7 8 9 10
 1.026 0.974 1.026 0.974 1.026 0.974 1.026 0.974 1.026 0.974

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.006
 1 2 3 4 5 6 7 8 9 10
 1.012 0.988 1.012 0.988 1.012 0.988 1.012 0.988 1.012 0.988

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.007
 1 2 3 4 5 6 7 8 9 10
 1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994 1.006 0.994

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.008
 1 2 3 4 5 6 7 8 9 10
 1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997 1.003 0.997

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

732 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

Solution and derivatives at T =0.009
 1 2 3 4 5 6 7 8 9 10
 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Solution and derivatives at T =0.010
 1 2 3 4 5 6 7 8 9 10
 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999 1.001 0.999

 11 12 13 14 15 16 17 18 19 20
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum step size used is: 1.00000E-02

Example 4

In this example, we consider the linear normalized hyperbolic PDE, uWW = u[[, the
“vibrating string” equation. This naturally leads to a system of first order PDEs.
Define a new dependent variable uW = v. Then, vW = u[[is the second equation in

the system. We take as initial data u(x, 0) = sin(πx) and
uW(x, 0) = v(x, 0) = 0. The ends of the string are fixed so u(0, t) = u(1, t) = v(0, t) =

v(1, t) = 0. The exact solution to this problem is u(x, t) = sin(πx) cos(πt).
Residuals are computed at the output values of t for 0 < t ≤ 2. Output is obtained
at 200 steps in increments of 0.01.

Even though the sample code MOLCH gives satisfactory results for this PDE, users
should be aware that for nonlinear problems, “shocks” can develop in the
solution. The appearance of shocks may cause the code to fail in unpredictable
ways. See Courant and Hilbert (1962), pages 488-490, for an introductory
discussion of shocks in hyperbolic systems.

C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER LDY, NPDES, NX
 PARAMETER (NPDES=2, NX=10, LDY=NPDES)
C SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHAP, IGET, IPUT, KPARAM
 PARAMETER (ICHAP=5, IGET=1, IPUT=2, KPARAM=11)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IACT, IDO, IOPT(1), J, JGO, NOUT, NSTEP
 REAL HINIT, PARAM(50), PI, T, TEND, TOL, XBREAK(NX),
 & Y(LDY,2*NX), ERROR(NX)
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC COS, FLOAT, SIN, SQRT
 REAL COS, FLOAT, SIN, SQRT
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL MOLCH, SUMAG, UMACH, WRRRN
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL AMACH, CONST, FCNBC, FCNUT
 REAL AMACH, CONST, FCNBC, FCNUT
C Set breakpoints and initial
C conditions.
 PI = CONST(’pi’)
 IOPT(1) = KPARAM
 DO 10 I=1, NX
 XBREAK(I) = FLOAT(I-1)/(NX-1)

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 733

C Set function values.
 Y(1,I) = SIN(PI*XBREAK(I))
 Y(2,I) = 0.
C Set first derivative values.
 Y(1,I+NX) = PI*COS(PI*XBREAK(I))
 Y(2,I+NX) = 0.0
 10 CONTINUE
C Set parameters for MOLCH
 TOL = 0.1*SQRT(AMACH(4))
 HINIT = 0.01*TOL
 T = 0.0
 IDO = 1
 NSTEP = 200
 CALL UMACH (2, NOUT)
 J = 0
C Get and reset the PARAM array
C so that user-provided derivatives
C of the initial data are used.
 JGO = 1
 IACT = IGET
 GO TO 90
 20 CONTINUE
C This flag signals that
C derivatives are passed.
 PARAM(17) = 1.
 JGO = 2
 IACT = IPUT
 GO TO 90
 30 CONTINUE
C Look at output at steps
C of 0.01 and compute errors.
 ERRU = 0.
 TEND = 0.
 40 CONTINUE
 J = J + 1
 TEND = TEND + 0.01
C Solve the problem
 CALL MOLCH (IDO, FCNUT, FCNBC, NPDES, T, TEND, NX, XBREAK, TOL,
 & HINIT, Y, LDY)
 DO 50 I=1, NX
 ERROR(I) = Y(1,I) - SIN(PI*XBREAK(I))*COS(PI*TEND)
 50 CONTINUE
 IF (J .LE. NSTEP) THEN
 DO 60 I=1, NX
 ERRU = AMAX1(ERRU,ABS(ERROR(I)))
 60 CONTINUE
C Final call to release workspace
 IF (J .EQ. NSTEP) IDO = 3
 GO TO 40
 END IF
C Show, for example, the maximum
C step size used.
 JGO = 3
 IACT = IGET
 GO TO 90
 70 CONTINUE
 WRITE (NOUT,*) ’ Maximum error in u(x,t) divided by TOL: ’,
 & ERRU/TOL
 WRITE (NOUT,*) ’ Maximum step size used is: ’, PARAM(33)

734 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

C Reset option to defaults
 JGO = 4
 IACT = IPUT
 IOPT(1) = -IOPT(1)
 GO TO 90
 80 CONTINUE
 STOP
C Internal routine to work options
 90 CONTINUE
 CALL SUMAG (’math’, ICHAP, IACT, 1, IOPT, PARAM)
 GO TO (20, 30, 70, 80), JGO
 END
 SUBROUTINE FCNUT (NPDES, X, T, U, UX, UXX, UT)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, U(*), UX(*), UXX(*), UT(*)
C
C Define the PDE
 UT(1) = U(2)
 UT(2) = UXX(1)
 RETURN
 END
 SUBROUTINE FCNBC (NPDES, X, T, ALPHA, BETA, GAMP)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER NPDES
 REAL X, T, ALPHA(*), BETA(*), GAMP(*)
C
 ALPHA(1) = 1.0
 BETA(1) = 0.0
 GAMP(1) = 0.0
 ALPHA(2) = 1.0
 BETA(2) = 0.0
 GAMP(2) = 0.0
 RETURN
 END

Output
Maximum error in u(x,t) divided by TOL: 1.28094
Maximum step size used is: 9.99999E-02

FPS2H/DFPS2H (Single/Double precision)
Solve Poisson’s or Helmholtz’s equation on a two-dimensional rectangle using a
fast Poisson solver based on the HODIE finite-difference scheme on a uniform
mesh.

Usage
CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY,
 IBCTY, IORDER, U, LDU)

Arguments

PRHS — User-supplied FUNCTION to evaluate the right side of the partial
differential equation. The form is PRHS(X, Y), where

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 735

X – X-coordinate value. (Input)
Y – Y-coordinate value. (Input)
PRHS – Value of the right side at (X, Y). (Output)

PRHS must be declared EXTERNAL in the calling program.

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary
conditions. The form is BRHS(ISIDE, X, Y), where

ISIDE – Side number. (Input)
See IBCTY below for the definition of the side numbers.
X – X-coordinate value. (Input)
Y – Y-coordinate value. (Input)
BRHS – Value of the right side of the boundary condition at (X, Y).
(Output)
BRHS must be declared EXTERNAL in the calling program.

COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the X-direction. (Input)
NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the Y-direction. (Input)
NY must be at least 4. See Comment 2 for further restrictions on NY.

AX — The value of X along the left side of the domain. (Input)

BX — The value of X along the right side of the domain. (Input)

AY — The value of Y along the bottom of the domain. (Input)

BY — The value of Y along the top of the domain. (Input)

IBCTY — Array of size 4 indicating the type of boundary condition on each side
of the domain or that the solution is periodic. (Input)
The sides are numbered 1 to 4 as follows:

Side Location
1 - Right (X = BX)
2 - Bottom (Y = AY)
3 - Left (X = AX)
4 - Top (Y = BY)

There are three boundary condition types.

IBCTY Boundary Condition
1 Value of U is given. (Dirichlet)
2 Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY

is given (sides 2 and/or 4).
3 Periodic.

IORDER — Order of accuracy of the finite-difference approximation. (Input)
It can be either 2 or 4. Usually, IORDER = 4 is used.

U — Array of size NX by NY containing the solution at the grid points. (Output)

736 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

LDU — Leading dimension of U exactly as specified in the dimension statement
of the calling program. (Input)

Comments

1. Automatic workspace usage is

FPS2H (NX + 2)(NY + 2) + (NX + 1)(NY + 1)(IORDER − 2)/2 + 6(NX +
NY) + NX/2 + 16

DFPS2H 2(NX + 2)(NY + 2) + (NX + 1)(NY + 1)(IORDER − 2) + 12(NX +
NY) + NX + 32

Workspace may be explicitly provided, if desired, by use of
F2S2H/DF2S2H. The reference is
CALL F2S2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY,
 BY, IBCTY, IORDER, U, LDU, UWORK, WORK)

The additional arguments are as follows:

UWORK — Work array of size NX + 2 by NY + 2. If the actual
dimensions of U are large enough, then U and UWORK can be the same
array.

WORK — Work array of length (NX + 1)(NY + 1)(IORDER − 2)/2 + 6(NX
+ NY) + NX/2 + 16.

2. The grid spacing is the distance between the (uniformly spaced) grid
lines. It is given by the formulas HX = (BX − AX)/(NX − 1) and HY = (BY −
AY)/(NY − 1). The grid spacings in the X and Y directions must be the
same, i.e., NX and NY must be such that HX equals HY. Also, as noted
above, NX and NY must both be at least 4. To increase the speed of the
fast Fourier transform, NX − 1 should be the product of small primes.
Good choices are 17, 33, and 65.

3. If −COEFU is nearly equal to an eigenvalue of the Laplacian with
homogeneous boundary conditions, then the computed solution might
have large errors.

Algorithm

Let c = COEFU, a[= AX, b[= BX, a\ = AY, b\ = BY, n[= NX and n\ = NY.

FPS2H is based on the code HFFT2D by Boisvert (1984). It solves the equation

∂
∂

∂
∂

2

2

2

2
u

x

u

y
cu p+ + =

on the rectangular domain (a[, b[) × (a\, b\) with a user-specified combination of
Dirichlet (solution prescribed), Neumann (first-derivative prescribed), or periodic
boundary conditions. The sides are numbered clockwise, starting with the right
side.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 737

b\

y

Side 4

Side 2

Side 3 Side 1

a \
[a b[

x

When c = 0 and only Neumann or periodic boundary conditions are prescribed,
then any constant may be added to the solution to obtain another solution to the
problem. In this case, the solution of minimum ∞-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-
difference approximation of the continuous equation. The resulting system of
linear algebraic equations is solved using fast Fourier transform techniques. The
algorithm relies upon the fact that n[− 1 is highly composite (the product of small

primes). For details of the algorithm, see Boisvert (1984). If n[− 1 is highly
composite then the execution time of FPS2H is proportional to n[n\�log2 n[. If
evaluations of p(x, y) are inexpensive, then the difference in running time between
IORDER = 2 and IORDER = 4 is small.

Example

In this example, the equation

∂
∂

∂
∂

2

2

2

2
2 33 2 2 16

u

x

u

y
u x y e x y+ + = − + + +sin0 5

with the boundary conditions ∂u/∂y = 2 cos(x + 2y) + 3 exp(2x + 3y) on the
bottom side and u = sin(x + 2y) + exp(2x + 3y) on the other three sides. The
domain is the rectangle[0, 1/4] × [0, 1/2]. The output of FPS2H is a 17 × 33 table
of U values. The quadratic interpolation routine QD2VL is used to print a table of
values.

 INTEGER NCVAL, NX, NXTABL, NY, NYTABL
 PARAMETER (NCVAL=11, NX=17, NXTABL=5, NY=33, NYTABL=5)
C
 INTEGER I, IBCTY(4), IORDER, J, NOUT
 REAL AX, AY, BRHS, BX, BY, COEFU, ERROR, FLOAT, PRHS, QD2VL,

738 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 & TRUE, U(NX,NY), UTABL, X, XDATA(NX), Y, YDATA(NY)
 INTRINSIC FLOAT
 EXTERNAL BRHS, FPS2H, PRHS, QD2VL, UMACH
C Set rectangle size
 AX = 0.0
 BX = 0.25
 AY = 0.0
 BY = 0.50
C Set boundary condition types
 IBCTY(1) = 1
 IBCTY(2) = 2
 IBCTY(3) = 1
 IBCTY(4) = 1
C Coefficient of U
 COEFU = 3.0
C Order of the method
 IORDER = 4
C Solve the PDE
 CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY,
 & IORDER, U, NX)
C Setup for quadratic interpolation
 DO 10 I=1, NX
 XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1)
 10 CONTINUE
 DO 20 J=1, NY
 YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1)
 20 CONTINUE
C Print the solution
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(8X,A,11X,A,11X,A,8X,A)’) ’X’, ’Y’, ’U’, ’Error’
 DO 40 J=1, NYTABL
 DO 30 I=1, NXTABL
 X = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1)
 Y = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1)
 UTABL = QD2VL(X,Y,NX,XDATA,NY,YDATA,U,NX,.FALSE.)
 TRUE = SIN(X+2.*Y) + EXP(2.*X+3.*Y)
 ERROR = TRUE - UTABL
 WRITE (NOUT,’(4F12.4)’) X, Y, UTABL, ERROR
 30 CONTINUE
 40 CONTINUE
 END
C
 REAL FUNCTION PRHS (X, Y)
 REAL X, Y
C
 REAL EXP, SIN
 INTRINSIC EXP, SIN
C Define right side of the PDE
 PRHS = -2.*SIN(X+2.*Y) + 16.*EXP(2.*X+3.*Y)
 RETURN
 END
C
 REAL FUNCTION BRHS (ISIDE, X, Y)
 INTEGER ISIDE
 REAL X, Y
C
 REAL COS, EXP, SIN
 INTRINSIC COS, EXP, SIN
C Define the boundary conditions

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 739

 IF (ISIDE .EQ. 2) THEN
 BRHS = 2.*COS(X+2.*Y) + 3.*EXP(2.*X+3.*Y)
 ELSE
 BRHS = SIN(X+2.*Y) + EXP(2.*X+3.*Y)
 END IF
 RETURN
 END

Output
 X Y U Error
 0.0000 0.0000 1.0000 0.0000
 0.0625 0.0000 1.1956 0.0000
 0.1250 0.0000 1.4087 0.0000
 0.1875 0.0000 1.6414 0.0000
 0.2500 0.0000 1.8961 0.0000
 0.0000 0.1250 1.7024 0.0000
 0.0625 0.1250 1.9562 0.0000
 0.1250 0.1250 2.2345 0.0000
 0.1875 0.1250 2.5407 0.0000
 0.2500 0.1250 2.8783 0.0000
 0.0000 0.2500 2.5964 0.0000
 0.0625 0.2500 2.9322 0.0000
 0.1250 0.2500 3.3034 0.0000
 0.1875 0.2500 3.7148 0.0000
 0.2500 0.2500 4.1720 0.0000
 0.0000 0.3750 3.7619 0.0000
 0.0625 0.3750 4.2163 0.0000
 0.1250 0.3750 4.7226 0.0000
 0.1875 0.3750 5.2878 0.0000
 0.2500 0.3750 5.9199 0.0000
 0.0000 0.5000 5.3232 0.0000
 0.0625 0.5000 5.9520 0.0000
 0.1250 0.5000 6.6569 0.0000
 0.1875 0.5000 7.4483 0.0000
 0.2500 0.5000 8.3380 0.0000

FPS3H/DFPS3H (Single/Double precision)
Solve Poisson’s or Helmholtz’s equation on a three-dimensional box using a fast
Poisson solver based on the HODIE finite-difference scheme on a uniform mesh.

Usage
CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY,
 AZ, BZ, IBCTY, IORDER, U, LDU, MDU)

Arguments

PRHS — User-supplied FUNCTION to evaluate the right side of the partial
differential equation. The form is PRHS(X, Y, Z), where

X – The x-coordinate value. (Input)
Y – The y-coordinate value. (Input)
Z – The z-coordinate value. (Input)
PRHS – Value of the right side at (X, Y, Z). (Output)

740 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

PRHS must be declared EXTERNAL in the calling program.

BRHS — User-supplied FUNCTION to evaluate the right side of the boundary
conditions. The form is BRHS(ISIDE, X, Y, Z), where

ISIDE – Side number. (Input)
See IBCTY for the definition of the side numbers.
X – The x-coordinate value. (Input)
Y – The y-coordinate value. (Input)
Z – The z-coordinate value. (Input)
BRHS – Value of the right side of the boundary condition at (X, Y, Z).
(Output)

BRHS must be declared EXTERNAL in the calling program.

COEFU — Value of the coefficient of U in the differential equation. (Input)

NX — Number of grid lines in the x-direction. (Input)
NX must be at least 4. See Comment 2 for further restrictions on NX.

NY — Number of grid lines in the y-direction. (Input)
NY must be at least 4. See Comment 2 for further restrictions on NY.

NZ — Number of grid lines in the y-direction. (Input)
NZ must be at least 4. See Comment 2 for further restrictions on NZ.

AX — Value of X along the left side of the domain. (Input)

BX — Value of X along the right side of the domain. (Input)

AY — Value of Y along the bottom of the domain. (Input)

BY — Value of Y along the top of the domain. (Input)

AZ — Value of Z along the front of the domain. (Input)

BZ — Value of Z along the back of the domain. (Input)

IBCTY — Array of size 6 indicating the type of boundary condition on each face
of the domain or that the solution is periodic. (Input)
The sides are numbers 1 to 6 as follows:

Side Location
1 - Right (X = BX)
2 - Bottom (Y = AY)
3 - Left (X = AX)
4 - Top (Y = BY)
5 - Front (Z = BZ)
6 - Back (Z = AZ)

There are three boundary condition types.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 741

IBCTY Boundary Condition
1 Value of U is given. (Dirichlet)
2 Value of dU/dX is given (sides 1 and/or 3). (Neumann) Value of dU/dY

is given (sides 2 and/or 4). Value of dU/dZ is given (sides 5 and/or 6).
3 Periodic.

IORDER — Order of accuracy of the finite-difference approximation. (Input)
It can be either 2 or 4. Usually, IORDER = 4 is used.

U — Array of size NX by NY by NZ containing the solution at the grid points.
(Output)

LDU — Leading dimension of U exactly as specified in the dimension statement
of the calling program. (Input)

MDU — Middle dimension of U exactly as specified in the dimension statement
of the calling program. (Input)

Comments

1. Automatic workspace usage is

FPS3H (NX + 2)(NY + 2)(NZ + 2) + (NX + 1)(NY + 1)(NZ + 1)(IORDER −
2)/2 + 2(NX * NY + NX * NZ + NY * NZ) + 2(NX + NY + 1)+
MAX(2 * NX * NY, 2 * NX + NY + 4 * NZ + (NX + NZ)/2 + 29)

DFPS3H 2(NX + 2)(NY + 2)(NZ + 2) + (NX + 1(NY + 1)(NZ + 1)(IORDER −
2) + 4(NX * NY + NX * NZ + NY * NZ) + 4(NX + NY + 1) +
2MAX(2 * NX * NY, 2 * NX + NY + 4 * NZ + (NX + NZ)/2 + 29)

Workspace may be explicitly provided, if desired, by use of
F2S3H/DF2S3H. The reference is

CALL F2S3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX,
 AY, BY, AZ, BZ, IBCTY, IORDER, U, LDU,
 MDU, UWORK, WORK)

The additional arguments are as follows:

UWORK — Work array of size NX + 2 by NY + 2 by NZ + 2. If the actual
dimensions of U are large enough, then U and UWORK can be the same
array.

WORK — Work array of length (NX + 1)(NY + 1)(NZ + 1)(IORDER −
2)/2 + 2(NX * NY + NX * NZ + NY * NZ) + 2(NX + NY + 1) + MAX(2 * NX *
NY, 2 * NX + NY + 4 * NZ + (NX + NZ)/2 + 29)

2. The grid spacing is the distance between the (uniformly spaced) grid
lines. It is given by the formulas
HX = (BX − AX)/(NX − 1),
HY = (BY − AY)/(NY − 1), and
HZ = (BZ − AZ)/(NZ − 1).
The grid spacings in the X, Y and Z directions must be the same, i.e.,

742 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

NX, NY and NZ must be such that HX = HY = HZ. Also, as noted above, NX,
NY and NZ must all be at least 4. To increase the speed of the Fast
Fourier transform, NX − 1 and NZ − 1 should be the product of small
primes. Good choices for NX and NZ are 17, 33 and 65.

3. If −COEFU is nearly equal to an eigenvalue of the Laplacian with
homogeneous boundary conditions, then the computed solution might
have large errors.

Algorithm

Let c = COEFU, a[= AX, b[= BX, n[= NX, a\ = AY, b\ = BY, n\ = NY, a] = AZ, b] =
BZ, and n] = NZ.

FPS3H is based on the code HFFT3D by Boisvert (1984). It solves the equation

∂
∂

∂
∂

∂
∂

2

2

2

2

2

2
u

x

u

y

u

z
cu p+ + + =

on the domain (a[, b[) × (a\, b\) × (a], b]) (a box) with a user-specified
combination of Dirichlet (solution prescribed), Neumann (first derivative
prescribed), or periodic boundary conditions. The six sides are numbered as
shown in the following diagram.

z

b

a

\

]

[

b

b
x

Front - 5

Top - 4

Right - 1

Bottom - 2

Left - 3

Back - 6

y

When c = 0 and only Neumann or periodic boundary conditions are prescribed,
then any constant may be added to the solution to obtain another solution to the
problem. In this case, the solution of minimum ∞-norm is returned.

The solution is computed using either a second-or fourth-order accurate finite-
difference approximation of the continuous equation. The resulting system of
linear algebraic equations is solved using fast Fourier transform techniques. The

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 743

algorithm relies upon the fact that n[− 1 and n]�− 1 are highly composite (the
product of small primes). For details of the algorithm, see Boisvert (1984). If
n[− 1 and n] − 1 are highly composite, then the execution time of FPS3H is
proportional to

n n n n nx y z x zlog log2
2

2
2+3 8

If evaluations of p(x, y, z) are inexpensive, then the difference in running time
between IORDER = 2 and IORDER = 4 is small.

Example

This example solves the equation

∂
∂

∂
∂

∂
∂

2

2

2

2

2

2 10 4 3 2 12 10
u

x

u

y

u

z
u x y z ex z+ + + = − + − + +−cos0 5

with the boundary conditions ∂u/∂z = −2 sin(3x + y −2z) − exp(x − z) on the front
side and u = cos(3x + y − 2z) + exp(x − z) + 1 on the other five sides. The domain
is the box [0, 1/4] × [0, 1/2] × [0, 1/2]. The output of FPS3H is a 9 × 17 × 17 table
of U values. The quadratic interpolation routine QD3VL is used to print a table of
values.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER LDU, MDU, NX, NXTABL, NY, NYTABL, NZ, NZTABL
 PARAMETER (NX=5, NXTABL=4, NY=9, NYTABL=3, NZ=9,
 & NZTABL=3, LDU=NX, MDU=NY)
C
 INTEGER I, IBCTY(6), IORDER, J, K, NOUT
 REAL AX, AY, AZ, BRHS, BX, BY, BZ, COEFU, FLOAT, PRHS,
 & QD3VL, U(LDU,MDU,NZ), UTABL, X, ERROR, TRUE,
 & XDATA(NX), Y, YDATA(NY), Z, ZDATA(NZ)
 INTRINSIC FLOAT
 EXTERNAL BRHS, FPS3H, PRHS, QD3VL, UMACH
C Define domain
 AX = 0.0
 BX = 0.125
 AY = 0.0
 BY = 0.25
 AZ = 0.0
 BZ = 0.25
C Set boundary condition types
 IBCTY(1) = 1
 IBCTY(2) = 1
 IBCTY(3) = 1
 IBCTY(4) = 1
 IBCTY(5) = 2
 IBCTY(6) = 1
C Coefficient of U
 COEFU = 10.0
C Order of the method
 IORDER = 4
C Solve the PDE
 CALL FPS3H (PRHS, BRHS, COEFU, NX, NY, NZ, AX, BX, AY, BY, AZ,
 & BZ, IBCTY, IORDER, U, LDU, MDU)

744 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

C Set up for quadratic interpolation
 DO 10 I=1, NX
 XDATA(I) = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NX-1)
 10 CONTINUE
 DO 20 J=1, NY
 YDATA(J) = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NY-1)
 20 CONTINUE
 DO 30 K=1, NZ
 ZDATA(K) = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZ-1)
 30 CONTINUE
C Print the solution
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(8X,5(A,11X))’) ’X’, ’Y’, ’Z’, ’U’, ’Error’
 DO 60 K=1, NZTABL
 DO 50 J=1, NYTABL
 DO 40 I=1, NXTABL
 X = AX + (BX-AX)*FLOAT(I-1)/FLOAT(NXTABL-1)
 Y = AY + (BY-AY)*FLOAT(J-1)/FLOAT(NYTABL-1)
 Z = AZ + (BZ-AZ)*FLOAT(K-1)/FLOAT(NZTABL-1)
 UTABL = QD3VL(X,Y,Z,NX,XDATA,NY,YDATA,NZ,ZDATA,U,LDU,
 & MDU,.FALSE.)
 TRUE = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0
 ERROR = UTABL - TRUE
 WRITE (NOUT,’(5F12.4)’) X, Y, Z, UTABL, ERROR
 40 CONTINUE
 50 CONTINUE
 60 CONTINUE
 END
C
 REAL FUNCTION PRHS (X, Y, Z)
 REAL X, Y, Z
C
 REAL COS, EXP
 INTRINSIC COS, EXP
C Right side of the PDE
 PRHS = -4.0*COS(3.0*X+Y-2.0*Z) + 12*EXP(X-Z) + 10.0
 RETURN
 END
C
 REAL FUNCTION BRHS (ISIDE, X, Y, Z)
 INTEGER ISIDE
 REAL X, Y, Z
C
 REAL COS, EXP, SIN
 INTRINSIC COS, EXP, SIN
C Boundary conditions
 IF (ISIDE .EQ. 5) THEN
 BRHS = -2.0*SIN(3.0*X+Y-2.0*Z) - EXP(X-Z)
 ELSE
 BRHS = COS(3.0*X+Y-2.0*Z) + EXP(X-Z) + 1.0
 END IF
 RETURN
 END

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 745

Output
 X Y Z U Error
 0.0000 0.0000 0.0000 3.0000 0.0000
 0.0417 0.0000 0.0000 3.0348 0.0000
 0.0833 0.0000 0.0000 3.0559 0.0001
 0.1250 0.0000 0.0000 3.0637 0.0001
 0.0000 0.1250 0.0000 2.9922 0.0000
 0.0417 0.1250 0.0000 3.0115 0.0000
 0.0833 0.1250 0.0000 3.0175 0.0000
 0.1250 0.1250 0.0000 3.0107 0.0000
 0.0000 0.2500 0.0000 2.9690 0.0001
 0.0417 0.2500 0.0000 2.9731 0.0000
 0.0833 0.2500 0.0000 2.9645 0.0000
 0.1250 0.2500 0.0000 2.9440 -0.0001
 0.0000 0.0000 0.1250 2.8514 0.0000
 0.0417 0.0000 0.1250 2.9123 0.0000
 0.0833 0.0000 0.1250 2.9592 0.0000
 0.1250 0.0000 0.1250 2.9922 0.0000
 0.0000 0.1250 0.1250 2.8747 0.0000
 0.0417 0.1250 0.1250 2.9211 0.0010
 0.0833 0.1250 0.1250 2.9524 0.0010
 0.1250 0.1250 0.1250 2.9689 0.0000
 0.0000 0.2500 0.1250 2.8825 0.0000
 0.0417 0.2500 0.1250 2.9123 0.0000
 0.0833 0.2500 0.1250 2.9281 0.0000
 0.1250 0.2500 0.1250 2.9305 0.0000
 0.0000 0.0000 0.2500 2.6314 -0.0249
 0.0417 0.0000 0.2500 2.7420 -0.0004
 0.0833 0.0000 0.2500 2.8112 -0.0042
 0.1250 0.0000 0.2500 2.8609 -0.0138
 0.0000 0.1250 0.2500 2.7093 0.0000
 0.0417 0.1250 0.2500 2.8153 0.0344
 0.0833 0.1250 0.2500 2.8628 0.0242
 0.1250 0.1250 0.2500 2.8825 0.0000
 0.0000 0.2500 0.2500 2.7351 -0.0127
 0.0417 0.2500 0.2500 2.8030 -0.0011
 0.0833 0.2500 0.2500 2.8424 -0.0040
 0.1250 0.2500 0.2500 2.8735 -0.0012

SLEIG/DSLEIG (Single/Double precision)
Determine eigenvalues, eigenfunctions and/or spectral density functions for
Sturm-Liouville problems in the form

− + =d

dx
p x

du

dx
q x u r x u x a b() ,0 5 0 5 0 5 0 5λ for in

with boundary conditions (at regular points)

a u a pu a u a pu a

b u b pu b

1 2 1 2

1 2 0

− ′ = ′ − ′ ′

+ ′ =

0 5 0 51 6
0 5
λ at

 at

746 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

Usage
CALL SLEIG (CONS, COEFFN, ENDFIN, NUMEIG, INDEX, TEVLAB,
 TEVLRL, EVAL)

Arguments

CONS — Array of size eight containing

a a a a b b a b1 1 2 2 1 2, , , , , ,′ ′ and

in locations CONS(1) through CONS(8), respectively. (Input)

COEFFN — User-supplied SUBROUTINE to evaluate the coefficient functions.
The usage is
CALL COEFFN (X, PX, QX, RX)

X — Independent variable. (Input)
PX — The value of p(x) at X. (Output)
QX — The value of q(x) at X. (Output)
RX — The value of r(x) at X. (Output)
COEFFN must be declared EXTERNAL in the calling program.

ENDFIN — Logical array of size two. ENDFIN(1) = .true. if the endpoint
a is finite. ENDFIN(2) = .true. if endpoint b is finite. (Input)

NUMEIG — The number of eigenvalues desired. (Input)

INDEX — Vector of size NUMEIG containing the indices of the desired
eigenvalues. (Input)

TEVLAB — Absolute error tolerance for eigenvalues. (Input)

TELVRL — Relative error tolerance for eigenvalues. (Input)

EVAL — Array of length NUMEIG containing the computed approximations to the
eigenvalues whose indices are specified in INDEX.

Comments

1. Automatic workspace is

S2EIG 4 * NUMEIG + MAX(1000, NUMEIG + 22) units, or
DS2EIG 8 * NUMEIG + MAX(1000, NUMEIG + 22) units.

Workspace may be explicitly provided, if desired, by use of
S2EIG/DS2EIG. The reference is

CALL S2EIG (CONST, COEFFN, ENDFIN, NUMEIG, INDEX,
 TEVLAB, TEVLRL, EVAL, JOB, IPRINT, TOLS,
 NUMX, XEF, NRHO, T, TYPE, EF, PDEF, RHO,
 IFLAG, WORK, IWORK)

The additional arguments are as follows:

JOB — Logical array of length five. (Input)

JOB(1) = .true. if a set of eigenvalues are to be computed but not
their eigenfunctions.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 747

JOB(2) = .true. if a set of eigenvalue and eigenfunction pairs are to
be computed.

JOB(3) = .true. if the spectral function is to be computed
over some subinterval of the essential spectrum.

JOB(4) = .true. if the normal automatic classification is overridden.
If JOB(4) = .true. then TYPE(*,*) must be entered correctly. Most
users will not want to override the classification process, but it might be
appropriate for users experimenting with problems for which the
coefficient functions do not have power-like behavior near the singular
endpoints. The classification is considered sufficiently important for
spectral density function calculations that JOB(4) is ignored with
JOB(3) = .true..

JOB(5) = .true. if mesh distribution is chosen by SLEIG. If JOB(5) =
.true. and NUMX is zero, the number of mesh points are also chosen by
SLEIG. If NUMX > 0 then NUMX mesh points will be used. If JOB(5) =
.false., the number NUMX and distribution XEF(*) must be input by the
user.

IPRINT — Control levels of internal printing. (Input)
No printing is performed if IPRINT = 0. If either JOB(1) or JOB(2) is
true:
IPRINT Printed Output
1 initial mesh (the first 51 or fewer points), eigenvalue estimate

at each level
4 the above and at each level matching point for

eigenfunction shooting, X(*), EF(*) and PDEF(*) values
5 the above and at each level the brackets for the eigenvalue

search, intermediate shooting information for the
eigenfunction and eigenfunction norm.

If JOB(3) = .true.
IPRINT Printed Output
1 the actual (a, b) used at each iteration and the total number

of eigenvalues computed
2 the above and switchover points to the asymptotic

formulas, and some intermediate ρ(t) approximations
4 the above and initial meshes for each iteration, the index

of the largest eigenvalue which may be computed, and various
eigenvalue and R1 values

4 the above and

$ρ
values at each level

5 the above and R1 add eigenvalues below the switchover
point

If JOB(4)=.false.

748 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

IPRINT Printed Output
2 output a description of the spectrum
3 the above and the constants for the Friedrichs’ boundary

condition(s)
5 the above and intermediate details of the classification

calculation

TOLS — Array of length 4 containing tolerances. (Input)
TOLS(1) — absolute error tolerance for eigenfunctions
TOLS(2) — relative error tolerance for eigenfunctions
TOLS(3) — absolute error tolerance for eigenfunction derivatives
TOLS(4) — relative error tolerance for eigenfunction derivatives

The absolute tolerances must be positive.
The relative tolerances must be at least 100 *amach(4)

NUMX — Integer whose value is the number of output points where
each eigenfunction is to be evaluated (the number of entries in XEF(*))
when JOB(2) = .true.. If JOB(5)= .false. and NUMX is greater
than zero, then NUMX is the number of points in the initial mesh used. If
JOB(5) = .false., the points in XEF(*) should be chosen with a
reasonable distribution. Since the endpoints a and b must be part of any
mesh, NUMX cannot be one in this case. If JOB(5) = .false. and
JOB(3) = .true., then NUMX must be positive. On output, NUMX is set
to the number of points for eigenfunctions when input NUMX = 0, and
JOB(2) or JOB(5) = .true.. (Input/Output)

XEF — Array of points on input where eigenfunction estimates are
desired, if JOB(2) = .true.. Otherwise, if JOB(5) = .false. and
NUMX is greater than zero, the user’s initial mesh is entered. The entries
must be ordered so that a = XEF(1) < XEF(2) < … < XEF(NUMX) = b.
If either endpoint is infinite, the corresponding XEF(1) or XEF(NUMX)
is ignored. However, it is required that XEF(2) be negative when
ENDFIN(1) = .false., and that XEF(NUMX-1) be positive when
ENDFIN(2) = .false.. On output, XEF(*) is changed only if
JOB(2) and JOB(5) are true. If JOB(2) = .false., this vector is not
referenced. If JOB(2) = .true. and NUMX is greater than zero on
input, XEF(*) should be dimensioned at least NUMX + 16. If JOB(2) is
true and NUMX is zero on input, XEF(*) should be dimensioned at least
31.

NRHO — The number of output values desired for the array RHO(*).
NRHO is not used if JOB(3) = .false.. (Input)

T — Real vector of size NRHO containing values where the spectral
function RHO(*) is desired. The entries must be sorted in increasing
order. The existence and location of a continuous spectrum can be
determined by calling SLEIG with the first four entries of JOB set to
false and IPRINT set to 1. T(*) is not used if JOB(3) = .false..
(Input)

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 749

TYPE — 4 by 2 logical matrix. Column 1 contains information about
endpoint a and column 2 refers to endpoint b.
TYPE(1,*) = .true. if and only if the endpoint is regular
TYPE(2,*) = .true. if and only if the endpoint is limit circle
TYPE(3,*) = .true. if and only if the endpoint is nonoscillatory for
all eigenvalues
TYPE(4,*) = .true. if and only if the endpoint is oscillatory for all
eigenvalues
Note: all of these values must be correctly input if JOB(4) = .true..
Otherwise, TYPE(*,*) is output. (Input/Output)

EF — Array of eigenfunction values. EF((k − 1)*NUMX + i) is the
estimate of u(XEF(i)) corresponding to the eigenvalue in EV(k). If
JOB(2) = .false. then this vector is not referenced. If
JOB(2) = .true. and NUMX is greater than zero on entry, then EF(*)

should be dimensioned at least NUMX * NUMEIG. If JOB(2) = .true.
and NUMX is zero on input, then EF(*) should be dimensioned 31 *

NUMEIG. (Output)

PDEF — Array of eigenfunction derivative values.
PDEF((k-1)*NUMX + i) is the estimate of (pu′) (XEF(i))
corresponding to the eigenvalue in EV(k). If JOB(2) = .false. this
vector is not referenced. If JOB(2) = .true., it must be dimensioned
the same as EF(*). (Output)

RHO — Array of size NRHO containing values for the spectral density
function ρ(t), RHO(I) = ρ(T(I)). This vector is not referenced if
JOB(3) is false. (Output)

IFLAG — Array of size max(1, numeig) containing information
about the output. IFLAG(K) refers to the K-th eigenvalue, when JOB(1)

or JOB(2) = .true.. Otherwise, only IFLAG(1) is used. Negative
values are associated with fatal errors, and the calculations are ceased.
Positive values indicate a warning. (Output)
IFLAG(K)

IFLAG(K) Description

−1 too many levels needed for the eigenvalue calculation;
problem seems too difficult at this tolerance. Are the
coefficient functions nonsmooth?

−2 too many levels needed for the eigenfunction
calculation; problem seems too difficult at this
tolerance. Are the eigenfunctions ill-conditioned?

−3 too many levels needed for the spectral density
calculation; problem seems too difficult at this
tolerance.

−4 the user has requested the spectral density function for
a problem which has no continuous spectrum.

750 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

IFLAG(K) Description

−5 the user has requested the spectral density function for
a problem with both endpoints generating essential
spectrum, i.e. both endpoints either OSC or O-NO.

−6 the user has requested the spectral density function for
a problem in spectral category 2 for which a proper
normalization of the solution at the NONOSC endpoint
is not known; for example, problems with an irregular
singular point or infinite endpoint at one end and
continuous spectrum generated at the other.

−7 problems were encountered in obtaining a bracket.

−8 too small a step was used in the integration. The
TOLS(*) values may be too small for this problem.

−9 too small a step was used in the spectral density
function calculation for which the continuous spectrum
is generated by a finite endpoint.

−10 an argument to the circular trig functions is too large.
Try running the problem again with a finer initial mesh
or, for singular problems, use interval truncation.

−15 p(x) and r(x) are not positive in the interval (a, b).

−20 eigenvalues and/or eigenfunctions were requested for a
problem with an OSC singular endpoint. Interval
truncation must be used on such problems.

1 failure in the bracketing procedure probably due to a
cluster of eigenvalues which the code cannot separate.
Calculations have continued but any eigenfunction
results are suspect. Try running the problem again with
tighter input tolerances to separate the cluster.

2 there is uncertainty in the classification for this
problem. Because of the limitations of floating point
arithmetic, and the nature of the finite sampling, the
routine cannot be certain about the classification
information at the requested tolerance.

3 there may be some eigenvalues embedded in the
essential spectrum. Use of IPRINT greater than zero
will provide additional output giving the location of the
approximating eigenvalues for the step function
problem. These could be extrapolated to estimate the
actual eigenvalue embedded in the essential spectrum.

4 a change of variables was made to avoid potentially
slow convergence. However, the global error estimates
may not be as reliable. Some experimentation using
different tolerances is recommended.

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 751

IFLAG(K) Description

6 there were problems with eigenfunction convergence in
a spectral density calculation. The output ρ(t) may not
be accurate.

WORK — Array of size MAX(1000, NUMEIG + 22) used for workspace.

IWORK — Integer array of size NUMEIG + 3 used for workspace.

Algorithm

This subroutine is designed for the calculation of eigenvalues, eigenfunctions
and/or spectral density functions for Sturm-Liouville problems in the form

− + =d

dx
p x

du

dx
q x u r x u x a b() ,0 5 0 5 0 5 0 5λ for in (1)

with boundary conditions (at regular points)

a u a pu a u a pu a

b u b pu b

1 2 1 2

1 2 0

− ′ = ′ − ′ ′

+ ′ =

0 5 0 51 6
0 5
λ at

 at

We assume that

′ − ′ >a a a a1 2 1 2 0

when a′� ≠ 0 and a′� ≠ 0. The problem is considered regular if and only if

• a and b are finite,

• p(x) and r(x) are positive in (a, b),

• 1/p(x), q(x) and r(x) are locally integrable near the endpoints.

Otherwise the problem is called singular. The theory assumes that p, p′, q, and r
are at least continuous on (a, b), though a finite number of jump discontinuities
can be handled by suitably defining an input mesh.

For regular problems, there are an infinite number of eigenvalues

λ� < λ� < … < λN, k → ∞

Each eigenvalue has an associated eigenfunction which is unique up to a constant.
For singular problems, there is a wide range in the behavior of the eigenvalues.

As presented in Pruess and Fulton (1993) the approach is to replace (1) by a new
problem

− ′ ′ + =$ $ $ $ $ $ $pu qu ru0 5 λ (2)

with analogous boundary conditions

a u a a pu a a u a a pu a

b u b b pu b

1 2 1 2

1 2 0

$ $ $ $ $ $ $

$ $ $

0 5 0 50 5 0 5 0 50 5
0 5 0 50 5

− ′ = ′ − ′ ′

+ ′ =

λ

752 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

where

$, $ $p q r and

are step function approximations to p, q, and r, respectively. Given the mesh
a = x� < x� < … < x1�� = b, the usual choice for the step functions uses midpoint
interpolation, i. e.,

$ ()p x p p
x x

n
n n0 5 = ≡ + +1

2

for x in (xQ, xQ��) and similarly for the other coefficient functions. This choice
works well for regular problems. Some singular problems require a more
sophisticated technique to capture the asymptotic behavior. For the midpoint
interpolants, the differential equation (2) has the known closed form solution in

(xQ, xQ��)

$ $ $ $ /u x u x x x pu x x x pn n n n n n n0 5 1 6 1 6 0 51 6 1 6= ′ − + ′ −φ φ

with

φ
ω ω τ
ω ω τ

τ
n

n n n

n n nt

t

t

t

0 5 =
>
<

=

%
&K
'K

sin / ,

sinh / ,

,

0

0

0

where

τ λn n n nr q p= −$ /4 9
and

ω τn n=

Starting with,

$ $ $u a pu a0 5 0 50 5 and ′

consistent with the boundary condition,

$ $

$ $ $

u a a a

pu a a a

0 5
0 50 5

= − ′

′ = − ′

2 2

1 1

λ

λ

an algorithm is to compute for n = 1, 2, ..., N,

$ $ $ $ /

$ $ $ $ $

u x u x h pu x h p

pu x p u x h pu x h

n n n n n n n n

n n n n n n n n n

+

+

= ′ + ′

′ = − ′ + ′
1

1

1 6 1 6 1 6 0 51 6 1 6
0 51 6 1 6 1 6 0 51 6 1 6

φ φ

τ φ φ

which is a shooting method. For a fixed mesh we can iterate on the approximate

eigenvalue until the boundary condition at b is satisfied. This will yield an O(h�)
approximation

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 753

$λk

to some λN.

The problem (2) has a step spectral function given by

$
$ $

ρ
α

t
r x u x dxk

0 5 0 5 0 5=
+I∑ 1

2

where the sum is taken over k such that

$λk t≤

and

α = ′ − ′a a a a1 2 1 2

Example 1

This examples computes the first ten eigenvalues of the problem from Titchmarsh
(1962) given by

p(x) = r(x) = 1

q(x) = x

[a, b] = [0, ∞]

u(a) = u(b) = 0

The eigenvalues are known to be the zeros of

f J Jλ λ λ0 5 = + −1 3
3 2

1 3
3 22

3

2

3/
/

/
/() ()

For each eigenvalue λN, the program prints k, λN and f(λN).
c SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, INDEX(10), NUMEIG
 REAL CBS1(1), CBS2(1), CONS(8), EVAL(10), LAMBDA, TEVLAB,
 & TEVLRL, XNU, Z
 LOGICAL ENDFIN(2)
c SPECIFICATIONS FOR INTRINSICS
 INTRINSIC CMPLX, SQRT
 REAL SQRT
 COMPLEX CMPLX
c SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL CBJS, SLEIG
c SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL AMACH, COEFF
 REAL AMACH
c
 CALL UMACH (2, NOUT)
c Define boundary conditions
 CONS(1) = 1.0
 CONS(2) = 0.0
 CONS(3) = 0.0

754 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 CONS(4) = 0.0
 CONS(5) = 1.0
 CONS(6) = 0.0
 CONS(7) = 0.0
 CONS(8) = 0.0
c
 ENDFIN(1) = .TRUE.
 ENDFIN(2) = .FALSE.
c Compute the first 10 eigenvalues
 NUMEIG = 10
 DO 10 I=1, NUMEIG
 INDEX(I) = I - 1
 10 CONTINUE
c Set absolute and relative tolerance
 TEVLAB = 10.0*AMACH(4)
 TEVLRL = SQRT(AMACH(4))
c
 CALL SLEIG (CONS, COEFF, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL,
 & EVAL)
c
 XNU = -1.0/3.0
 WRITE(NOUT,99998)
 DO 20 I=1, NUMEIG
 LAMBDA = EVAL(I)
 Z = CMPLX(2.0/3.0*LAMBDA*SQRT(LAMBDA),0.0)
 CALL CBJS (XNU, Z, 1, CBS1)
 CALL CBJS (-XNU, Z, 1, CBS2)
 WRITE (NOUT,99999) I-1, LAMBDA, CBS1(1) + CBS2(1)
 20 CONTINUE
c
99998 FORMAT(/, 2X, ’index’, 5X, ’lambda’, 5X, ’f(lambda)’,/)
99999 FORMAT(I5, F13.4, E15.4)
 END
c
 SUBROUTINE COEFF (X, PX, QX, RX)
c SPECIFICATIONS FOR ARGUMENTS
 REAL X, PX, QX, RX
c
 PX = 1.0
 QX = X
 RX = 1.0
 RETURN
 END

Output
 index lambda f(lambda)
 0 2.3381 -0.8225E-05
 1 4.0879 -0.1654E-04
 2 5.5205 0.6844E-04
 3 6.7867 -0.4515E-05
 4 7.9440 0.8953E-04
 5 9.0227 0.1122E-04
 6 10.0401 0.1031E-03
 7 11.0084 -0.7913E-04
 8 11.9361 -0.2550E-04
 9 12.8293 0.2321E-03

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 755

Example 2

In this problem from Scott, Shampine and Wing (1969),

p(x) = r(x) = 1

q(x) = x� + x�

[a, b] = [−∞, ∞]

u(a) = u(b) = 0

the first eigenvalue and associated eigenfunction, evaluated at selected points, are
computed. As a rough check of the correctness of the results, the magnitude of the
residual

− + −d

dx
p x

du

dx
q x u r x u()0 5 0 5 0 5λ

is printed. We compute a spline interpolant to u′ and use the function CSDER to
estimate the quantity −(p(x)u′)′.

c SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IFLAG(1), INDEX(1), IWORK(100), NINTV, NOUT, NRHO,
 & NUMEIG, NUMX
 REAL BRKUP(61), CONS(8), CSCFUP(4,61), EF(61), EVAL(1),
 & LAMBDA, PDEF(61), PX, QX, RESIDUAL, RHO(1), RX, T(1),
 & TEVLAB, TEVLRL, TOLS(4), WORK(3000), X, XEF(61)
 LOGICAL ENDFIN(2), JOB(5), TYPE(4,2)
c SPECIFICATIONS FOR INTRINSICS
 INTRINSIC ABS, REAL
 REAL ABS, REAL
c SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL COEFF, CSAKM, S2EIG, UMACH
c SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CSDER
 REAL CSDER
c Define boundary conditions
 CONS(1) = 1.0
 CONS(2) = 0.0
 CONS(3) = 0.0
 CONS(4) = 0.0
 CONS(5) = 1.0
 CONS(6) = 0.0
 CONS(7) = 0.0
 CONS(8) = 0.0
c Compute eigenvalue and eigenfunctions
 JOB(1) = .FALSE.
 JOB(2) = .TRUE.
 JOB(3) = .FALSE.
 JOB(4) = .FALSE.
 JOB(5) = .FALSE.
c
 ENDFIN(1) = .FALSE.
 ENDFIN(2) = .FALSE.
c Compute eigenvalue with index 0
 NUMEIG = 1
 INDEX(1) = 0
c

756 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

 TEVLAB = 1.0E-3
 TEVLRL = 1.0E-3
 TOLS(1) = TEVLAB
 TOLS(2) = TEVLRL
 TOLS(3) = TEVLAB
 TOLS(4) = TEVLRL
 NRHO = 0
c Set up mesh, points at which u and
c u’ will be computed
 NUMX = 61
 DO 10 I=1, NUMX
 XEF(I) = 0.05*REAL(I-31)
 10 CONTINUE
c
 CALL S2EIG (CONS, COEFF, ENDFIN, NUMEIG, INDEX, TEVLAB, TEVLRL,
 & EVAL, JOB, 0, TOLS, NUMX, XEF, NRHO, T, TYPE, EF,
 & PDEF, RHO, IFLAG, WORK, IWORK)
c
 LAMBDA = EVAL(1)
 20 CONTINUE
c Compute spline interpolant to u’
c
 CALL CSAKM (NUMX, XEF, PDEF, BRKUP, CSCFUP)
 NINTV = NUMX - 1
c
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997) ’ lambda = ’, LAMBDA
 WRITE (NOUT,99999)
c At a subset of points from the
c input mesh, compute residual =
c abs(-(u’)’ + q(x)u - lambda*u).
c We know p(x) = 1 and r(x) = 1.
 DO 30 I=1, 41, 2
 X = XEF(I+10)
 CALL COEFF (X, PX, QX, RX)
c
c Use the spline fit to u’ to
c estimate u’’ with CSDER
c
 RESIDUAL = ABS(-CSDER(1,X,NINTV,BRKUP,CSCFUP)+QX*EF(I+10)-
 & LAMBDA*EF(I+10))
 WRITE (NOUT,99998) X, EF(I+10), PDEF(I+10), RESIDUAL
 30 CONTINUE
c
99997 FORMAT (/, A14, F10.5, /)
99998 FORMAT (5X, F4.1, 3F15.5)
99999 FORMAT (7X, ’x’, 11X, ’u(x)’, 10X, ’u’’(x)’, 9X, ’residual’, /)
 END
c
 SUBROUTINE COEFF (X, PX, QX, RX)
c SPECIFICATIONS FOR ARGUMENTS
 REAL X, PX, QX, RX
c
 PX = 1.0
 QX = X*X + X*X*X*X
 RX = 1.0
 RETURN
 END

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 757

Output
 lambda = 1.39247
 x u(x) u’(x) residual
 -1.0 0.38632 0.65019 0.00189
 -0.9 0.45218 0.66372 0.00081
 -0.8 0.51837 0.65653 0.00023
 -0.7 0.58278 0.62827 0.00113
 -0.6 0.64334 0.57977 0.00183
 -0.5 0.69812 0.51283 0.00230
 -0.4 0.74537 0.42990 0.00273
 -0.3 0.78366 0.33393 0.00265
 -0.2 0.81183 0.22811 0.00273
 -0.1 0.82906 0.11570 0.00278
 0.0 0.83473 0.00000 0.00136
 0.1 0.82893 -0.11568 0.00273
 0.2 0.81170 -0.22807 0.00273
 0.3 0.78353 -0.33388 0.00267
 0.4 0.74525 -0.42983 0.00265
 0.5 0.69800 -0.51274 0.00230
 0.6 0.64324 -0.57967 0.00182
 0.7 0.58269 -0.62816 0.00113
 0.8 0.51828 -0.65641 0.00023
 0.9 0.45211 -0.66361 0.00081
 1.0 0.38626 -0.65008 0.00189

SLCNT/DSLCNT (Single/Double precision)
Calculate the indices of eigenvalues of a Sturm-Liouville problem of the form for

− + =d

dx
p x

du

dx
q x u r x u x a b() ,0 5 0 5 0 5λ for in

with boundary conditions (at regular points)

a u a pu a u a pu a

b u b pu b

1 2 1 2

1 2 0

− ′ = ′ − ′ ′

+ ′ =

0 5 0 51 6
0 5
λ at

 at

in a specified subinterval of the real line, [α, β].

Usage
CALL SLCNT (ALPHA, BETA, CONS, COEFFN, ENDFIN, IFIRST,
 NTOTAL)

Arguments

ALPHA — Value of the left end point of the search interval. (Input)

BETA — Value of the right end point of the search interval. (Input)

CONS — Array of size eight containing

a a a a b b a b1 1 2 2 1 2, , , , , ,′ ′ and

758 • Chapter 5: Differential Equations IMSL MATH/LIBRARY

in locations CONS(1) … CONS(8), respectively. (Input)

COEFFN — User-supplied SUBROUTINE to evaluate the coefficient functions.
The usage is
CALL COEFFN (X, PX, QX, RX)

X — Independent variable. (Input)
PX — The value of p(x) at X. (Output)
QX — The value of q(x) at X. (Output)
RX — The value of r(x) at X. (Output)
COEFFN must be declared EXTERNAL in the calling program.

ENDFIN — Logical array of size two. ENDFIN = .true. if and only if the
endpoint a is finite. ENDFIN(2) = .true. if and only if endpoint b is finite.
(Input)

IFIRST — The index of the first eigenvalue greater than α. (Output)

NTOTAL — Total number of eigenvalues in the interval [α, β]. (Output)

Algorithm

This subroutine computes the indices of eigenvalues, if any, in a subinterval of
the real line for Sturm-Liouville problems in the form

− + =d

dx
p x

du

dx
q x u r x u x a b() ,0 5 0 5 0 5λ for in

with boundary conditions (at regular points)

a u a pu a u a pu a

b u b pu b

1 2 1 2

1 2 0

− ′ = ′ − ′ ′

+ ′ =

0 5 0 51 6
0 5
λ at

 at

It is intended to be used in conjunction with SLEIG, page 745. SLCNT is based on
the routine INTERV from the package SLEDGE.

Example

Consider the harmonic oscillator (Titchmarsh) defined by

p(x) = 1

q(x) = x�

r(x) = 1

[a, b] = [−∞, ∞]

u(a) = 0

u(b) = 0

The eigenvalues of this problem are known to be

λN = 2k + 1, k = 0, 1, …

IMSL MATH/LIBRARY Chapter 5: Differential Equations • 759

Therefore in the interval [10, 16] we expect SLCNT to note three eigenvalues,
with the first of these having index five.

c SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IFIRST, NOUT, NTOTAL
 REAL ALPHA, BETA, CONS(8)
 LOGICAL ENDFIN(2)
c SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL SLCNT, UMACH
c SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL COEFFN
c
 CALL UMACH (2, NOUT)
c set u(a) = 0, u(b) = 0
 CONS(1) = 1.0E0
 CONS(2) = 0.0E0
 CONS(3) = 0.0E0
 CONS(4) = 0.0E0
 CONS(5) = 1.0E0
 CONS(6) = 0.0E0
 CONS(7) = 0.0E0
 CONS(8) = 0.0E0
c
 ENDFIN(1) = .FALSE.
 ENDFIN(2) = .FALSE.
c
 ALPHA = 10.0
 BETA = 16.0
c
 CALL SLCNT (ALPHA, BETA, CONS, COEFFN, ENDFIN, IFIRST, NTOTAL)
c
 WRITE (NOUT,99998) ALPHA, BETA, IFIRST
 WRITE (NOUT,99999) NTOTAL
c
99998 FORMAT (/, ’Index of first eigenvalue in [’, F5.2, ’,’, F5.2,
 & ’] IS ’, I2)
99999 FORMAT (’Total number of eigenvalues in this interval: ’, I2)
c
 END
c
 SUBROUTINE COEFFN (X, PX, QX, RX)
c SPECIFICATIONS FOR ARGUMENTS
 REAL X, PX, QX, RX
c
 PX = 1.0E0
 QX = X*X
 RX = 1.0E0
 RETURN
 END

Output
Index of first eigenvalue in [10.00,16.00] is 5
Total number of eigenvalues in this interval: 3

IMSL MATH/LIBRARY Chapter 6: Transforms • 761

Chapter 6: Transforms

Routines
6.1. Real Trigonometric FFT

Forward transform.. FFTRF 764
Backward or inverse transform .. FFTRB 768
Initialization routine for FFTR*..FFTRI 770

6.2. Complex Exponential FFT
Forward transform.. FFTCF 772
Backward or inverse transform .. FFTCB 774
Initialization routine for FFTC*..FFTCI 777

6.3. Real Sine and Cosine FFTs
Forward and inverse sine transform FSINT 779
Initialization routine for FSINT...FSINI 780
Forward and inverse cosine transform.................................FCOST 782
Initialization routine for FCOST...FCOSI 784

6.4. Real Quarter Sine and Quarter Cosine FFTs
Forward quarter sine transform...QSINF 786
Backward or inverse transform ...QSINB 788
Initialization routine for QSIN*.. QSINI 790
Forward quarter cosine transform....................................... QCOSF 791
Backward or inverse transform ...QCOSB 793
Initialization routine for QCOS* .. QCOSI 795

6.5. Two- and Three-Dimensional Complex FFTs
Forward transform...FFT2D 797
Backward or inverse transform ...FFT2B 800
Forward transform...FFT3F 802
Backward or inverse transform ...FFT3B 806

6.6. Convolutions and Correlations
Real convolution..RCONV 810
Complex convolution...CCONV 814
Real correlation... RCORL 818
Complex correlation .. CCORL 823

762 • Chapter 6: Transforms IMSL MATH/LIBRARY

6.7. Laplace Transform
Inverse Laplace transform... INLAP 827
Inverse Laplace transform for smooth functionsSINLP 830

Usage Notes

Fast Fourier Transforms

A Fast Fourier Transform (FFT) is simply a discrete Fourier transform that can be
computed efficiently. Basically, the straightforward method for computing the

Fourier transform takes approximately N2 operations where N is the number of
points in the transform, while the FFT (which computes the same values) takes
approximately N log N operations. The algorithms in this chapter are modeled on
the Cooley-Tukey (1965) algorithm; hence, the computational savings occur, not
for all integers N, but for N which are highly composite. That is, N (or in certain
cases N + 1 or N − 1) should be a product of small primes.

All of the FFT routines compute a discrete Fourier transform. The routines accept
a vector x of length N and return a vector

$x

defined by

$:x xm n
n

N

nm=
=

∑
1

ω

The various transforms are determined by the selection of ω. In the following
table, we indicate the selection of ω for the various transforms. This table should
not be mistaken for a definition since the precise transform definitions (at times)
depend on whether N or m is even or odd.

IMSL MATH/LIBRARY Chapter 6: Transforms • 763

Routine

cos or sin

cos or sin

e

e

sin

cos

 sin

4 sin

2 cos

4 cos
2n -1

-2 -

-

ω
π

π

π

π

π

π

π

π

π

π

nm

i n m N

i n m N

m n

N
m n

N

nm

N
n m

N
m n

N
n m

N
m n

N
m

N

FFTRF

FFTRB

FFTCF

FFTCB

FSINT

FCOST

QSINF

QSINB

QCOSF

QCOSB

− −

− −

+
− −

−
−

−

− −

−

) −)

) −)

1 1 2

1 1 2

1
1 1

1

2
2 1

2
2 1

2
2 1 1

2
1

2

1 1

2 1 1

0 50 5
0 50 5

0 50 5
0 5
0 5

0 50 5
0 50 5

0 0
0 0

/

/

For many of the routines listed above, there is a corresponding “I” (for
initialization) routine. Use these routines only when repeatedly transforming
sequences of the same length. In this situation, the “I” routine will compute the
initial setup once, and then the user will call the corresponding “2” routine. This
can result in substantial computational savings. For more information on the
usage of these routines, the user should consult the documentation under the
appropriate routine name.

In addition to the one-dimensional transformations described above, we also
provide complex twoand three-dimensional FFTs and their inverses based on
calls to either FFTCF (page 772) or FFTCB (page 774). If you need a higher
dimensional transform, then you should consult the example program for FFTCI

(page 777) which suggests a basic strategy one could employ.

Continuous versus discrete Fourier transform

There is, of course, a close connection between the discrete Fourier transform and
the continuous Fourier transform. Recall that the continuous Fourier transform is
defined (Brigham, 1974) as

$f F f f t e dti tω ω π ω0 5 0 50 5 0 5= = −
−∞

∞I 2

We begin by making the following approximation:

764 • Chapter 6: Transforms IMSL MATH/LIBRARY

$

/

/

/

/

/

f f t e dt

f t T e dt

e f t T e dt

T

T i t

T i t T

i T T i t

ω π ω

π ω

π ω π ω

0 5 0 5
0 5

0 5

0 5

≈

= −

= −

−
−

− −

−

I
I

I

2

2 2

0

2 2

0

2

2

2

If we approximate the last integral using the rectangle rule with spacing h = T/N,
we have

$ /f e h e f kh Ti T i kh

k

N

ω π ω π ω0 5 0 5≈ −−

=

−

∑ 2

0

1

2

Finally, setting ω = j/T for j = 0, …, N − 1 yields

$ / // /f j T e h e f kh T h e fij ijk N

k

N
j ijk N

k

N

k
h0 5 0 5 0 5≈ − = −−

=

−
−

=

−

∑ ∑π π π2

0

1
2

0

1

2 1

where the vector f K = (f(− T/2), …, f((N − 1)h − T/2)). Thus, after scaling the

components by (−1)Mh, the discrete Fourier transform as computed in FFTCF (with

input fK) is related to an approximation of the continuous Fourier transform by the
above formula. This is seen more clearly by making a change of variables in the
last sum. Set

n k m j f xk
h

n= + = + =1 1, , and

then, for m = 1, …, N we have

$ / $ /f m T hx h e xm
m

m i m n N
n

n

N

− ≈ − − = − − − −) −)

=
∑1 1 1 2 1 1

1

0 51 6 0 5 0 5 0 0π

If the function f is expressed as a FORTRAN function routine, then the
continuous Fourier transform

$f

can be approximated using the IMSL routine QDAWF (page 604).

Inverse Laplace transform

The last two routines described in this chapter, INLAP (page 827) and SINLP
(page 830), compute the inverse Laplace transforms.

IMSL MATH/LIBRARY Chapter 6: Transforms • 765

FFTRF/DFFTRF (Single/Double precision)
Compute the Fourier coefficients of a real periodic sequence.

Usage
CALL FFTRF (N, SEQ, COEF)

Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the periodic sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

Comments

1. Automatic workspace usage is

FFTRF 2N + 15 units, or
DFFTRF 4N + 30 units.

Workspace may be explicitly provided, if desired, by use of
F2TRF/DF2TRF. The reference is

CALL F2TRF (N, SEQ, COEF, WFFTR)

The additional argument is

WFFTR — Array of length 2N + 15 initialized by FFTRI (page 770).
(Input)
The initialization depends on N.

2. The routine FFTRF is most efficient when N is the product of small
primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call
FFTRI followed by repeated calls to F2TRF/F2TRB. This is more
efficient than repeated calls to FFTRF/FFTRB.

Algorithm

The routine FFTRF computes the discrete Fourier transform of a real vector of
size N. The method used is a variant of the Cooley-Tukey algorithm that is most
efficient when N is a product of small prime factors. If N satisfies this condition,
then the computational effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, FFTRF returns in c = COEF, if N is even:

766 • Chapter 6: Transforms IMSL MATH/LIBRARY

c s
m n

N
m N

c s
m n

N
m N

c s

m n
n

N

m n
n

N

n
n

N

2 2
1

2 1
1

1
1

1 1 2
2 2 1

1 1 2
2 2

−
=

−
=

=

=
− −�

!
"
$# = +

= −
− −�

!
"
$# =

=

∑

∑

∑

cos , , /

sin , , /

0 50 5

0 50 5

π

π

K

K

If N is odd, cP is defined as above for m from 2 to (N + 1)/2.

We now describe a fairly common usage of this routine. Let f be a real valued
function of time. Suppose we sample f at N equally spaced time intervals of length
∆ seconds starting at time t0. That is, we have

SEQ L:= f (t0 + (i − 1)∆) i = 1, 2, …, N

The routine FFTRF treats this sequence as if it were periodic of period N. In
particular, it assumes that f (t0) = f (t0 + N∆). Hence, the period of the function is
assumed to be T = N∆.

Now, FFTRF accepts as input SEQ and returns as output coefficients c = COEF that
satisfy the following relation when N is odd (N even is similar):

SEQ i n n
n

N

n

N

N
c c

n i

N
c

n i

N
= +

− −�
!

"
$# −

− −�
!

"
$#

�
!

"
$
##− −

=

+)

=

+)

∑∑1
2

2 1 1
2

2 1 1
1 2 2 2 1

2

1 2

2

1 2

cos sin
// π π0 50 5 0 50 500

This formula is very revealing. It can be interpreted in the following manner. The
coefficients produced by FFTRF produce an interpolating trigonometric
polynomial to the data. That is, if we define

g t
N

c c
n t t

N
c

n t t

N

N
c c

n t t

T
c

n t t

T

n n
n

N

n

N

n n
n

N

n

N

0 5 0 51 6 0 51 6

0 51 6 0 51 6

00

00

: cos sin

cos sin

//

//

= +
− −�

!
"
$#

−
− −�

!
"
$#

�
!

"
$
##

= +
− −�

!
"
$#

−
− −�

!
"
$#

− −
=

+)

=

+)

− −
=

+)

=

+)

∑∑

∑∑

1
2

2 1
2

2 1

1
2

2 1
2

2 1

1 2 2
0

2 1
0

2

1 2

2

1 2

1 2 2
0

2 1
0

2

1 2

2

1 2

π π

π π

∆ ∆

�
!

"
$
##

then, we have

f(t0 + (i − 1)∆) = g(t0 + (i − 1)∆)

Now, suppose we want to discover the dominant frequencies. One forms the
vector P of length N/2 as follows:

P c

P c c k Nk k k

1 1

2 2
2

2 1
2 2 3 1 2

:

: , , , /

=

= + = +− − K 0 5
These numbers correspond to the energy in the spectrum of the signal. In
particular, PN corresponds to the energy level at frequency

IMSL MATH/LIBRARY Chapter 6: Transforms • 767

k

T

k

N
k

N− = − = +1 1
1 2

1

2∆
, , ,K

Furthermore, note that there are only (N + 1)/2 ≈ T/(2∆) resolvable frequencies
when N observations are taken. This is related to the Nyquist phenomenon, which
is induced by discrete sampling of a continuous signal.

Similar relations hold for the case when N is even.

Finally, note that the Fourier transform has an (unnormalized) inverse that is
implemented in FFTRB (page 768). The routine FFTRF is based on the real FFT in
FFTPACK. The package FFTPACK was developed by Paul Swarztrauber at the
National Center for Atmospheric Research.

Example

In this example, a pure cosine wave is used as a data vector, and its Fourier series
is recovered. The Fourier series is a vector with all components zero except at the
appropriate frequency where it has an N.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 REAL COEF(N), CONST, COS, FLOAT, TWOPI, SEQ(N)
 INTRINSIC COS, FLOAT
 EXTERNAL CONST, FFTRF, UMACH
C
 TWOPI = 2.0*CONST(’PI’)
C Get output unit number
 CALL UMACH (2, NOUT)
C This loop fills out the data vector
C with a pure exponential signal
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(I-1)*TWOPI/FLOAT(N))
 10 CONTINUE
C Compute the Fourier transform of SEQ
 CALL FFTRF (N, SEQ, COEF)
C Print results
 WRITE (NOUT,99998)
99998 FORMAT (9X, ’INDEX’, 5X, ’SEQ’, 6X, ’COEF’)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
 END

Output
INDEX SEQ COEF
 1 1.00 0.00
 2 0.62 3.50
 3 -0.22 0.00
 4 -0.90 0.00
 5 -0.90 0.00
 6 -0.22 0.00
 7 0.62 0.00

768 • Chapter 6: Transforms IMSL MATH/LIBRARY

FFTRB/DFFTRB (Single/Double precision)
Compute the real periodic sequence from its Fourier coefficients.

Usage
CALL FFTRB (N, COEF, SEQ)

Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the periodic sequence. (Output)

Comments

1. Automatic workspace usage is

FFTRB 2N + 15 units, or
DFFTRB 4N + 30 units.

Workspace may be explicitly provided, if desired, by use of
F2TRB/DF2TRB. The reference is

CALL F2TRB (N, COEF, SEQ, WFFTR)

The additional argument is

WFFTR — Array of length 2N + 15 initialized by FFTRI (page 770).
(Input)
The initialization depends on N.

2. The routine FFTRB is most efficient when N is the product of small
primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTRF/FFTRB is used repeatedly with the same value of N, then call
FFTRI (page 770) followed by repeated calls to F2TRF/F2TRB. This is
more efficient than repeated calls to FFTRF/FFTRB.

Algorithm

The routine FFTRB is the unnormalized inverse of the routine FFTRF (page 764).
This routine computes the discrete inverse Fourier transform of a real vector of
size N. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when N is a product of small prime factors. If N satisfies this
condition, then the computational effort is proportional to N log N.

Specifically, given an N-vector c = COEF, FFTRB returns in s = SEQ, if N is even:

IMSL MATH/LIBRARY Chapter 6: Transforms • 769

s c c c
n m

N

c
n m

N

m
m

N n
n

N

n
n

N

= + − +
− −

−
− −

−)
−

=

−
=

∑

∑

1
1

2 2
2

2

2 1
2

2

1 2
1 1 2

2
1 1 2

0 5 0 50 5

0 50 5

0 cos

sin

/

/

π

π

If N is odd:

s c c
n m

N

c
n m

N

m n
n

N

n
n

N

= +
− −

−
− −

−
=

+)

−
=

+)

∑

∑

1 2 2
2

1 2

2 1
2

1 2

2
1 1 2

2
1 1 2

cos

sin

/

/

0 50 5

0 50 5

0

0

π

π

The routine FFTRB is based on the inverse real FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

We compute the forward real FFT followed by the inverse operation. In this
example, we first compute the Fourier transform

$x = COEF

of the vector x, where xM = (−1)M for j = 1 to N. This vector
$x

is now input into FFTRB with the resulting output s = Nx, that is, sM = (−1)M�N for j
= 1 to N.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 REAL COEF(N), CONST, FLOAT, SEQ(N), TWOPI, X(N)
 INTRINSIC FLOAT
 EXTERNAL CONST, FFTRB, FFTRF, UMACH
C
 TWOPI = 2.0*CONST(’PI’)
C Get output unit number
 CALL UMACH (2, NOUT)
C Fill the data vector
 DO 10 I=1, N
 X(I) = FLOAT((-1)**I)
 10 CONTINUE
C Compute the forward transform of X
 CALL FFTRF (N, X, COEF)
C Print results
 WRITE (NOUT,99994)
 WRITE (NOUT,99995)
99994 FORMAT (9X, ’Result after forward transform’)

770 • Chapter 6: Transforms IMSL MATH/LIBRARY

99995 FORMAT (9X, ’INDEX’, 5X, ’X’, 8X, ’COEF’)
 WRITE (NOUT,99996) (I, X(I), COEF(I), I=1,N)
99996 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
C Compute the backward transform of
C COEF
 CALL FFTRB (N, COEF, SEQ)
C Print results
 WRITE (NOUT,99997)
 WRITE (NOUT,99998)
99997 FORMAT (/, 9X, ’Result after backward transform’)
99998 FORMAT (9X, ’INDEX’, 4X, ’COEF’, 6X, ’SEQ’)
 WRITE (NOUT,99999) (I, COEF(I), SEQ(I), I=1,N)
99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
 END

Output
Result after forward transform
INDEX X COEF
 1 -1.00 -1.00
 2 1.00 -1.00
 3 -1.00 -0.48
 4 1.00 -1.00
 5 -1.00 -1.25
 6 1.00 -1.00
 7 -1.00 -4.38

Result after backward transform
INDEX COEF SEQ
 1 -1.00 -7.00
 2 -1.00 7.00
 3 -0.48 -7.00
 4 -1.00 7.00
 5 -1.25 -7.00
 6 -1.00 7.00
 7 -4.38 -7.00

FFTRI/DFFTRI (Single/Double precision)
Compute parameters needed by FFTRF and FFTRB.

Usage
CALL FFTRI (N, WFFTR)

Arguments

N — Length of the sequence to be transformed. (Input)

WFFTR — Array of length 2N + 15 containing parameters needed by FFTRF and
FFTRB. (Output)

Comments

Different WFFTR arrays are needed for different values of N.

IMSL MATH/LIBRARY Chapter 6: Transforms • 771

Algorithm

The routine FFTRI initializes the routines FFTRF (page 764) and FFTRB (page
768). An efficient way to make multiple calls for the same N to routine FFTRF or
FFTRB, is to use routine FFTRI for initialization. (In this case, replace FFTRF or
FFTRB with F2TRF or F2TRB, respectively.) The routine FFTRI is based on the
routine RFFTI in FFTPACK. The package FFTPACK was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

Example

In this example, we compute three distinct real FFTs by calling FFTRI once and
then calling F2TRF three times.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, K, NOUT
 REAL COEF(N), CONST, COS, FLOAT, TWOPI, WFFTR(29), SEQ(N)
 INTRINSIC COS, FLOAT
 EXTERNAL CONST, F2TRF, FFTRI, UMACH
C
 TWOPI = 2.0*CONST(’PI’)
C Get output unit number
 CALL UMACH (2, NOUT)
C Set the work vector
 CALL FFTRI (N, WFFTR)
C
 DO 20 K=1, 3
C This loop fills out the data vector
C with a pure exponential signal
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(K*(I-1))*TWOPI/FLOAT(N))
 10 CONTINUE
C Compute the Fourier transform of SEQ
 CALL F2TRF (N, SEQ, COEF, WFFTR)
C Print results
 WRITE (NOUT,99998)
99998 FORMAT (/, 9X, ’INDEX’, 5X, ’SEQ’, 6X, ’COEF’)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99999 FORMAT (1X, I11, 5X, F5.2, 5X, F5.2)
C
 20 CONTINUE
 END

Output
INDEX SEQ COEF
 1 1.00 0.00
 2 0.62 3.50
 3 -0.22 0.00
 4 -0.90 0.00
 5 -0.90 0.00
 6 -0.22 0.00
 7 0.62 0.00

772 • Chapter 6: Transforms IMSL MATH/LIBRARY

INDEX SEQ COEF
 1 1.00 0.00
 2 -0.22 0.00
 3 -0.90 0.00
 4 0.62 3.50
 5 0.62 0.00
 6 -0.90 0.00
 7 -0.22 0.00

INDEX SEQ COEF
1 1.00 0.00
2 -0.90 0.00
3 0.62 0.00
4 -0.22 0.00
5 -0.22 0.00
6 0.62 3.50
7 -0.90 0.00

FFTCF/DFFTCF (Single/Double precision)
Compute the Fourier coefficients of a complex periodic sequence.

Usage
CALL FFTCF (N, SEQ, COEF)

Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Complex array of length N containing the periodic sequence. (Input)

COEF — Complex array of length N containing the Fourier coefficients.
(Output)

Comments

1. Automatic workspace usage is

FFTCF 6 * N + 15 units, or
DFFTCF 12 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
F2TCF/DF2TCF. The reference is

CALL F2TCF (N, SEQ, COEF, WFFTC, CPY)

The additional arguments are as follows:

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI
(page 777). The initialization depends on N. (Input)

CPY — Real array of length 2 * N. (Workspace)

IMSL MATH/LIBRARY Chapter 6: Transforms • 773

2. The routine FFTCF is most efficient when N is the product of small
primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTCF/FFTCB is used repeatedly with the same value of N, then call
FFTCI followed by repeated calls to F2TCF/F2TCB. This is more
efficient than repeated calls to FFTCF/FFTCB.

Algorithm

The routine FFTCF computes the discrete complex Fourier transform of a
complex vector of size N. The method used is a variant of the Cooley-Tukey
algorithm, which is most efficient when N is a product of small prime factors. If N
satisfies this condition, then the computational effort is proportional to N log N.
This considerable savings has historically led people to refer to this algorithm as
the “fast Fourier transform” or FFT.

Specifically, given an N-vector x, FFTCF returns in c = COEF

c x em n
i n m N

n

N

= − −) −)

=
∑ 2 1 1

1

π 0 0 /

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NS

Finally, note that we can invert the Fourier transform as follows:

x
N

c en m
i m n N

m

N

= −) −)

=
∑1 2 1 1

1

π 0 0 /

This formula reveals the fact that, after properly normalizing the Fourier
coefficients, one has the coefficients for a trigonometric interpolating polynomial
to the data. An unnormalized inverse is implemented in FFTCB (page 774).
FFTCF is based on the complex FFT in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example

In this example, we input a pure exponential data vector and recover its Fourier
series, which is a vector with all components zero except at the appropriate
frequency where it has an N. Notice that the norm of the input vector is

N

but the norm of the output vector is N.
 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 REAL CONST, TWOPI

774 • Chapter 6: Transforms IMSL MATH/LIBRARY

 COMPLEX C, CEXP, COEF(N), H, SEQ(N)
 INTRINSIC CEXP
 EXTERNAL CONST, FFTCF, UMACH
C
 C = (0.,1.)
 TWOPI = 2.0*CONST(’PI’)
C Here we compute (2*pi*i/N)*3.
 H = (TWOPI*C/N)*3.
C This loop fills out the data vector
C with a pure exponential signal of
C frequency 3.
 DO 10 I=1, N
 SEQ(I) = CEXP((I-1)*H)
 10 CONTINUE
C Compute the Fourier transform of SEQ
 CALL FFTCF (N, SEQ, COEF)
C Get output unit number and print
C results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
99998 FORMAT (9X, ’INDEX’, 8X, ’SEQ’, 15X, ’COEF’)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99999 FORMAT (1X, I11, 5X,’(’,F5.2,’,’,F5.2,’)’,
 & 5X,’(’,F5.2,’,’,F5.2,’)’)
 END

Output
INDEX SEQ COEF
 1 (1.00, 0.00) (0.00, 0.00)
 2 (-0.90, 0.43) (0.00, 0.00)
 3 (0.62,-0.78) (0.00, 0.00)
 4 (-0.22, 0.97) (7.00, 0.00)
 5 (-0.22,-0.97) (0.00, 0.00)
 6 (0.62, 0.78) (0.00, 0.00)
 7 (-0.90,-0.43) (0.00, 0.00)

FFTCB/DFFTCB (Single/Double precision)
Compute the complex periodic sequence from its Fourier coefficients.

Usage
CALL FFTCB (N, COEF, SEQ)

Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Complex array of length N containing the Fourier coefficients. (Input)

SEQ — Complex array of length N containing the periodic sequence. (Output)

IMSL MATH/LIBRARY Chapter 6: Transforms • 775

Comments

1. Automatic workspace usage is

FFTCB 6 * N + 15 units, or
DFFTCB 12 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
F2TCB/DF2TCB. The reference is

CALL F2TCB (N, COEF, SEQ, WFFTC, CPY)

The additional arguments are as follows:

WFFTC — Real array of length 4 * N + 15 initialized by FFTCI
(page 777). The initialization depends on N. (Input)

CPY — Real array of length 2 * N. (Workspace)

2. The routine FFTCB is most efficient when N is the product of small
primes.

3. The arrays COEF and SEQ may be the same.

4. If FFTCF/FFTCB is used repeatedly with the same value of N; then call
FFTCI followed by repeated calls to F2TCF/F2TCB. This is more
efficient than repeated calls to FFTCF/FFTCB.

Algorithm

The routine FFTCB computes the inverse discrete complex Fourier transform of a
complex vector of size N. The method used is a variant of the Cooley-Tukey
algorithm, which is most efficient when N is a product of small prime factors. If N
satisfies this condition, then the computational effort is proportional to N log N.
This considerable savings has historically led people to refer to this algorithm as
the “fast Fourier transform” or FFT.

Specifically, given an N-vector c = COEF, FFTCB returns in s = SEQ

s c em n
i n m N

n

N

= −) −)

=
∑ 2 1 1

1

π 0 0 /

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NS

Finally, note that we can invert the inverse Fourier transform as follows:

c
N

s en m
i n m N

m

N

= − −) −)

=
∑1 2 1 1

1

π 0 0 /

This formula reveals the fact that, after properly normalizing the Fourier
coefficients, one has the coefficients for a trigonometric interpolating polynomial
to the data. FFTCB is based on the complex inverse FFT in FFTPACK.

776 • Chapter 6: Transforms IMSL MATH/LIBRARY

The package FFTPACK was developed by Paul Swarztrauber at the National
Center for Atmospheric Research.

Example

In this example, we first compute the Fourier transform of the vector x, where xM =

j for j = 1 to N. Note that the norm of x is (N[N + 1][2N + 1]/6)1/2, and hence, the
norm of the transformed vector

$x c=

is N([N + 1][2N + 1]/6)1/2. The vector

$x

is used as input into FFTCB with the resulting output s = Nx, that is, sM = jN, for j =
1 to N.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 COMPLEX CMPLX, SEQ(N), COEF(N), X(N)
 INTRINSIC CMPLX
 EXTERNAL FFTCB, FFTCF, UMACH
C This loop fills out the data vector
C with X(I)=I, I=1,N
 DO 10 I=1, N
 X(I) = CMPLX(I,0)
 10 CONTINUE
C Compute the forward transform of X
 CALL FFTCF (N, X, COEF)
C Compute the backward transform of
C COEF
 CALL FFTCB (N, COEF, SEQ)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, X(I), COEF(I), SEQ(I), I=1,N)
99998 FORMAT (5X, ’INDEX’, 9X, ’INPUT’, 9X, ’FORWARD TRANSFORM’, 3X,
 & ’BACKWARD TRANSFORM’)
99999 FORMAT (1X, I7, 7X,’(’,F5.2,’,’,F5.2,’)’,
 & 7X,’(’,F5.2,’,’,F5.2,’)’,
 & 7X,’(’,F5.2,’,’,F5.2,’)’)
 END

Output
INDEX INPUT FORWARD TRANSFORM BACKWARD TRANSFORM
 1 (1.00, 0.00) (28.00, 0.00) (7.00, 0.00)
 2 (2.00, 0.00) (-3.50, 7.27) (14.00, 0.00)
 3 (3.00, 0.00) (-3.50, 2.79) (21.00, 0.00)
 4 (4.00, 0.00) (-3.50, 0.80) (28.00, 0.00)
 5 (5.00, 0.00) (-3.50,-0.80) (35.00, 0.00)
 6 (6.00, 0.00) (-3.50,-2.79) (42.00, 0.00)
 7 (7.00, 0.00) (-3.50,-7.27) (49.00, 0.00)

IMSL MATH/LIBRARY Chapter 6: Transforms • 777

FFTCI/DFFTCI (Single/Double precision)
Compute parameters needed by FFTCF and FFTCB.

Usage
CALL FFTCI (N, WFFTC)

Arguments

N — Length of the sequence to be transformed. (Input)

WFFTC — Array of length 4N + 15 containing parameters needed by FFTCF and
FFTCB. (Output)

Comments

Different WFFTC arrays are needed for different values of N.

Algorithm

The routine FFTCI initializes the routines FFTCF (page 772) and FFTCB
(page 774). An efficient way to make multiple calls for the same N to IMSL
routine FFTCF or FFTCB is to use routine FFTCI for initialization. (In this case,
replace FFTCF or FFTCB with F2TCF or F2TCB, respectively.) The routine FFTCI
is based on the routine CFFTI in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example

In this example, we compute a two-dimensional complex FFT by making one call
to FFTCI followed by 2N calls to F2TCF.

C SPECIFICATIONS FOR PARAMETERS
 INTEGER N
 PARAMETER (N=4)
C
 INTEGER I, IR, IS, J, NOUT
 REAL CONST, FLOAT, TWOPI, WFFTC(35), CPY(2*N)
 COMPLEX CEXP, CMPLX, COEF(N,N), H, SEQ(N,N), TEMP
 INTRINSIC CEXP, CMPLX, FLOAT
 EXTERNAL CONST, F2TCF, FFTCI, UMACH
C
 TWOPI = 2.0*CONST(’PI’)
 IR = 3
 IS = 1
C Here we compute e**(2*pi*i/N)
 TEMP = CMPLX(0.0,TWOPI/FLOAT(N))
 H = CEXP(TEMP)
C Fill SEQ with data
 DO 20 I=1, N
 DO 10 J=1, N
 SEQ(I,J) = H**((I-1)*(IR-1)+(J-1)*(IS-1))
 10 CONTINUE

778 • Chapter 6: Transforms IMSL MATH/LIBRARY

 20 CONTINUE
C Print out SEQ
C Get output unit number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99997)
 DO 30 I=1, N
 WRITE (NOUT,99998) (SEQ(I,J),J=1,N)
 30 CONTINUE
C Set initialization vector
 CALL FFTCI (N, WFFTC)
C Transform the columns of SEQ
 DO 40 I=1, N
 CALL F2TCF (N, SEQ(1,I), COEF(1,I), WFFTC, CPY)
 40 CONTINUE
C Take transpose of the result
 DO 60 I=1, N
 DO 50 J=I + 1, N
 TEMP = COEF(I,J)
 COEF(I,J) = COEF(J,I)
 COEF(J,I) = TEMP
 50 CONTINUE
 60 CONTINUE
C Transform the columns of this result
 DO 70 I=1, N
 CALL F2TCF (N, COEF(1,I), SEQ(1,I), WFFTC, CPY)
 70 CONTINUE
C Take transpose of the result
 DO 90 I=1, N
 DO 80 J=I + 1, N
 TEMP = SEQ(I,J)
 SEQ(I,J) = SEQ(J,I)
 SEQ(J,I) = TEMP
 80 CONTINUE
 90 CONTINUE
C Print results
 WRITE (NOUT,99999)
 DO 100 I=1, N
 WRITE (NOUT,99998) (SEQ(I,J),J=1,N)
 100 CONTINUE
C
99997 FORMAT (1X, ’The input matrix is below’)
99998 FORMAT (1X, 4(’ (’,F5.2,’,’,F5.2,’)’))
99999 FORMAT (/, 1X, ’Result of two-dimensional transform’)
 END

Output
The input matrix is below
 (1.00, 0.00) (1.00, 0.00) (1.00, 0.00) (1.00, 0.00)
 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00)
 (1.00, 0.00) (1.00, 0.00) (1.00, 0.00) (1.00, 0.00)
 (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00) (-1.00, 0.00)

Result of two-dimensional transform
 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
 (16.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

IMSL MATH/LIBRARY Chapter 6: Transforms • 779

FSINT/DFSINT (Single/Double precision)
Compute the discrete Fourier sine transformation of an odd sequence.

Usage
CALL FSINT (N, SEQ, COEF)

Arguments

N — Length of the sequence to be transformed. It must be greater than 1. (Input)

SEQ — Array of length N containing the sequence to be transformed. (Input)

COEF — Array of length N + 1 containing the transformed sequence. (Output)

Comments

1. Automatic workspace usage is

FSINT INT(2.5 * N + 15) units, or
DFSINT 5 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
F2INT/DF2INT. The reference is

CALL F2INT (N, SEQ, COEF, WFSIN)

The additional argument is

WFSIN — Array of length INT(2.5 * N + 15) initialized by FSINI. The
initialization depends on N. (Input)

2. The routine FSINT is most efficient when N + 1 is the product of small
primes.

3. The routine FSINT is its own (unnormalized) inverse. Applying FSINT

twice will reproduce the original sequence multiplied by 2 * (N + 1).

4. The arrays COEF and SEQ may be the same, if SEQ is also dimensioned at
least N + 1.

5. COEF (N + 1) is needed as workspace.

6. If FSINT is used repeatedly with the same value of N, then call FSINI
(page 780) followed by repeated calls to F2INT. This is more efficient
than repeated calls to FSINT.

Algorithm

The routine FSINT computes the discrete Fourier sine transform of a real vector
of size N. The method used is a variant of the Cooley-Tukey algorithm, which is
most efficient when N + 1 is a product of small prime factors. If N satisfies this
condition, then the computational effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, FSINT returns in c = COEF

780 • Chapter 6: Transforms IMSL MATH/LIBRARY

c s
mn

Nm n
n

N

=
+

�
�

�
�

=
∑2

11

sin
π

Finally, note that the Fourier sine transform is its own (unnormalized) inverse.
The routine FSINT is based on the sine FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

In this example, we input a pure sine wave as a data vector and recover its Fourier
sine series, which is a vector with all components zero except at the appropriate
frequency it has an N.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 REAL COEF(N+1), CONST, FLOAT, PI, SIN, SEQ(N)
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, FSINT, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Fill the data vector SEQ
C with a pure sine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = SIN(FLOAT(I)*PI/FLOAT(N+1))
 10 CONTINUE
C Compute the transform of SEQ
 CALL FSINT (N, SEQ, COEF)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 0.38 8.00
 2 0.71 0.00
 3 0.92 0.00
 4 1.00 0.00
 5 0.92 0.00
 6 0.71 0.00
 7 0.38 0.00

IMSL MATH/LIBRARY Chapter 6: Transforms • 781

FSINI/DFSINI (Single/Double precision)
Compute parameters needed by FSINT.

Usage
CALL FSINI (N, WFSIN)

Arguments

N — Length of the sequence to be transformed. N must be greater than 1. (Input)

WFSIN — Array of length INT(2.5 * N + 15) containing parameters needed by
FSINT. (Output)

Comments

Different WFSIN arrays are needed for different values of N.

Algorithm

The routine FSINI initializes the routine FSINT (page 779). An efficient way to
make multiple calls for the same N to IMSL routine FSINT, is to use routine
FSINI for initialization. (In this case, replace FSINT with F2INT.) The routine
FSINI is based on the routine SINTI in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example

In this example, we compute three distinct sine FFTs by calling FSINI once and
then calling F2INT three times.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, K, NOUT
 REAL COEF(N+1), CONST, FLOAT, PI, SIN, WFSIN(32), SEQ(N)
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, F2INT, FSINI, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Initialize the work vector WFSIN
 CALL FSINI (N, WFSIN)
C Different frequencies of the same
C wave will be transformed
 DO 20 K=1, 3
C Fill the data vector SEQ
C with a pure sine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = SIN(FLOAT(K*I)*PI/FLOAT(N+1))
 10 CONTINUE
C Compute the transform of SEQ

782 • Chapter 6: Transforms IMSL MATH/LIBRARY

 CALL F2INT (N, SEQ, COEF, WFSIN)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
 20 CONTINUE
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 0.38 8.00
 2 0.71 0.00
 3 0.92 0.00
 4 1.00 0.00
 5 0.92 0.00
 6 0.71 0.00
 7 0.38 0.00

INDEX SEQ COEF
 1 0.71 0.00
 2 1.00 8.00
 3 0.71 0.00
 4 0.00 0.00
 5 -0.71 0.00
 6 -1.00 0.00
 7 -0.71 0.00

INDEX SEQ COEF
 1 0.92 0.00
 2 0.71 0.00
 3 -0.38 8.00
 4 -1.00 0.00
 5 -0.38 0.00
 6 0.71 0.00
 7 0.92 0.00

FCOST/DFCOST (Single/Double precision)
Compute the discrete Fourier cosine transformation of an even sequence.

Usage
CALL FCOST (N, SEQ, COEF)

Arguments

N — Length of the sequence to be transformed. It must be greater than 1. (Input)

SEQ — Array of length N containing the sequence to be transformed. (Input)

COEF — Array of length N containing the transformed sequence. (Output)

IMSL MATH/LIBRARY Chapter 6: Transforms • 783

Comments

1. Automatic workspace usage is

FCOST 3 * N + 15 units, or
DFCOST 6 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
F2OST/DF2OST. The reference is

CALL F2OST (N, SEQ, COEF, WFCOS)

The additional argument is

WFCOS — Array of length 3 * N + 15 initialized by FCOSI (page 784).
The initialization depends on N. (Input)

2. The routine FCOST is most efficient when N − 1 is the product of small
primes.

3. The routine FCOST is its own (unnormalized) inverse. Applying FCOST

twice will reproduce the original sequence multiplied by 2 * (N − 1).

4. The arrays COEF and SEQ may be the same.

5. If FCOST is used repeatedly with the same value of N, then call FCOSI
followed by repeated calls to F2OST. This is more efficient than repeated
calls to FCOST.

Algorithm

The routine FCOST computes the discrete Fourier cosine transform of a real
vector of size N. The method used is a variant of the Cooley-Tukey algorithm ,
which is most efficient when N − 1 is a product of small prime factors. If N
satisfies this condition, then the computational effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, FCOST returns in c = COEF

c s
m n

N
s sm n

n

N

N
m=

− −
−

�
!

"
$# + + −

=

−
−)∑2

1 1

1
1

2

1

1
1cos

0 50 5 0 50π

Finally, note that the Fourier cosine transform is its own (unnormalized) inverse.
Two applications of FCOST to a vector s produces (2N − 2)s. The routine FCOST
is based on the cosine FFT in FFTPACK. The package FFTPACK was developed
by Paul Swarztrauber at the National Center for Atmospheric Research.

Example

In this example, we input a pure cosine wave as a data vector and recover its
Fourier cosine series, which is a vector with all components zero except at the
appropriate frequency it has an N − 1.

 INTEGER N
 PARAMETER (N=7)

784 • Chapter 6: Transforms IMSL MATH/LIBRARY

C
 INTEGER I, NOUT
 REAL COEF(N), CONST, COS, FLOAT, PI, SEQ(N)
 INTRINSIC COS, FLOAT
 EXTERNAL CONST, FCOST, UMACH
C
 CALL UMACH (2, NOUT)
C Fill the data vector SEQ
C with a pure cosine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(I-1)*PI/FLOAT(N-1))
 10 CONTINUE
C Compute the transform of SEQ
 CALL FCOST (N, SEQ, COEF)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 1.00 0.00
 2 0.87 6.00
 3 0.50 0.00
 4 0.00 0.00
 5 -0.50 0.00
 6 -0.87 0.00
 7 -1.00 0.00

FCOSI/DFCOSI (Single/Double precision)
Compute parameters needed by FCOST.

Usage
CALL FCOSI (N, WFCOS)

Arguments

N — Length of the sequence to be transformed. N must be greater than 1. (Input)

WFCOS — Array of length 3N + 15 containing parameters needed by FCOST.
(Output)

Comments

Different WFCOS arrays are needed for different values of N.

IMSL MATH/LIBRARY Chapter 6: Transforms • 785

Algorithm

The routine FCOSI initializes the routine FCOST (page 782). An efficient way to
make multiple calls for the same N to IMSL routine FCOST is to use routine
FCOSI for initialization. (In this case, replace FCOST with F2OST.) The routine
FCOSI is based on the routine COSTI in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example

In this example, we compute three distinct cosine FFTs by calling FCOSI once
and then calling F2OST three times.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, K, NOUT
 REAL COEF(N), CONST, COS, FLOAT, PI, WFCOS(36), SEQ(N)
 INTRINSIC COS, FLOAT
 EXTERNAL CONST, F2OST, FCOSI, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Initialize the work vector WFCOS
 CALL FCOSI (N, WFCOS)
C Different frequencies of the same
C wave will be transformed
 PI = CONST(’PI’)
 DO 20 K=1, 3
C Fill the data vector SEQ
C with a pure cosine wave
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(K*(I-1))*PI/FLOAT(N-1))
 10 CONTINUE
C Compute the transform of SEQ
 CALL F2OST (N, SEQ, COEF, WFCOS)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
 20 CONTINUE
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 1.00 0.00
 2 0.87 6.00
 3 0.50 0.00
 4 0.00 0.00
 5 -0.50 0.00
 6 -0.87 0.00
 7 -1.00 0.00

786 • Chapter 6: Transforms IMSL MATH/LIBRARY

INDEX SEQ COEF
 1 1.00 0.00
 2 0.50 0.00
 3 -0.50 6.00
 4 -1.00 0.00
 5 -0.50 0.00
 6 0.50 0.00
 7 1.00 0.00

INDEX SEQ COEF
 1 1.00 0.00
 2 0.00 0.00
 3 -1.00 0.00
 4 0.00 6.00
 5 1.00 0.00
 6 0.00 0.00
 7 -1.00 0.00

QSINF/DQSINF (Single/Double precision)
Compute the coefficients of the sine Fourier transform with only odd wave
numbers.

Usage
CALL QSINF (N, SEQ, COEF)

Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

Comments

1. Automatic workspace usage is

QSINF 3 * N + 15 units, or
DQSINF 6 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
Q2INF/DQ2INF. The reference is

CALL Q2INF (N, SEQ, COEF, WQSIN)

The additional argument is

WQSIN — Array of length 3 * N + 15 initialized by QSINI (page 790).
The initialization depends on N. (Input)

2. The routine QSINF is most efficient when N is the product of small
primes.

IMSL MATH/LIBRARY Chapter 6: Transforms • 787

3. The arrays COEF and SEQ may be the same.

4. If QSINF/QSINB is used repeatedly with the same value of N, then call
QSINI followed by repeated calls to Q2INF/Q2INB. This is more
efficient than repeated calls to QSINF/QSINB.

Algorithm

The routine QSINF computes the discrete Fourier quarter sine transform of a real
vector of size N. The method used is a variant of the Cooley-Tukey algorithm,
which is most efficient when N is a product of small prime factors. If N satisfies
this condition, then the computational effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, QSINF returns in c = COEF

c s
m n

N
sm n

n

N

N
m=

−�
!

"
$# + −

=

−
−∑2

2 1

2
1

1

1
1sin

0 5 0 5π

Finally, note that the Fourier quarter sine transform has an (unnormalized)
inverse, which is implemented in the IMSL routine QSINB. The routine QSINF is
based on the quarter sine FFT in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example

In this example, we input a pure quarter sine wave as a data vector and recover its
Fourier quarter sine series.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 REAL COEF(N), CONST, FLOAT, PI, SIN, SEQ(N)
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, QSINF, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Fill the data vector SEQ
C with a pure sine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = SIN(FLOAT(I)*(PI/2.0)/FLOAT(N))
 10 CONTINUE
C Compute the transform of SEQ
 CALL QSINF (N, SEQ, COEF)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

788 • Chapter 6: Transforms IMSL MATH/LIBRARY

Output
INDEX SEQ COEF
 1 0.22 7.00
 2 0.43 0.00
 3 0.62 0.00
 4 0.78 0.00
 5 0.90 0.00
 6 0.97 0.00
 7 1.00 0.00

QSINB/DQSINB (Single/Double precision)
Compute a sequence from its sine Fourier coefficients with only odd wave
numbers.

Usage
CALL QSINB (N, COEF, SEQ)

Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the sequence. (Output)

Comments

1. Automatic workspace usage is

QSINB 3 * N + 15 units, or
DQSINB 6 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
Q2INB/DQ2INB. The reference is

CALL Q2INB (N, SEQ, COEF, WQSIN)

The additional argument is

WQSIN — ray of length 3 * N + 15 initialized by QSINI (page 790).
The initialization depends on N.(Input)

2. The routine QSINB is most efficient when N is the product of small
primes.

3. The arrays COEF and SEQ may be the same.

4. If QSINF/QSINB is used repeatedly with the same value of N, then call
QSINI followed by repeated calls to Q2INF/Q2INB. This is more
efficient than repeated calls to QSINF/QSINB.

IMSL MATH/LIBRARY Chapter 6: Transforms • 789

Algorithm

The routine QSINB computes the discrete (unnormalized) inverse Fourier quarter
sine transform of a real vector of size N. The method used is a variant of the
Cooley-Tukey algorithm, which is most efficient when N is a product of small
prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N.

Specifically, given an N-vector c = COEF, QSINB returns in s = SEQ

s c
n m

Nm n
n

N

=
−�

��
�
��=

∑4
2 1

21

sin
0 5 π

Furthermore, a vector x of length N that is first transformed by QSINF (page 786)
and then by QSINB will be returned by QSINB as 4Nx. The routine QSINB is
based on the inverse quarter sine FFT in FFTPACK which was developed by Paul
Swarztrauber at the National Center for Atmospheric Research.

Example

In this example, we first compute the quarter wave sine Fourier transform c of the
vector x where xQ = n for n = 1 to N. We then compute the inverse quarter wave
Fourier transform of c which is 4Nx = s.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 REAL FLOAT, SEQ(N), COEF(N), X(N)
 INTRINSIC FLOAT
 EXTERNAL QSINB, QSINF, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Fill the data vector X
C with X(I) = I, I=1,N
 DO 10 I=1, N
 X(I) = FLOAT(I)
 10 CONTINUE
C Compute the forward transform of X
 CALL QSINF (N, X, COEF)
C Compute the backward transform of W
 CALL QSINB (N, COEF, SEQ)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (X(I), COEF(I), SEQ(I), I=1,N)
99998 FORMAT (5X, ’INPUT’, 5X, ’FORWARD TRANSFORM’, 3X, ’BACKWARD ’,
 & ’TRANSFORM’)
99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2)
 END

790 • Chapter 6: Transforms IMSL MATH/LIBRARY

Output
INPUT FORWARD TRANSFORM BACKWARD TRANSFORM
1.00 39.88 28.00
2.00 -4.58 56.00
3.00 1.77 84.00
4.00 -1.00 112.00
5.00 0.70 140.00
6.00 -0.56 168.00
7.00 0.51 196.00

QSINI/DQSINI (Single/Double precision)
Compute parameters needed by QSINF and QSINB.

Usage
CALL QSINI (N, WQSIN)

Arguments

N — Length of the sequence to be transformed. (Input)

WQSIN — Array of length 3N + 15 containing parameters needed by QSINF and
QSINB. (Output)

Comments

Different WQSIN arrays are needed for different values of N.

Algorithm

The routine QSINI initializes the routines QSINF (page 786) and QSINB
(page 788). An efficient way to make multiple calls for the same N to IMSL
routine QSINF or QSINB is to use routine QSINI for initialization. (In this case,
replace QSINF or QSINB with Q2INF or Q2INB, respectively.) The routine QSINI
is based on the routine SINQI in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example

In this example, we compute three distinct quarter sine transforms by calling
QSINI once and then calling Q2INF three times.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, K, NOUT
 REAL COEF(N), CONST, FLOAT, PI, SIN, WQSIN(36), SEQ(N)
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, Q2INF, QSINI, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Initialize the work vector WQSIN

IMSL MATH/LIBRARY Chapter 6: Transforms • 791

 CALL QSINI (N, WQSIN)
C Different frequencies of the same
C wave will be transformed
 PI = CONST(’PI’)
 DO 20 K=1, 3
C Fill the data vector SEQ
C with a pure sine wave
 DO 10 I=1, N
 SEQ(I) = SIN(FLOAT((2*K-1)*I)*(PI/2.0)/FLOAT(N))
 10 CONTINUE
C Compute the transform of SEQ
 CALL Q2INF (N, SEQ, COEF, WQSIN)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
 20 CONTINUE
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 0.22 7.00
 2 0.43 0.00
 3 0.62 0.00
 4 0.78 0.00
 5 0.90 0.00
 6 0.97 0.00
 7 1.00 0.00

INDEX SEQ COEF
 1 0.62 0.00
 2 0.97 7.00
 3 0.90 0.00
 4 0.43 0.00
 5 -0.22 0.00
 6 -0.78 0.00
 7 -1.00 0.00

INDEX SEQ COEF
 1 0.90 0.00
 2 0.78 0.00
 3 -0.22 7.00
 4 -0.97 0.00
 5 -0.62 0.00
 6 0.43 0.00
 7 1.00 0.00

QCOSF/DQCOSF (Single/Double precision)
Compute the coefficients of the cosine Fourier transform with only odd wave
numbers.

Usage
CALL QCOSF (N, SEQ, COEF)

792 • Chapter 6: Transforms IMSL MATH/LIBRARY

Arguments

N — Length of the sequence to be transformed. (Input)

SEQ — Array of length N containing the sequence. (Input)

COEF — Array of length N containing the Fourier coefficients. (Output)

Comments

1. Automatic workspace usage is

QCOSF 3 * N + 15 units, or
DQCOSF 6 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
Q2OSF/DQ2OSF. The reference is

CALL Q2OSF (N, SEQ, COEF, WQCOS)

The additional argument is

WQCOS — Array of length 3 * N + 15 initialized by QCOSI (page 795).
The initialization depends on N. (Input)

2. The routine QCOSF is most efficient when N is the product of small
primes.

3. The arrays COEF and SEQ may be the same.

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call
QCOSI followed by repeated calls to Q2OSF/Q2OSB. This is more
efficient than repeated calls to QCOSF/QCOSB.

Algorithm

The routine QCOSF computes the discrete Fourier quarter cosine transform of a
real vector of size N. The method used is a variant of the Cooley-Tukey
algorithm, which is most efficient when N is a product of small prime factors. If N
satisfies this condition, then the computational effort is proportional to N log N.

Specifically, given an N-vector s = SEQ, QCOSF returns in c = COEF

c s s
m n

Nm n
n

N

= +
− −�

��
�
��=

∑1
2

2
2 1 1

2
cos

0 50 5π

Finally, note that the Fourier quarter cosine transform has an (unnormalized)
inverse which is implemented in QCOSB. The routine QCOSF is based on the
quarter cosine FFT in FFTPACK. The package FFTPACK was developed by
Paul Swarztrauber at the National Center for Atmospheric Research.

IMSL MATH/LIBRARY Chapter 6: Transforms • 793

Example

In this example, we input a pure quarter cosine wave as a data vector and recover
its Fourier quarter cosine series.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 REAL COEF(N), CONST, COS, FLOAT, PI, SEQ(N)
 INTRINSIC COS, FLOAT
 EXTERNAL CONST, QCOSF, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Fill the data vector SEQ
C with a pure cosine wave
 PI = CONST(’PI’)
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT(I-1)*(PI/2.0)/FLOAT(N))
 10 CONTINUE

C Compute the transform of SEQ
 Call QCOSF (N, SEQ, COEF)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
99998 FORMAT (9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 1.00 7.00
 2 0.97 0.00
 3 0.90 0.00
 4 0.78 0.00
 5 0.62 0.00
 6 0.43 0.00
 7 0.22 0.00

QCOSB/DQCOSB (Single/Double precision)
Compute a sequence from its cosine Fourier coefficients with only odd wave
numbers.

Usage
CALL QCOSB (N, COEF, SEQ)

Arguments

N — Length of the sequence to be transformed. (Input)

COEF — Array of length N containing the Fourier coefficients. (Input)

SEQ — Array of length N containing the sequence. (Output)

794 • Chapter 6: Transforms IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

QCOSB 3 * N + 15 units, or
DQCOSB 6 * N + 30 units.

Workspace may be explicitly provided, if desired, by use of
Q2OSB/DQ2OSB. The reference is

CALL Q2OSB (N, COEF, SEQ, WQCOS)

The additional argument is

WQCOS — Array of length 3 * N + 15 initialized by QCOSI (page 795).
The initialization depends on N. (Input)

2. The routine QCOSB is most efficient when N is the product of small
primes.

3. The arrays COEF and SEQ may be the same.

4. If QCOSF/QCOSB is used repeatedly with the same value of N, then call
QCOSI followed by repeated calls to Q2OSF/Q2OSB. This is more
efficient than repeated calls to QCOSF/QCOSB.

Algorithm

The routine QCOSB computes the discrete (unnormalized) inverse Fourier quarter
cosine transform of a real vector of size N. The method used is a variant of the
Cooley-Tukey algorithm, which is most efficient when N is a product of small
prime factors. If N satisfies this condition, then the computational effort is
proportional to N log N. Specifically, given an N-vector c = COEF, QCOSB returns
in s = SEQ

s c
n m

Nm n
n

N

=
− −�

��
�
��=

∑4
2 1 1

21

cos
0 50 5π

Furthermore, a vector x of length N that is first transformed by QCOSF (page 791)
and then by QCOSB will be returned by QCOSB as 4Nx. The routine QCOSB is
based on the inverse quarter cosine FFT in FFTPACK. The package FFTPACK
was developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example

In this example, we first compute the quarter wave cosine Fourier transform c of
the vector x, where xQ = n for n = 1 to N. We then compute the inverse quarter
wave Fourier transform of c which is 4Nx = s.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, NOUT
 REAL FLOAT, SEQ(N), COEF(N), X(N)
 INTRINSIC FLOAT

IMSL MATH/LIBRARY Chapter 6: Transforms • 795

 EXTERNAL QCOSB, QCOSF, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Fill the data vector X
C with X(I) = I, I=1,N
 DO 10 I=1, N
 X(I) = FLOAT(I)
 10 CONTINUE
C Compute the forward transform of X
 CALL QCOSF (N, X, COEF)
C Compute the backward transform of
C COEF
 CALL QCOSB (N, COEF, SEQ)
C Print results
 WRITE (NOUT,99998)
 DO 20 I=1, N
 WRITE (NOUT,99999) X(I), COEF(I), SEQ(I)
 20 CONTINUE
99998 FORMAT (5X, ’INPUT’, 5X, ’FORWARD TRANSFORM’, 3X, ’BACKWARD ’,
 & ’TRANSFORM’)
99999 FORMAT (3X, F6.2, 10X, F6.2, 15X, F6.2)
 END

Output
INPUT FORWARD TRANSFORM BACKWARD TRANSFORM
1.00 31.12 28.00
2.00 -27.45 56.00
3.00 10.97 84.00
4.00 -9.00 112.00
5.00 4.33 140.00
6.00 -3.36 168.00
7.00 0.40 196.00

QCOSI/DQCOSI (Single/Double precision)
Compute parameters needed by QCOSF and QCOSB.

Usage
CALL QCOSI (N, WQCOS)

Arguments

N — Length of the sequence to be transformed. (Input)

WQCOS — Array of length 3N + 15 containing parameters needed by QCOSF and
QCOSB. (Output)

Comments

Different WQCOS arrays are needed for different values of N.

796 • Chapter 6: Transforms IMSL MATH/LIBRARY

Algorithm

The routine QCOSI initializes the routines QCOSF (page 791) and QCOSB
(page 793). An efficient way to make multiple calls for the same N to IMSL
routine QCOSF or QCOSB is to use routine QCOSI for initialization. (In this case,
replace QCOSF or QCOSB with Q2OSF or Q2OSB , respectively.) The routine
QCOSI is based on the routine COSQI in FFTPACK, which was developed by
Paul Swarztrauber at the National Center for Atmospheric Research.

Example

In this example, we compute three distinct quarter cosine transforms by calling
QCOSI once and then calling Q2OSF three times.

 INTEGER N
 PARAMETER (N=7)
C
 INTEGER I, K, NOUT
 REAL COEF(N), CONST, COS, FLOAT, PI, WQCOS(36), SEQ(N)
 INTRINSIC COS, FLOAT
 EXTERNAL CONST, Q2OSF, QCOSI, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Initialize the work vector WQCOS
 CALL QCOSI (N, WQCOS)
C Different frequencies of the same
C wave will be transformed
 PI = CONST(’PI’)
 DO 20 K=1, 3
C Fill the data vector SEQ
C with a pure cosine wave
 DO 10 I=1, N
 SEQ(I) = COS(FLOAT((2*K-1)*(I-1))*(PI/2.0)/FLOAT(N))
 10 CONTINUE
C Compute the transform of SEQ
 CALL Q2OSF (N, SEQ, COEF, WQCOS)
C Print results
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I, SEQ(I), COEF(I), I=1,N)
 20 CONTINUE
99998 FORMAT (/, 9X, ’INDEX’, 6X, ’SEQ’, 7X, ’COEF’)
99999 FORMAT (1X, I11, 5X, F6.2, 5X, F6.2)
 END

Output
INDEX SEQ COEF
 1 1.00 7.00
 2 0.97 0.00
 3 0.90 0.00
 4 0.78 0.00
 5 0.62 0.00
 6 0.43 0.00
 7 0.22 0.00

INDEX SEQ COEF
 1 1.00 0.00
 2 0.78 7.00

IMSL MATH/LIBRARY Chapter 6: Transforms • 797

 3 0.22 0.00
 4 -0.43 0.00
 5 -0.90 0.00
 6 -0.97 0.00
 7 -0.62 0.00

INDEX SEQ COEF
 1 1.00 0.00
 2 0.43 0.00
 3 -0.62 7.00
 4 -0.97 0.00
 5 -0.22 0.00
 6 0.78 0.00
 7 0.90 0.00

FFT2D/DFFT2D (Single/Double precision)
Compute Fourier coefficients of a complex periodic two-dimensional array.

Usage
CALL FFT2D (NRA, NCA, A, LDA, COEF, LDCOEF)

Arguments

NRA — The number of rows of A. (Input)

NCA — The number of columns of A. (Input)

A — NRA by NCA complex matrix containing the periodic data to be transformed.
(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

COEF — NRA by NCA complex matrix containing the Fourier coefficients of A.
(Output)

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

FFT2D 4 * (NRA + NCA) + 30 + 2 * MAX(NRA, NCA) + 2 units, or
DFFT2D 8 * (NRA + NCA) + 60 + 4 * MAX(NRA, NCA) + 4 units.

Workspace may be explicitly provided, if desired, by use of
F2T2D/DF2T2D. The reference is

CALL F2T2D (NRA, NCA, A, LDA, COEF, LDCOEF, WFF1,
 WFF2, CWK, CPY)

798 • Chapter 6: Transforms IMSL MATH/LIBRARY

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRA + 15 initialized by FFTCI. The
initialization depends on NRA. (Input)

WFF2 — Real array of length 4 * NCA + 15 initialized by FFTCI. The
initialization depends on NCA. (Input)

CWK — Complex array of length 1. (Workspace)

CPY — Real array of length 2 * MAX(NRA, NCA). (Workspace)

2. The routine FFT2D is most efficient when NRA and NCA are the product
of small primes.

3. The arrays COEF and A may be the same.

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRA and
NCA, then use FFTCI (page 777) to fill WFF1(N = NRA) and
WFF2(N = NCA). Follow this with repeated calls to F2T2D/F2T2B. This is
more efficient than repeated calls to FFT2D/FFT2B.

Algorithm

The routine FFT2D computes the discrete complex Fourier transform of a
complex two dimensional array of size (NRA = N) × (NCA = M). The method used
is a variant of the Cooley-Tukey algorithm , which is most efficient when N and
M are each products of small prime factors. If N and M satisfy this condition, then
the computational effort is proportional to N M log N M. This considerable
savings has historically led people to refer to this algorithm as the “fast Fourier
transform” or FFT.

Specifically, given an N × M array a, FFT2D returns in c = COEF

c a e ejk nm
i j n N i k m M

m

M

n

N

= − − −) − − −)

==
∑∑ 2 1 1 2 1 1

11

π π0 50 0 50/ /

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NMS

Finally, note that an unnormalized inverse is implemented in FFT2B (page 800).
The routine FFT2D is based on the complex FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

In this example, we compute the Fourier transform of the pure frequency input for
a 5 × 4 array

a e enm
i n N i m M= −) −)2 1 2 2 1 3π π0 0/ /

for 1 ≤ n ≤ 5 and 1 ≤ m ≤ 4 using the IMSL routine FFT2D. The result

IMSL MATH/LIBRARY Chapter 6: Transforms • 799

$a c=
has all zeros except in the (3, 4) position.

 INTEGER I, IR, IS, J, LDA, LDCOEF, NCA, NRA
 REAL CONST, FLOAT, TWOPI
 COMPLEX A(5,4), C, CEXP, CMPLX, COEF(5,4), H
 CHARACTER TITLE1*26, TITLE2*26
 INTRINSIC CEXP, CMPLX, FLOAT
 EXTERNAL CONST, FFT2D, WRCRN
C
 TITLE1 = ’The input matrix is below ’
 TITLE2 = ’The output matrix is below’
 NRA = 5
 NCA = 4
 LDA = 5
 LDCOEF = 5
 IR = 3
 IS = 4
C Fill A with initial data
 TWOPI = 2.0*CONST(’PI’)
 C = CMPLX(0.0,1.0)
 H = CEXP(TWOPI*C)
 DO 10 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = CEXP(TWOPI*C*((FLOAT((I-1)*(IR-1))/FLOAT(NRA)+
 & FLOAT((J-1)*(IS-1))/FLOAT(NCA))))
 10 CONTINUE
C
 CALL WRCRN (TITLE1, NRA, NCA, A, LDA, 0)
C
 CALL FFT2D (NRA, NCA, A, LDA, COEF, LDCOEF)
C
 CALL WRCRN (TITLE2, NRA, NCA, COEF, LDCOEF, 0)
C
 END

Output
 The input matrix is below
 1 2 3 4
1 (1.000, 0.000) (0.000,-1.000) (-1.000, 0.000) (0.000, 1.000)
2 (-0.809, 0.588) (0.588, 0.809) (0.809,-0.588) (-0.588,-0.809)
3 (0.309,-0.951) (-0.951,-0.309) (-0.309, 0.951) (0.951, 0.309)
4 (0.309, 0.951) (0.951,-0.309) (-0.309,-0.951) (-0.951, 0.309)
5 (-0.809,-0.588) (-0.588, 0.809) (0.809, 0.588) (0.588,-0.809)

 The Output matrix is below
 1 2 3 4
1 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
2 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
3 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (20.00, 0.00)
4 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
5 (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

800 • Chapter 6: Transforms IMSL MATH/LIBRARY

FFT2B/DFFT2B (Single/Double precision)
Compute the inverse Fourier transform of a complex periodic two-dimensional
array.

Usage
CALL FFT2B (NRCOEF, NCCOEF, COEF, LDCOEF, A, LDA)

Arguments

NRCOEF — The number of rows of COEF. (Input)

NCCOEF — The number of columns of COEF. (Input)

COEF — NRCOEF by NCCOEF complex array containing the Fourier coefficients
to be transformed. (Input)

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement of the calling program. (Input)

A — NRCOEF by NCCOEF complex array containing the Inverse Fourier
coefficients of COEF. (Output)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

Comments

1. Automatic workspace usage is

FFT2B 4 * (NRCOEF + NCCOEF) + 32 + 2 * MAX(NRCOEF, NCCOEF)
units, or

DFFT2B 8 * (NRCOEF + NCCOEF) + 64 + 4 * MAX(NRCOEF, NCCOEF)
units.

Workspace may be explicitly provided, if desired, by use of
F2T2B/DF2T2B. The reference is

CALL F2T2B (NRCOEF, NCCOEF, A, LDA, COEF, LDCOEF,
 WFF1, WFF2, CWK, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * NRCOEF + 15 initialized by FFTCI
(page 777). The initialization depends on NRCOEF. (Input)

WFF2 — Real array of length 4 * NCCOEF + 15 initialized by FFTCI.
The initialization depends on NCCOEF. (Input)

CWK — Complex array of length 1. (Workspace)

CPY — Real array of length 2 * MAX(NRCOEF, NCCOEF). (Workspace)

IMSL MATH/LIBRARY Chapter 6: Transforms • 801

2. The routine FFT2B is most efficient when NRCOEF and NCCOEF are the
product of small primes.

3. The arrays COEF and A may be the same.

4. If FFT2D/FFT2B is used repeatedly, with the same values for NRCOEF
and NCCOEF, then use FFTCI to fill WFF1(N = NRCOEF) and WFF2(N =
NCCOEF). Follow this with repeated calls to F2T2D/F2T2B. This is more
efficient than repeated calls to FFT2D/FFT2B.

Algorithm

The routine FFT2B computes the inverse discrete complex Fourier transform of a
complex two-dimensional array of size (NRCOEF = N) × (NCCOEF = M). The
method used is a variant of the Cooley-Tukey algorithm , which is most efficient
when N and M are both products of small prime factors. If N and M satisfy this
condition, then the computational effort is proportional to N M log N M. This
considerable savings has historically led people to refer to this algorithm as the
“fast Fourier transform” or FFT.

Specifically, given an N × M array c = COEF, FFT2B returns in a

a c e ejk nm
i j n N i k m M

m

M

n

N

= − −) − −)

==
∑∑ 2 1 1 2 1 1

11

π π0 50 0 50/ /

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

S NM

Finally, note that an unnormalized inverse is implemented in FFT2D (page 797).
The routine FFT2B is based on the complex FFT in FFTPACK. The package
FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

In this example, we first compute the Fourier transform of the 5 × 4 array

x n mnm = + −5 10 5
for 1 ≤ n ≤ 5 and 1 ≤ m ≤ 4 using the IMSL routine FFT2D. The result

$x c=
is then inverted by a call to FFT2B. Note that the result is an array a satisfying
a = (5)(4)x = 20x. In general, FFT2B is an unnormalized inverse with expansion
factor N M.

 INTEGER LDA, LDCOEF, M, N, NCA, NRA
 COMPLEX CMPLX, X(5,4), A(5,4), COEF(5,4)
 CHARACTER TITLE1*26, TITLE2*26, TITLE3*26
 INTRINSIC CMPLX
 EXTERNAL FFT2B, FFT2D, WRCRN
C
 TITLE1 = ’The input matrix is below ’

802 • Chapter 6: Transforms IMSL MATH/LIBRARY

 TITLE2 = ’After FFT2D ’
 TITLE3 = ’After FFT2B ’
 NRA = 5
 NCA = 4
 LDA = 5
 LDCOEF = 5
C Fill X with initial data
 DO 20 N=1, NRA
 DO 10 M=1, NCA
 X(N,M) = CMPLX(FLOAT(N+5*M-5),0.0)
 10 CONTINUE
 20 CONTINUE
C
 CALL WRCRN (TITLE1, NRA, NCA, X, LDA, 0)
C
 CALL FFT2D (NRA, NCA, X, LDA, COEF, LDCOEF)
C
 CALL WRCRN (TITLE2, NRA, NCA, COEF, LDCOEF, 0)
C
 CALL FFT2B (NRA, NCA, COEF, LDCOEF, A, LDA)
C
 CALL WRCRN (TITLE3, NRA, NCA, A, LDA, 0)
C
 END

Output
 The input matrix is below
 1 2 3 4
1 (1.00, 0.00) (6.00, 0.00) (11.00, 0.00) (16.00, 0.00)
2 (2.00, 0.00) (7.00, 0.00) (12.00, 0.00) (17.00, 0.00)
3 (3.00, 0.00) (8.00, 0.00) (13.00, 0.00) (18.00, 0.00)
4 (4.00, 0.00) (9.00, 0.00) (14.00, 0.00) (19.00, 0.00)
5 (5.00, 0.00) (10.00, 0.00) (15.00, 0.00) (20.00, 0.00)

 After FFT2D
 1 2 3 4
1 (210.0, 0.0) (-50.0, 50.0) (-50.0, 0.0) (-50.0, -50.0)
2 (-10.0, 13.8) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
3 (-10.0, 3.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
4 (-10.0, -3.2) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)
5 (-10.0, -13.8) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0)

 After FFT2B
 1 2 3 4
1 (20.0, 0.0) (120.0, 0.0) (220.0, 0.0) (320.0, 0.0)
2 (40.0, 0.0) (140.0, 0.0) (240.0, 0.0) (340.0, 0.0)
3 (60.0, 0.0) (160.0, 0.0) (260.0, 0.0) (360.0, 0.0)
4 (80.0, 0.0) (180.0, 0.0) (280.0, 0.0) (380.0, 0.0)
5 (100.0, 0.0) (200.0, 0.0) (300.0, 0.0) (400.0, 0.0)

IMSL MATH/LIBRARY Chapter 6: Transforms • 803

FFT3F/DFFT3F (Single/Double precision)
Compute Fourier coefficients of a complex periodic three-dimensional array.

Usage
CALL FFT3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)

Arguments

N1 — Limit on the first subscript of matrices A and B. (Input)

N2 — Limit on the second subscript of matrices A and B. (Input)

N3 — Limit on the third subscript of matrices A and B. (Input)

A — Three-dimensional complex matrix containing the data to be transformed.
(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

MDA — Middle dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Three-dimensional complex matrix containing the Fourier coefficients of A.
(Output)
The matrices A and B may be the same.

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

MDB — Middle dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Comments

1. Automatic workspace usage is

FFT3F 4 * (N1 + N2 + N3) + 2 * MAX(N1, N2, N3) + 45 units, or
DFFT3F 8 * (N1 + N2 + N3) + 4 * MAX(N1, N2, N3) + 90 units.

Workspace may be explicitly provided, if desired, by use of
F2T3F/DF2T3F. The reference is

CALL F2T3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB,
 WFF1, WFF2, WFF3, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI
(page 777). The initialization depends on N1. (Input)

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The
initialization depends on N2. (Input)

804 • Chapter 6: Transforms IMSL MATH/LIBRARY

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The
initialization depends on N3. (Input)

CPY — Real array of size 2 * MAX(N1, N2, N3). (Workspace)

2. The routine FFT3F is most efficient when N1, N2, and N3 are the product
of small primes.

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and
N3, then use FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N =
N3). Follow this with repeated calls to F2T3F/F2T3B. This is more
efficient than repeated calls to FFT3F/FFT3B.

Algorithm

The routine FFT3F computes the forward discrete complex Fourier transform of a
complex three-dimensional array of size (N1 = N) × (N2 = M) × (N3 = L). The
method used is a variant of the Cooley-Tukey algorithm , which is most efficient
when N, M, and L are each products of small prime factors. If N, M, and L satisfy
this condition, then the computational effort is proportional to N M L log N M L.
This considerable savings has historically led people to refer to this algorithm as
the “fast Fourier transform” or FFT.

Specifically, given an N × M × L array a, FFT3F returns in c = COEF

c a e e ejkl nml
l

L

m

M

n

N
i j n N i k m M i k l L=

===

− − −) − − −) − − −∑∑∑
111

2 1 1 2 1 1 2 1 1π π π0 50 0 50 0 50 5/ / /

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NMLS

Finally, note that an unnormalized inverse is implemented in FFT3B. The routine
FFT3F is based on the complex FFT in FFTPACK. The package FFTPACK was
developed by Paul Swarztrauber at the National Center for Atmospheric
Research.

Example

In this example, we compute the Fourier transform of the pure frequency input for
a 2 × 3 × 4 array

a e e enml
i n i m i l= −) −) −2 1 1 2 2 1 2 3 2 1 2 4π π π0 0 0 5/ / /

for 1 ≤ n ≤ 2, 1 ≤ m ≤ 3, and 1 ≤ l ≤ 4 using the IMSL routine FFT3F. The result

$a c=
has all zeros except in the (2, 3, 3) position.

 INTEGER LDA, LDB, MDA, MDB, NDA, NDB
 PARAMETER (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, K, L, M, N, N1, N2, N3, NOUT
 REAL PI

IMSL MATH/LIBRARY Chapter 6: Transforms • 805

 COMPLEX A(LDA,MDA,NDA), B(LDB,MDB,NDB), C, H
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC CEXP, CMPLX
 COMPLEX CEXP, CMPLX
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL FFT3F, UMACH
C SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL CONST
 REAL CONST
C Get output unit number
 CALL UMACH (2, NOUT)
 N1 = 2
 N2 = 3
 N3 = 4
 PI = CONST(’PI’)
 C = CMPLX(0.0,2.0*PI)
C Set array A
 DO 30 N=1, 2
 DO 20 M=1, 3
 DO 10 L=1, 4
 H = C*(N-1)*1/2 + C*(M-1)*2/3 + C*(L-1)*2/4
 A(N,M,L) = CEXP(H)
 10 CONTINUE
 20 CONTINUE
 30 CONTINUE
C
 CALL FFT3F (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)
C
 WRITE (NOUT,99996)
 DO 50 I=1, 2
 WRITE (NOUT,99998) I
 DO 40 J=1, 3
 WRITE (NOUT,99999) (A(I,J,K),K=1,4)
 40 CONTINUE
 50 CONTINUE
C
 WRITE (NOUT,99997)
 DO 70 I=1, 2
 WRITE (NOUT,99998) I
 DO 60 J=1, 3
 WRITE (NOUT,99999) (B(I,J,K),K=1,4)
 60 CONTINUE
 70 CONTINUE
C
99996 FORMAT (13X, ’The input for FFT3F is’)
99997 FORMAT (/, 13X, ’The results from FFT3F are’)
99998 FORMAT (/, ’ Face no. ’, I1)
99999 FORMAT (1X, 4(’(’,F6.2,’,’,F6.2,’)’,3X))
 END

Output
 The input for FFT3F is

Face no. 1
(1.00, 0.00) (-1.00, 0.00) (1.00, 0.00) (-1.00, 0.00)
(-0.50, -0.87) (0.50, 0.87) (-0.50, -0.87) (0.50, 0.87)
(-0.50, 0.87) (0.50, -0.87) (-0.50, 0.87) (0.50, -0.87)

806 • Chapter 6: Transforms IMSL MATH/LIBRARY

Face no. 2
(-1.00, 0.00) (1.00, 0.00) (-1.00, 0.00) (1.00, 0.00)
(0.50, 0.87) (-0.50, -0.87) (0.50, 0.87) (-0.50, -0.87)
(0.50, -0.87) (-0.50, 0.87) (0.50, -0.87) (-0.50, 0.87)

The results from FFT3F are

Face no. 1
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

Face no. 2
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (24.00, 0.00) (0.00, 0.00)

FFT3B/DFFT3B (Single/Double precision)
Compute the inverse Fourier transform of a complex periodic three-dimensional
array.

Usage
CALL FFT3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)

Arguments

N1 — Limit on the first subscript of matrices A and B. (Input)

N2 — Limit on the second subscript of matrices A and B. (Input)

N3 — Limit on the third subscript of matrices A and B. (Input)

A — Three-dimensional complex matrix containing the data to be transformed.
(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

MDA — Middle dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Three-dimensional complex matrix containing the inverse Fourier
coefficients of A. (Output)
The matrices A and B may be the same.

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

MDB — Middle dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 6: Transforms • 807

Comments

1. Automatic workspace usage is

FFT3B 4 * (N1 + N2 + N3) + 2 * MAX(N1, N2, N3) + 45 units, or
DFFT3B 8 * (N1 + N2 + N3) + 4 * MAX(N1, N2, N3) + 90 units.

Workspace may be explicitly provided, if desired, by use of
F2T3B/DF2T3B. The reference is

CALL F2T3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB,
 WFF1, WFF2, WFF3, CPY)

The additional arguments are as follows:

WFF1 — Real array of length 4 * N1 + 15 initialized by FFTCI
(page 777). The initialization depends on N1. (Input)

WFF2 — Real array of length 4 * N2 + 15 initialized by FFTCI. The
initialization depends on N2. (Input)

WFF3 — Real array of length 4 * N3 + 15 initialized by FFTCI. The
initialization depends on N3. (Input)

CPY — Real array of size 2 * MAX(N1, N2, N3). (Workspace)

2. The routine FFT3B is most efficient when N1, N2, and N3 are the product
of small primes.

3. If FFT3F/FFT3B is used repeatedly with the same values for N1, N2 and
N3, then use FFTCI to fill WFF1(N = N1), WFF2(N = N2), and WFF3(N =
N3). Follow this with repeated calls to F2T3F/F2T3B. This is more
efficient than repeated calls to FFT3F/FFT3B.

Algorithm

The routine FFT3B computes the inverse discrete complex Fourier transform of a
complex three-dimensional array of size (N1 = N) × (N2 = M) × (N3 = L). The
method used is a variant of the Cooley-Tukey algorithm, which is most efficient
when N, M, and L are each products of small prime factors. If N, M, and L satisfy
this condition, then the computational effort is proportional to N M L log N M L.
This considerable savings has historically led people to refer to this algorithm as
the “fast Fourier transform” or FFT.

Specifically, given an N × M × L array a, FFT3B returns in b

b a e e ejkl nml
l

L

m

M

n

N
i j n N i k m M i k l L

===

− −) − −) − −∑∑∑
111

2 1 1 2 1 1 2 1 1π π π0 50 0 50 0 50 5/ / /

Furthermore, a vector of Euclidean norm S is mapped into a vector of norm

NMLS

Finally, note that an unnormalized inverse is implemented in FFT3F. The routine
FFT3B is based on the complex FFT in FFTPACK. The package

808 • Chapter 6: Transforms IMSL MATH/LIBRARY

FFTPACK was developed by Paul Swarztrauber at the National Center for
Atmospheric Research.

Example

In this example, we compute the Fourier transform of the 2 × 3 × 4 array

x n m lnml = + − + −2 1 2 3 10 5 0 50 5
for 1 ≤ n ≤ 2, 1 ≤ m ≤ 3, and 1 ≤ l ≤ 4 using the IMSL routine FFT3F. The result

a x= $

is then inverted using FFT3B. Note that the result is an array b satisfying
b = 2(3)(4)x = 24x. In general, FFT3B is an unnormalized inverse with expansion
factor N M L.

 INTEGER LDA, LDB, MDA, MDB, NDA, NDB
 PARAMETER (LDA=2, LDB=2, MDA=3, MDB=3, NDA=4, NDB=4)
C SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, K, L, M, N, N1, N2, N3, NOUT
 COMPLEX A(LDA,MDA,NDA), B(LDB,MDB,NDB), X(LDB,MDB,NDB)
C SPECIFICATIONS FOR INTRINSICS
 INTRINSIC CEXP, CMPLX
 COMPLEX CEXP, CMPLX
C SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL FFT3B, FFT3F, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
 N1 = 2
 N2 = 3
 N3 = 4
C Set array X
 DO 30 N=1, 2
 DO 20 M=1, 3
 DO 10 L=1, 4
 X(N,M,L) = N + 2*(M-1) + 2*3*(L-1)
 10 CONTINUE
 20 CONTINUE
 30 CONTINUE
C
 CALL FFT3F (N1, N2, N3, X, LDA, MDA, A, LDA, MDA)
 CALL FFT3B (N1, N2, N3, A, LDA, MDA, B, LDB, MDB)
C
 WRITE (NOUT,99996)
 DO 50 I=1, 2
 WRITE (NOUT,99998) I
 DO 40 J=1, 3
 WRITE (NOUT,99999) (X(I,J,K),K=1,4)
 40 CONTINUE
 50 CONTINUE
C
 WRITE (NOUT,99997)
 DO 70 I=1, 2
 WRITE (NOUT,99998) I
 DO 60 J=1, 3
 WRITE (NOUT,99999) (A(I,J,K),K=1,4)
 60 CONTINUE

IMSL MATH/LIBRARY Chapter 6: Transforms • 809

 70 CONTINUE
C
 WRITE (NOUT, 99995)
 DO 90 I=1, 2
 WRITE (NOUT,99998) I
 DO 80 J=1, 3
 WRITE (NOUT,99999) (B(I,J,K),K=1,4)
 80 CONTINUE
 90 CONTINUE
99995 FORMAT (13X, ’The unnormalized inverse is’)
99996 FORMAT (13X, ’The input for FFT3F is’)
99997 FORMAT (/, 13X, ’The results from FFT3F are’)
99998 FORMAT (/, ’ Face no. ’, I1)
99999 FORMAT (1X, 4(’(’,F6.2,’,’,F6.2,’)’,3X))
 END

Output
 The input for FFT3F is

Face no. 1
(1.00, 0.00) (7.00, 0.00) (13.00, 0.00) (19.00, 0.00)
(3.00, 0.00) (9.00, 0.00) (15.00, 0.00) (21.00, 0.00)
(5.00, 0.00) (11.00, 0.00) (17.00, 0.00) (23.00, 0.00)

Face no. 2
(2.00, 0.00) (8.00, 0.00) (14.00, 0.00) (20.00, 0.00)
(4.00, 0.00) (10.00, 0.00) (16.00, 0.00) (22.00, 0.00)
(6.00, 0.00) (12.00, 0.00) (18.00, 0.00) (24.00, 0.00)

The results from FFT3F are

Face no. 1
(300.00, 0.00) (-72.00, 72.00) (-72.00, 0.00) (-72.00,-72.00)
(-24.00, 13.86) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(-24.00,-13.86) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

Face no. 2
(-12.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

The unnormalized inverse is

Face no. 1
(24.00, 0.00) (168.00, 0.00) (312.00, 0.00) (456.00, 0.00)
(72.00, 0.00) (216.00, 0.00) (360.00, 0.00) (504.00, 0.00)
(120.00, 0.00) (264.00, 0.00) (408.00, 0.00) (552.00, 0.00)

Face no. 2
(48.00, 0.00) (192.00, 0.00) (336.00, 0.00) (480.00, 0.00)
(96.00, 0.00) (240.00, 0.00) (384.00, 0.00) (528.00, 0.00)
(144.00, 0.00) (288.00, 0.00) (432.00, 0.00) (576.00, 0.00)

810 • Chapter 6: Transforms IMSL MATH/LIBRARY

RCONV/DRCONV (Single/Double precision)
Compute the convolution of two real vectors.

Usage
CALL RCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT)

Arguments

IDO — Flag indicating the usage of RCONV. (Input)

IDO Usage
0 If this is the only call to RCONV.

If RCONV is called multiple times in sequence with the same NX, NY, and IPAD,
IDO should be set to
1 on the first call
2 on the intermediate calls
3 on the final call.

NX — Length of the vector X. (Input)

X — Real vector of length NX. (Input)

NY — Length of the vector Y. (Input)

Y — Real vector of length NY. (Input)

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic
data. (Input)

NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is
one, NZ must be greater than or equal to the smallest integer greater than or equal

to (NX + NY −1) of the form (2a) * (3b) * (5g) where alpha, beta, and gamma are
nonnegative integers. Upon output, the value for NZ that was used by RCONV.

Z — Real vector of length NZ ontaining the convolution of X and Y. (Output)

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z.
(Output)

Comments

1. Automatic workspace usage is

RCONV 4 * NZ + 15 units, or
DRCONV 8 * NZ + 30 units.

Workspace may be explicitly provided, if desired, by use of
R2ONV/DR2ONV. The reference is

IMSL MATH/LIBRARY Chapter 6: Transforms • 811

CALL R2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT
 XWK, YWK, WK)

The additional arguments are as follows:

XWK — Real work array of length NZ.

YWK — Real work array of length NZ.

WK — Real work arrary of length 2 * NZ + 15.

2. Informational error
Type Code
 4 1 The length of the vector Z must be large enough to

hold the results. An acceptable length is returned in
NZ.

Algorithm

The routine RCONV computes the discrete convolution of two sequences x and y.
More precisely, let n[be the length of x and n\ denote the length of y. If a circular
convolution is desired, then IPAD must be set to zero. We set

n] := max{n[, n\}

and we pad out the shorter vector with zeroes. Then, we compute

z x yi i j j
j

nz

= − +
=
∑ 1

1

where the index on x is interpreted as a positive number between 1 and n],
modulo n].

The technique used to compute the zL’s is based on the fact that the (complex
discrete) Fourier transform maps convolution into multiplication. Thus, the
Fourier transform of z is given by

$ $ $z n x n y n0 5 0 5 0 5=
where

$ /z n z em
i m n n

m

n
z

z0 5 0 0= − −) −)

=
∑ 2 1 1

1

π

The technique used here to compute the convolution is to take the discrete Fourier
transform of x and y, multiply the results together component-wise, and then take
the inverse transform of this product. It is very important to make sure that n] is a
product of small primes if IPAD is set to zero. If n] is a product of small primes,
then the computational effort will be proportional to n] log(n]). If IPAD is one,
then a good value is chosen for n] so that the Fourier transforms are efficient and

n] ≥ n[�+ n\ − 1. This will mean that both vectors will be padded with zeroes.

812 • Chapter 6: Transforms IMSL MATH/LIBRARY

We point out that no complex transforms of x or y are taken since both sequences
are real, we can take real transforms and simulate the complex transform above.
This can produce a savings of a factor of six in time as well as save space over
using the complex transform.

Example

In this example, we compute both a periodic and a non-periodic convolution. The
idea here is that one can compute a moving average of the type found in digital
filtering using this routine. The averaging operator in this case is especially
simple and is given by averaging five consecutive points in the sequence. The
periodic case tries to recover a noisy sin function by averaging five nearby values.
The nonperiodic case tries to recover the values of an exponential function
contaminated by noise. The large error for the last value printed has to do with
the fact that the convolution is averaging the zeroes in the “pad” rather than
function values. Notice that the signal size is 100, but we only report the errors at
ten points.

 INTEGER NFLTR, NY
 PARAMETER (NFLTR=5, NY=100)
C
 INTEGER I, K, MOD, NOUT, NZ
 REAL ABS, CONST, EXP, F1, F2, FLOAT, FLTR(NFLTR),
 & FLTRER, ORIGER, RNUNF, SIN, TOTAL1, TOTAL2, TWOPI, X,
 & Y(NY), Z(2*(NFLTR+NY-1)), ZHAT(2*(NFLTR+NY-1))
 INTRINSIC ABS, EXP, FLOAT, MOD, SIN
 EXTERNAL CONST, RCONV, RNSET, RNUNF, UMACH
C DEFINE FUNCTIONS
 F1(X) = SIN(X)
 F2(X) = EXP(X)
C
 CALL RNSET (1234579)
 CALL UMACH (2, NOUT)
 TWOPI = 2.0*CONST(’PI’)
C SET UP THE FILTER
 DO 10 I=1, 5
 FLTR(I) = 0.2
 10 CONTINUE
C SET UP Y-VECTOR FOR THE PERIODIC
C CASE.
 DO 20 I=1, NY
 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)
 Y(I) = F1(X) + 0.5*RNUNF() - 0.25
 20 CONTINUE
C CALL THE CONVOLUTION ROUTINE FOR THE
C PERIODIC CASE.
 NZ = 2*(NFLTR+NY-1)
 CALL RCONV (0, NFLTR, FLTR, NY, Y, 0, NZ, Z, ZHAT)
C PRINT RESULTS
 WRITE (NOUT,99993)
 WRITE (NOUT,99995)
 TOTAL1 = 0.0
 TOTAL2 = 0.0
 DO 30 I=1, NY
C COMPUTE THE OFFSET FOR THE Z-VECTOR
 IF (I .GE. NY-1) THEN

IMSL MATH/LIBRARY Chapter 6: Transforms • 813

 K = I - NY + 2
 ELSE
 K = I + 2
 END IF
C
 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)
 ORIGER = ABS(Y(I)-F1(X))
 FLTRER = ABS(Z(K)-F1(X))
 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER,
 & FLTRER
 TOTAL1 = TOTAL1 + ORIGER
 TOTAL2 = TOTAL2 + FLTRER
 30 CONTINUE
 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)
 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)
C SET UP Y-VECTOR FOR THE NONPERIODIC
C CASE.
 DO 40 I=1, NY
 A = FLOAT(I-1)/FLOAT(NY-1)
 Y(I) = F2(A) + 0.5*RNUNF() - 0.25
 40 CONTINUE
C CALL THE CONVOLUTION ROUTINE FOR THE
C NONPERIODIC CASE.
 NZ = 2*(NFLTR+NY-1)
 CALL RCONV (0, NFLTR, FLTR, NY, Y, 1, NZ, Z, ZHAT)
C PRINT RESULTS
 WRITE (NOUT,99994)
 WRITE (NOUT,99996)
 TOTAL1 = 0.0
 TOTAL2 = 0.0
 DO 50 I=1, NY
 X = FLOAT(I-1)/FLOAT(NY-1)
 ORIGER = ABS(Y(I)-F2(X))
 FLTRER = ABS(Z(I+2)-F2(X))
 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER,
 & FLTRER
 TOTAL1 = TOTAL1 + ORIGER
 TOTAL2 = TOTAL2 + FLTRER
 50 CONTINUE
 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)
 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)
99993 FORMAT (’ Periodic Case’)
99994 FORMAT (/,’ Nonperiodic Case’)
99995 FORMAT (8X, ’x’, 9X, ’sin(x)’, 6X, ’Original Error’, 5X,
 & ’Filtered Error’)
99996 FORMAT (8X, ’x’, 9X, ’exp(x)’, 6X, ’Original Error’, 5X,
 & ’Filtered Error’)
99997 FORMAT (1X, F10.4, F13.4, 2F18.4)
99998 FORMAT (’ Average absolute error before filter:’, F10.5)
99999 FORMAT (’ Average absolute error after filter:’, F11.5)
 END

Output
Periodic Case
 x sin(x) Original Error Filtered Error
 0.0000 0.0000 0.0811 0.0587
 0.6981 0.6428 0.0226 0.0781
 1.3963 0.9848 0.1526 0.0529

814 • Chapter 6: Transforms IMSL MATH/LIBRARY

 2.0944 0.8660 0.0959 0.0125
 2.7925 0.3420 0.1747 0.0292
 3.4907 -0.3420 0.1035 0.0238
 4.1888 -0.8660 0.0402 0.0595
 4.8869 -0.9848 0.0673 0.0798
 5.5851 -0.6428 0.1044 0.0074
 6.2832 0.0000 0.0154 0.0018
 Average absolute error before filter: 0.12481
 Average absolute error after filter: 0.04778

Nonperiodic Case
 x exp(x) Original Error Filtered Error
 0.0000 1.0000 0.1476 0.3915
 0.1111 1.1175 0.0537 0.0326
 0.2222 1.2488 0.1278 0.0932
 0.3333 1.3956 0.1136 0.0987
 0.4444 1.5596 0.1617 0.0964
 0.5556 1.7429 0.0071 0.0662
 0.6667 1.9477 0.1248 0.0713
 0.7778 2.1766 0.1556 0.0158
 0.8889 2.4324 0.1529 0.0696
 1.0000 2.7183 0.2124 1.0562
 Average absolute error before filter: 0.12538
 Average absolute error after filter: 0.07764

CCONV/DCCONV (Single/Double precision)
Compute the convolution of two complex vectors.

Usage
CALL CCONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT)

Arguments

IDO — Flag indicating the usage of CCONV. (Input)

IDO Usage
0 If this is the only call to CCONV.

If CCONV is called multiple times in sequence with the same NX, NY, and IPAD,
IDO should be set to
1 on the first call
2 on the intermediate calls
3 on the final call.

NX — Length of the vector X. (Input)

X — Complex vector of length NX. (Input)

NY — Length of the vector Y. (Input)

Y — Complex vector of length NY. (Input)

IPAD — IPAD should be set to zero for periodic data or to one for nonperiodic
data. (Input)

IMSL MATH/LIBRARY Chapter 6: Transforms • 815

NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero, NZ must be at least MAX(NX, NY). When IPAD is
one, NZ must be greater than or equal to the smallest integer greater than or equal

to (NX + NY − 1) of the form (2a) * (3b) * (5g) where alpha, beta, and gamma are
nonnegative integers. Upon output, the value for NZ that was used by CCONV.

Z — Complex vector of length NZ containing the convolution of X and Y.
(Output)

ZHAT — Complex vector of length NZ containing the discrete complex Fourier
transform of Z. (Output)

Comments

1. Automatic workspace usage is

CCONV 10 * NZ + 15 units, or
DCCONV 20 * NZ + 30 units.

Workspace may be explicitly provided, if desired, by use of
C2ONV/DC2ONV. The reference is

CALL C2ONV (IDO, NX, X, NY, Y, IPAD, NZ, Z, ZHAT,
 XWK, YWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NZ.

YWK — Complex work array of length NZ.

WK — Real work array of length 6 * NZ + 15.

2. Informational error
Type Code
 4 1 The length of the vector Z must be large enough to

hold the results. An acceptable length is returned in
NZ.

Algorithm

The subroutine CCONV computes the discrete convolution of two complex
sequences x and y. More precisely, let n[be the length of x and n\ denote the
length of y. If a circular convolution is desired, then IPAD must be set to zero. We
set

n] := max{n[, n\}

and we pad out the shorter vector with zeroes. Then, we compute

z x yi i j j
j

nz

= − +
=
∑ 1

1

816 • Chapter 6: Transforms IMSL MATH/LIBRARY

where the index on x is interpreted as a positive number between 1 and n],
modulo n].

The technique used to compute the zL’s is based on the fact that the (complex
discrete) Fourier transform maps convolution into multiplication. Thus, the
Fourier transform of z is given by

$ $ $z n x n y n0 5 0 5 0 5=
where

$ /z n z em
i m n n

m

n
z

z0 5 0 0= − −) −)

=
∑ 2 1 1

1

π

The technique used here to compute the convolution is to take the discrete Fourier
transform of x and y, multiply the results together component-wise, and then take
the inverse transform of this product. It is very important to make sure that n] is a
product of small primes if IPAD is set to zero. If n] is a product of small primes,
then the computational effort will be proportional to n] log(n]). If IPAD is one,
then a a good value is chosen for n] so that the Fourier transforms are efficient

and n] ≥ n[�+ n\ − 1. This will mean that both vectors will be padded with zeroes.

Example

In this example, we compute both a periodic and a non-periodic convolution. The
idea here is that one can compute a moving average of the type found in digital
filtering using this routine. The averaging operator in this case is especially
simple and is given by averaging five consecutive points in the sequence. The
periodic case tries to recover a noisy function f1(x) = cos(x) + i sin(x) by
averaging five nearby values. The nonperiodic case tries to recover the values of

the function f2(x) = e[f1(x) contaminated by noise. The large error for the first and
last value printed has to do with the fact that the convolution is averaging the
zeroes in the “pad” rather than function values. Notice that the signal size is 100,
but we only report the errors at ten points.

 INTEGER NFLTR, NY
 PARAMETER (NFLTR=5, NY=100)
C
 INTEGER I, K, MOD, NOUT, NZ
 REAL CABS, CONST, COS, EXP, FLOAT, FLTRER, ORIGER, RNUNF,
 & SIN, TOTAL1, TOTAL2, TWOPI, X
 COMPLEX CMPLX, F1, F2, FLTR(NFLTR), Y(NY), Z(2*(NFLTR+NY-1)),
 & ZHAT(2*(NFLTR+NY-1))
 INTRINSIC CABS, CMPLX, COS, EXP, FLOAT, MOD, SIN
 EXTERNAL CCONV, CONST, RNSET, RNUNF, UMACH
C DEFINE FUNCTIONS
 F1(X) = CMPLX(COS(X),SIN(X))
 F2(X) = EXP(X)*CMPLX(COS(X),SIN(X))
C
 CALL RNSET (1234579)
 CALL UMACH (2, NOUT)

IMSL MATH/LIBRARY Chapter 6: Transforms • 817

 TWOPI = 2.0*CONST(’PI’)
C SET UP THE FILTER
 CALL CSET(NFLTR,(0.2,0.0),FLTR,1)
C SET UP Y-VECTOR FOR THE PERIODIC
C CASE.
 DO 20 I=1, NY
 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)
 Y(I) = F1(X) + CMPLX(0.5*RNUNF()-0.25,0.5*RNUNF()-0.25)
 20 CONTINUE
C CALL THE CONVOLUTION ROUTINE FOR THE
C PERIODIC CASE.
 NZ = 2*(NFLTR+NY-1)
 CALL CCONV (0, NFLTR, FLTR, NY, Y, 0, NZ, Z, ZHAT)
C PRINT RESULTS
 WRITE (NOUT,99993)
 WRITE (NOUT,99995)
 TOTAL1 = 0.0
 TOTAL2 = 0.0
 DO 30 I=1, NY
C COMPUTE THE OFFSET FOR THE Z-VECTOR
 IF (I .GE. NY-1) THEN
 K = I - NY + 2
 ELSE
 K = I + 2
 END IF
C
 X = TWOPI*FLOAT(I-1)/FLOAT(NY-1)
 ORIGER = CABS(Y(I)-F1(X))
 FLTRER = CABS(Z(K)-F1(X))
 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F1(X), ORIGER,
 & FLTRER
 TOTAL1 = TOTAL1 + ORIGER
 TOTAL2 = TOTAL2 + FLTRER
 30 CONTINUE
 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)
 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)
C SET UP Y-VECTOR FOR THE NONPERIODIC
C CASE.
 DO 40 I=1, NY
 X = FLOAT(I-1)/FLOAT(NY-1)
 Y(I) = F2(X) + CMPLX(0.5*RNUNF()-0.25,0.5*RNUNF()-0.25)
 40 CONTINUE
C CALL THE CONVOLUTION ROUTINE FOR THE
C NONPERIODIC CASE.
 NZ = 2*(NFLTR+NY-1)
 CALL CCONV (0, NFLTR, FLTR, NY, Y, 1, NZ, Z, ZHAT)
C PRINT RESULTS
 WRITE (NOUT,99994)
 WRITE (NOUT,99996)
 TOTAL1 = 0.0
 TOTAL2 = 0.0
 DO 50 I=1, NY
 X = FLOAT(I-1)/FLOAT(NY-1)
 ORIGER = CABS(Y(I)-F2(X))
 FLTRER = CABS(Z(I+2)-F2(X))
 IF (MOD(I,11) .EQ. 1) WRITE (NOUT,99997) X, F2(X), ORIGER,
 & FLTRER
 TOTAL1 = TOTAL1 + ORIGER
 TOTAL2 = TOTAL2 + FLTRER

818 • Chapter 6: Transforms IMSL MATH/LIBRARY

 50 CONTINUE
 WRITE (NOUT,99998) TOTAL1/FLOAT(NY)
 WRITE (NOUT,99999) TOTAL2/FLOAT(NY)
99993 FORMAT (’ Periodic Case’)
99994 FORMAT (/, ’ Nonperiodic Case’)
99995 FORMAT (8X, ’x’, 15X, ’f1(x)’, 8X, ’Original Error’, 5X,
 & ’Filtered Error’)
99996 FORMAT (8X, ’x’, 15X, ’f2(x)’, 8X, ’Original Error’, 5X,
 & ’Filtered Error’)
99997 FORMAT (1X, F10.4, 5X, ’(’, F7.4, ’,’, F8.4, ’)’, 5X, F8.4,
 & 10X, F8.4)
99998 FORMAT (’ Average absolute error before filter:’, F11.5)
99999 FORMAT (’ Average absolute error after filter:’, F12.5)
 END

Output
Periodic Case
 x f1(x) Original Error Filtered Error
 0.0000 (1.0000, 0.0000) 0.1666 0.0773
 0.6981 (0.7660, 0.6428) 0.1685 0.1399
 1.3963 (0.1736, 0.9848) 0.1756 0.0368
 2.0944 (-0.5000, 0.8660) 0.2171 0.0142
 2.7925 (-0.9397, 0.3420) 0.1147 0.0200
 3.4907 (-0.9397, -0.3420) 0.0998 0.0331
 4.1888 (-0.5000, -0.8660) 0.1137 0.0586
 4.8869 (0.1736, -0.9848) 0.2217 0.0843
 5.5851 (0.7660, -0.6428) 0.1831 0.0744
 6.2832 (1.0000, 0.0000) 0.3234 0.0893
 Average absolute error before filter: 0.19315
 Average absolute error after filter: 0.08296

Nonperiodic Case
 x f2(x) Original Error Filtered Error
 0.0000 (1.0000, 0.0000) 0.0783 0.4336
 0.1111 (1.1106, 0.1239) 0.2434 0.0477
 0.2222 (1.2181, 0.2752) 0.1819 0.0584
 0.3333 (1.3188, 0.4566) 0.0703 0.1267
 0.4444 (1.4081, 0.6706) 0.1458 0.0868
 0.5556 (1.4808, 0.9192) 0.1946 0.0930
 0.6667 (1.5307, 1.2044) 0.1458 0.0734
 0.7778 (1.5508, 1.5273) 0.1815 0.0690
 0.8889 (1.5331, 1.8885) 0.0805 0.0193
 1.0000 (1.4687, 2.2874) 0.2396 1.1708
 Average absolute error before filter: 0.18549
 Average absolute error after filter: 0.09636

RCORL/DRCORL (Single/Double precision)
Compute the correlation of two real vectors.

Usage
CALL RCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT)

IMSL MATH/LIBRARY Chapter 6: Transforms • 819

Arguments

IDO — Flag indicating the usage of RCORL. (Input)

IDO Usage
0 If this is the only call to RCORL.

If RCORL is called multiple times in sequence with the same NX, NY, and IPAD,
IDO should be set to
1 on the first call
2 on the intermediate calls
3 on the final call.

N — Length of the X and Y vectors. (Input)

X — Real vector of length N. (Input)

Y — Real vector of length N. (Input)

IPAD — IPAD should be set as follows. (Input)

IPAD Value
IPAD 0 for periodic data with X and Y different.
IPAD 1 for nonperiodic data with X and Y different.
IPAD 2 for periodic data with X and Y identical.
IPAD 3 for nonperiodic data with X and Y identical.

NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero or two, NZ must be at least (2 * N − 1). When
IPAD is one or three, NZ must be greater than or equal to the smallest integer

greater than or equal to (2 * N − 1) of the form (2a) * (3b) * (5g) where alpha,
beta, and gamma are nonnegative integers. Upon output, the value for NZ that was
used by RCORL.

Z — Real vector of length NZ containing the correlation of X and Y. (Output)

ZHAT — Real vector of length NZ containing the discrete Fourier transform of Z.
(Output)

Comments

1. Automatic workspace usage is

RCORL 4 * NZ + 15 units, or
DRCORL 8 * NZ + 30 units.

Workspace may be explicitly provided, if desired, by use of
R2ORL/DR2ORL. The reference is

CALL R2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK,
 YWK, WK)

The additional arguments are as follows:

XWK — Real work array of length NZ.

820 • Chapter 6: Transforms IMSL MATH/LIBRARY

YWK — Real work array of length NZ.

WK — Real work arrary of length 2 * NZ + 15.

2. Informational error
Type Code
 4 1 The length of the vector Z must be large enough to

hold the results. An acceptable length is returned in
NZ.

Algorithm

The subroutine RCORL computes the discrete correlation of two sequences x and
y. More precisely, let n be the length of x and y. If a circular correlation is
desired, then IPAD must be set to zero (for x and y distinct) and two (for x = y).
We set (on output)

n n

n n

z

z

=

= ≥ −

if IPAD = 0, 2

if IPAD = 1, 32 3 5 2 1α β γ

where α, β, γ are nonnegative integers yielding the smallest number of the type

2a3b5g satisfying the inequality. Once n]�is determined, we pad out the vectors
with zeroes. Then, we compute

z x yi i j j
j

nz

= + −
=
∑ 1

1

where the index on x is interpreted as a positive number between one and n],
modulo n]. Note that this means that

zn kz −

contains the correlation of x(⋅ − k − 1) with y as k = 0, 1, …, n]�/2. Thus, if

x(k − 1) = y(k) for all k, then we would expect

znz

to be the largest component of z.

The technique used to compute the zL’s is based on the fact that the (complex
discrete) Fourier transform maps correlation into multiplication. Thus, the Fourier
transform of z is given by

$ $ $z x yj j j=

where

$ /z z ej m
i m j n

m

n
z

z

= − −) −

=
∑ 2 1 1

1

π 0 0 5

IMSL MATH/LIBRARY Chapter 6: Transforms • 821

Thus, the technique used here to compute the correlation is to take the discrete
Fourier transform of x and the conjugate of the discrete Fourier transform of y,
multiply the results together component-wise, and then take the inverse transform
of this product. It is very important to make sure that n] is a product of small
primes if IPAD is set to zero or two. If n] is a product of small primes, then the
computational effort will be proportional to n] log(n]). If IPAD is one or three,
then a good value is chosen for n] so that the Fourier transforms are efficient and

n] ≥ 2n − 1. This will mean that both vectors will be padded with zeroes.

We point out that no complex transforms of x or y are taken since both sequences
are real, and we can take real transforms and simulate the complex transform
above. This can produce a savings of a factor of six in time as well as save space
over using the complex transform.

Example

In this example, we compute both a periodic and a non-periodic correlation
between two distinct signals x and y. In the first case we have 100 equally spaced
points on the interval [0, 2π] and f1(x) = sin(x). We define x and y as follows

x f
i

n
i n

y f
i

n
i n

i

i

= −
−

=

= −
−

+ =

1

1

2
1

1
1

2
1

1 2
1

() , ,

() , ,

π

π π

K

K

Note that the maximum value of z (the correlation of x with y) occurs at i = 26,
which corresponds to the offset.

The nonperiodic case uses the function f2(x) = sin(x2). The two input signals are
on the interval [0, 4π].

x f
i

n
i n

y f
i

n
i n

i

i

= −
−

=

= −
−

+ =

2

2

4
1

1
1

4
1

1
1

() , ,

() , ,

π

π π

K

K

The offset of x to y is again (roughly) 26 and this is where z has its maximum
value.

 INTEGER N
 PARAMETER (N=100)
C
 INTEGER I, ISMAX, K, NOUT, NZ
 REAL A, CONST, F1, F2, FLOAT, PI, SIN, SNRM2, X(N), XNORM,
 & Y(N), YNORM, Z(4*N), ZHAT(4*N)
 INTRINSIC FLOAT, SIN
 EXTERNAL CONST, ISMAX, RCORL, SNRM2, UMACH
C Define functions

822 • Chapter 6: Transforms IMSL MATH/LIBRARY

 F1(A) = SIN(A)
 F2(A) = SIN(A*A)
C
 CALL UMACH (2, NOUT)
 PI = CONST(’pi’)
C Set up the vectors for the
C periodic case.
 DO 10 I=1, N
 X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1))
 Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0)
 10 CONTINUE
C Call the correlation routine for the
C periodic case.
 NZ = 2*N
 CALL RCORL (0, N, X, Y, 0, NZ, Z, ZHAT)
C Find the element of Z with the
C largest normalized value.
 XNORM = SNRM2(N,X,1)
 YNORM = SNRM2(N,Y,1)
 DO 20 I=1, N
 Z(I) = Z(I)/(XNORM*YNORM)
 20 CONTINUE
 K = ISMAX(N,Z,1)
C Print results for the periodic
C case.
 WRITE (NOUT,99995)
 WRITE (NOUT,99994)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) K
 WRITE (NOUT,99999) K, Z(K)
C Set up the vectors for the
C nonperiodic case.
 DO 30 I=1, N
 X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1))
 Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI)
 30 CONTINUE
C Call the correlation routine for the
C nonperiodic case.
 NZ = 4*N
 CALL RCORL (0, N, X, Y, 1, NZ, Z, ZHAT)
C Find the element of Z with the
C largest normalized value.
 XNORM = SNRM2(N,X,1)
 YNORM = SNRM2(N,Y,1)
 DO 40 I=1, N
 Z(I) = Z(I)/(XNORM*YNORM)
 40 CONTINUE
 K = ISMAX(N,Z,1)
C Print results for the nonperiodic
C case.
 WRITE (NOUT,99996)
 WRITE (NOUT,99994)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) K
 WRITE (NOUT,99999) K, Z(K)
99994 FORMAT (1X, 28(’-’))
99995 FORMAT (’ Case #1: Periodic data’)
99996 FORMAT (/, ’ Case #2: Nonperiodic data’)
99997 FORMAT (’ The element of Z with the largest normalized ’)

IMSL MATH/LIBRARY Chapter 6: Transforms • 823

99998 FORMAT (’ value is Z(’, I2, ’).’)
99999 FORMAT (’ The normalized value of Z(’, I2, ’) is’, F6.3)
 END

Output
Example #1: Periodic case

The element of Z with the largest normalized value is Z(26).
The normalized value of Z(26) is 1.000

Example #2: Nonperiodic case

The element of Z with the largest normalized value is Z(26).
The normalized value of Z(26) is 0.661

CCORL/DCCORL (Single/Double precision)
Compute the correlation of two complex vectors.

Usage
CALL CCORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT)

Arguments

IDO — Flag indicating the usage of CCORL. (Input)

IDO Usage
0 If this is the only call to CCORL.

If CCORL is called multiple times in sequence with the same NX, NY, and IPAD,
IDO should be set to
1 on the first call
2 on the intermediate calls
3 on the final call.

N — Length of the X and Y vectors. (Input)

X — Complex vector of length N. (Input)

Y — Complex vector of length N. (Input)

IPAD — IPAD should be set as follows. (Input)
IPAD = 0 for periodic data with X and Y different. IPAD = 1 for nonperiodic data
with X and Y different. IPAD = 2 for periodic data with X and Y identical. IPAD =
3 for nonperiodic data with X and Y identical.

NZ — Length of the vector Z. (Input/Output)
Upon input: When IPAD is zero or two, NZ must be at least (2 * N − 1). When
IPAD is one or three, NZ must be greater than or equal to the smallest integer

greater than or equal to (2 * N − 1) of the form (2a) * (3b) * (5g) where alpha,
beta, and gamma are nonnegative integers. Upon output, the value for NZ that was
used by CCORL.

824 • Chapter 6: Transforms IMSL MATH/LIBRARY

Z — Complex vector of length NZ containing the correlation of X and Y.
(Output)

ZHAT — Complex vector of length NZ containing the inverse discrete complex
Fourier transform of Z. (Output)

Comments

1. Automatic workspace usage is

CCORL 10 * NZ + 15 units, or
DCCORL 20 * NZ + 30 units.

Workspace may be explicitly provided, if desired, by use of
C2ORL/DC2ORL. The reference is

CALL C2ORL (IDO, N, X, Y, IPAD, NZ, Z, ZHAT, XWK,
 YWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NZ.

YWK — Complex work array of length NZ.

WK — Real work arrary of length 6 * NZ + 15.

2. Informational error
Type Code
 4 1 The length of the vector Z must be large enough to

hold the results. An acceptable length is returned in
NZ.

Algorithm

The subroutine CCORL computes the discrete correlation of two complex
sequences x and y. More precisely, let n be the length of x and y. If a circular
correlation is desired, then IPAD must be set to zero (for x and y distinct) and two
(for x = y). We set (on output)

n n

n n

z

z

=

= ≥ −

if IPAD = 0, 2

if IPAD = 1, 32 3 5 2 1α β γ

where α, β, γ are nonnegative integers yielding the smallest number of the type

2a3b5g satisfying the inequality. Once n]�is determined, we pad out the vectors
with zeroes. Then, we compute

z x yi i j j
j

nz

= + −
=
∑ 1

1

where the index on x is interpreted as a positive number between one and n],
modulo n]. Note that this means that

IMSL MATH/LIBRARY Chapter 6: Transforms • 825

zn kz −

contains the correlation of x(⋅ − k − 1) with y as k = 0, 1, …, n]�/2. Thus, if

x(k − 1) = y(k) for all k, then we would expect

ℜznz

to be the largest component of ℜz.

The technique used to compute the zL’s is based on the fact that the (complex
discrete) Fourier transform maps correlation into multiplication. Thus, the Fourier
transform of z is given by

$ $ $z x yj j j=

where

$ /z z ej m
i m j n

m

n
z

z

= − −) −

=
∑ 2 1 1

1

π 0 0 5

Thus, the technique used here to compute the correlation is to take the discrete
Fourier transform of x and the conjugate of the discrete Fourier transform of y,
multiply the results together component-wise, and then take the inverse transform
of this product. It is very important to make sure that n] is a product of small
primes if IPAD is set to zero or two. If n] is a product of small primes, then the
computational effort will be proportional to n] log(n]). If IPAD is one or three,
then a good value is chosen for n]�so that the Fourier transforms are efficient and

n] ≥ 2n − 1. This will mean that both vectors will be padded with zeroes.

Example

In this example, we compute both a periodic and a non-periodic correlation
between two distinct signals x and y. In the first case, we have 100 equally spaced
points on the interval [0, 2π] and f1(x) = cos(x) + i sin(x). We define x and y as
follows

x f
i

n
i n

y f
i

n
i n

i

i

= −
−

=

= −
−

+ =

1

1

2
1

1
1

2
1

1 2
1

() , ,

() , ,

π

π π

K

K

Note that the maximum value of z (the correlation of x with y) occurs at i = 26,
which corresponds to the offset.

The nonperiodic case uses the function f2(x) = cos(x2) + i sin(x2). The two input
signals are on the interval [0, 4π].

826 • Chapter 6: Transforms IMSL MATH/LIBRARY

x f
i

n
i n

y f
i

n
i n

i

i

= −
−

=

= −
−

+ =

2

2

4
1

1
1

4
1

1
1

() , ,

() , ,

π

π π

K

K

The offset of x to y is again (roughly) 26 and this is where z has its maximum
value.

 INTEGER N
 PARAMETER (N=100)
C
 INTEGER I, ISMAX, K, NOUT, NZ
 REAL A, CONST, COS, F1, F2, FLOAT, PI, SCNRM2, SIN,
 & XNORM, YNORM, ZREAL(4*N)
 COMPLEX CMPLX, X(N), Y(N), Z(4*N), ZHAT(4*N)
 INTRINSIC CMPLX, COS, FLOAT, SIN
 EXTERNAL CCORL, CONST, ISMAX, RNSET, SCNRM2, UMACH
C Define functions
 F1(A) = CMPLX(COS(A),SIN(A))
 F2(A) = CMPLX(COS(A*A),SIN(A*A))
C
 CALL RNSET (1234579)
 CALL UMACH (2, NOUT)
 PI = CONST(’pi’)
C Set up the vectors for the
C periodic case.
 DO 10 I=1, N
 X(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1))
 Y(I) = F1(2.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI/2.0)
 10 CONTINUE
C Call the correlation routine for the
C periodic case.
 NZ = 2*N
 CALL CCORL (0, N, X, Y, 0, NZ, Z, ZHAT)
C Find the element of Z with the
C largest normalized real part.
 XNORM = SCNRM2(N,X,1)
 YNORM = SCNRM2(N,Y,1)
 DO 20 I=1, N
 ZREAL(I) = REAL(Z(I))/(XNORM*YNORM)
 20 CONTINUE
 K = ISMAX(N,ZREAL,1)
C Print results for the periodic
C case.
 WRITE (NOUT,99995)
 WRITE (NOUT,99994)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) K
 WRITE (NOUT,99999) K, ZREAL(K)
C Set up the vectors for the
C nonperioddic case.
 DO 30 I=1, N
 X(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1))
 Y(I) = F2(4.0*PI*FLOAT(I-1)/FLOAT(N-1)+PI)
 30 CONTINUE
C Call the correlation routine for the
C nonperiodic case.

IMSL MATH/LIBRARY Chapter 6: Transforms • 827

 NZ = 4*N
 CALL CCORL (0, N, X, Y, 1, NZ, Z, ZHAT)
C Find the element of z with the
C largest normalized real part.
 XNORM = SCNRM2(N,X,1)
 YNORM = SCNRM2(N,Y,1)
 DO 40 I=1, N
 ZREAL(I) = REAL(Z(I))/(XNORM*YNORM)
 40 CONTINUE
 K = ISMAX(N,ZREAL,1)
C Print results for the nonperiodic
C case.
 WRITE (NOUT,99996)
 WRITE (NOUT,99994)
 WRITE (NOUT,99997)
 WRITE (NOUT,99998) K
 WRITE (NOUT,99999) K, ZREAL(K)
99994 FORMAT (1X, 28(’-’))
99995 FORMAT (’ Case #1: periodic data’)
99996 FORMAT (/, ’ Case #2: nonperiodic data’)
99997 FORMAT (’ The element of Z with the largest normalized ’)
99998 FORMAT (’ real part is Z(’, I2, ’).’)
99999 FORMAT (’ The normalized value of real(Z(’, I2, ’)) is’, F6.3)
 END

Output
Example #1: periodic case

The element of Z with the largest normalized real part is Z(26).
The normalized value of real(Z(26)) is 1.000

Example #2: nonperiodic case

The element of Z with the largest normalized real part is Z(26).
The normalized value of real(Z(26)) is 0.638

INLAP/DINLAP (Single/Double precision)
Compute the inverse Laplace transform of a complex function.

Usage
CALL INLAP (F, N, T, ALPHA, RELERR, KMAX, FINV)

Arguments

F — User-supplied FUNCTION to which the inverse Laplace transform will be
computed. The form is F(Z), where

Z – Complex argument. (Input)
F – The complex function value. (Output)

F must be declared EXTERNAL in the calling program. F should also be declared
COMPLEX.

828 • Chapter 6: Transforms IMSL MATH/LIBRARY

N — Number of points at which the inverse Laplace transform is desired.
(Input)

T — Array of length N containing the points at which the inverse Laplace
transform is desired. (Input)
T(I) must be greater than zero for all I.

ALPHA — An estimate for the maximum of the real parts of the singularities of
F. If unknown, set ALPHA = 0. (Input)

RELERR — The relative accuracy desired. (Input)

KMAX — The number of function evaluations allowed for each T(I). (Input)

FINV — Array of length N whose I-th component contains the approximate
value of the Laplace transform at the point T(I). (Output)

Comments
Informational errors
Type Code
 4 1 The algorithm was not able to achieve the accuracy requested

within KMAX function evaluations for some T(I).
 4 2 Overflow is occurring for a particular value of T.

Algorithm

The routine INLAP computes the inverse Laplace transform of a complex-valued
function. Recall that if f is a function that vanishes on the negative real axis, then
we can define the Laplace transform of f by

L f s e f x dxsx0 5 0 5:= −∞I0
It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on applying the
epsilon algorithm to the complex Fourier series obtained as a discrete
approximation to the inversion integral. The initial algorithm was proposed by
K.S. Crump (1976) but was significantly improved by de Hoog et al. (1982).
Given a complex-valued transform F(s) = L[f](s), the trapezoidal rule gives the
approximation to the inverse transform

g t e T F F
ik

T

ik t

T
t

k

0 5 3 8 0 5= ℜ + +
%&K'K

()K*K=

∞

∑α α α π π
/ () exp()

1

2 1

This is the real part of the sum of a complex power series in z = exp(iπt/T), and
the algorithm accelerates the convergence of the partial sums of this power series
by using the epsilon algorithm to compute the corresponding diagonal Pade
approximants. The algorithm attempts to choose the order of the Pade
approximant to obtain the specified relative accuracy while not exceeding the
maximum number of function evaluations allowed. The parameter α is an

IMSL MATH/LIBRARY Chapter 6: Transforms • 829

estimate for the maximum of the real parts of the singularities of F, and an
incorrect choice of α may give false convergence. Even in cases where the correct
value of α is unknown, the algorithm will attempt to estimate an acceptable value.
Assuming satisfactory convergence, the discretization error E := g − f satisfies

E e f nT tn T

n

= +−

=

∞

∑ 2

1

2α 0 5

It follows that if |f(t)| ≤ MebW, then we can estimate the expression above to obtain
(for 0 ≤ t ≤ 2T)

E Me et T≤ −−α α β/ 2 10 54 9
Example

We invert the Laplace transform of the simple function (s − 1)-2 and print the
computed answer, the true solution and the difference at five different points. The

correct inverse transform is xe[.
 INTEGER I, KMAX, N, NOUT
 REAL ALPHA, DIFF(5), EXP, FINV(5), FLOAT, RELERR, T(5),
 & TRUE(5)
 COMPLEX F
 INTRINSIC EXP, FLOAT
 EXTERNAL F, INLAP, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C
 DO 10 I=1, 5
 T(I) = FLOAT(I) - 0.5
 10 CONTINUE
 N = 5
 ALPHA = 1.0E0
 KMAX = 500
 RELERR = 5.0E-4
 CALL INLAP (F, N, T, ALPHA, RELERR, KMAX, FINV)
C Evaluate the true solution and the
C difference
 DO 20 I=1, 5
 TRUE(I) = T(I)*EXP(T(I))
 DIFF(I) = TRUE(I) - FINV(I)
 20 CONTINUE
C
 WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIFF(I),I=1,5)
99999 FORMAT (7X, ’T’, 8X, ’FINV’, 9X, ’TRUE’, 9X, ’DIFF’, /,
 & 5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/))
 END
C
 COMPLEX FUNCTION F (S)
 COMPLEX S
 F = 1./(S-1.)**2
 RETURN
 END

830 • Chapter 6: Transforms IMSL MATH/LIBRARY

Output
 T FINV TRUE DIFF
0.5E+00 8.244E-01 8.244E-01 -4.768E-06
1.5E+00 6.723E+00 6.723E+00 -3.481E-05
2.5E+00 3.046E+01 3.046E+01 -1.678E-04
3.5E+00 1.159E+02 1.159E+02 -6.027E-04
4.5E+00 4.051E+02 4.051E+02 -2.106E-03

SINLP/DSINLP (Single/Double precision)
Compute the inverse Laplace transform of a complex function.

Usage
CALL SINLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV)

Arguments

F — User-supplied FUNCTION to which the inverse Laplace transform will be
computed. The form is F(Z), where

Z — Complex argument. (Input)
F — The complex function value. (Output)

F must be declared EXTERNAL in the calling program. F must also be declared
COMPLEX.

N — The number of points at which the inverse Laplace transform is desired.
(Input)

T — Vector of length N containing points at which the inverse Laplace transform
is desired. (Input)
T(I) must be greater than zero for all I.

SIGMA0 — An estimate for the maximum of the real parts of the singularities of
F. (Input)
If unknown, set SIGMA0 = 0.0.

EPSTOL — The required absolute uniform pseudo accuracy for the coefficients
and inverse Laplace transform values. (Input)

ERRVEC — Vector of length eight containing diagnostic information. (Output)
All components depend on the intermediately generated Laguerre coefficients.
See Comments.

FINV — Vector of length N whose I-th component contains the approximate
value of the inverse Laplace transform at the point T(I). (Output)

IMSL MATH/LIBRARY Chapter 6: Transforms • 831

Comments

1. Automatic workspace usage is

SINLP 9 * MTOP/4 + N units, or
DSINLP 9 * MTOP/2 + N units.

Workspace may be explicitly provided, if desired, by use of
S2NLP/DS2NLP. The reference is

CALL S2NLP (F, N, T, SIGMA0, EPSTOL, ERRVEC, FINV,
 SIGMA, BVALUE, MTOP, WK, IFLOVC)

The additional arguments are as follows:

SIGMA — The first parameter of the Laguerre expansion. If SIGMA is
not greater than SIGMA0, it is reset to SIGMA0 + 0.7. (Input)

BVALUE — The second parameter of the Laguerre expansion. If
BVALUE is less than 2.0 * (SIGMA − SIGMA0), it is reset to 2.5 * (SIGMA
− SIGMA0). (Input)

MTOP — An upper limit on the number of coefficients to be computed
in the Laguerre expansion. MTOP must be a multiple of four. Note that
the maximum number of Laplace transform evaluations is MTOP/2 + 2.
(Default: 1024.) (Input)

WK — Real work vector of length 9 * MTOP/4.

IFLOVC — Integer vector of length N, the I-th component of which
contains the overflow/underflow indicator for the computed value of
FINV(I). (Output)
See Comment 3.

2. Informational errors
Type Code
 1 1 Normal termination, but with estimated error bounds

slightly larger than EPSTOL. Note, however, that the
actual errors on the final results may be smaller than
EPSTOL as bounds independent of T are pessimistic.

 3 2 Normal calculation, terminated early at the roundoff
error level estimate because this estimate exceeds the
required accuracy (usually due to overly optimistic
expectation by the user about attainable accuracy).

 4 3 The decay rate of the coefficients is too small. It may
improve results to use S2NLP and increase MTOP.

 4 4 The decay rate of the coefficients is too small. In
addition, the roundoff error level is such that required
accuracy cannot be reached.

 4 5 No error bounds are returned as the behavior of the
coefficients does not enable reasonable prediction.
Results are probably wrong. Check the value of

832 • Chapter 6: Transforms IMSL MATH/LIBRARY

SIGMA0. In this case, each of ERRVEC(J), J = 1, …, 5,
is set to − 1.0.

3. The following are descriptions of the vectors ERRVEC and IFLOVC.

ERRVEC — Real vector of length eight.

ERRVEC(1) = Overall estimate of the pseudo error, ERRVEC(2) +
ERRVEC(3) + ERRVEC(4). Pseudo error = absolute error / exp(sigma *

tvalue).

ERRVEC(2) = Estimate of the pseudo discretization error.

ERRVEC(3) = Estimate of the pseudo truncation error.

ERRVEC(4) = Estimate of the pseudo condition error on the basis of
minimal noise levels in the function values.

ERRVEC(5) = K, the coefficient of the decay function for ACOEF, the
coefficients of the Laguerre expansion.

ERRVEC(6) = R, the base of the decay function for ACOEF. Here
abs(ACOEF (J + 1)).LE.K/R**J for J.GE.MACT/2, where MACT is the
number of Laguerre coefficients actually computed.

ERRVEC(7) = ALPHA, the logarithm of the largest ACOEF.

ERRVEC(8) = BETA, the logarithm of the smallest nonzero ACOEF.

IFLOVC — Integer vector of length N containing the
overflow/underflow indicators for FINV. For each I, the value of
IFLOVC(I) signifies the following.

 0 = Normal termination.

 1 = The value of the inverse Laplace transform is found to be too
large to be representable; FINV(I) is set to AMACH(6).

−1 = The value of the inverse Laplace transform is found to be too
small to be representable; FINV(I) is set to 0.0.

 2 = The value of the inverse Laplace transform is estimated to be
too large, even before the series expansion, to be representable;
FINV(I) is set to AMACH(6).

−2 = The value of the inverse Laplace transform is estimated to be
too small, even before the series expansion, to be representable;
FINV(I) is set to 0.0.

Algorithm

The routine SINLP computes the inverse Laplace transform of a complex-valued
function. Recall that if f is a function that vanishes on the negative real axis, then
we can define the Laplace transform of f by

IMSL MATH/LIBRARY Chapter 6: Transforms • 833

L f s e f x dxsx0 5 0 5:= −∞I0
It is assumed that for some value of s the integrand is absolutely integrable.

The computation of the inverse Laplace transform is based on a modification of
Weeks’ method (see W.T. Weeks (1966)) due to B.S. Garbow et. al. (1988). This
method is suitable when f has continuous derivatives of all orders on [0, ∞). In
this situation, this routine should be used in place of the IMSL routine INLAP

(page 827). It is especially efficient when multiple function values are desired. In
particular, given a complex-valued function F(s) = L[f](s), we can expand f in a
Laguerre series whose coefficients are determined by F. This is fully described in
B.S. Garbow et. al. (1988) and Lyness and Giunta (1986).

The algorithm attempts to return approximations g(t) to f(t) satisfying

g t f t

e t

0 5 0 5−
<σ ε

where ε := EPSTOL and σ := SIGMA > SIGMA0. The expression on the left is
called the pseudo error. An estimate of the pseudo error is available in
ERRVEC(1).

The first step in the method is to transform F to φ where

φ σz
b

z
F

b

z

b0 5 =
− −

− +�
�

�
�1 1 2

Then, if f is smooth, it is known that φ is analytic in the unit disc of the complex
plane and hence has a Taylor series expansion

φ z a zs
s

s

0 5 =
=

∞

∑
0

which converges for all z whose absolute value is less than the radius of
convergence RF. This number is estimated in ERRVEC(6). In ERRVEC(5), we
estimate the smallest number K which satisfies

a
K

R
s s<

for all R < RF.

The coefficients of the Taylor series for φ can be used to expand f in a Laguerre
series

f t e a e L btt
s

bt
s

s

0 5 0 5= −

=

∞

∑σ /2

0

834 • Chapter 6: Transforms IMSL MATH/LIBRARY

Example

We invert the Laplace transform of the simple function (s − 1)-2 and print the
computed answer, the true solution, and the difference at five different points.

The correct inverse transform is xe[.
 INTEGER I, N, NOUT
 REAL DIFF(5), ERRVEC(8), EXP, FINV(5), FLOAT, RELERR,
 & SIGMA0, T(5), TRUE(5)
 COMPLEX F
 INTRINSIC EXP, FLOAT
 EXTERNAL F, SINLP, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C
 DO 10 I=1, 5
 T(I) = FLOAT(I) - 0.5
 10 CONTINUE
 N = 5
 SIGMA0 = 1.0E0
 RELERR = 5.0E-4
 CALL SINLP (F, N, T, SIGMA0, RELERR, ERRVEC, FINV)
C Evaluate the true solution and the
C difference
 DO 20 I=1, 5
 TRUE(I) = T(I)*EXP(T(I))
 DIFF(I) = TRUE(I) - FINV(I)
 20 CONTINUE
C
 WRITE (NOUT,99999) (T(I),FINV(I),TRUE(I),DIFF(I),I=1,5)
99999 FORMAT (7X, ’T’, 8X, ’FINV’, 9X, ’TRUE’, 9X, ’DIFF’, /,
 & 5(1X,E9.1,3X,1PE10.3,3X,1PE10.3,3X,1PE10.3,/))
 END
C
 COMPLEX FUNCTION F (S)
 COMPLEX S
C
 F = 1./(S-1.)**2
 RETURN
 END

Output
 T FINV TRUE DIFF
0.5E+00 8.244E-01 8.244E-01 -2.086E-06
1.5E+00 6.723E+00 6.723E+00 -8.583E-06
2.5E+00 3.046E+01 3.046E+01 0.000E+00
3.5E+00 1.159E+02 1.159E+02 2.289E-05
4.5E+00 4.051E+02 4.051E+02 -2.136E-04

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 835

Chapter 7: Nonlinear Equations

Routines
7.1. Zeros of a Polynomial

Real coefficients using Laguerre method............................. ZPLRC 836
Real coefficients using Jenkins-Traub method ZPORC 838
Complex coefficients... ZPOCC 839

7.2. Zero(s) of a Function
Zeros of a complex analytic function.................................... ZANLY 841
Zero of a real function with sign changesZBREN 843
Zeros of a real function .. ZREAL 846

7.3. Root of a System of Equations
Finite-difference Jacobian... NEQNF 848
Analytic Jacobian ...NEQNJ 851
Broyden’s update and Finite-difference Jacobian............... NEQBF 854
Broyden’s update and Analytic JacobianNEQBJ 860

Usage Notes

Zeros of a Polynomial

A polynomial function of degree n can be expressed as follows:

p(z) = aQzQ + aQ-1zQ-1 + … + a1z + a0

where aQ�≠ 0.

There are three routines for zeros of a polynomial. The routines ZPLRC
(page 836) and ZPORC (page 838) find zeros of the polynomial with real
coefficients while the routine ZPOCC (page 839) finds zeros of the polynomial
with complex coefficients.

The Jenkins-Traub method is used for the routines ZPORC and ZPOCC; whereas
ZPLRC uses the Laguerre method. Both methods perform well in comparison
with other methods. The Jenkins-Traub algorithm usually runs faster than the

836 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

Laguerre method. Furthermore, the routine ZANLY (page 841) in the next section
can also be used for the complex polynomial.

Zero(s) of a Function

The routines ZANLY (page 841) and ZREAL (page 846) use Müller’s method to
find the zeros of a complex analytic function and real zeros of a real function,
respectively. The routine ZBREN (page 843) finds a zero of a real function, using
an algorithm that is a combination of interpolation and bisection. This algorithm
requires the user to supply two points such that the function values at these two
points have opposite sign. For functions where it is difficult to obtain two such
points, ZREAL can be used.

Root of System of Equations

A system of equations can be stated as follows:

fL(x) = 0, for i = 1, 2, …, n

where x ε RQ.

The routines NEQNF (page 848) and NEQNJ (page 851) use a modified Powell
hybrid method to find the zero of a system of nonlinear equations. The difference
between these two routines is that the Jacobian is estimated by a finite-difference
method in NEQNF, whereas the user has to provide the Jacobian for NEQNJ. It is
advised that the Jacobian-checking routine, CHJAC (page 952), be used to ensure
the accuracy of the user-supplied Jacobian.

The routines NEQBF (page 854) and NEQBJ (page 860) use a secant method with
Broyden’s update to find the zero of a system of nonlinear equations. The
difference between these two routines is that the Jacobian is estimated by a finite-
difference method in NEQBF; whereas the user has to provide the Jacobian for
NEQBJ. For more details, see Dennis and Schnabel (1983, Chapter 8).

ZPLRC/DZPLRC (Single/Double precision)
Find the zeros of a polynomial with real coefficients using Laguerre’s method.

Usage
CALL ZPLRC (NDEG, COEFF, ROOT)

Arguments

NDEG — Degree of the polynomial. 1 ≤ NDEG ≤ 100 (Input)

COEFF — Vector of length NDEG + 1 containing the coefficients of the
polynomial in increasing order by degree. (Input)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 837

The polynomial is COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG −
1) + … + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.
(Output)

Comments
Informational errors
Type Code
 3 1 The first several coefficients of the polynomial are equal to

zero. Several of the last roots will be set to machine infinity to
compensate for this problem.

 3 2 Fewer than NDEG zeros were found. The ROOT vector will
contain the value for machine infinity in the locations that do
not contain zeros.

Algorithm

Routine ZPLRC computes the n zeros of the polynomial

p(z) = aQzQ + aQ-1zQ-1 + … + a1z + a0

where the coefficients aL for i = 0, 1, …, n are real and n is the degree of the
polynomial.

The routine ZPLRC is a modification of B.T. Smith’s routine ZERPOL (Smith
1967) that uses Laguerre’s method. Laguerre’s method is cubically convergent for
isolated zeros and linearly convergent for multiple zeros. The maximum length of
the step between successive iterates is restricted so that each new iterate lies
inside a region about the previous iterate known to contain a zero of the
polynomial. An iterate is accepted as a zero when the polynomial value at that
iterate is smaller than a computed bound for the rounding error in the polynomial
value at that iterate. The original polynomial is deflated after each real zero or
pair of complex zeros is found. Subsequent zeros are found using the deflated
polynomial.

Example

This example finds the zeros of the third-degree polynomial

p(z) = z3 − 3e2 + 4z −2

where z is a complex variable.
C Declare variables
 INTEGER NDEG
 PARAMETER (NDEG=3)
C
 REAL COEFF(NDEG+1)
 COMPLEX ZERO(NDEG)
 EXTERNAL WRCRN, ZPLRC
C Set values of COEFF

838 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

C COEFF = (-2.0 4.0 -3.0 1.0)
C
 DATA COEFF/-2.0, 4.0, -3.0, 1.0/
C
 CALL ZPLRC (NDEG, COEFF, ZERO)
C
 CALL WRCRN (’The zeros found are’, 1, NDEG, ZERO, 1, 0)
C
 END

Output
 The zeros found are
 1 2 3
(1.000, 1.000) (1.000,-1.000) (1.000, 0.000)

ZPORC/DZPORC (Single/Double precision)
Find the zeros of a polynomial with real coefficients using the Jenkins-Traub
three-stage algorithm.

Usage
CALL ZPORC (NDEG, COEFF, ROOT)

Arguments

NDEG — Degree of the polynomial. 1 ≤ NDEG ≤ 100 (Input)

COEFF — Vector of length NDEG + 1 containing the coefficients of the
polynomial in increasing order by degree. (Input)
The polynomial is COEFF(NDEG + 1)*Z**NDEG + COEFF(NDEG) * Z**(NDEG −1)
+ … + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.
(Output)

Comments
Informational errors
Type Code
 3 1 The first several coefficients of the polynomial are equal to

zero. Several of the last roots will be set to machine infinity to
compensate for this problem.

 3 2 Fewer than NDEG zeros were found. The ROOT vector will
contain the value for machine infinity in the locations that do
not contain zeros.

Algorithm

Routine ZPORC computes the n zeros of the polynomial

p(z) = aQzQ + aQ-1zQ-1 + … + a1z + a0

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 839

where the coefficients aL for i = 0, 1, …, n are real and n is the degree of the
polynomial.

The routine ZPORC uses the Jenkins-Traub three-stage algorithm (Jenkins and
Traub 1970; Jenkins 1975). The zeros are computed one at a time for real zeros
or two at a time for complex conjugate pairs. As the zeros are found, the real zero
or quadratic factor is removed by polynomial deflation.

Example

This example finds the zeros of the third-degree polynomial

p(z) = z3 − 3e2 + 4z −2

where z is a complex variable.
C Declare variables
 INTEGER NDEG
 PARAMETER (NDEG=3)
C
 REAL COEFF(NDEG+1)
 COMPLEX ZERO(NDEG)
 EXTERNAL WRCRN, ZPORC
C Set values of COEFF
C COEFF = (-2.0 4.0 -3.0 1.0)
C
 DATA COEFF/-2.0, 4.0, -3.0, 1.0/
C
 CALL ZPORC (NDEG, COEFF, ZERO)
C
 CALL WRCRN (’The zeros found are’, 1, NDEG, ZERO, 1, 0)
C
 END

Output
 The zeros found are
 1 2 3
(1.000, 0.000) (1.000, 1.000) (1.000,-1.000)

ZPOCC/DZPOCC (Single/Double precision)
Find the zeros of a polynomial with complex coefficients using the Jenkins-Traub
three-stage algorithm.

Usage
CALL ZPOCC (NDEG, COEFF, ROOT)

Arguments

NDEG — Degree of the polynomial. 1 ≤ NDEG < 50 (Input)

840 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

COEFF — Complex vector of length NDEG + 1 containing the coefficients of the
polynomial in increasing order by degree. (Input)
The polynomial is COEFF(NDEG + 1) * Z**NDEG + COEFF(NDEG) * Z**(NDEG −
1) + … + COEFF(1).

ROOT — Complex vector of length NDEG containing the zeros of the polynomial.
(Output)

Comments

Informational errors
Type Code
 3 1 The first several coefficients of the polynomial are equal to

zero. Several of the last roots will be set to machine infinity to
compensate for this problem.

 3 2 Fewer than NDEG zeros were found. The ROOT vector will
contain the value for machine infinity in the locations that do
not contain zeros.

Algorithm

Routine ZPOCC computes the n zeros of the polynomial

p(z) = aQzQ + aQ-1zQ-1 + … + a1z + a0

where the coefficients aL for i = 0, 1, …, n are real and n is the degree of the
polynomial.

The routine ZPOCC uses the Jenkins-Traub three-stage complex algorithm
(Jenkins and Traub 1970, 1972). The zeros are computed one at a time in roughly
increasing order of modulus. As each zero is found, the polynomial is deflated to
one of lower degree.

Example

This example finds the zeros of the third-degree polynomial

p(z) = z3 − (3 + 6i)z2 − (8 − 12i)z + 10

where z is a complex variable.
C Declare variables
 INTEGER NDEG
 PARAMETER (NDEG=3)
C
 COMPLEX COEFF(NDEG+1), ZERO(NDEG)
 EXTERNAL WRCRN, ZPOCC
C Set values of COEFF
C COEFF = (10.0 + 0.0i)
C (-8.0 + 12.0i)
C (-3.0 - 6.0i)
C (1.0 + 0.0i)
C

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 841

 DATA COEFF/(10.0,0.0), (-8.0,12.0), (-3.0,-6.0), (1.0,0.0)/
C
 CALL ZPOCC (NDEG, COEFF, ZERO)
C
 CALL WRCRN (’The zeros found are’, 1, NDEG, ZERO, 1, 0)
C
 END

Output
 The zeros found are
 1 2 3
(1.000, 1.000) (1.000, 2.000) (1.000, 3.000)

ZANLY/DZANLY (Single/Double precision)
Find the zeros of a univariate complex function using Müller’s method.

Usage
CALL ZANLY (F, ERRABS, ERRREL, NKNOWN, NNEW, NGUESS, ZINIT,
 ITMAX, Z, INFO)

Arguments

F — User-supplied COMPLEX FUNCTION to compute the value of the function
of which the zeros will be found. The form is F(Z), where

Z — The complex value at which the function is evaluated. (Input)
Z should not be changed by F.
F — The computed complex function value at the point Z. (Output)
F must be declared EXTERNAL in the calling program.

ERRABS — First stopping criterion. (Input)
Let FP(Z) = F(Z)/P where P = (Z − Z(1)) * (Z − Z(2)) *…* (Z − Z(K − 1)) and
Z(1), …, Z(K − 1) are previously found zeros. If
(CABS(F(Z)).LE.ERRABS.AND.CABS(FP(Z)).LE.ERRABS), then Z is accepted as
a zero.

ERRREL — Second stopping criterion is the relative error. (Input)
A zero is accepted if the difference in two successive approximations to this zero
is within ERRREL. ERRREL must be less than 0.01; otherwise, 0.01 will be used.

NKNOWN — The number of previously known zeros, if any, that must be stored
in ZINIT(1), …, ZINIT(NKNOWN) prior to entry to ZANLY. (Input)
NKNOWN must be set equal to zero if no zeros are known.

NNEW — The number of new zeros to be found by ZANLY. (Input)

NGUESS — The number of initial guesses provided. (Input)
These guesses must be stored in ZINIT(NKNOWN + 1), …, ZINIT(NKNOWN +
NGUESS). NGUESS must be set equal to zero if no guesses are provided.

842 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

ZINIT — A complex vector of length NKNOWN + NNEW. (Input)
ZINIT(1), …, ZINIT(NKNOWN) must contain the known zeros. ZINIT(NKNOWN +
1), …, ZINIT(NKNOWN + NNEW) may, on user option, contain initial guesses for
the NNEW new zeros that are to be computed. If the user does not provide an initial
guess, zero is used.

ITMAX — The maximum allowable number of iterations per zero. (Input)

Z — A complex vector of length NKNOWN + NNEW. (Output)
Z(1), …, Z(NKNOWN) contain the known zeros. Z(NKNOWN + 1), …, Z(NKNOWN +
NNEW) contain the new zeros found by ZANLY. If ZINIT is not needed, ZINIT and
Z can share the same storage locations.

INFO — An integer vector of length NKNOWN + NNEW. (Output)
INFO(J) contains the number of iterations used in finding the J-th zero when
convergence was achieved. If convergence was not obtained in ITMAX iterations,
INFO(J) will be greater than ITMAX.

Comments

1. Informational error
Type Code
 3 1 Failure to converge within ITMAX iterations for at least

one of the NNEW new roots.

2. Routine ZANLY always returns the last approximation for zero J in Z(J).
If the convergence criterion is satisfied, then INFO(J) is less than or
equal to ITMAX. If the convergence criterion is not satisfied, then
INFO(J) is set to either ITMAX + 1 or ITMAX + K, with K greater than 1.
INFO(J) = ITMAX + 1 indicates that ZANLY did not obtain convergence
in the allowed number of iterations. In this case, the user may wish to set
ITMAX to a larger value. INFO(J) = ITMAX + K means that convergence
was obtained (on iteration K) for the deflated function FP(Z) = F(Z)/((Z −
Z(1) … (Z − Z(J − 1))) but failed for F(Z). In this case, better initial
guesses might help or it might be necessary to relax the convergence
criterion.

Algorithm

Müller’s method with deflation is used. It assumes that the complex function f(z)
has at least two continuous derivatives. For more details, see Müller (1965).

Example

This example finds the zeros of the equation f(z) = z3 + 5z2 + 9z + 45, where z is a
complex variable.

C Declare variables
 INTEGER INFO(3), ITMAX, NGUESS, NKNOWN, NNEW
 REAL ERRABS, ERRREL
 COMPLEX F, Z(3), ZINIT(3)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 843

 EXTERNAL F, WRCRN, ZANLY
C Set the guessed zero values in ZINIT
C
C ZINIT = (1.0+1.0i 1.0+1.0i 1.0+1.0i)
 DATA ZINIT/3*(1.0,1.0)/
C Set values for all input parameters
 ERRABS = 0.0001
 ERRREL = 0.0001
 NKNOWN = 0
 NNEW = 3
 NGUESS = 3
 ITMAX = 100
C Find the zeros of F
 CALL ZANLY (F, ERRABS, ERRREL, NKNOWN, NNEW, NGUESS, ZINIT,
 & ITMAX, Z, INFO)
C Print results
 CALL WRCRN (’The zeros are’, 1, 3, Z, 1, 0)
 END
C External complex function
 COMPLEX FUNCTION F (Z)
 COMPLEX Z
C
 F = Z**3 + 5.0*Z**2 + 9.0*Z + 45.0
 RETURN
 END

Output
 The zeros are
 1 2 3
(0.000, 3.000) (0.000,-3.000) (-5.000, 0.000)

ZBREN/DZBREN (Single/Double precision)
Find a zero of a real function that changes sign in a given interval.

Usage
CALL ZBREN (F, ERRABS, ERRREL, A, B, MAXFN)

Arguments

F — User-supplied FUNCTION to compute the value of the function of which a
zero will be found. The form is F(X), where

X — The point at which the function is evaluated. (Input)
X should not be changed by F.
F — The computed function value at the point X. (Output)
F must be declared EXTERNAL in the calling program.

ERRABS — First stopping criterion. (Input)
A zero, B, is accepted if ABS(F(B)) is less than or equal to ERRABS. ERRABS may
be set to zero.

844 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

ERRREL — Second stopping criterion is the relative error. (Input)
A zero is accepted if the change between two successive approximations to this
zero is within ERRREL.

A — See B. (Input/Output)

B — On input, the user must supply two points, A and B, such that F(A) and F(B)
are opposite in sign. (Input/Output)
On output, both A and B are altered. B will contain the best approximation to the
zero of F.

MAXFN — On input, MAXFN specifies an upper bound on the number of function
evaluations required for convergence. (Input/Output)
On output, MAXFN will contain the actual number of function evaluations used.

Comments

1. Informational error
Type Code
 4 1 Failure to converge in MAXFN function evaluations.

2. On exit from ZBREN without any error message, A and B satisfy the
following:

F(A)F(B) ≤ 0.0
|F(B)| ≤ |F(A)|, and
either |F(B)| ≤ ERRABS or
|A − B| ≤ max(|B|, 0.1) * ERRREL.

The presence of 0.1 in the stopping criterion causes leading zeros to the
right of the decimal point to be counted as significant digits. Scaling may
be required in order to accurately determine a zero of small magnitude.

3. ZBREN is guaranteed to convergence within K function evaluations,

where K = (ln((B − A)/D) + 1.0)2, and

D x *ERRREL
A B

= min max 0.1
x ∈

�
��

�
��,

,0 5 1 62 7
This is an upper bound on the number of evaluations. Rarely does the
actual number of evaluations used by ZBREN exceed

K

D can be computed as follows:
P = AMAX1(0.1, AMIN1(|A|, |B|))
IF((A − 0.1) * (B − 0.1) < 0.0) P = 0.1,
D = P * ERRREL

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 845

Algorithm

The algorithm used by ZBREN is a combination of linear interpolation, inverse
quadratic interpolation, and bisection. Convergence is usually superlinear and is
never much slower than the rate for the bisection method. See Brent (1971) for a
more detailed account of this algorithm.

Example

This example finds a zero of the function

f(x) = x2 + x − 2

in the interval (− 10.0, 0.0).

C Declare variables
 REAL ERRABS, ERRREL
C
 INTEGER MAXFN, NOUT
 REAL A, B, F
 EXTERNAL F, UMACH, ZBREN
C Set values of A, B, ERRABS,
C ERRREL, MAXFN
 A = -10.0
 B = 0.0
 ERRABS = 0.0
 ERRREL = 0.001
 MAXFN = 100
C
 CALL UMACH (2, NOUT)
C Find zero of F
 CALL ZBREN (F, ERRABS, ERRREL, A, B, MAXFN)
C
 WRITE (NOUT,99999) B, MAXFN
99999 FORMAT (’ The best approximation to the zero of F is equal to’,
 & F5.1, ’.’, /, ’ The number of function evaluations’
 & ’ required was ’, I2, ’.’, //)
C
 END
C
 REAL FUNCTION F (X)
 REAL X
C
 F = X**2 + X - 2.0
 RETURN
 END

Output
The best approximation to the zero of F is equal to -2.0. The number of
function evaluations required was 12.

846 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

ZREAL/DZREAL (Single/Double precision)
Find the real zeros of a real function using Müller’s method.

Usage
CALL ZREAL (F, ERRABS, ERRREL, EPS, ETA, NROOT, ITMAX,
 XGUESS, X, INFO)

Arguments

F — User-supplied FUNCTION to compute the value of the function of which a
zero will be found. The form is F(X), where

X – The point at which the function is evaluated. (Input)
X should not be changed by F.
F – The computed function value at the point X. (Output)
F must be declared EXTERNAL in the calling program.

ERRABS — First stopping criterion. (Input)
A zero X(I) is accepted if ABS(F(X(I)).LT. ERRABS.

ERRREL — Second stopping criterion is the relative error. (Input)
A zero X(I) is accepted if the relative change of two successive approximations to
X(I) is less than ERRREL.

EPS — See ETA. (Input)

ETA — Spread criteria for multiple zeros. (Input)
If the zero X(I) has been computed and ABS(X(I) − X(J)).LT.EPS, where X(J) is
a previously computed zero, then the computation is restarted with a guess equal
to X(I) + ETA.

NROOT — The number of zeros to be found by ZREAL. (Input)

ITMAX — The maximum allowable number of iterations per zero. (Input)

XGUESS — A vector of length NROOT. (Input)
XGUESS contains the initial guesses for the zeros.

X — A vector of length NROOT. (Output)
X contains the computed zeros.

INFO — An integer vector of length NROOT. (Output)
INFO(J) contains the number of iterations used in finding the J-th zero when
convergence was achieved. If convergence was not obtained in ITMAX iterations,
INFO(J) will be greater than ITMAX.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 847

Comments

1. Informational error
Type Code
 3 1 Failure to converge within ITMAX iterations for at least

one of the NROOT roots.

2. Routine ZREAL always returns the last approximation for zero J in X(J).
If the convergence criterion is satisfied, then INFO(J) is less than or
equal to ITMAX. If the convergence criterion is not satisfied, then
INFO(J) is set to ITMAX + 1.

3. The routine ZREAL assumes that there exist NROOT distinct real zeros for
the function F and that they can be reached from the initial guesses
supplied. The routine is designed so that convergence to any single zero
cannot be obtained from two different initial guesses.

4. Scaling the X vector in the function F may be required, if any of the
zeros are known to be less than one.

Algorithm

Routine ZREAL computes n real zeros of a real function f. Given a user-supplied
function f(x) and an n-vector of initial guesses x1, x2, …, xQ, the routine uses
Müller’s method to locate n real zeros of f, that is, n real values of x for which f(x)
= 0. The routine has two convergence criteria: the first requires that

f xi
m3 8

be less than ERRABS; the second requires that the relative change of any two
successive approximations to an xL be less than ERRREL. Here,

xi
m

is the m-th approximation to xL. Let ERRABS be ε1, and ERRREL be ε2.The criteria
may be stated mathematically as follows:

Criterion 1:

f xi
m3 8 < ε1

Criterion 2:

x x

x
i
m

i
m

i
m

+ − <
1

2ε

“Convergence” is the satisfaction of either criterion.

848 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

Example

This example finds the real zeros of the second-degree polynomial

f(x) = x2 + 2x − 6

with the initial guess (4.6, −193.3).

C Declare variables
 INTEGER ITMAX, NROOT
 REAL EPS, ERRABS, ERRREL, ETA
 PARAMETER (NROOT=2)
C
 INTEGER INFO(NROOT)
 REAL F, X(NROOT), XGUESS(NROOT)
 EXTERNAL F, WRRRN, ZREAL
C Set values of initial guess
C XGUESS = (4.6 -193.3)
C
 DATA XGUESS/4.6, -193.3/
C
 EPS = 1.0E-5
 ERRABS = 1.0E-5
 ERRREL = 1.0E-5
 ETA = 1.0E-2

 ITMAX = 100
C Find the zeros
 CALL ZREAL (F, ERRABS, ERRREL, EPS, ETA, NROOT, ITMAX, XGUESS,
 & X, INFO)
C
 CALL WRRRN (’The zeros are’, 1, NROOT, X, 1, 0)
C
 END
C
 REAL FUNCTION F (X)
 REAL X
C
 F = X*X + 2.0*X - 6.0
 RETURN
 END

Output
The zeros are
 1 2
1.646 -3.646

NEQNF/DNEQNF (Single/Double precision)
Solve a system of nonlinear equations using a modified Powell hybrid algorithm
and a finite-difference approximation to the Jacobian.

Usage
CALL NEQNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 849

Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be
solved. The usage is CALL FCN (X, F, N), where

X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.
F – The computed function values at the point X. (Output)
N – Length of X and F. (Input)

FCN must be declared EXTERNAL in the calling program.

ERRREL — Stopping criterion. (Input)
The root is accepted if the relative error between two successive approximations
to this root is less than ERRREL.

N — The number of equations to be solved and the number of unknowns.
(Input)

ITMAX — The maximum allowable number of iterations. (Input)
The maximum number of calls to FCN is ITMAX * (N + 1). Suggested value ITMAX

= 200.

XGUESS — A vector of length N. (Input)
XGUESS contains the initial estimate of the root.

X — A vector of length N. (Output)
X contains the best estimate of the root found by NEQNF.

FNORM — A scalar that has the value F(1)2 + … + F(N)2 at the point X.
(Output)

Comments

1. Automatic workspace usage is

NEQNF 1.5 * N2 + 7.5 * N units, or

DNEQNF 3 * N2 + 15 * N units.

Workspace may be explicitly provided, if desired, by use of
N2QNF/DN2QNF. The reference is

CALL N2QNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM,
 FVEC, FJAC, R, QTF, WK)

The additional arguments are as follows:

FVEC — A vector of length N. FVEC contains the functions evaluated at
the point X.

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q

produced by the QR factorization of the final approximate Jacobian.

850 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

R — A vector of length N * (N + 1)/2. R contains the upper triangular
matrix produced by the QR factorization of the final approximate
Jacobian. R is stored row-wise.

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC.

WK — A work vector of length 5 * N.

2. Informational errors
Type Code
 4 1 The number of calls to FCN has exceeded ITMAX *

(N + 1). A new initial guess may be tried.
 4 2 ERRREL is too small. No further improvement in the

approximate solution is possible.
 4 3 The iteration has not made good progress. A new

initial guess may be tried.

Algorithm

Routine NEQNF is based on the MINPACK subroutine HYBRD1, which uses a
modification of M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of
Newton’s method, which uses a finite-difference approximation to the Jacobian
and takes precautions to avoid large step sizes or increasing residuals. For further
description, see More et al. (1980).

Since a finite-difference method is used to estimate the Jacobian, for single
precision calculation, the Jacobian may be so incorrect that the algorithm
terminates far from a root. In such cases, high precision arithmetic is
recommended. Also, whenever the exact Jacobian can be easily provided, IMSL
routine NEQNJ (page 851) should be used instead.

Example

The following 3 × 3 system of nonlinear equations

f x x e x x

f x e x x

f x x x x

x

x

1 1
1

2 3
2

2
2

1 3
2

3 3 2 2
2

1

2

27 0

10 0

2 7 0

0 5 1 6
0 5
0 5 1 6

= + + + − =

= + − =

= + − + − =

−

− /

sin

is solved with the initial guess (4.0, 4.0, 4.0).
C Declare variables
 INTEGER ITMAX, N
 REAL ERRREL
 PARAMETER (N=3)
C
 INTEGER K, NOUT
 REAL FNORM, X(N), XGUESS(N)
 EXTERNAL FCN, NEQNF, UMACH

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 851

C Set values of initial guess
C XGUESS = (4.0 4.0 4.0)
C
 DATA XGUESS/4.0, 4.0, 4.0/
C
 ERRREL = 0.0001
 ITMAX = 100
C
 CALL UMACH (2, NOUT)
C Find the solution
 CALL NEQNF (FCN, ERRREL, N, ITMAX, XGUESS, X, FNORM)
C Output
 WRITE (NOUT,99999) (X(K),K=1,N), FNORM
99999 FORMAT (’ The solution to the system is’, /, ’ X = (’, 3F5.1,
 & ’)’, /, ’ with FNORM =’, F5.4, //)
C
 END
C User-defined subroutine
 SUBROUTINE FCN (X, F, N)
 INTEGER N
 REAL X(N), F(N)
C
 REAL EXP, SIN
 INTRINSIC EXP, SIN
C
 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0
 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
 RETURN
 END

Output
The solution to the system is
X = (1.0 2.0 3.0)
with FNORM =.0000

NEQNJ/DNEQNJ (Single/Double precision)
Solve a system of nonlinear equations using a modified Powell hybrid algorithm
with a user-supplied Jacobian.

Usage
CALL NEQNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be
solved. The usage is CALL FCN (X, F, N), where

X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.
F – The computed function values at the point X. (Output)
N – Length of X, F. (Input)

852 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

FCN must be declared EXTERNAL in the calling program.

LSJAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The
usage is CALL LSJAC (N, X, FJAC), where

N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by LSJAC.
FJAC — The computed N by N Jacobian at the point X. (Output)

LSJAC must be declared EXTERNAL in the calling program.

ERRREL — Stopping criterion. (Input)
The root is accepted if the relative error between two successive approximations
to this root is less than ERRREL.

N — The number of equations to be solved and the number of unknowns.
(Input)

ITMAX — The maximum allowable number of iterations. (Input)
Suggested value = 200.

XGUESS — A vector of length N. (Input)
XGUESS contains the initial estimate of the root.

X — A vector of length N. (Output)
X contains the best estimate of the root found by NEQNJ.

FNORM — A scalar that has the value F(1)2 + … + F(N)2 at the point X.
(Output)

Comments

1. Automatic workspace usage is

NEQNJ 1.5 * N**2 + 7.5 * N units, or
DNEQNJ 3 * N**2 + 15 * N units.

Workspace may be explicitly provided, if desired, by use of
N2QNJ/DN2QNJ. The reference is

CALL N2QNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X,
 FNORM, FVEC, FJAC, R, QTF, WK)

The additional arguments are as follows:

FVEC — A vector of length N. FVEC contains the functions evaluated at
the point X.

FJAC — An N by N matrix. FJAC contains the orthogonal matrix Q

produced by the QR factorization of the final approximate Jacobian.

R — A vector of length N * (N + 1)/2. R contains the upper triangular
matrix produced by the QR factorization of the final approximate
Jacobian. R is stored row-wise.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 853

QTF — A vector of length N. QTF contains the vector TRANS(Q) * FVEC.

WK — A work vector of length 5 * N.

2. Informational errors
Type Code
 4 1 The number of calls to FCN has exceeded ITMAX. A

new initial guess may be tried.
 4 2 ERRREL is too small. No further improvement in the

approximate solution is possible.
 4 3 The iteration has not made good progress. A new

initial guess may be tried.

Algorithm

Routine NEQNJ is based on the MINPACK subroutine HYBRDJ, which uses a
modification of M.J.D. Powell’s hybrid algorithm. This algorithm is a variation of
Newton’s method, which takes precautions to avoid large step sizes or increasing
residuals. For further description, see More et al. (1980).

Example

The following 3 × 3 system of nonlinear equations

f x x e x x

f x e x x

f x x x x

x

x

1 1
1

2 3
2

2
2

1 3
2

3 3 2 2
2

1

2

27 0

10 0

2 7 0

0 5 1 6
0 5
0 5 1 6

= + + + − =

= + − =

= + − + − =

−

− /

sin

is solved with the initial guess (4.0, 4.0, 4.0).
C Declare variables
 INTEGER ITMAX, N
 REAL ERRREL
 PARAMETER (N=3)
C
 INTEGER K, NOUT
 REAL FNORM, X(N), XGUESS(N)
 EXTERNAL FCN, LSJAC, NEQNJ, UMACH
C Set values of initial guess
C XGUESS = (4.0 4.0 4.0)
C
 DATA XGUESS/4.0, 4.0, 4.0/
C
 ERRREL = 0.0001
 ITMAX = 100
C
 CALL UMACH (2, NOUT)
C Find the solution
 CALL NEQNJ (FCN, LSJAC, ERRREL, N, ITMAX, XGUESS, X, FNORM)
C Output
 WRITE (NOUT,99999) (X(K),K=1,N), FNORM

854 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

99999 FORMAT (’ The roots found are’, /, ’ X = (’, 3F5.1,
 & ’)’, /, ’ with FNORM =’F5.4, //)
C
 END
C User-supplied subroutine
 SUBROUTINE FCN (X, F, N)
 INTEGER N
 REAL X(N), F(N)
C
 REAL EXP, SIN
 INTRINSIC EXP, SIN
C
 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0
 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
 RETURN
 END
C User-supplied subroutine to
C compute Jacobian
 SUBROUTINE LSJAC (N, X, FJAC)
 INTEGER N
 REAL X(N), FJAC(N,N)
C
 REAL COS, EXP
 INTRINSIC COS, EXP
C
 FJAC(1,1) = 1.0 + EXP(X(1)-1.0)
 FJAC(1,2) = 2.0*(X(2)+X(3))
 FJAC(1,3) = 2.0*(X(2)+X(3))
 FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2)
 FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1))
 FJAC(2,3) = 2.0*X(3)
 FJAC(3,1) = 0.0
 FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2)
 FJAC(3,3) = 1.0
 RETURN
 END

Output
The roots found are
X = (1.0 2.0 3.0)
with FNORM =.0000

NEQBF/DNEQBF (Single/Double precision)
Solve a system of nonlinear equations using factored secant update with a finite-
difference approximation to the Jacobian.

Usage
CALL NEQBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
 X, FVEC)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 855

Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be
solved. The usage is CALL FCN (N, X, F), where

N – Length of X and F. (Input)
X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.
F – The computed function values at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing initial guess of the root. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the distance between two points. In the absence
of other information, set all entries to 1.0. If internal scaling is desired for
XSCALE, set IPARAM (6) to 1.

FSCALE — Vector of length N containing the diagonal scaling matrix for the
functions. (Input)
FSCALE is used mainly in scaling the function residuals. In the absence of other
information, set all entries to 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM (1) to zero for default values of IPARAM and RPARAM. See Comment
4.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 4.

X — Vector of length N containing the approximate solution. (Output)

FVEC — Vector of length N containing the values of the functions at the
approximate solution. (Output)

Comments

1. Automatic workspace usage is

NEQBF 2N2 + 11 * N units, or

DNEQBF 4N2 + 22 * N units.

Workspace may be explicitly provided, if desired, by use of
N2QBF/DN2QBF. The reference is

CALL N2QBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,
 RPARAM, X, FVEC, WK, LWK)

The additional arguments are as follows:

856 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

WK — A work vector of length LWK. On output WK contains the
following information:

The third N locations contain the last step taken.

The fourth N locations contain the last Newton step.

The final N2 locations contain an estimate of the Jacobian at the solution.

LWK — Length of WK, which must be at least 2 * N2 + 11 * N. (Input)

2. Informational errors
Type Code
 3 1 The last global step failed to decrease the 2-norm of

F(X) sufficiently; either the current point is close to a
root of F(X) and no more accuracy is possible, or the
secant approximation to the Jacobian is inaccurate, or
the step tolerance is too large.

 3 3 The scaled distance between the last two steps is less
than the step tolerance; the current point is probably an
approximate root of F(X) (unless STEPTL is too large).

 3 4 Maximum number of iterations exceeded.
 3 5 Maximum number of function evaluations exceeded.
 3 7 Five consecutive steps of length STEPMX have been

taken; either the 2-norm of F(X) asymptotes from
above to a finite value in some direction or the
maximum allowable step size STEPMX is too small.

3. The stopping criterion for NEQBF occurs when the scaled norm of the
functions is less than the scaled function tolerance (RPARAM(1)).

4. If the default parameters are desired for NEQBF, then set IPARAM(1) to
zero and call routine NEQBF. Otherwise, if any nondefault parameters are
desired for IPARAM or RPARAM, then the following steps should be taken
before calling NEQBF:

CALL N4QBJ (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to N4QBJ will set IPARAM and RPARAM to their default
values, so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 857

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: not used in NEQBF.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values of XSCALE are set internally.
Default: 0.

RPARAM — Real vector of length 5.

RPARAM(1) = Scaled function tolerance.
The scaled norm of the functions is computed as

max *i f fsi i2 7
where fL is the i-th component of the function vector F, and fsL is the i-th
component of FSCALE.
Default:

ε
where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The scaled norm of the step between two points x and y is computed as

max {
max , /

}
i

x y

x s
i i

i i

−
12 7

where sL is the i-th component of XSCALE.

Default: ε2/3, where ε is the machine precision.

RPARAM(3) = False convergence tolerance.
Default: not used in NEQBF.

RPARAM(4) = Maximum allowable step size. (STEPMX)

Default: 1000 * max(ε1, ε2), where

ε1
2

1
=

=∑ s ti ii

n 1 6
ε2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(5) = Size of initial trust region.
Default: based on the initial scaled Cauchy step.

858 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

If double precision is desired, then DN4QBJ is called and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

Routine NEQBF uses a secant algorithm to solve a system of nonlinear equations,
i.e.,

F(x) = 0

where F : RQ → RQ, and x ∈ RQ.

From a current point, the algorithm uses a double dogleg method to solve the
following subproblem approximately:

s c cn F x J x s∈ +
R

min 1 6 1 6
2

subject to || s ||2 ≤ δF

to get a direction sF, where F(xF) and J(xF) are the function values and the
approximate Jacobian respectively evaluated at the current point xF. Then, the
function values at the point xQ = xF + sF are evaluated and used to decide whether
the new point xQ should be accepted.

When the point xQ is rejected, this routine reduces the trust region δF and goes
back to solve the subproblem again. This procedure is repeated until a better
point is found.

The algorithm terminates if the new point satisfies the stopping criterion.
Otherwise, δF is adjusted, and the approximate Jacobian is updated by Broyden’s
formula,

J J
y J s s

s s
n c

c c c
T

c
T

c

= +
−1 6

where JQ = J(xQ), JF = J(xF), and y = F (xQ) − F (xF). The algorithm then continues

using the new point as the current point, i.e. xF ← xQ.

For more details, see Dennis and Schnabel (1983, Chapter 8).

Since a finite-difference method is used to estimate the initial Jacobian, for single
precision calculation, the Jacobian may be so incorrect that the algorithm
terminates far from a root. In such cases, high precision arithmetic is
recommended. Also, whenever the exact Jacobian can be easily provided, IMSL
routine NEQBJ (page 860) should be used instead.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 859

Example

The following 3 × 3 system of nonlinear equations:

f x x e x x

f x e x x

f x x x x

x

x

1 1
1

2 3
2

2
2

1 3
2

3 3 2 2
2

1

2

27 0

10 0

2 7 0

0 5 1 6
0 5
0 5 1 6

= + + + − =

= + − =

= + − + − =

−

− /

sin

is solved with the initial guess (4.0, 4.0, 4.0).
C Declare variables
 INTEGER N
 PARAMETER (N=3)
C
 INTEGER IPARAM(6), K, NOUT
 REAL FCN, FSCALE(N), FVEC(N), RPARAM(5), X(N), XGUESS(N),
 & XSCALE(N)
 EXTERNAL FCN, NEQBF, UMACH
C Set values of initial guess
C XGUESS = (4.0 4.0 4.0)
C
 DATA XGUESS/3*4.0/, XSCALE/3*1.0/, FSCALE/3*1.0/
C
C Use the default setting
C
 IPARAM(1) = 0
C Find the solution
 CALL NEQBF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM, X,
 & FVEC)
C Output
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N)
99999 FORMAT (’ The solution to the system is’, /, ’ X = (’, 3F8.3,
 & ’)’)
C
 END
C User-defined subroutine
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F(N)
C
 REAL EXP, SIN
 INTRINSIC EXP, SIN
C
 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0
 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
 RETURN
 END

Output
The solution to the system is
X = (1.000 2.000 3.000)

860 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

NEQBJ/DNEQBJ (Single/Double precision)
Solve a system of nonlinear equations using factored secant update with a user-
supplied Jacobian.

Usage
CALL NEQBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM,
 RPARAM, X, FVEC)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the system of equations to be
solved. The usage is CALL FCN (N, X, F), where

N – Length of X and F. (Input)
X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.
F – The computed function values at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The
usage is CALL JAC (N, X, FJAC, LDFJAC), where

N – Length of X. (Input)
X – Vector of length N at which point the Jacobian is evaluated. (Input)
X should not be changed by JAC.
FJAC – The computed N by N Jacobian at the point X. (Output)
LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing initial guess of the root. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the distance between two points. In the absence
of other information, set all entries to 1.0. If internal scaling is desired for
XSCALE, set IPARAM(6) to 1.

FSCALE — Vector of length N containing the diagonal scaling matrix for the
functions. (Input)
FSCALE is used mainly in scaling the function residuals. In the absence of other
information, set all entries to 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM (1) to zero for default values of IPARAM and RPARAM.
See Comment 4.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 4.

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 861

X — Vector of length N containing the approximate solution. (Output)

FVEC — Vector of length N containing the values of the functions at the
approximate solution. (Output)

Comments

1. Automatic workspace usage is

NEQBJ 2 * N2 + 11 * N units, or

DNEQBJ 4 * N2 + 22 * N units.

Workspace may be explicitly provided, if desired, by use of
N2QBJ/DN2QBJ. The reference is

CALL N2QBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE,
 IPARAM, RPARAM, X, FVEC, WK, LWK)

The additional arguments are as follows:

WK — A work vector of length LWK. On output WK contains the
following information: The third N locations contain the last step taken.

The fourth N locations contain the last Newton step. The final N2
locations contain an estimate of the Jacobian at the solution.

LWK — Length of WK, which must be at least 2 * N2 + 11 * N. (Input)

2. Informational errors
Type Code
 3 1 The last global step failed to decrease the 2-norm of

F(X) sufficiently; either the current point is close to a
root of F(X) and no more accuracy is possible, or the
secant approximation to the Jacobian is inaccurate, or
the step tolerance is too large.

 3 3 The scaled distance between the last two steps is less
than the step tolerance; the current point is probably an
approximate root of F(X) (unless STEPTL is too large).

 3 4 Maximum number of iterations exceeded.
 3 5 Maximum number of function evaluations exceeded.
 3 7 Five consecutive steps of length STEPMX have been

taken; either the 2-norm of F(X) asymptotes from
above to a finite value in some direction or the
maximum allowable stepsize STEPMX is too small.

3. The stopping criterion for NEQBJ occurs when the scaled norm of the
functions is less than the scaled function tolerance (RPARAM(1)).

862 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

4. If the default parameters are desired for NEQBJ, then set IPARAM(1) to
zero and call routine NEQBJ. Otherwise, if any nondefault parameters are
desired for IPARAM or RPARAM, then the following steps should be taken
before calling NEQBJ:

CALL N4QBJ (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to N4QBJ will set IPARAM and RPARAM to their default
values, so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: not used in NEQBJ.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values of XSCALE are set internally.
Default: 0.

RPARAM — Real vector of length 5.

RPARAM(1) = Scaled function tolerance.
The scaled norm of the functions is computed as

max *i f fsi i2 7
where fL is the i-th component of the function vector F, and fsL is the i-th
component of FSCALE.
Default:

ε
where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The scaled norm of the step between two points x and y is computed as

max {
max , /

}
i

x y

x s
i i

i i

−
12 7

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 863

where sL is the i-th component of XSCALE.

Default: ε2/3, where ε is the machine precision.

RPARAM(3) = False convergence tolerance.
Default: not used in NEQBJ.

RPARAM(4) = Maximum allowable step size. (STEPMX)

Default: 1000 * max(ε1, ε2), where

ε1
2

1
=

=∑ s ti ii

n 1 6
ε2 = ||s||2, s = XSCALE, and t = XGUESS.

RPARAM(5) = Size of initial trust region.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DN4QBJ is called and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

Routine NEQBJ uses a secant algorithm to solve a system of nonlinear equations,
i. e.,

F (x) = 0

where F : RQ→ RQ, and x ∈ RQ.

From a current point, the algorithm uses a double dogleg method to solve the
following subproblem approximately:

min
s

c cn
F x J x s

∈
+

R
1 6 1 6

2

subject to ||s||2 ≤ δF

to get a direction sF, where F(xF) and J(xF) are the function values and the
approximate Jacobian respectively evaluated at the current point xF. Then, the
function values at the point xQ = xF + sF are evaluated and used to decide whether
the new point xQ should be accepted.

When the point xQ is rejected, this routine reduces the trust region δF and goes
back to solve the subproblem again. This procedure is repeated until a better
point is found.

864 • Chapter 7: Nonlinear Equations IMSL MATH/LIBRARY

The algorithm terminates if the new point satisfies the stopping criterion.
Otherwise, δF is adjusted, and the approximate Jacobian is updated by Broyden’s
formula,

J J
y J s s

s s
n c

c c c
T

c
T

c

= +
−1 6

where JQ = J(xQ), JF = J(xF), and y = F (xQ) − F (xF). The algorithm then continues

using the new point as the current point, i.e. xF ← xQ.

For more details, see Dennis and Schnabel (1983, Chapter 8).

Example

The following 3 × 3 system of nonlinear equations

f x x e x x

f x e x x

f x x x x

x

x

1 1
1

2 3
2

2
2

1 3
2

3 3 2 2
2

1

2

27 0

10 0

2 7 0

0 5 1 6
0 5
0 5 1 6

= + + + − =

= + − =

= + − + − =

−

− /

sin

is solved with the initial guess (4.0, 4.0, 4.0).
C Declare variables
 INTEGER N
 PARAMETER (N=3)
C
 INTEGER IPARAM(6), K, NOUT
 REAL FCN, FSCALE(N), FVEC(N), JAC, RPARAM(5), X(N),
 & XGUESS(N), XSCALE(N)
 EXTERNAL FCN, JAC, NEQBJ, UMACH
C Set values of initial guess
C XGUESS = (4.0 4.0 4.0)
C
 DATA XGUESS/3*4.0/, XSCALE/3*1.0/, FSCALE/3*1.0/
C
C Use the default setting
C
 IPARAM(1) = 0
C Find the solution
 CALL NEQBJ (FCN, JAC, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
 & X, FVEC)
C Output
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N)
99999 FORMAT (’ The solution to the system is’, /, ’ X = (’, 3F8.3,
 & ’)’)
C
 END
C User-defined subroutine
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F(N)

IMSL MATH/LIBRARY Chapter 7: Nonlinear Equations • 865

C
 REAL EXP, SIN
 INTRINSIC EXP, SIN
C
 F(1) = X(1) + EXP(X(1)-1.0) + (X(2)+X(3))*(X(2)+X(3)) - 27.0
 F(2) = EXP(X(2)-2.0)/X(1) + X(3)*X(3) - 10.0
 F(3) = X(3) + SIN(X(2)-2.0) + X(2)*X(2) - 7.0
 RETURN
 END
C User-supplied subroutine to
C compute Jacobian
 SUBROUTINE JAC (N, X, FJAC, LDFJAC)
 INTEGER N, LDFJAC
 REAL X(N), FJAC(LDFJAC,*)
C
 REAL COS, EXP
 INTRINSIC COS, EXP
C
 FJAC(1,1) = 1.0 + EXP(X(1)-1.0)
 FJAC(1,2) = 2.0*(X(2)+X(3))
 FJAC(1,3) = 2.0*(X(2)+X(3))
 FJAC(2,1) = -EXP(X(2)-2.0)*(1.0/X(1)**2)
 FJAC(2,2) = EXP(X(2)-2.0)*(1.0/X(1))
 FJAC(2,3) = 2.0*X(3)
 FJAC(3,1) = 0.0
 FJAC(3,2) = COS(X(2)-2.0) + 2.0*X(2)
 FJAC(3,3) = 1.0
 RETURN
 END

Output
The solution to the system is
X = (1.000 2.000 3.000)

IMSL MATH/LIBRARY Chapter 8: Optimization • 867

Chapter 8: Optimization

Routines
8.1. Unconstrained Minimization

8.1.1 Univariate Function
Using function values only ..UVMIF 872
Using function and first derivative values............................. UVMID 875
Nonsmooth function ..UVMGS 878

8.1.2 Multivariate Function
Using finite-difference gradient .. UMINF 881
Using analytic gradient...UMING 886
Using finite-difference Hessian .. UMIDH 891
Using analytic Hessian... UMIAH 896
Using conjugate gradient with finite-difference gradientUMCGF 902
Using conjugate gradient with analytic gradient................. UMCGG 905
Nonsmooth function .. UMPOL 909

8.1.3 Nonlinear Least Squares
Using finite-difference Jacobian... UNLSF 912
Using analytic Jacobian ... UNLSJ 918

8.2. Minimization with Simple Bounds
Using finite-difference gradient ... BCONF 923
Using analytic gradient..BCONG 930
Using finite-difference Hessian ...BCODH 936
Using analytic Hessian.. BCOAH 942
Nonsmooth Function..BCPOL 948
Nonlinear least squares using finite-difference Jacobian..... BCLSF 952
Nonlinear least squares using analytic JacobianBCLSJ 958
Nonlinear least squares problem subject to bounds.BCNLS 964

8.3. Linearly Constrained Minimization
Dense linear programming...DLPRS 973
Sparse linear programming.. SLPRS 976
Quadratic programming ... QPROG 982
General objective function with finite-difference gradientLCONF 984
General objective function with analytic gradient................ LCONG 990

868 • Chapter 8: Optimization IMSL MATH/LIBRARY

8.4. Nonlinearly Constrained Minimization
Using finite-difference gradient..NCONF 996
Using analytic gradient ...NCONG 1003

8.5. Service Routines
Central-difference gradient ... CDGRD 1007
Forward-difference gradient ..FDGRD 1009
Forward-difference Hessian .. FDHES 1011
Forward-difference Hessian using analytic gradient............GDHES 1013
Forward-difference Jacobian ..FDJAC 1015
Check user-supplied gradient... CHGRD 1018
Check user-supplied Hessian..CHHES 1021
Check user-supplied Jacobian .. CHJAC 1024
Generate starting points ... GGUES 1027

Usage Notes

Unconstrained Minimization

The unconstrained minimization problem can be stated as follows:

min
x n

f x
∈R

0 5
where f : RQ→ R is at least continuous. The routines for unconstrained
minimization are grouped into three categories: univariate functions (UV***),
multivariate functions (UM***), and nonlinear least squares (UNLS*).

For the univariate function routines, it is assumed that the function is unimodal
within the specified interval. Otherwise, only a local minimum can be expected.
For further discussion on unimodality, see Brent (1973).

A quasi-Newton method is used for the multivariate function routines UMINF
(page 881) and UMING (page 886), whereas UMIDH (page 891) and UMIAH
(page 896) use a modified Newton algorithm. The routines UMCGF (page 902) and
UMCGG (page 905) make use of a conjugate gradient approach, and UMPOL (page
909) uses a polytope method. For more details on these algorithms, see the
documentation for the corresponding routines.

The nonlinear least squares routines use a modified Levenberg-Marquardt
algorithm. If the nonlinear least squares problem is a nonlinear data-fitting
problem, then software that is designed to deliver better statistical output may be
useful; see IMSL (1991).

These routines are designed to find only a local minimum point. However, a
function may have many local minima. It is often possible to obtain a better local
solution by trying different initial points and intervals.

High precision arithmetic is recommended for the routines that use only function
values. Also it is advised that the derivative-checking routines CH***

IMSL MATH/LIBRARY Chapter 8: Optimization • 869

be used to ensure the accuracy of the user-supplied derivative evaluation
subroutines.

Minimization with Simple Bounds

The minimization with simple bounds problem can be stated as follows:

min
x n

f x
∈R

0 5
subject to lL ≤ xL ≤ uL, for i = 1, 2, …, n

where f : RQ→ R, and all the variables are not necessarily bounded.

The routines BCO** use the same algorithms as the routines UMI**, and the
routines BCLS* are the corresponding routines of UNLS*. The only difference is
that an active set strategy is used to ensure that each variable stays within its
bounds. The routine BCPOL (page 948) uses a function comparison method
similar to the one used by UMPOL (page 909). Convergence for these polytope
methods is not guaranteed; therefore, these routines should be used as a last
alternative.

Linearly Constrained Minimization

The linearly constrained minimization problem can be stated as follows:

min
x n

f x
∈R

0 5
subject to Ax = b

where f : RQ→ R, A is an m × n coefficient matrix, and b is a vector of length m.
If f(x) is linear, then the problem is a linear programming problem; if f(x) is
quadratic, the problem is a quadratic programming problem.

The routine DLPRS (page 973) uses a revised simplex method to solve small- to
medium-sized linear programming problems. No sparsity is assumed since the
coefficients are stored in full matrix form.

The routine QPROG (page 982) is designed to solve convex quadratic
programming problems using a dual quadratic programming algorithm. If the
given Hessian is not positive definite, then QPROG modifies it to be positive
definite. In this case, output should be interpreted with care.

The routines LCONF (page 984) and LCONG (page 990) use an iterative method to
solve the linearly constrained problem with a general objective function. For a
detailed description of the algorithm, see Powell (1988, 1989).

Nonlinearly Constrained Minimization

The nonlinearly constrained minimization problem can be stated as follows:

min
x n

f x
∈R

0 5

870 • Chapter 8: Optimization IMSL MATH/LIBRARY

subject to gL(x) = 0, for i = 1, 2, …, m1

 gL(x) ≥ 0, for i = m1 + 1, …, m

where f : RQ→ R and gL : RQ→ R, for i = 1, 2, …, m

The routines NCONF (page 996) and NCONG (page 1003) use a successive
quadratic programming algorithm to solve this problem. A more complete
discussion of this algorithm can be found in the documentation.

Selection of Routines

The following general guidelines are provided to aid in the selection of the
appropriate routine.

Unconstrained Minimization

1. For the univariate case, use UVMID (page 875) when the gradient is
available, and use UVMIF (page 872) when it is not. If discontinuities
exist, then use UVMGS (page 878).

2. For the multivariate case, use UMCG* when storage is a problem, and use
UMPOL (page 909) when the function is nonsmooth. Otherwise, use
UMI** depending on the availability of the gradient and the Hessian.

3. For least squares problems, use UNLSJ (page 918) when the Jacobian is
available, and use UNLSF (page 912) when it is not.

Minimization with Simple Bounds

1. Use BCONF (page 923) when only function values are available. When
first derivatives are available, use either BCONG (page 930) or BCODH
(page 936). If first and second derivatives are available, then use BCOAH
(page 942).

2. For least squares, use BCLSF (page 952) or BCLSJ (page 958) depending
on the availability of the Jacobian.

3. Use BCPOL (page 948) for nonsmooth functions that could not be solved
satisfactorily by the other routines.

The following charts provide a quick reference to routines in this chapter:

IMSL MATH/LIBRARY Chapter 8: Optimization • 871

nonsmooth

UMCGF no derivative large-size

least squaresno Jacobian

no derivative

nonsmooth

UNLSF

UVMSG

UVMIF

UMCGG

UNLSJ

UMPOL

UMINF

UMING
UMIDH

UVMID UMIAH

no first

derivative

no second

problem

derivative

UNCONSTRAINED
MINIMIZATION

univariate multivariate

smooth

872 • Chapter 8: Optimization IMSL MATH/LIBRARY

nonsmooth

no gradient

quadratic objective

least squares no Jacobian

general constraints

no gradient

no first

derivative

no second

linear objective

derivative

CONSTRAINED
MINIMIZATION

Nonlinear constraintsLinear constraints

LCONG

BCLSJ

BCPOL

BCONF

BCONG

BCODH

BCOAH

NCONF

NCONG

BCLSF

LCONF

QPROG

DLPRS

Simple bounds
only

nonlinear objective

SLPRS

UVMIF/DUVMIF (Single/Double precision)
Find the minimum point of a smooth function of a single variable using only
function evaluations.

Usage
CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X)

IMSL MATH/LIBRARY Chapter 8: Optimization • 873

Arguments

F — User-supplied FUNCTION to compute the value of the function to be
minimized. The form is F(X), where

X – The point at which the function is evaluated. (Input)
X should not be changed by F.
F – The computed function value at the point X. (Output)

F must be declared EXTERNAL in the calling program.

XGUESS — An initial guess of the minimum point of F. (Input)

STEP — An order of magnitude estimate of the required change in X. (Input)

BOUND — A positive number that limits the amount by which X may be changed
from its initial value. (Input)

XACC — The required absolute accuracy in the final value of X. (Input)
On a normal return there are points on either side of X within a distance XACC at
which F is no less than F(X).

MAXFN — Maximum number of function evaluations allowed. (Input)

X — The point at which a minimum value of F is found. (Output)

Comments

Informational errors
Type Code
 3 1 Computer rounding errors prevent further refinement of X.
 3 2 The final value of X is at a bound. The minimum is probably

beyond the bound.
 4 3 The number of function evaluations has exceeded MAXFN.

Algorithm

The routine UVMIF uses a safeguarded quadratic interpolation method to find a
minimum point of a univariate function. Both the code and the underlying
algorithm are based on the routine ZXLSF written by M.J.D. Powell at the
University of Cambridge.

The routine UVMIF finds the least value of a univariate function, f, that is
specified by the function subroutine F. Other required data include an initial
estimate of the solution, XGUESS , and a positive number BOUND. Let
x0 = XGUESS and b = BOUND, then x is restricted to the interval [x0 − b, x0 + b].
Usually, the algorithm begins the search by moving from x0 to x = x0 + s, where s
= STEP is also provided by the user and may be positive or negative. The first
two function evaluations indicate the direction to the minimum point, and the
search strides out along this direction until a bracket on a minimum point is
found or until x reaches one of the bounds x0 ± b. During this stage, the step
length increases by a factor of between two and nine per function evaluation; the

874 • Chapter 8: Optimization IMSL MATH/LIBRARY

factor depends on the position of the minimum point that is predicted by
quadratic interpolation of the three most recent function values.

When an interval containing a solution has been found, we will have three points,
x1, x2, and x3, with x1 < x2 < x3 and f (x2) ≤ f (x1) and f (x2) ≤ f (x3). There are three
main ingredients in the technique for choosing the new x from these three points.
They are (i) the estimate of the minimum point that is given by quadratic
interpolation of the three function values, (ii) a tolerance parameter ε, that
depends on the closeness of f to a quadratic, and (iii) whether x2 is near the center
of the range between x1 and x3 or is relatively close to an end of this range. In
outline, the new value of x is as near as possible to the predicted minimum point,
subject to being at least ε from x2, and subject to being in the longer interval
between x1 and x2 or x2 and x3 when x2 is particularly close to x1 or x3. There is
some elaboration, however, when the distance between these points is close to the
required accuracy; when the distance is close to the machine precision; or when ε
is relatively large.

The algorithm is intended to provide fast convergence when f has a positive and
continuous second derivative at the minimum and to avoid gross inefficiencies in
pathological cases, such as

f (x) = x + 1.001|x|

The algorithm can make ε large automatically in the pathological cases. In this
case, it is usual for a new value of x to be at the midpoint of the longer interval
that is adjacent to the least calculated function value. The midpoint strategy is
used frequently when changes to f are dominated by computer rounding errors,
which will almost certainly happen if the user requests an accuracy that is less
than the square root of the machine precision. In such cases, the routine claims to
have achieved the required accuracy if it knows that there is a local minimum
point within distance δ of x, where δ = XACC, even though the rounding errors in f
may cause the existence of other local minimum points nearby. This difficulty is
inevitable in minimization routines that use only function values, so high
precision arithmetic is recommended.

Example

A minimum point of e[− 5x is found.

C Declare variables
 INTEGER MAXFN, NOUT
 REAL BOUND, F, FX, STEP, X, XACC, XGUESS
 EXTERNAL F, UMACH, UVMIF
C Initialize variables
 XGUESS = 0.0
 XACC = 0.001
 BOUND = 100.0
 STEP = 0.1
 MAXFN = 50
C
C Find minimum for F = EXP(X) - 5X
 CALL UVMIF (F, XGUESS, STEP, BOUND, XACC, MAXFN, X)

IMSL MATH/LIBRARY Chapter 8: Optimization • 875

 FX = F(X)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FX
C
99999 FORMAT (’ The minimum is at ’, 7X, F7.3, //, ’ The function ’
 & , ’value is ’, F7.3)
C
 END
C Real function: F = EXP(X) - 5.0*X
 REAL FUNCTION F (X)
 REAL X
C
 REAL EXP
 INTRINSIC EXP
C
 F = EXP(X) - 5.0E0*X
C
 RETURN
 END

Output
The minimum is at 1.609

The function value is -3.047

UVMID/DUVMID (Single/Double precision)
Find the minimum point of a smooth function of a single variable using both
function evaluations and first derivative evaluations.

Usage
CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX,
 GX)

Arguments

F — User-supplied FUNCTION to define the function to be minimized. The form
is F(X), where

X – The point at which the function is to be evaluated. (Input)
F – The computed value of the function at X. (Output)

F must be declared EXTERNAL in the calling program.

G — User-supplied FUNCTION to compute the derivative of the function. The
form is G(X), where

X – The point at which the derivative is to be computed. (Input)
G – The computed value of the derivative at X. (Output)

G must be declared EXTERNAL in the calling program.

XGUESS — An initial guess of the minimum point of F. (Input)

876 • Chapter 8: Optimization IMSL MATH/LIBRARY

ERRREL — The required relative accuracy in the final value of X. (Input)
This is the first stopping criterion. On a normal return, the solution X is in an
interval that contains a local minimum and is less than or equal to MAX(1.0,
ABS(X)) * ERRREL. When the given ERRREL is less than machine epsilon,
SQRT(machine epsilon) is used as ERRREL.

GTOL — The derivative tolerance used to decide if the current point is a local
minimum. (Input)
This is the second stopping criterion. X is returned as a solution when GX is less
than or equal to GTOL. GTOL should be nonnegative, otherwise zero would be
used.

MAXFN — Maximum number of function evaluations allowed. (Input)

A — A is the lower endpoint of the interval in which the minimum point of F is to
be located. (Input)

B — B is the upper endpoint of the interval in which the minimum point of F is to
be located. (Input)

X — The point at which a minimum value of F is found. (Output)

FX — The function value at point X. (Output)

GX — The derivative value at point X. (Output)

Comments

Informational errors
Type Code
 3 1 The final value of X is at the lower bound. The minimum is

probably beyond the bound.
 3 2 The final value of X is at the upper bound. The minimum is

probably beyond the bound.
 4 3 The maximum number of function evaluations has been

exceeded.

Algorithm

The routine UVMID uses a descent method with either the secant method or cubic
interpolation to find a minimum point of a univariate function. It starts with an
initial guess and two endpoints. If any of the three points is a local minimum
point and has least function value, the routine terminates with a solution.
Otherwise, the point with least function value will be used as the starting point.

From the starting point, say xF, the function value fF = f (xF), the derivative value

gF = g(xF), and a new point xQ defined by xQ = xF − gF are computed. The function
fQ = f(xQ), and the derivative gQ = g(xQ) are then evaluated. If either

fQ ≥ fF or gQ has the opposite sign of gF, then there exists a minimum point
between xF and xQ; and an initial interval is obtained. Otherwise, since xF is kept

IMSL MATH/LIBRARY Chapter 8: Optimization • 877

as the point that has lowest function value, an interchange between xQ and xF is
performed. The secant method is then used to get a new point

x x g
g g

x xs c c
n c

n c
= − −

−
()

Let xQ ← xV and repeat this process until an interval containing a minimum is
found or one of the convergence criteria is satisfied. The convergence criteria are
as follows: Criterion 1:

x xc n c− ≤ ε

Criterion 2:

gc g≤ ε

where εF = max{1.0, |xF|}ε, ε is a relative error tolerance and εJ is a gradient
tolerance.

When convergence is not achieved, a cubic interpolation is performed to obtain a
new point. Function and derivative are then evaluated at that point; and
accordingly, a smaller interval that contains a minimum point is chosen. A
safeguarded method is used to ensure that the interval reduces by at least a
fraction of the previous interval. Another cubic interpolation is then performed,
and this procedure is repeated until one of the stopping criteria is met.

Example

A minimum point of e[− 5x is found.

C Declare variables
 INTEGER MAXFN, NOUT
 REAL A, B, ERRREL, F, FX, G, GTOL, GX, X, XGUESS
 EXTERNAL F, G, UMACH, UVMID
C Initialize variables
 XGUESS = 0.0
C Set ERRREL to zero in order
C to use SQRT(machine epsilon)
C as relative error
 ERRREL = 0.0
 GTOL = 0.0
 A = -10.0
 B = 10.0
 MAXFN = 50
C
C Find minimum for F = EXP(X) - 5X
 CALL UVMID (F, G, XGUESS, ERRREL, GTOL, MAXFN, A, B, X, FX, GX)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FX, GX
C
99999 FORMAT (’ The minimum is at ’, 7X, F7.3, //, ’ The function ’
 & , ’value is ’, F7.3, //, ’ The derivative is ’, F7.3)
C
 END

878 • Chapter 8: Optimization IMSL MATH/LIBRARY

C Real function: F = EXP(X) - 5.0*X
 REAL FUNCTION F (X)
 REAL X
C
 REAL EXP
 INTRINSIC EXP
C
 F = EXP(X) - 5.0E0*X
C
 RETURN
 END
C
 REAL FUNCTION G (X)
 REAL X
C
 REAL EXP
 INTRINSIC EXP
C
 G = EXP(X) - 5.0E0
 RETURN
 END

Output
The minimum is at 1.609

The function value is -3.047

The derivative is -0.001

UVMGS/DUVMGS (Single/Double precision)
Find the minimum point of a nonsmooth function of a single variable.

Usage
CALL UVMGS (F, A, B, TOL, XMIN)

Arguments

F — User-supplied FUNCTION to compute the value of the function to be
minimized. The form is F(X), where

X – The point at which the function is evaluated. (Input)
X should not be changed by F.
F – The computed function value at the point X. (Output)

F must be declared EXTERNAL in the calling program.

A — On input, A is the lower endpoint of the interval in which the minimum of F

is to be located. On output, A is the lower endpoint of the interval in which the
minimum of F is located. (Input/Output)

B — On input, B is the upper endpoint of the interval in which the minimum of F

is to be located. On output, B is the upper endpoint of the interval in which the
minimum of F is located. (Input/Output)

IMSL MATH/LIBRARY Chapter 8: Optimization • 879

TOL — The allowable length of the final subinterval containing the minimum
point. (Input)

XMIN — The approximate minimum point of the function F on the original
interval (A, B). (Output)

Comments

1. Informational errors
Type Code
 3 1 TOL is too small to be satisfied.
 4 2 Due to rounding errors F does not appear to be

unimodal.

2. On exit from UVMGS without any error messages, the following
conditions hold: (B-A) ≤ TOL.
A ≤ XMIN and XMIN ≤ B
F(XMIN) ≤ F(A) and F(XMIN) ≤ F(B)

3. On exit from UVMGS with error code 2, the following conditions hold:
A ≤ XMIN and XMIN ≤ B
F(XMIN) ≥ F(A) and F(XMIN) ≥ F(B) (only one equality can hold).
Further analysis of the function F is necessary in order to determine
whether it is not unimodal in the mathematical sense or whether it
appears to be not unimodal to the routine due to rounding errors in
which case the A, B, and XMIN returned may be acceptable.

Algorithm

The routine UVMGS uses the golden section search technique to compute to the
desired accuracy the independent variable value that minimizes a unimodal
function of one independent variable, where a known finite interval contains the
minimum.

Let τ = TOL. The number of iterations required to compute the minimizing value
to accuracy τ is the greatest integer less than or equal to

ln /

ln

τ b a

c

−
−

+
0 51 6

0 51
1

where a and b define the interval and

c = −3 5 23 8 /

The first two test points are v1 and v2 that are defined as

v1 = a + c(b − a), and v2 = b − c(b − a)

If f(v1) < f(v2), then the minimizing value is in the interval (a, v2). In this case, b
← v2, v2 ← v1, and v1 ← a + c(b − a). If f(v1) ≥ f(v2), the minimizing value is in
(v1, b). In this case, a ← v1, v1 ← v2, and v2 ← b − c(b − a).

880 • Chapter 8: Optimization IMSL MATH/LIBRARY

The algorithm continues in an analogous manner where only one new test point is
computed at each step. This process continues until the desired accuracy τ is
achieved. XMIN is set to the point producing the minimum value for the current
iteration.

Mathematically, the algorithm always produces the minimizing value to the
desired accuracy; however, numerical problems may be encountered. If f is too
flat in part of the region of interest, the function may appear to be constant to the
computer in that region. Error code 2 indicates that this problem has occurred.
The user may rectify the problem by relaxing the requirement on τ, modifying
(scaling, etc.) the form of f or executing the program in a higher precision.

Example

A minimum point of 3x2 − 2x + 4 is found.

C Specification of variables
 INTEGER NOUT
 REAL A, B, FCN, FMIN, TOL, XMIN
 EXTERNAL FCN, UMACH, UVMGS
C Initialize variables
 A = 0.0E0
 B = 5.0E0
 TOL = 1.0E-3
C Minimize FCN
 CALL UVMGS (FCN, A, B, TOL, XMIN)
 FMIN = FCN(XMIN)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) XMIN, FMIN, A, B
99999 FORMAT (’ The minimum is at ’, F5.3, //, ’ The ’,
 & ’function value is ’, F5.3, //, ’ The final ’,
 & ’interval is (’, F6.4, ’,’, F6.4, ’)’, /)
C
 END
C
C REAL FUNCTION: F = 3*X**2 - 2*X + 4
 REAL FUNCTION FCN (X)
 REAL X
C
 FCN = 3.0E0*X*X - 2.0E0*X + 4.0E0
C
 RETURN
 END

Output
The minimum is at 0.333

The function value is 3.667

The final interval is (0.3331,0.3340)

IMSL MATH/LIBRARY Chapter 8: Optimization • 881

UMINF/DUMINF (Single/Double precision)
Minimize a function of N variables using a quasi-Newton method and a finite-
difference gradient.

Usage
CALL UMINF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
 X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing an initial guess of the computed
solution. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. In the absence of other information, set all entries to 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set FSCALE to 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7.(Input/Output)
See Comment 4.

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

Comments

1. Automatic workspace usage is

UMINF N(N + 8) units, or
DUMINF 2N(N + 8) units.

882 • Chapter 8: Optimization IMSL MATH/LIBRARY

Workspace may be explicitly provided, if desired, by use of
U2INF/DU2INF. The reference is

CALL U2INF (FCN, N, XGUESS, XSCALE, FSCALE, IPARAM,
 RPARAM, X,FVALUE, WK)

The additional argument is

WK — Work vector of length N(N + 8). WK contains the following
information on output: The second N locations contain the last step
taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final N2
locations contain a BFGS approximation to the Hessian at the solution.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than
the current X value.

3. The first stopping criterion for UMINF occurs when the norm of the
gradient is less than the given gradient tolerance (RPARAM(1)). The
second stopping criterion for UMINF occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMINF, then set IPARAM(1) to
zero and call the routine UMINF. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling UMINF:

CALL U4INF (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IMSL MATH/LIBRARY Chapter 8: Optimization • 883

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix;
otherwise, it is initialized to a diagonal matrix containing

max ,f t f ss i0 52 7∗ 2

on the diagonal where t = XGUESS, fV = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in UMINF.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at
x is calculated as

g x s

f x f
i i i

s

* max , /

max ,

12 7
0 52 7

where g = ∇f (x), s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

884 • Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max(10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMINF.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε ε1
2

1 2 2= = = =
=∑ s t s s ti ii

n 1 6 , , ,XSCALE XGUESS and

RPARAM(7) = Size of initial trust region radius.
Default: Not used in UMINF.

If double precision is required, then DU4INF is called, and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

The routine UMINF uses a quasi-Newton method to find the minimum of a
function f(x) of n variables. Only function values are required. The problem is
stated as follows:

min
x n

f x
∈R

0 5
Given a starting point xF, the search direction is computed according to the
formula

d = −B-1 gF

where B is a positive definite approximation of the Hessian and gF is the gradient
evaluated at xF. A line search is then used to find a new point

xQ = xF + λd, λ > 0

such that

f(xQ) ≤ f(xF) + αg7 d, α ∈ (0, 0.5)

Finally, the optimality condition ||g(x)|| = ε is checked where ε is a gradient
tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

IMSL MATH/LIBRARY Chapter 8: Optimization • 885

B B
Bss B

s Bs

yy

y s

T

T

T

T← − +

where s = xQ − xF and y = gQ − gF. Another search direction is then computed to
begin the next iteration. For more details, see Dennis and Schnabel (1983,
Appendix A).

Since a finite-difference method is used to estimate the gradient, for some single
precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact gradient can be easily
provided, IMSL routine UMING (page 886) should be used instead.

Example

The function

f x x x x0 5 3 8 1 6= − + −100 12 1
2 2

1
2

is minimized.
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IPARAM(7), L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N), XGUESS(N),
 & XSCALE(N)
 EXTERNAL ROSBRK, U4INF, UMACH, UMINF
C
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
C
C Relax gradient tolerance stopping
C criterion
 CALL U4INF (IPARAM, RPARAM)
 RPARAM(1) = 10.0E0*RPARAM(1)
C Minimize Rosenbrock function using
C initial guesses of -1.2 and 1.0
 CALL UMINF (ROSBRK, N, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
 & X, F)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
C
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’,
 & ’value is ’, F8.3, //, ’ The number of iterations is ’,
 & 10X, I3, /, ’ The number of function evaluations is ’,
 & I3, /, ’ The number of gradient evaluations is ’, I3)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

886 • Chapter 8: Optimization IMSL MATH/LIBRARY

C
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 15
The number of function evaluations is 40
The number of gradient evaluations is 19

UMING/DUMING (Single/Double precision)
Minimize a function of N variables using a quasi-Newton method and a user-
supplied gradient.

Usage
CALL UMING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,
 RPARAM, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by GRAD.
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing the initial guess of the minimum.
(Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. In the absence of other information, set all entries to 1.0.

IMSL MATH/LIBRARY Chapter 8: Optimization • 887

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set FSCALE to 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

Comments

1. Automatic workspace usage is

UMING N * (N + 8) units, or
DUMING 2 * N * (N + 8) units.

Workspace may be explicitly provided, if desired, by use of
U2ING/DU2ING. The reference is

CALL U2ING (FCN, GRAD, N, XGUESS, XSCALE, FSCALE,
 IPARAM, RPARAM, X, FVALUE, WK)

The additional argument is

WK — Work vector of length N * (N + 8). WK contains the following
information on output: The second N locations contain the last step
taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final N2
locations contain a BFGS approximation to the Hessian at the solution.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

888 • Chapter 8: Optimization IMSL MATH/LIBRARY

 3 8 The last global step failed to locate a lower point than
the current X value.

3. The first stopping criterion for UMING occurs when the norm of the
gradient is less than the given gradient tolerance (RPARAM(1)). The
second stopping criterion for UMING occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMING, then set IPARAM(1) to
zero and call routine UMING (page 886). Otherwise, if any nondefault
parameters are desired for IPARAM or RPARAM, then the following steps
should be taken before calling UMING:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix;
otherwise, it is initialized to a diagonal matrix containing

max ,f t f ss i0 52 7∗ 2

on the diagonal where t = XGUESS, fV = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in UMING.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at
x is calculated as

IMSL MATH/LIBRARY Chapter 8: Optimization • 889

g x s

f x f
i i i

s

* max , /

max ,

12 7
0 52 7

where g = ∇f (x), s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max(10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMING.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
=

=∑ s ti ii

n 1 6
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: Not used in UMING.

If double precision is required, then DU4INF is called, and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

890 • Chapter 8: Optimization IMSL MATH/LIBRARY

Algorithm

The routine UMING uses a quasi-Newton method to find the minimum of a
function f(x) of n variables. Function values and first derivatives are required. The
problem is stated as follows:

min
x n

f x
∈R

0 5
Given a starting point xF, the search direction is computed according to the
formula

d = −B-1 gF

where B is a positive definite approximation of the Hessian and gF is the gradient
evaluated at xF. A line search is then used to find a new point

xQ = xF + λd, λ > 0

such that

f(xQ) ≤ f(xF) + αg7 d, α ∈ (0, 0.5)

Finally, the optimality condition ||g(x)|| = ε is checked where ε is a gradient
tolerance.

When optimality is not achieved, B is updated according to the BFGS formula

B B
Bss B

s Bs

yy

y s

T

T

T

T← − +

where s = xQ − xF and y = gQ − gF. Another search direction is then computed to
begin the next iteration. For more details, see Dennis and Schnabel (1983,
Appendix A).

Example

The function

f x x x x0 5 3 8 1 6= − + −100 12 1
2 2

1
2

is minimized. Default values for parameters are used.
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IPARAM(7), L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N),
 & XGUESS(N), XSCALE(N)
 EXTERNAL ROSBRK, ROSGRD, UMACH, UMING
C
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
C
 IPARAM(1) = 0
C Minimize Rosenbrock function using

IMSL MATH/LIBRARY Chapter 8: Optimization • 891

C initial guesses of -1.2 and 1.0
 CALL UMING (ROSBRK, ROSGRD, N, XGUESS, XSCALE, FSCALE, IPARAM,
 & RPARAM, X, F)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
C
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’,
 & ’value is ’, F8.3, //, ’ The number of iterations is ’,
 & 10X, I3, /, ’ The number of function evaluations is ’,
 & I3, /, ’ The number of gradient evaluations is ’, I3)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
C
 RETURN
 END
C
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
C
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
C
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 18
The number of function evaluations is 31
The number of gradient evaluations is 22

UMIDH/DUMIDH (Single/Double precision)
Minimize a function of N variables using a modified Newton method and a finite-
difference Hessian.

Usage
CALL UMIDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE, IPARAM,
 RPARAM, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

892 • Chapter 8: Optimization IMSL MATH/LIBRARY

N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing initial guess. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. In the absence of other information, set all entries to 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set FSCALE to 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

Comments

1. Automatic workspace usage is

UMIDH N * (N + 9) units, or
DUMIDH 2 * N * (N + 9) units.

Workspace may be explicitly provided, if desired, by use of
U2IDH/DU2IDH. The reference is

CALL U2IDH (FCN, GRAD, N, XGUESS, XSCALE, FSCALE,
 IPARAM, RPARAM, X, FVALUE, WK)

IMSL MATH/LIBRARY Chapter 8: Optimization • 893

The additional argument is

WK — Work vector of length N * (N + 9). WK contains the following
information on output: The second N locations contain the last step
taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final N2
locations contain the Hessian at the approximate solution.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than

the current X value.

3. The first stopping criterion for UMIDH occurs when the norm of the
gradient is less than the given gradient tolerance (RPARAM(1)). The
second stopping criterion for UMIDH occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMIDH, then set IPARAM(1) to
zero and call routine UMIDH. Otherwise, if any nondefault parameters are
desired for IPARAM or RPARAM, then the following steps should be taken
before calling UMIDH:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

894 • Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter
Default: Not used in UMIDH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default:100

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

f x f
i i i

s

* max , /

max ,

12 7
0 52 7

where g = ∇f (x), s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)

The i-th component of the scaled step

between two points x and y is computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max(10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMIDH.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

IMSL MATH/LIBRARY Chapter 8: Optimization • 895

ε1
2

1
=

=∑ s ti ii

n 1 6
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: Based on initial scaled Cauchy step.

If double precision is required, then DU4INF is called, and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

The routine UMIDH uses a modified Newton method to find the minimum of a
function f (x) of n variables. First derivatives must be provided by the user. The
algorithm computes an optimal locally constrained step (Gay 1981) with a trust
region restriction on the step. It handles the case that the Hessian is indefinite and
provides a way to deal with negative curvature. For more details, see Dennis and
Schnabel (1983, Appendix A) and Gay (1983).

Since a finite-difference method is used to estimate the Hessian for some single
precision calculations, an inaccurate estimate of the Hessian may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact Hessian can be easily
provided, IMSL routine UMIAH (page 896) should be used instead.

Example

The function

f x x x x0 5 3 8 1 6= − + −100 12 1
2 2

1
2

is minimized. Default values for parameters are used.
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IPARAM(7), L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N),
 & XGUESS(N), XSCALE(N)
 EXTERNAL ROSBRK, ROSGRD, UMACH, UMIDH
C
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
C
 IPARAM(1) = 0
C Minimize Rosenbrock function using
C initial guesses of -1.2 and 1.0
 CALL UMIDH (ROSBRK, ROSGRD, N, XGUESS, XSCALE, FSCALE, IPARAM,
 & RPARAM, X, F)
C Print results
 CALL UMACH (2, NOUT)

896 • Chapter 8: Optimization IMSL MATH/LIBRARY

 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
C
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’,
 & ’value is ’, F8.3, //, ’ The number of iterations is ’,
 & 10X, I3, /, ’ The number of function evaluations is ’,
 & I3, /, ’ The number of gradient evaluations is ’, I3, /,
 & ’ The number of Hessian evaluations is ’, I3)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
C
 RETURN
 END
C
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
C
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
C
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 21
The number of function evaluations is 30
The number of gradient evaluations is 22
The number of Hessian evaluations is 21

UMIAH/DUMIAH (Single/Double precision)
Minimize a function of N variables using a modified Newton method and a user-
supplied Hessian.

Usage
CALL UMIAH (FCN, GRAD, HESS, N, XGUESS, XSCALE, FSCALE,
 IPARAM, RPARAM, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)

IMSL MATH/LIBRARY Chapter 8: Optimization • 897

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The
usage is CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)
X – Vector of length N at which point the Hessian is evaluated. (Input)
X should not be changed by HESS.
H – The Hessian evaluated at the point X. (Output)
LDH – Leading dimension of H exactly as specified in the dimension
statement of the calling program. LDH must be equal to N in this routine.
(Input)

HESS must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing initial guess. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. In the absence of other information, set all entries to 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set FSCALE to 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

Comments

1. Automatic workspace usage is

898 • Chapter 8: Optimization IMSL MATH/LIBRARY

UMIAH N * (N + 9) units, or
DUMIAH 2 * N * (N + 9) units.

Workspace may be explicitly provided, if desired, by use of
U2IAH/DU2IAH. The reference is

CALL U2IAH (FCN, GRAD, HESS, N, XGUESS, XSCALE,
 FSCALE, IPARAM, RPARAM, X, FVALUE, WK)

The additional argument is

WK — Work vector of length N * (N + 9). WK contains the following
information on output: The second N locations contain the last step
taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final N2
locations contain the Hessian at the approximate solution.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than

the current X value.

3. The first stopping criterion for UMIAH occurs when the norm of the
gradient is less than the given gradient tolerance (RPARAM(1)). The
second stopping criterion for UMIAH occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UMIAH, then set IPARAM(1) to
zero and call the routine UMIAH. Otherwise, if any nondefault

IMSL MATH/LIBRARY Chapter 8: Optimization • 899

parameters are desired for IPARAM or RPARAM, then the following steps
should be taken before calling UMIAH:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter
Default: Not used in UMIAH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

f x f
i i i

s

∗max , /

max ,

12 7
0 52 7

where g = ∇f (x), s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

900 • Chapter 8: Optimization IMSL MATH/LIBRARY

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max(10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in UMIAH.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
=

=∑ s ti ii

n 1 6
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called, and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

The routine UMIAH uses a modified Newton method to find the minimum of a
function f(x) of n variables. First and second derivatives must be provided by the
user. The algorithm computes an optimal locally constrained step (Gay 1981)
with a trust region restriction on the step. This algorithm handles the case where
the Hessian is indefinite and provides a way to deal with negative curvature. For
more details, see Dennis and Schnabel (1983, Appendix A) and Gay (1983).

Example

The function

f x x x x0 5 3 8 1 6= − + −100 12 1
2 2

1
2

is minimized. Default values for parameters are used.
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IPARAM(7), L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N),
 & XGUESS(N), XSCALE(N)

IMSL MATH/LIBRARY Chapter 8: Optimization • 901

 EXTERNAL ROSBRK, ROSGRD, ROSHES, UMACH, UMIAH
C
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
C
 IPARAM(1) = 0
C Minimize Rosenbrock function using
C initial guesses of -1.2 and 1.0
 CALL UMIAH (ROSBRK, ROSGRD, ROSHES, N, XGUESS, XSCALE, FSCALE,
 & IPARAM, RPARAM, X, F)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
C
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’,
 & ’value is ’, F8.3, //, ’ The number of iterations is ’,
 & 10X, I3, /, ’ The number of function evaluations is ’,
 & I3, /, ’ The number of gradient evaluations is ’, I3, /,
 & ’ The number of Hessian evaluations is ’, I3)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
C
 RETURN
 END
C
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
C
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
C
 RETURN
 END
C
 SUBROUTINE ROSHES (N, X, H, LDH)
 INTEGER N, LDH
 REAL X(N), H(LDH,N)
C
 H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0
 H(2,1) = -4.0E2*X(1)
 H(1,2) = H(2,1)
 H(2,2) = 2.0E2
C
 RETURN
 END

Output
The solution is 1.000 1.000

The function value is 0.000

The number of iterations is 21

902 • Chapter 8: Optimization IMSL MATH/LIBRARY

The number of function evaluations is 31
The number of gradient evaluations is 22
The number of Hessian evaluations is 21

UMCGF/DUMCGF (Single/Double precision)
Minimize a function of N variables using a conjugate gradient algorithm and a
finite-difference gradient.

Usage
CALL UMCGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN, DFPRED,
 X, G, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing the initial guess of the minimum.
(Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)

GRADTL — Convergence criterion. (Input)
The calculation ends when the sum of squares of the components of G is less than
GRADTL.

MAXFN — Maximum number of function evaluations. (Input)
If MAXFN is set to zero, then no restriction on the number of function evaluations
is set.

DFPRED — A rough estimate of the expected reduction in the function. (Input)
DFPRED is used to determine the size of the initial change to X.

X — Vector of length N containing the computed solution. (Output)

G — Vector of length N containing the components of the gradient at the final
parameter estimates. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

IMSL MATH/LIBRARY Chapter 8: Optimization • 903

Comments

1. Automatic workspace usage is

UMCGF 6 * N units, or
DUMCGF 12 * N units.

Workspace may be explicitly provided, if desired, by use of
U2CGF/DU2CGF. The reference is

CALL U2CGF (FCN, N, XGUESS, XSCALE, GRADTL, MAXFN,
 DFPRED, X, G, FVALUE, S, RSS, RSG,
 GINIT, XOPT, GOPT)

The additional arguments are as follows:

S — Vector of length N used for the search direction in each iteration.

RSS — Vector of length N containing conjugacy information.

RSG — Vector of length N containing conjugacy information.

GINIT — Vector of length N containing the gradient values at the start
of an iteration.

XOPT — Vector of length N containing the parameter values that yield
the least calculated value for FVALUE.

GOPT — Vector of length N containing the gradient values that yield the
least calculated value for FVALUE.

2. Informational errors
Type Code
 4 1 The line search of an integration was abandoned. This

error may be caused by an error in gradient.
 4 2 The calculation cannot continue because the search is

uphill.
 4 3 The iteration was terminated because MAXFN was

exceeded.
 3 4 The calculation was terminated because two

consecutive iterations failed to reduce the function.

3. Because of the close relation between the conjugate-gradient method and
the method of steepest descent, it is very helpful to choose the scale of
the variables in a way that balances the magnitudes of the components of
a typical gradient vector. It can be particularly inefficient if a few
components of the gradient are much larger than the rest.

4. If the value of the parameter GRADTL in the argument list of the routine
is set to zero, then the subroutine will continue its calculation until it
stops reducing the objective function. In this case, the usual behavior is
that changes in the objective function become dominated by computer
rounding errors before precision is lost in the gradient vector.
Therefore, because the point of view has been taken that the user

904 • Chapter 8: Optimization IMSL MATH/LIBRARY

requires the least possible value of the function, a value of the objective
function that is small due to computer rounding errors can prevent
further progress. Hence, the precision in the final values of the variables
may be only about half the number of significant digits in the computer
arithmetic, but the least value of FVALUE is usually found to be quite
accurate.

Algorithm

The routine UMCGF uses a conjugate gradient method to find the minimum of a
function f (x) of n variables. Only function values are required.

The routine is based on the version of the conjugate gradient algorithm described
in Powell (1977). The main advantage of the conjugate gradient technique is that
it provides a fast rate of convergence without the storage of any matrices.
Therefore, it is particularly suitable for unconstrained minimization calculations
where the number of variables is so large that matrices of dimension n cannot be
stored in the main memory of the computer. For smaller problems, however, a
routine such as routine UMINF (page 881), is usually more efficient because each
iteration makes use of additional information from previous iterations.

Since a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact gradient can be easily
provided, routine UMCGG (page 905) should be used instead.

Example

The function

f x x x x0 5 3 8 1 6= − + −100 12 1
2 2

1
2

is minimized and the solution is printed.
C Declaration of variables
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER I, MAXFN, NOUT
 REAL DFPRED, FVALUE, G(N), GRADTL, X(N), XGUESS(N),
 & XS(N)
 EXTERNAL ROSBRK, UMACH, UMCGF
C
 DATA XGUESS/-1.2E0, 1.0E0/, XS/2*1.0E0/
C
 DFPRED = 0.2
 GRADTL = 1.0E-6
 MAXFN = 100
C Minimize the Rosenbrock function
 CALL UMCGF (ROSBRK, N, XGUESS, XS, GRADTL, MAXFN, DFPRED, X, G,
 & FVALUE)

IMSL MATH/LIBRARY Chapter 8: Optimization • 905

C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N)
99999 FORMAT (’ The solution is ’, 2F8.3, //, ’ The function ’,
 & ’evaluated at the solution is ’, F8.3, //, ’ The ’,
 & ’gradient is ’, 2F8.3, /)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
 RETURN
 END

Output
The solution is 0.999 0.998

The function evaluated at the solution is 0.000

The gradient is -0.001 0.000

UMCGG/DUMCGG (Single/Double precision)
Minimize a function of N variables using a conjugate gradient algorithm and a
user-supplied gradient.

Usage
CALL UMCGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN, DFPRED, X,
 G, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

906 • Chapter 8: Optimization IMSL MATH/LIBRARY

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing the initial guess of the minimum.
(Input)

GRADTL — Convergence criterion. (Input)
The calculation ends when the sum of squares of the components of G is less than
GRADTL.

MAXFN — Maximum number of function evaluations. (Input)

DFPRED — A rough estimate of the expected reduction in the function. (Input)
DFPRED is used to determine the size of the initial change to X.

X — Vector of length N containing the computed solution. (Output)

G — Vector of length N containing the components of the gradient at the final
parameter estimates. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

Comments

1. Automatic workspace usage is

UMCGG 6 * N units, or
DUMCGG 12 * N units.

Workspace may be explicitly provided, if desired, by use of
U2CGG/DU2CGG. The reference is

CALL U2CGG (FCN, GRAD, N, XGUESS, GRADTL, MAXFN,
 DFPRED, X, G, FVALUE, S, RSS, RSG,
 GINIT, XOPT, GOPT)

The additional arguments are as follows:

S — Vector of length N used for the search direction in each iteration.

RSS — Vector of length N containing conjugacy information.

RSG — Vector of length N containing conjugacy information.

GINIT — Vector of length N containing the gradient values at the start
on an iteration.

XOPT — Vector of length N containing the parameter values which
yield the least calculated value for FVALUE.

GOPT — Vector of length N containing the gradient values which yield
the least calculated value for FVALUE.

2. Informational errors
Type Code
 4 1 The line search of an integration was abandoned. This

error may be caused by an error in gradient.

IMSL MATH/LIBRARY Chapter 8: Optimization • 907

 4 2 The calculation cannot continue because the search is
uphill.

 4 3 The iteration was terminated because MAXFN was
exceeded.

 3 4 The calculation was terminated because two
consecutive iterations failed to reduce the function.

3. The routine includes no thorough checks on the part of the user program
that calculates the derivatives of the objective function. Therefore,
because derivative calculation is a frequent source of error, the user
should verify independently the correctness of the derivatives that are
given to the routine.

4. Because of the close relation between the conjugate-gradient method and
the method of steepest descent, it is very helpful to choose the scale of
the variables in a way that balances the magnitudes of the components of
a typical gradient vector. It can be particularly inefficient if a few
components of the gradient are much larger than the rest.

5. If the value of the parameter GRADTL in the argument list of the routine
is set to zero, then the subroutine will continue its calculation until it
stops reducing the objective function. In this case, the usual behavior is
that changes in the objective function become dominated by computer
rounding errors before precision is lost in the gradient vector. Therefore,
because the point of view has been taken that the user requires the least
possible value of the function, a value of the objective function that is
small due to computer rounding errors can prevent further progress.
Hence, the precision in the final values of the variables may be only
about half the number of significant digits in the computer arithmetic,
but the least value of FVALUE is usually found to be quite accurate.

Algorithm

The routine UMCGG uses a conjugate gradient method to find the minimum of a
function f (x) of n variables. Function values and first derivatives are required.

The routine is based on the version of the conjugate gradient algorithm described
in Powell (1977). The main advantage of the conjugate gradient technique is that
it provides a fast rate of convergence without the storage of any matrices.
Therefore, it is particularly suitable for unconstrained minimization calculations
where the number of variables is so large that matrices of dimension n cannot be
stored in the main memory of the computer. For smaller problems, however, a
subroutine such as IMSL routine UMING (page 886), is usually more efficient
because each iteration makes use of additional information from previous
iterations.

908 • Chapter 8: Optimization IMSL MATH/LIBRARY

Example

The function

f x x x x0 5 3 8 1 6= − + −100 12 1
2 2

1
2

is minimized and the solution is printed.
C Declaration of variables
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER I, MAXFN, NOUT
 REAL DFPRED, FVALUE, G(N), GRADTL, X(N),
 & XGUESS(N)
 EXTERNAL ROSBRK, ROSGRD, UMACH, UMCGG
C
 DATA XGUESS/-1.2E0, 1.0E0/
C
 DFPRED = 0.2
 GRADTL = 1.0E-7
 MAXFN = 100
C Minimize the Rosenbrock function
 CALL UMCGG (ROSBRK, ROSGRD, N, XGUESS, GRADTL, MAXFN, DFPRED, X,
 & G, FVALUE)
C Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(I),I=1,N), FVALUE, (G(I),I=1,N)
99999 FORMAT (’ The solution is ’, 2F8.3, //, ’ The function ’,
 & ’evaluated at the solution is ’, F8.3, //, ’ The ’,
 & ’gradient is ’, 2F8.3, /)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
 RETURN
 END
C
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
C
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
C
 RETURN
 END

Output
The solution is 1.000 1.000

The function evaluated at the solution is 0.000

The gradient is 0.000 0.000

IMSL MATH/LIBRARY Chapter 8: Optimization • 909

UMPOL/DUMPOL (Single/Double precision)
Minimize a function of N variables using a direct search polytope algorithm.

Usage
CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Real vector of length N which contains an initial guess to the
minimum. (Input)

S — On input, real scalar containing the length of each side of the initial simplex.
(Input/Output)
If no reasonable information about S is known, S could be set to a number less
than or equal to zero and UMPOL will generate the starting simplex from the initial
guess with a random number generator. On output, the average distance from the
vertices to the centroid that is taken to be the solution; see Comment 4.

FTOL — First convergence criterion. (Input)
The algorithm stops when a relative error in the function values is less than FTOL,
i.e. when (F(worst) − F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and
F(best) are the function values of the current worst and best points, respectively.
Second convergence criterion. The algorithm stops when the standard deviation
of the function values at the N + 1 current points is less than FTOL. If the
subroutine terminates prematurely, try again with a smaller value for FTOL.

MAXFCN — On input, maximum allowed number of function evaluations.
(Input/ Output)
On output, actual number of function evaluations needed.

X — Real vector of length N containing the best estimate of the minimum found.
(Output)

FVALUE — Function value at the computed solution. (Output)

910 • Chapter 8: Optimization IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

UMPOL N**2 + 5 * N + 1 units, or
DUMPOL 2 * N**2 + 10 * N + 2 units.

Workspace may be explicitly provided, if desired, by use of
U2POL/DU2POL. The reference is

CALL U2POL (FCN, N, XGUESS, S, FTOL, MAXFCN, X,
 FVALUE, WK)

The additional argument is

WK — Real work vector of length N**2 + 5 * N + 1.

2. Informational error
Type Code
 4 1 Maximum number of function evaluations exceeded.

3. Since UMPOL uses only function value information at each step to
determine a new approximate minimum, it could be quite ineficient on
smooth problems compared to other methods such as those implemented
in routine UMINF that takes into account derivative information at each
iteration. Hence, routine UMPOL should only be used as a last resort.
Briefly, a set of N + 1 points in an N-dimensional space is called a
simplex. The minimization process iterates by replacing the point with
the largest function value by a new point with a smaller function value.
The iteration continues until all the points cluster sufficiently close to a
minimum.

4. The value returned in S is useful for assessing the flatness of the function
near the computed minimum. The larger its value for a given value of
FTOL, the flatter the function tends to be in the neighborhood of the
returned point.

Algorithm

The routine UMPOL uses the polytope algorithm to find a minimum point of a
function f(x) of n variables. The polytope method is based on function
comparison; no smoothness is assumed. It starts with n + 1 points x1, x2, …,
xQ����. At each iteration, a new point is generated to replace the worst point xM,
which has the largest function value among these n + 1 points. The new point is
constructed by the following formula:

xN = c + α(c − xM)

where

IMSL MATH/LIBRARY Chapter 8: Optimization • 911

c
n

xi j i= ≠∑1

and α (α > 0) is the reflection coefficient.

When xN is a best point, that is f(xN) ≤ f(xL) for i = 1, …, n + 1, an expansion point

is computed xH = c + β(xN − c) where β(β > 1) is called the expansion coefficient.
If the new point is a worst point, then the polytope would be contracted to get a
better new point. If the contraction step is unsuccessful, the polytope is shrunk by
moving the vertices halfway toward current best point. This procedure is repeated
until one of the following stopping criteria is satisfied:

Criterion 1:

fEHVW − fZRUVW ≤ εI�(1. + |fEHVW|)

Criterion 2:

()f
f

ni
i

n jj

n

f
=

+
=
+

∑
∑

−
+

≤
1

1
1

1

2

1
ε

where fL = f (xL), fM = f (xM), and εI is a given tolerance. For a complete description,
see Nelder and Mead (1965) or Gill et al. (1981).

Example

The function

f x x x x0 5 3 8 1 6= − + −100 12 1
2 2

1
2

is minimized and the solution is printed.
C Variable declarations
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER K, MAXFCN, NOUT
 REAL FTOL, FVALUE, S, X(N), XGUESS(N)
 EXTERNAL FCN, UMACH, UMPOL
C
C Initializations
C XGUESS = (-1.2, 1.0)
C
 DATA XGUESS/-1.2, 1.0/
C
 FTOL = 1.0E-10
 MAXFCN = 200
 S = 1.0
C
 CALL UMPOL (FCN, N, XGUESS, S, FTOL, MAXFCN, X, FVALUE)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N), FVALUE

912 • Chapter 8: Optimization IMSL MATH/LIBRARY

99999 FORMAT (’ The best estimate for the minimum value of the’, /,
 & ’ function is X = (’, 2(2X,F4.2), ’)’, /, ’ with ’,
 & ’function value FVALUE = ’, E12.6)
C
 END
C External function to be minimized
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 100.0*(X(1)*X(1)-X(2))**2 + (1.0-X(1))**2
 RETURN
 END

Output
The best estimate for the minimum value of the
function is X = (1.00 1.00)
with function value FVALUE = 0.502496E-10

UNLSF/DUNLSF (Single/Double precision)
Solve a nonlinear least-squares problem using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

Usage
CALL UNLSF (FCN, M, N, XGUESS, XSCALE, FSCALE, IPARAM,
 RPARAM, X, FVEC, FJAC, LDFJAC)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function that defines the
least-squares problem. The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)
N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – Vector of length M containing the function values at X. (Output)

FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

N — Number of variables. N must be less than or equal to M. (Input)

XGUESS — Vector of length N containing the initial guess. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. By default, the values for XSCALE are set internally. See IPARAM(6) in
Comment 4.

IMSL MATH/LIBRARY Chapter 8: Optimization • 913

FSCALE — Vector of length M containing the diagonal scaling matrix for the
functions. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set all entries to 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the approximate solution. (Output)

FVEC — Vector of length M containing the residuals at the approximate solution.
(Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

UNLSF 10 * N + 3 * M − 1 units, or
DUNLSF 19 * N + 6 * M − 2 units.

Workspace may be explicitly provided, if desired, by use of
U2LSF/DU2LSF. The reference is

CALL U2LSF (FCN, M, N, XGUESS, XSCALE, FSCALE,
 IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC,
 WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length 9 * N + 3 * M − 1. WK contains the
following information on output: The second N locations contain the last
step taken. The third N locations contain the last Gauss-Newton step.
The fourth N locations contain an estimate of the gradient at the solution.

IWK — Integer work vector of length N containing the permutations
used in the QR factorization of the Jacobian at the solution.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 3 2 The iterates appear to be converging to a noncritical
point.

914 • Chapter 8: Optimization IMSL MATH/LIBRARY

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

3. The first stopping criterion for UNLSF occurs when the norm of the
function is less than the absolute function tolerance (RPARAM(4)). The
second stopping criterion occurs when the norm of the scaled gradient is
less than the given gradient tolerance (RPARAM(1)). The third stopping
criterion for UNLSF occurs when the scaled distance between the last two
steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UNLSF, then set IPARAM(1) to
zero and call the routine UNLSF. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling UNLSF:

CALL U4LSF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: Not used in UNLSF.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

IMSL MATH/LIBRARY Chapter 8: Optimization • 915

g x s

F x

i i i∗max , /1

2
2

2 7
0 5

where

g J x F x fi
T

i s i
= ∗0 5 0 54 9 1 62

J(x) is the Jacobian, s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max (10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.

Default: max (10-20, ε2), max(10-40, ε2) in double where ε is the machine
precision.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
=

=∑ s ti ii

n 1 6
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is
declared double precision.

916 • Chapter 8: Optimization IMSL MATH/LIBRARY

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

The routine UNLSF is based on the MINPACK routine LMDIF by Moré et al.
(1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least
squares problems. The problem is stated as follows:

min
x

T
i

i

m

n
F x F x f x

∈ =
= ∑

R

1

2

1

2 1

20 5 0 5 0 5

where m ≥ n, F : RQ→ RP, and fL(x) is the i-th component function of F(x). From
a current point, the algorithm uses the trust region approach:

min
x

c c n c
n

n
F x J x x x

∈
+ −

R
1 6 1 61 6

2

subject to ||xQ − xF||2 ≤ δF

to get a new point xQ, which is computed as

x x J x J x I J x F xn c c
T

c c c
T

c= − +
−1 6 1 64 9 1 6 1 6µ

1

where µF = 0 if δF ≥ ||(J(xF)7�J(xF))-1 J(xF)7�F(xF)||2 and µF > 0 otherwise. F(xF)
and J(xF) are the function values and the Jacobian evaluated at the current point
xF. This procedure is repeated until the stopping criteria are satisfied. For more
details, see Levenberg (1944), Marquardt (1963), or Dennis and Schnabel (1983,
Chapter 10).

Since a finite-difference method is used to estimate the Jacobian for some single
precision calculations, an inaccurate estimate of the Jacobian may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact Jacobian can be easily
provided, routine UNLSJ (page 918) should be used instead.

Example

The nonlinear least squares problem

min
x

i
i

f x
∈ =

∑
R2

1

2 1

2
20 5

where

f x x x f x x1 2 1
2

2 110 10 5 3 8 0 5 1 6= − = − and

is solved. RPARAM(4) is changed to a non-default value.

IMSL MATH/LIBRARY Chapter 8: Optimization • 917

C Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
C
 INTEGER IPARAM(6), NOUT
 REAL FJAC(LDFJAC,N), FSCALE(M), FVEC(M), RPARAM(7),
 & X(N), XGUESS(N), XSCALE(N)
 EXTERNAL ROSBCK, UMACH, UNLSF, U4LSF
C Compute the least squares for the
C Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/2*1.0E0/, FSCALE/2*1.0E0/
C
C Relax the first stopping criterion by
C calling U4LSF and scaling the
C absolute function tolerance by 10.
 CALL U4LSF (IPARAM, RPARAM)
 RPARAM(4) = 10.0E0*RPARAM(4)
C
 CALL UNLSF (ROSBCK, M, N, XGUESS, XSCALE, FSCALE, IPARAM,
 & RPARAM, X, FVEC, FJAC, LDFJAC)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
C
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’,
 & ’evaluated at the solution is ’, /, 18X, 2F9.4, //,
 & ’ The number of iterations is ’, 10X, I3, /, ’ The ’,
 & ’number of function evaluations is ’, I3, /)
 END
C
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
C
 F(1) = 10.0E0*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END

Output
The solution is 1.0000 1.0000

The function evaluated at the solution is
0.0000 0.0000

The number of iterations is 22
The number of function evaluations is 30

918 • Chapter 8: Optimization IMSL MATH/LIBRARY

UNLSJ/DUNLSJ (Single/Double precision)
Solve a nonlinear least squares problem using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

Usage
CALL UNLSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE, IPARAM,
 RPARAM, X, FVEC, FJAC, LDFJAC)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function which defines the
least-squares problem. The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)
N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – Vector of length M containing the function values at X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The
usage is CALL JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)
N – Length of X. (Input)
X – Vector of length N at which point the Jacobian is evaluated. (Input)
X should not be changed by JAC.
FJAC – The computed M by N Jacobian at the point X. (Output)
LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

N — Number of variables. N must be less than or equal to M. (Input)

XGUESS — Vector of length N containing the initial guess. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. By default, the values for XSCALE are set internally. See IPARAM(6) in
Comment 4.

FSCALE — Vector of length M containing the diagonal scaling matrix for the
functions. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set all entries to 1.0.

IMSL MATH/LIBRARY Chapter 8: Optimization • 919

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the approximate solution. (Output)

FVEC — Vector of length M containing the residuals at the approximate solution.
(Output)

FJAC — M by N matrix containing a finite-difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

UNLSJ 10 * N + 3 * M − 1 units, or
DUNLSJ 19 * N + 6 * M − 2 units.

Workspace may be explicitly provided, if desired, by use of
U2LSJ/DU2LSJ. The reference is

CALL U2LSJ (FCN, JAC, M, N, XGUESS, XSCALE, FSCALE,
 IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC,
 WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 9 * N + 3 * M − 1. WK contains the
following information on output: The second N locations contain the last
step taken. The third N locations contain the last Gauss-Newton step.
The fourth N locations contain an estimate of the gradient at the solution.

IWK — Work vector of length N containing the permutations used in the
QR factorization of the Jacobian at the solution.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 3 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of Jacobian evaluations exceeded.

920 • Chapter 8: Optimization IMSL MATH/LIBRARY

 3 6 Five consecutive steps have been taken with the
maximum step length.

 2 7 Scaled step tolerance satisfied; the current point may
be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

3. The first stopping criterion for UNLSJ occurs when the norm of the
function is less than the absolute function tolerance (RPARAM(4)). The
second stopping criterion occurs when the norm of the scaled gradient is
less than the given gradient tolerance (RPARAM(1)). The third stopping
criterion for UNLSJ occurs when the scaled distance between the last two
steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for UNLSJ, then set IPARAM(1) to
zero and call the routine UNLSJ. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling UNLSJ:

CALL U4LSF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default
values, so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

F x

i i i∗max , /1

2
2

2 7
0 5

IMSL MATH/LIBRARY Chapter 8: Optimization • 921

where

g J x F x fi
T

i s i
= ∗0 5 0 54 9 1 62

J(x) is the Jacobian, s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max (10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.

Default: max (10-20, ε2), max(10-40, ε2) in double where ε is the machine
precision.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
s ti ii

n 1 6=∑
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

922 • Chapter 8: Optimization IMSL MATH/LIBRARY

Algorithm

The routine UNLSJ is based on the MINPACK routine LMDER by Moré et al.
(1980). It uses a modified Levenberg-Marquardt method to solve nonlinear least
squares problems. The problem is stated as follows:

min
x

T
i

i

m

n
F x F x f x

∈ =
= ∑

R

1

2

1

2 1

20 5 0 5 0 5

where m ≥ n, F : RQ→ RP, and fL(x) is the i-th component function of F(x). From
a current point, the algorithm uses the trust region approach:

min
x

c c n c
n

n
F x J x x x

∈
+ −

R
1 6 1 61 6

2

subject to ||xQ − xF||2 ≤ δF

to get a new point xQ, which is computed as

x x J x J x I J x F xn c c
T

c c c
T

c= − +
−1 6 1 64 9 1 6 1 6µ

1

where µF = 0 if δF ≥ ||(J(xF)7�J(xF))-1 J(xF)7�F (xF)||2 and µF > 0 otherwise. F(xF)
and J(xF) are the function values and the Jacobian evaluated at the current point
xF. This procedure is repeated until the stopping criteria are satisfied. For more
details, see Levenberg (1944), Marquardt(1963), or Dennis and Schnabel (1983,
Chapter 10).

Example

The nonlinear least-squares problem

min
x

i
i

f x
∈ =

∑
R2

1

2 1

2
20 5

where

f x x x f x x1 2 1
2

2 110 10 5 3 8 0 5 1 6= − = − and

is solved; default values for parameters are used.
C Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
C
 INTEGER IPARAM(6), NOUT
 REAL FJAC(LDFJAC,N), FSCALE(M), FVEC(M),
 & RPARAM(7), X(N), XGUESS(N), XSCALE(N)
 EXTERNAL ROSBCK, ROSJAC, UMACH, UNLSJ
C Compute the least squares for the
C Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/2*1.0E0/, FSCALE/2*1.0E0/

IMSL MATH/LIBRARY Chapter 8: Optimization • 923

 IPARAM(1) = 0
C
 CALL UNLSJ (ROSBCK, ROSJAC, M, N, XGUESS, XSCALE, FSCALE,
 & IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4), IPARAM(5)
C
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’,
 & ’evaluated at the solution is ’, /, 18X, 2F9.4, //,
 & ’ The number of iterations is ’, 10X, I3, /, ’ The ’,
 & ’number of function evaluations is ’, I3, /, ’ The ’,
 & ’number of Jacobian evaluations is ’, I3, /)
 END
C
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
C
 F(1) = 10.0E0*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END
C
 SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
C
 FJAC(1,1) = -20.0E0*X(1)
 FJAC(2,1) = -1.0E0
 FJAC(1,2) = 10.0E0
 FJAC(2,2) = 0.0E0
 RETURN
 END

Output
The solution is 1.0000 1.0000

The function evaluated at the solution is
0.0000 0.0000

The number of iterations is 22
The number of function evaluations is 31
The number of Jacobian evaluations is 23

BCONF/DBCONF (Single/Double precision)
Minimize a function of N variables subject to bounds on the variables using a
quasi-Newton method and a finite-difference gradient.

Usage
CALL BCONF (FCN, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
 FSCALE, IPARAM, RPARAM, X, FVALUE)

924 • Chapter 8: Optimization IMSL MATH/LIBRARY

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing an initial guess of the computed
solution. (Input)
IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will

have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. In the absence of other information, set all entries to 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set FSCALE to 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

IMSL MATH/LIBRARY Chapter 8: Optimization • 925

Comments

1. Automatic workspace usage is

BCONF N * (2 * N + 8) + N units, or
DBCONF 2 * N * (2 * N + 8) + N units.

Workspace may be explicitly provided, if desired, by use of
B2ONF/DB2ONF. The reference is

CALL B2ONF (FCN, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, FSCALE, IPARAM, RPARAM, X,
 FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (2 * N + 8). WK contains the
following information on output: The second N locations contain the last
step taken. The third N locations contain the last Newton step. The fourth
N locations contain an estimate of the gradient at the solution. The final

N2 locations contain a BFGS approximation to the Hessian at the solution.

IWK — Work vector of length N.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than
the current X value.

3. The first stopping criterion for BCONF occurs when the norm of the
gradient is less than the given gradient tolerance (RPARAM(1)). The
second stopping criterion for BCONF occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

926 • Chapter 8: Optimization IMSL MATH/LIBRARY

4. If the default parameters are desired for BCONF, then set IPARAM(1) to
zero and call the routine BCONF. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling BCONF:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix;
otherwise, it is initialized to a diagonal matrix containing

max ,f t f ss i0 52 7∗ 2

on the diagonal where t = XGUESS, fV = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in BCONF.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

f x f
i i i

s

∗max , /

max ,

12 7
0 52 7

where g = ∇f(x), s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

IMSL MATH/LIBRARY Chapter 8: Optimization • 927

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max (10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCONF.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
s ti ii

n 1 6=∑
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

The routine BCONF uses a quasi-Newton method and an active set strategy to
solve minimization problems subject to simple bounds on the variables. The
problem is stated as follows:

min
x n

f x
∈R

0 5
subject to l ≤ x ≤ u

From a given starting point xF, an active set IA, which contains the indices of the
variables at their bounds, is built. A variable is called a “free variable” if it is not
in the active set. The routine then computes the search direction for the free
variables according to the formula

928 • Chapter 8: Optimization IMSL MATH/LIBRARY

d = −B-1 gF

where B is a positive definite approximation of the Hessian and gF is the gradient

evaluated at xF; both are computed with respect to the free variables. The search
direction for the variables in IA is set to zero. A line search is used to find a new

point xQ ,

xQ = xF + λd, λ ∈ (0, 1]

such that

f (xQ) ≤ f (xF) + αg7 d, α ∈ (0, 0.5)

Finally, the optimality conditions

||g(xL)|| ≤ ε, lL < xL< uL

g(xL) < 0, xL = uL

g(xL) > 0, xL = lL

are checked, where ε is a gradient tolerance. When optimality is not achieved, B
is updated according to the BFGS formula:

B B
Bss B

s Bs

yy

y s

T

T

T

T← − +

where s = xQ − xF and y = gQ − gF. Another search direction is then computed to
begin the next iteration.

The active set is changed only when a free variable hits its bounds during an
iteration or the optimality condition is met for the free variables but not for all
variables in IA, the active set. In the latter case, a variable that violates the
optimality condition will be dropped out of IA. For more details on the quasi-
Newton method and line search, see Dennis and Schnabel (1983). For more
detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact gradient can be easily
provided, routine BCONG (page 930) should be used instead.

Example

The problem

IMSL MATH/LIBRARY Chapter 8: Optimization • 929

min

.

f x x x x

x

x

0 5 3 8 1 6= − + −

− ≤ ≤
− ≤ ≤

100 1

2 0 5

1 2

2 1
2 2

1
2

1

2

subject to

is solved with an initial guess (−1.2, 1.0) and default values for parameters.

 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IPARAM(7), ITP, L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N), XGUESS(N),
 & XLB(N), XSCALE(N), XUB(N)
 EXTERNAL BCONF, ROSBRK, UMACH
C
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/2*1.0E0/, FSCALE/1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
C All the bounds are provided
 ITP = 0
C Default parameters are used
 IPARAM(1) = 0
C Minimize Rosenbrock function using
C initial guesses of -1.2 and 1.0
 CALL BCONF (ROSBRK, N, XGUESS, ITP, XLB, XUB, XSCALE, FSCALE,
 & IPARAM, RPARAM, X, F)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
C
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’,
 & ’value is ’, F8.3, //, ’ The number of iterations is ’,
 & 10X, I3, /, ’ The number of function evaluations is ’,
 & I3, /, ’ The number of gradient evaluations is ’, I3)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
C
 RETURN
 END

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 25
The number of function evaluations is 34
The number of gradient evaluations is 27

930 • Chapter 8: Optimization IMSL MATH/LIBRARY

BCONG/DBCONG (Single/Double precision)
Minimize a function of N variables subject to bounds on the variables using a
quasi-Newton method and a user-supplied gradient.

Usage
CALL BCONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
 FSCALE, IPARAM, RPARAM, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing the initial guess of the minimum.
(Input)
IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will

have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. In the absence of other information, set all entries to 1.0.

IMSL MATH/LIBRARY Chapter 8: Optimization • 931

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set FSCALE to 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

Comments

1. Automatic workspace usage is

BCONG N * (2 * N + 8) + N units, or
DBCONG 2 * N * (2 * N + 8) + N units.

Workspace may be explicitly provided, if desired, by use of
B2ONG/DB2ONG. The reference is

CALL B2ONG (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, FSCALE, IPARAM, RPARAM, X,
 FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (2 * N + 8). WK contains the
following information on output: The second N locations contain the last
step taken. The third N locations contain the last Newton step. The fourth
N locations contain an estimate of the gradient at the solution. The final

N2 locations contain a BFGS approximation to the Hessian at the solution.

IWK — Integer work vector of length N.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.

932 • Chapter 8: Optimization IMSL MATH/LIBRARY

 4 6 Five consecutive steps have been taken with the
maximum step length.

 2 7 Scaled step tolerance satisfied; the current point may
be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

 3 8 The last global step failed to locate a lower point than
the current X value.

3. The first stopping criterion for BCONG occurs when the norm of the
gradient is less than the given gradient tolerance (RPARAM(1)). The
second stopping criterion for BCONG occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for BCONG, then set IPARAM(1) to
zero and call the routine BCONG. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling BCONG:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
If IPARAM(6) = 0, the Hessian is initialized to the identity matrix;
otherwise, it is initialized to a diagonal matrix containing

max ,f t f ss i0 52 7∗ 2

on the diagonal where t = XGUESS, fV = FSCALE, and s = XSCALE.
Default: 0.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: Not used in BCONG.

IMSL MATH/LIBRARY Chapter 8: Optimization • 933

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

f x f
i i i

s

∗max , /

max ,

12 7
0 52 7

where g = ∇f (x), s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max (10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCONG.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
s ti ii

n 1 6=∑
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

934 • Chapter 8: Optimization IMSL MATH/LIBRARY

Algorithm

The routine BCONG uses a quasi-Newton method and an active set strategy to
solve minimization problems subject to simple bounds on the variables. The
problem is stated as follows:

min
x n

f x
∈R

0 5
subject to l ≤ x ≤ u

From a given starting point xF, an active set IA, which contains the indices of the
variables at their bounds, is built. A variable is called a “free variable” if it is not
in the active set. The routine then computes the search direction for the free
variables according to the formula

d = −B-1 gF

where B is a positive definite approximation of the Hessian and gF is the gradient

evaluated at xF; both are computed with respect to the free variables. The search
direction for the variables in IA is set to zero. A line search is used to find a new

point xQ ,

xQ = xF + λd, λ ∈ (0, 1]

such that

f (xQ) ≤ f (xF) + αg7 d, α ∈ (0, 0.5)

Finally, the optimality conditions

||g(xL)|| ≤ ε, lL < xL< uL

g(xL) < 0, xL = uL

g(xL) > 0, xL = lL

are checked, where ε is a gradient tolerance. When optimality is not achieved, B
is updated according to the BFGS formula:

B B
Bss B

s Bs

yy

y s

T

T

T

T← − +

where s = xQ − xF and y = gQ − gF. Another search direction is then computed to
begin the next iteration.

The active set is changed only when a free variable hits its bounds during an
iteration or the optimality condition is met for the free variables but not for all
variables in IA, the active set. In the latter case, a variable that violates the
optimality condition will be dropped out of IA. For more details on the quasi-
Newton method and line search, see Dennis and Schnabel (1983). For more
detailed information on active set strategy, see Gill and Murray (1976).

IMSL MATH/LIBRARY Chapter 8: Optimization • 935

Example

The problem

min

.

f x x x x

x

x

0 5 3 8 1 6= − + −

− ≤ ≤
− ≤ ≤

100 1

2 0 5

1 2

2 1
2 2

1
2

1

2

subject to

is solved with an initial guess (−1.2, 1.0), and default values for parameters.

 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IPARAM(7), ITP, L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N),
 & XGUESS(N), XLB(N), XSCALE(N), XUB(N)
 EXTERNAL BCONG, ROSBRK, ROSGRD, UMACH
C
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/2*1.0E0/, FSCALE/1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
C All the bounds are provided
 ITP = 0
C Default parameters are used
 IPARAM(1) = 0
C Minimize Rosenbrock function using
C initial guesses of -1.2 and 1.0
 CALL BCONG (ROSBRK, ROSGRD, N, XGUESS, ITP, XLB, XUB, XSCALE,
 & FSCALE, IPARAM, RPARAM, X, F)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
C
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’,
 & ’value is ’, F8.3, //, ’ The number of iterations is ’,
 & 10X, I3, /, ’ The number of function evaluations is ’,
 & I3, /, ’ The number of gradient evaluations is ’, I3)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
C
 RETURN
 END
C
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
C
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
C
 RETURN
 END

936 • Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 23
The number of function evaluations is 32
The number of gradient evaluations is 24

BCODH/DBCODH (Single/Double precision)
Minimize a function of N variables subject to bounds on the variables using a
modified Newton method and a finite-difference Hessian.

Usage
CALL BCODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
 FSCALE, IPARAM, RPARAM, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing the initial guess of the minimum.
(Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will

have the same bounds.

IMSL MATH/LIBRARY Chapter 8: Optimization • 937

XLB — Vector of length N containing the lower bounds on the variables. (Input)

XUB — Vector of length N containing the upper bounds on the variables.
(Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. In the absence of other information, set all entries to 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set FSCALE to 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

Comments

1. Automatic workspace usage is

BCODH N * (N + 8) + N units, or
DBCODH 2 * N * (N + 8) + N units.

Workspace may be explicitly provided, if desired, by use of
B2ODH/DB2ODH. The reference is

CALL B2ODH (FCN, GRAD, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, FSCALE, IPARAM, RPARAM, X,
 FVALUE, WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length N * (N + 8). WK contains the the
following information on output: The second N locations contain the last
step taken. The third N locations contain the last Newton step. The fourth
N locations contain an estimate of the gradient at the solution. The final

N2 locations contain the Hessian at the approximate solution.

IWK — Integer work vector of length N.

938 • Chapter 8: Optimization IMSL MATH/LIBRARY

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.

3. The first stopping criterion for BCODH occurs when the norm of the
gradient is less than the given gradient tolerance (RPARAM(1)). The
second stopping criterion for BCODH occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for BCODH, then set IPARAM(1) to
zero and call the routine BCODH. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM; then the following steps should be
taken before calling BCODH:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
Default: Not used in BCODH.

IMSL MATH/LIBRARY Chapter 8: Optimization • 939

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

f x f
i i i

s

∗max , /

max ,

12 7
0 52 7

where g = ∇f (x), s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max (10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCODH.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
s ti ii

n 1 6=∑
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is
declared double precision.

940 • Chapter 8: Optimization IMSL MATH/LIBRARY

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

The routine BCODH uses a modified Newton method and an active set strategy to
solve minimization problems subject to simple bounds on the variables. The
problem is stated as

min
x n

f x
∈R

0 5
subject to l ≤ x ≤ u

From a given starting point xF, an active set IA, which contains the indices of the
variables at their bounds, is built. A variable is called a “free variable” if it is not
in the active set. The routine then computes the search direction for the free
variables according to the formula

d = −H-1 gF

where H is the Hessian and gF is the gradient evaluated at xF; both are computed
with respect to the free variables. The search direction for the variables in IA is

set to zero. A line search is used to find a new point xQ ,

xQ = xF + λd, λ ∈ (0, 1]

such that

f (xQ) ≤ f (xF) + αg7 d, α ∈ (0, 0.5)

Finally, the optimality conditions

||g(xL)|| ≤ ε, lL < xL�< uL

g(xL) < 0, xL = uL

g(xL) > 0, xL = lL

are checked where ε is a gradient tolerance. When optimality is not achieved,
another search direction is computed to begin the next iteration. This process is
repeated until the optimality criterion is met.

The active set is changed only when a free variable hits its bounds during an
iteration or the optimality condition is met for the free variables but not for all
variables in IA, the active set. In the latter case, a variable that violates the
optimality condition will be dropped out of IA. For more details on the modified
Newton method and line search, see Dennis and Schnabel (1983). For more
detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Hessian for some single
precision calculations, an inaccurate estimate of the Hessian may cause the

IMSL MATH/LIBRARY Chapter 8: Optimization • 941

algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact Hessian can be easily
provided, routine BCOAH (page 942) should be used instead.

Example

The problem

min

.

f x x x x

x

x

0 5 3 8 1 6= − + −

− ≤ ≤
− ≤ ≤

100 1

2 0 5

1 2

2 1
2 2

1
2

1

2

subject to

is solved with an initial guess (−1.2, 1.0), and default values for parameters.
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IP, IPARAM(7), L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N),
 & XGUESS(N), XLB(N), XSCALE(N), XUB(N)
 EXTERNAL BCODH, ROSBRK, ROSGRD, UMACH
C
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
C
 IPARAM(1) = 0
 IP = 0
C Minimize Rosenbrock function using
C initial guesses of -1.2 and 1.0
 CALL BCODH (ROSBRK, ROSGRD, N, XGUESS, IP, XLB, XUB, XSCALE,
 & FSCALE, IPARAM, RPARAM, X, F)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5)
C
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’,
 & ’value is ’, F8.3, //, ’ The number of iterations is ’,
 & 10X, I3, /, ’ The number of function evaluations is ’,
 & I3, /, ’ The number of gradient evaluations is ’, I3)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2
C
 RETURN
 END
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
C
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
C

942 • Chapter 8: Optimization IMSL MATH/LIBRARY

 RETURN
 END

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 17
The number of function evaluations is 26
The number of gradient evaluations is 18

BCOAH/DBCOAH (Single/Double precision)
Minimize a function of N variables subject to bounds on the variables using a
modified Newton method and a user-supplied Hessian.

Usage
CALL BCOAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, FSCALE, IPARAM, RPARAM, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – Vector of length N at which point the gradient is evaluated. (Input)
X should not be changed by GRAD.
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The
usage is CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)
X – Vector of length N at which point the Hessian is evaluated. (Input)
X should not be changed by HESS.
H – The Hessian evaluated at the point X. (Output)
LDH – Leading dimension of H exactly as specified in the dimension
statement of the calling program. (Input)

HESS must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 8: Optimization • 943

N — Dimension of the problem. (Input)

XGUESS — Vector of length N containing the initial guess. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will

have the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input)

XUB — Vector of length N containing the upper bounds on the variables.
(Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. In the absence of other information, set all entries to 1.0.

FSCALE — Scalar containing the function scaling. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set FSCALE to 1.0.

IPARAM — Parameter vector of length 7. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the function at the computed solution.
(Output)

Comments

1. Automatic workspace usage is

BCOAH N * (N + 8) + N units, or
DBCOAH 2 * N * (N + 8) + N units.

Workspace may be explicitly provided, if desired, by use of
B2OAH/DB2OAH. The reference is

CALL B2OAH (FCN, GRAD, HESS, N, XGUESS, IBTYPE, XLB,
 XUB, XSCALE, FSCALE, IPARAM, RPARAM, X,
 FVALUE, WK, IWK)

944 • Chapter 8: Optimization IMSL MATH/LIBRARY

The additional arguments are as follows:

WK — Work vector of length N * (N + 8). WK contains the following
information on output: The second N locations contain the last step
taken. The third N locations contain the last Newton step. The fourth N

locations contain an estimate of the gradient at the solution. The final N2
locations contain the Hessian at the approximate solution.

IWK — Work vector of length N.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 4 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 4 5 Maximum number of gradient evaluations exceeded.
 4 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

 4 7 Maximum number of Hessian evaluations exceeded.
 3 8 The last global step failed to locate a lower point than

the current X value.

3. The first stopping criterion for BCOAH occurs when the norm of the
gradient is less than the given gradient tolerance (RPARAM(1)). The
second stopping criterion for BCOAH occurs when the scaled distance
between the last two steps is less than the step tolerance (RPARAM(2)).

4. If the default parameters are desired for BCOAH, then set IPARAM(1) to
zero and call the routine BCOAH. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling BCOAH:

CALL U4INF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4INF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 7.
IPARAM(1) = Initialization flag.

IMSL MATH/LIBRARY Chapter 8: Optimization • 945

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of gradient evaluations.
Default: 400.

IPARAM(6) = Hessian initialization parameter.
Default: Not used in BCOAH.

IPARAM(7) = Maximum number of Hessian evaluations.
Default: 100.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

f x f
i i i

s

∗max , /

max ,

12 7
0 52 7

where g = ∇f(x), s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max (10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.
Default: Not used in BCOAH.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

946 • Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
s ti ii

n 1 6=∑
ε2 = || s ||2, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is required, then DU4INF is called and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

The routine BCOAH uses a modified Newton method and an active set strategy to
solve minimization problems subject to simple bounds on the variables. The
problem is stated as follows:

min
x n

f x
∈R

0 5
subject to l ≤ x ≤ u

From a given starting point xF, an active set IA, which contains the indices of the
variables at their bounds, is built. A variable is called a “free variable” if it is not
in the active set. The routine then computes the search direction for the free
variables according to the formula

d = −H-1 gF

where H is the Hessian and gF is the gradient evaluated at xF; both are computed
with respect to the free variables. The search direction for the variables in IA is

set to zero. A line search is used to find a new point xQ ,

xQ = xF + λd, λ ∈ (0, 1]

such that

f(xQ) ≤ f(xF) + αg7 d, α ∈ (0, 0.5)

Finally, the optimality conditions

||g(xL)|| ≤ ε, lL < xL< uL

g(xL) < 0, xL = uL

g(xL) > 0, xL = lL

IMSL MATH/LIBRARY Chapter 8: Optimization • 947

are checked where ε is a gradient tolerance. When optimality is not achieved,
another search direction is computed to begin the next iteration. This process is
repeated until the optimality criterion is met.

The active set is changed only when a free variable hits its bounds during an
iteration or the optimality condition is met for the free variables but not for all
variables in IA, the active set. In the latter case, a variable that violates the
optimality condition will be dropped out of IA. For more details on the modified
Newton method and line search, see Dennis and Schnabel (1983). For more
detailed information on active set strategy, see Gill and Murray (1976).

Example

The problem

min

.

f x x x x

x

x

0 5 3 8 1 6= − + −

− ≤ ≤
− ≤ ≤

100 1

2 0 5

1 2

2 1
2 2

1
2

1

2

subject to

is solved with an initial guess (−1.2, 1.0), and default values for parameters.

 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IP, IPARAM(7), L, NOUT
 REAL F, FSCALE, RPARAM(7), X(N),
 & XGUESS(N), XLB(N), XSCALE(N), XUB(N)
 EXTERNAL BCOAH, ROSBRK, ROSGRD, ROSHES, UMACH
C
 DATA XGUESS/-1.2E0, 1.0E0/, XSCALE/1.0E0, 1.0E0/, FSCALE/1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
C
 IPARAM(1) = 0
 IP = 0
C Minimize Rosenbrock function using
C initial guesses of -1.2 and 1.0
 CALL BCOAH (ROSBRK, ROSGRD, ROSHES, N, XGUESS, IP, XLB, XUB,
 & XSCALE, FSCALE, IPARAM, RPARAM, X, F)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, F, (IPARAM(L),L=3,5), IPARAM(7)
C
99999 FORMAT (’ The solution is ’, 6X, 2F8.3, //, ’ The function ’,
 & ’value is ’, F8.3, //, ’ The number of iterations is ’,
 & 10X, I3, /, ’ The number of function evaluations is ’,
 & I3, /, ’ The number of gradient evaluations is ’, I3, /,
 & ’ The number of Hessian evaluations is ’, I3)
C
 END
C
 SUBROUTINE ROSBRK (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 1.0E2*(X(2)-X(1)*X(1))**2 + (1.0E0-X(1))**2

948 • Chapter 8: Optimization IMSL MATH/LIBRARY

C
 RETURN
 END
C
 SUBROUTINE ROSGRD (N, X, G)
 INTEGER N
 REAL X(N), G(N)
C
 G(1) = -4.0E2*(X(2)-X(1)*X(1))*X(1) - 2.0E0*(1.0E0-X(1))
 G(2) = 2.0E2*(X(2)-X(1)*X(1))
C
 RETURN
 END
C
 SUBROUTINE ROSHES (N, X, H, LDH)
 INTEGER N, LDH
 REAL X(N), H(LDH,N)
C
 H(1,1) = -4.0E2*X(2) + 1.2E3*X(1)*X(1) + 2.0E0
 H(2,1) = -4.0E2*X(1)
 H(1,2) = H(2,1)
 H(2,2) = 2.0E2
C
 RETURN
 END

Output
The solution is 0.500 0.250

The function value is 0.250

The number of iterations is 18
The number of function evaluations is 29
The number of gradient evaluations is 19
The number of Hessian evaluations is 18

BCPOL/DBCPOL (Single/Double precision)
Minimize a function of N variables subject to bounds on the variables using a
direct search complex algorithm.

Usage
CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN,
 X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization • 949

FCN must be declared EXTERNAL in the calling program.

N — The number of variables. (Input)

XGUESS — Real vector of length N that contains an initial guess to the
minimum. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on the first, variable. All other variables

will have the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input,
if IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on the variables. (Input,
if IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

FTOL — First convergence criterion. (Input)
The algorithm stops when a relative error in the function values is less than FTOL,
i.e. when (F(worst) − F(best)) < FTOL * (1 + ABS(F(best))) where F(worst) and
F(best) are the function values of the current worst and best point, respectively.
Second convergence criterion. The algorithm stops when the standard deviation
of the function values at the 2 * N current points is less than FTOL. If the
subroutine terminates prematurely, try again with a smaller value FTOL.

MAXFCN — On input, maximum allowed number of function evaluations.
(Input/ Output)
On output, actual number of function evaluations needed.

X — Real vector of length N containing the best estimate of the minimum found.
(Output)

FVALUE — Function value at the computed solution. (Output)

Comments

1. Automatic workspace usage is

BCPOL 2 * N**2 + 5 * N units, or
DBCPOL 4 * N**2 + 10 * N units.

Workspace may be explicitly provided, if desired, by use of
B2POL/DB2POL. The reference is

CALL B2POL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL,
 MAXFCN, X, FVALUE, WK)

The additional argument is

WK — Real work vector of length 2 * N**2 + 5 * N

2. Informational error

950 • Chapter 8: Optimization IMSL MATH/LIBRARY

Type Code
 3 1 The maximum number of function evaluations is

exceeded.

3. Since BCPOL uses only function-value information at each step to
determine a new approximate minimum, it could be quite inefficient on
smooth problems compared to other methods such as those implemented
in routine BCONF (page 923), which takes into account derivative
information at each iteration. Hence, routine BCPOL should only be used
as a last resort. Briefly, a set of 2 * N points in an N-dimensional space is
called a complex. The minimization process iterates by replacing the
point with the largest function value by a new point with a smaller
function value. The iteration continues until all the points cluster
sufficiently close to a minimum.

Algorithm

The routine BCPOL uses the complex method to find a minimum point of a
function of n variables. The method is based on function comparison; no
smoothness is assumed. It starts with 2n points x1, x2, …, x2Q. At each iteration, a
new point is generated to replace the worst point xM� which has the largest function
value among these 2n points. The new point is constructed by the following
formula:

xN = c + α(c − xM)

where

c
n

xi j i=
− ≠∑1

2 1

and α (α > 0) is the reflection coefficient.

When xN is a best point, that is, when f (xN) ≤ f (xL) for i = 1, …, 2n, an expansion

point is computed xH = c + β(xN − c), where β(β > 1) is called the expansion
coefficient. If the new point is a worst point, then the complex would be
contracted to get a better new point. If the contraction step is unsuccessful, the
complex is shrunk by moving the vertices halfway toward the current best point.
Whenever the new point generated is beyond the bound, it will be set to the
bound. This procedure is repeated until one of the following stopping criteria is
satisfied:

Criterion 1:

fEHVW − fZRUVW ≤ εI(1. + |fEHVW|)

Criterion 2:

IMSL MATH/LIBRARY Chapter 8: Optimization • 951

()f
f

ni
i

n jj

n

f
=

=∑
∑

− ≤
1

2
1

2

2

2
ε

where fL = f(xL), fM = f(xM), and εI is a given tolerance. For a complete description,
see Nelder and Mead (1965) or Gill et al. (1981).

Example

The problem

min

.

f x x x x

x

x

0 5 3 8 1 6= − + −

− ≤ ≤
− ≤ ≤

100 1

2 0 5

1 2

2 1
2 2

1
2

1

2

subject to

is solved with an initial guess (−1.2, 1.0), and the solution is printed.

C Variable declarations
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IBTYPE, K, MAXFCN, NOUT
 REAL FTOL, FVALUE, X(N), XGUESS(N), XLB(N), XUB(N)
 EXTERNAL BCPOL, FCN, UMACH
C
C Initializations
C XGUESS = (-1.2, 1.0)
C XLB = (-2.0, -1.0)
C XUB = (0.5, 2.0)
 DATA XGUESS/-1.2, 1.0/, XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
C
 FTOL = 1.0E-5
 IBTYPE = 0
 MAXFCN = 300
C
 CALL BCPOL (FCN, N, XGUESS, IBTYPE, XLB, XUB, FTOL, MAXFCN, X,
 & FVALUE)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (X(K),K=1,N), FVALUE
99999 FORMAT (’ The best estimate for the minimum value of the’, /,
 & ’ function is X = (’, 2(2X,F4.2), ’)’, /, ’ with ’,
 & ’function value FVALUE = ’, E12.6)
C
 END
C External function to be minimized
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = 100.0*(X(2)-X(1)*X(1))**2 + (1.0-X(1))**2
 RETURN
 END

952 • Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The best estimate for the minimum value of the
function is X = (0.50 0.25)
with function value FVALUE = 0.250002E+00

BCLSF/DBCLSF (Single/Double precision)
Solve a nonlinear least squares problem subject to bounds on the variables using a
modified Levenberg-Marquardt algorithm and a finite-difference Jacobian.

Usage
CALL BCLSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
 FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)
N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

N — Number of variables. (Input)
N must be less than or equal to M.

XGUESS — Vector of length N containing the initial guess. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will

have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two

IMSL MATH/LIBRARY Chapter 8: Optimization • 953

points. By default, the values for XSCALE are set internally. See IPARAM(6) in
Comment 4.

FSCALE — Vector of length M containing the diagonal scaling matrix for the
functions. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set all entries to 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the approximate solution. (Output)

FVEC — Vector of length M containing the residuals at the approximate solution.
(Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

BCLSF 13 * N + 3 * M − 1 units, or
DBCLSF 24 * N + 6 * M − 2 units.

Workspace may be explicitly provided, if desired, by use of
B2LSF/DB2LSF. The reference is

CALL B2LSF (FCN, M, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC,
 FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * N + 3 * M − 1. WK contains the
following information on output: The second N locations contain the last
step taken. The third N locations contain the last Gauss-Newton step.
The fourth N locations contain an estimate of the gradient at the solution.

IWK — Work vector of length 2 * N containing the permutations used in
the QR factorization of the Jacobian at the solution.

954 • Chapter 8: Optimization IMSL MATH/LIBRARY

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 3 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the

maximum step length.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

3. The first stopping criterion for BCLSF occurs when the norm of the
function is less than the absolute function tolerance. The second
stopping criterion occurs when the norm of the scaled gradient is less
than the given gradient tolerance. The third stopping criterion for BCLSF
occurs when the scaled distance between the last two steps is less than
the step tolerance.

4. If the default parameters are desired for BCLSF, then set IPARAM(1) to
zero and call the routine BCLSF. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling BCLSF:

CALL U4LSF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.
If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

IMSL MATH/LIBRARY Chapter 8: Optimization • 955

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

F x

i i i∗max , /1

2
2

2 7
0 5

where

g J x F x fi
T

i s i
= ∗0 5 0 54 9 1 62

J(x) is the Jacobian, s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step between two points x and y is
computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max(10-20, ε2/3) in double where ε is the
machine precision.

RPARAM(4) = Absolute function tolerance.

Default: max (10-20, ε2), max(10-40, ε2) in double where ε is the machine
precision.

RPARAM(5) = False convergence tolerance.
Default: 100 ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
=

=∑ s ti ii

n 1 6
ε� = ||s||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

956 • Chapter 8: Optimization IMSL MATH/LIBRARY

If double precision is desired, then DU4LSF is called and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to “Error Handling” in
the Introduction.

Algorithm

The routine BCLSF uses a modified Levenberg-Marquardt method and an active
set strategy to solve nonlinear least squares problems subject to simple bounds on
the variables. The problem is stated as follows:

min
x

T
i

i

m

n
F x F x f x

∈ =
= ∑

R

1

2

1

2
2

1

0 5 0 5 0 5
subject to l ≤ x ≤ u

where m ≥ n, F : RQ→ RP, and fL(x) is the i-th component function of F(x). From
a given starting point, an active set IA, which contains the indices of the variables
at their bounds, is built. A variable is called a “free variable” if it is not in the
active set. The routine then computes the search direction for the free variables
according to the formula

d = − (J7 J + µI)-1 J7 F

where µ is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian
with respect to the free variables. The search direction for the variables in IA is
set to zero. The trust region approach discussed by Dennis and Schnabel (1983) is
used to find the new point. Finally, the optimality conditions are checked. The
conditions are

||g(xL)|| ≤ ε, lL < xL< uL

g(xL) < 0, xL = uL

g(xL) > 0, xL = lL

where ε is a gradient tolerance. This process is repeated until the optimality
criterion is achieved.

The active set is changed only when a free variable hits its bounds during an
iteration or the optimality condition is met for the free variables but not for all
variables in IA, the active set. In the latter case, a variable that violates the
optimality condition will be dropped out of IA. For more detail on the Levenberg-
Marquardt method, see Levenberg (1944), or Marquardt (1963). For more
detailed information on active set strategy, see Gill and Murray (1976).

Since a finite-difference method is used to estimate the Jacobian for some single
precision calculations, an inaccurate estimate of the Jacobian may cause the
algorithm to terminate at a noncritical point. In such cases, high precision

IMSL MATH/LIBRARY Chapter 8: Optimization • 957

arithmetic is recommended. Also, whenever the exact Jacobian can be easily
provided, routine BCLSJ (page 958) should be used instead.

Example

The nonlinear least squares problem

min
x

i
i

f x
∈ =

∑
R2

1

2
2

1

2

0 5
subject to −2 ≤ x1 ≤ 0.5

−1 ≤ x2 ≤ 2

where

f x x x f x x1 2 1
2

2 110 10 5 3 8 0 5 1 6= − = − and

is solved with an initial guess (−1.2, 1.0) and default values for parameters.

C Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
C
 INTEGER IPARAM(7), ITP, NOUT
 REAL FJAC(LDFJAC,N), FSCALE(M), FVEC(M),
 & RPARAM(7), X(N), XGUESS(N), XLB(N), XS(N), XUB(N)
 EXTERNAL BCLSF, ROSBCK, UMACH
C Compute the least squares for the
C Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/, XS/2*1.0E0/, FSCALE/2*1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
C All the bounds are provided
 ITP = 0
C Default parameters are used
 IPARAM(1) = 0
C
 CALL BCLSF (ROSBCK, M, N, XGUESS, ITP, XLB, XUB, XS, FSCALE,
 & IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
C
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’,
 & ’evaluated at the solution is ’, /, 18X, 2F9.4, //,
 & ’ The number of iterations is ’, 10X, I3, /, ’ The ’,
 & ’number of function evaluations is ’, I3, /)
 END
C
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
C
 F(1) = 1.0E1*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END

958 • Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The solution is 0.5000 0.2500

The function evaluated at the solution is
0.0000 0.5000

The number of iterations is 15
The number of function evaluations is 20

BCLSJ/DBCLSJ (Single/Double precision)
Solve a nonlinear least squares problem subject to bounds on the variables using a
modified Levenberg-Marquardt algorithm and a user-supplied Jacobian.

Usage
CALL BCLSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, FSCALE, IPARAM, RPARAM, X, FVEC, FJAC,
 LDFJAC)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)
N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The
usage is CALL JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)
N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
FJAC – The computed M by N Jacobian at the point X. (Output)
LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

M — Number of functions. (Input)

N — Number of variables. (Input)
N must be less than or equal to M.

XGUESS — Vector of length N containing the initial guess. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.

IMSL MATH/LIBRARY Chapter 8: Optimization • 959

1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will

have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XUB — Vector of length N containing the upper bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
XSCALE is used mainly in scaling the gradient and the distance between two
points. By default, the values for XSCALE are set internally. See IPARAM(6) in
Comment 4.

FSCALE — Vector of length M containing the diagonal scaling matrix for the
functions. (Input)
FSCALE is used mainly in scaling the gradient. In the absence of other
information, set all entries to 1.0.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See
Comment 4.

RPARAM — Parameter vector of length 7. (Input/Output)
See Comment 4.

X — Vector of length N containing the approximate solution. (Output)

FVEC — Vector of length M containing the residuals at the approximate solution.
(Output)

FJAC — M by N matrix containing a finite difference approximate Jacobian at the
approximate solution. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

BCLSJ 13 * N + 3 * M − 1 units, or
DBCLSJ 24 * N + 6 * M − 2 units.

Workspace may be explicitly provided, if desired, by use of
B2LSJ/DB2LSJ. The reference is

CALL B2LSJ (FCN, JAC, M, N, XGUESS, IBTYPE, XLB,
 XUB, XSCALE, FSCALE, IPARAM, RPARAM, X,
 FVEC, FJAC, LDFJAC, WK, IWK)

The additional arguments are as follows:

960 • Chapter 8: Optimization IMSL MATH/LIBRARY

WK — Work vector of length 11 * N + 3 * M − 1. WK contains the
following information on output: The second N locations contain the last
step taken. The third N locations contain the last Gauss-Newton step.
The fourth N locations contain an estimate of the gradient at the solution.

IWK — Work vector of length 2 * N containing the permutations used in
the QR factorization of the Jacobian at the solution.

2. Informational errors
Type Code
 3 1 Both the actual and predicted relative reductions in the

function are less than or equal to the relative function
convergence tolerance.

 3 2 The iterates appear to be converging to a noncritical
point.

 4 3 Maximum number of iterations exceeded.
 4 4 Maximum number of function evaluations exceeded.
 3 6 Five consecutive steps have been taken with the

maximum step length.
 4 5 Maximum number of Jacobian evaluations exceeded.
 2 7 Scaled step tolerance satisfied; the current point may

be an approximate local solution, or the algorithm is
making very slow progress and is not near a solution,
or STEPTL is too big.

3. The first stopping criterion for BCLSJ occurs when the norm of the
function is less than the absolute function tolerance. The second
stopping criterion occurs when the norm of the scaled gradient is less
than the given gradient tolerance. The third stopping criterion for BCLSJ

occurs when the scaled distance between the last two steps is less than
the step tolerance.

4. If the default parameters are desired for BCLSJ, then set IPARAM(1) to
zero and call the routine BCLSJ. Otherwise, if any nondefault parameters
are desired for IPARAM or RPARAM, then the following steps should be
taken before calling BCLSJ:

CALL U4LSF (IPARAM, RPARAM)

Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to U4LSF will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

The following is a list of the parameters and the default values:

IMSL MATH/LIBRARY Chapter 8: Optimization • 961

IPARAM — Integer vector of length 6.
IPARAM(1) = Initialization flag.

IPARAM(2) = Number of good digits in the function.
Default: Machine dependent.

IPARAM(3) = Maximum number of iterations.
Default: 100.

IPARAM(4) = Maximum number of function evaluations.
Default: 400.

IPARAM(5) = Maximum number of Jacobian evaluations.
Default: 100.

IPARAM(6) = Internal variable scaling flag.

If IPARAM(6) = 1, then the values for XSCALE are set internally.
Default: 1.

RPARAM — Real vector of length 7.
RPARAM(1) = Scaled gradient tolerance.
The i-th component of the scaled gradient at x is calculated as

g x s

F x

i i i∗max , /1

2
2

2 7
0 5

where

g J x F x fi
T

i s i
= ∗0 5 0 54 9 1 62

J(x) is the Jacobian, s = XSCALE, and fV = FSCALE.
Default:

ε ε, 3

in double where ε is the machine precision.

RPARAM(2) = Scaled step tolerance. (STEPTL)
The i-th component of the scaled step
between two points x and y is computed as

x y

x s
i i

i i

−
max , /12 7

where s = XSCALE.

Default: ε2/3 where ε is the machine precision.

RPARAM(3) = Relative function tolerance.

Default: max(10-10, ε2/3), max(10-20, ε2/3) in double where ε is the
machine precision.

962 • Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(4) = Absolute function tolerance.

Default: max (10-20, ε2), max(10-40, ε2) in double where ε is the machine
precision.

RPARAM(5) = False convergence tolerance.
Default: 100ε where ε is the machine precision.

RPARAM(6) = Maximum allowable step size.
Default: 1000 max(ε1, ε2) where

ε1
2

1
=

=∑ s ti ii

n 1 6
ε� = ||s||�, s = XSCALE, and t = XGUESS.

RPARAM(7) = Size of initial trust region radius.
Default: based on the initial scaled Cauchy step.

If double precision is desired, then DU4LSF is called and RPARAM is
declared double precision.

5. Users wishing to override the default print/stop attributes associated with
error messages issued by this routine are referred to ERROR HANDLING in
the Introduction.

Algorithm

The routine BCLSJ uses a modified Levenberg-Marquardt method and an active
set strategy to solve nonlinear least squares problems subject to simple bounds on
the variables. The problem is stated as follows:

min
x

T
i

i

m

n
F x F x f x

∈ =
= ∑

R

1

2

1

2
2

1

0 5 0 5 0 5
subject to l ≤ x ≤ u

where m ≥ n, F : RQ→ RP, and fL(x) is the i-th component function of F(x). From
a given starting point, an active set IA, which contains the indices of the variables
at their bounds, is built. A variable is called a “free variable” if it is not in the
active set. The routine then computes the search direction for the free variables
according to the formula

d = − (J7 J + µI)-1 J7 F

where is the Levenberg-Marquardt parameter, F = F (x), and J is the Jacobian
with respect to the free variables. The search direction for the variables in IA is
set to zero. The trust region approach discussed by Dennis and Schnabel (1983) is
used to find the new point. Finally, the optimality conditions are checked. The
conditions are

||g(xL)|| ≤ ε, lL < xL< uL

IMSL MATH/LIBRARY Chapter 8: Optimization • 963

g(xL) < 0, xL = uL

g(xL) > 0, xL = lL

where ε is a gradient tolerance. This process is repeated until the optimality
criterion is achieved.

The active set is changed only when a free variable hits its bounds during an
iteration or the optimality condition is met for the free variables but not for all
variables in IA, the active set. In the latter case, a variable that violates the
optimality condition will be dropped out of IA. For more detail on the Levenberg-
Marquardt method, see Levenberg (1944) or Marquardt (1963). For more
detailed information on active set strategy, see Gill and Murray (1976).

Example

The nonlinear least squares problem

min
x

i
i

f x
∈ =

∑
R2

1

2
2

1

2

0 5
subject to −2 ≤ x1 ≤ 0.5

−1 ≤ x2 ≤ 2

where

f x x x f x x1 2 1
2

2 110 10 5 3 8 0 5 1 6= − = − and

is solved with an initial guess (−1.2, 1.0) and default values for parameters.

C Declaration of variables
 INTEGER LDFJAC, M, N
 PARAMETER (LDFJAC=2, M=2, N=2)
C
 INTEGER IPARAM(7), ITP, NOUT
 REAL FJAC(LDFJAC,N), FSCALE(M), FVEC(M),
 & RPARAM(7), X(N), XGUESS(N), XLB(N), XS(N), XUB(N)
 EXTERNAL BCLSJ, ROSBCK, ROSJAC, UMACH
C Compute the least squares for the
C Rosenbrock function.
 DATA XGUESS/-1.2E0, 1.0E0/, XS/2*1.0E0/, FSCALE/2*1.0E0/
 DATA XLB/-2.0E0, -1.0E0/, XUB/0.5E0, 2.0E0/
C All the bounds are provided
 ITP = 0
C Default parameters are used
 IPARAM(1) = 0
C
 CALL BCLSJ (ROSBCK, ROSJAC, M, N, XGUESS, ITP, XLB, XUB, XS,
 & FSCALE, IPARAM, RPARAM, X, FVEC, FJAC, LDFJAC)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) X, FVEC, IPARAM(3), IPARAM(4)
C
99999 FORMAT (’ The solution is ’, 2F9.4, //, ’ The function ’,
 & ’evaluated at the solution is ’, /, 18X, 2F9.4, //,

964 • Chapter 8: Optimization IMSL MATH/LIBRARY

 & ’ The number of iterations is ’, 10X, I3, /, ’ The ’,
 & ’number of function evaluations is ’, I3, /)
 END
C
 SUBROUTINE ROSBCK (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
C
 F(1) = 1.0E1*(X(2)-X(1)*X(1))
 F(2) = 1.0E0 - X(1)
 RETURN
 END
C
 SUBROUTINE ROSJAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC
 REAL X(N), FJAC(LDFJAC,N)
C
 FJAC(1,1) = -20.0E0*X(1)
 FJAC(2,1) = -1.0E0
 FJAC(1,2) = 10.0E0
 FJAC(2,2) = 0.0E0
 RETURN
 END

Output
The solution is 0.5000 0.2500

The function evaluated at the solution is
0.0000 0.5000

The number of iterations is 13
The number of function evaluations is 21

BCNLS/DBCNLS (Single/Double precision)
Solve a nonlinear least-squares problem subject to bounds on the variables and
general linear constraints.

Usage
CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BU, IRTYPE,
 XLB, XUB, XGUESS, X, RNORM, ISTAT)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (M, N, X, F), where
M − Number of functions. (Input)
N − Number of variables. (Input)
X − Array of length N containing the point at which the function will be evaluated.
(Input)
F − Array of length M containing the computed function at the point X. (Output)
The routine FCN must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 8: Optimization • 965

M — Number of functions. (Input)

N — Number of variables. (Input)

MCON — The number of general linear constraints for the system, not including
simple bounds. (Input)

C — MCON × N matrix containing the coefficients of the MCON general linear
constraints. (Input)

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)
LDC must be at least MCON.

BL — Vector of length MCON containing the lower limit of the general
constraints. (Input).

BU — Vector of length MCON containing the upper limit of the general
constraints. (Input).

IRTYPE — Vector of length MCON indicating the types of general constraints in
the matrix C. (Input)
Let R(I) = C(I, 1)*X(1) + … + C(I, N)*X(N). Then the value of IRTYPE(I)
signifies the following:

IRTYPE(I) I-th CONSTRAINT
 0 BL(I).EQ.R(I).EQ.BU(I)

 1 R(I).LE.BU(I)

 2 R(I).GE.BL(I)

 3 BL(I).LE.R(I).LE.BU(I)

XLB — Vector of length N containing the lower bounds on variables; if there is
no lower bound on a variable, then 1.0E30 should be set as the lower bound.
(Input)

XUB — Vector of length N containing the upper bounds on variables; if there is
no upper bound on a variable, then −1.0E30 should be set as the upper bound.
(Input)

XGUESS — Vector of length N containing the initial guess. (Input)

X — Vector of length N containing the approximate solution. (Output)

RNORM — The Euclidean length of components of the function f (x) after the
approximate solution has been found. (Output).

ISTAT — Scalar indicating further information about the approximate solution X.
(Output)
See the Comments section for a description of the tolerances and the vectors
IPARAM and RPARAM.

966 • Chapter 8: Optimization IMSL MATH/LIBRARY

ISTAT Meaning
1 The function f (x) has a length less than TOLF = RPARAM(1). This is the

expected value for ISTAT when an actual zero value of f (x) is
anticipated.

2 The function f (x) has reached a local minimum. This is the expected
value for ISTAT when a nonzero value of f (x) is anticipated.

3 A small change (absolute) was noted for the vector x. A full model
problem step was taken. The condition for ISTAT = 2 may also be
satisfied, so that a minimum has been found. However, this test is made
before the test for ISTAT = 2.

4 A small change (relative) was noted for the vector x. A full model
problem step was taken. The condition for ISTAT = 2 may also be
satisfied, so that a minimum has been found. However, this test is made
before the test for ISTAT = 2.

5 The number of terms in the quadratic model is being restricted by the
amount of storage allowed for that purpose. It is suggested, but not
required, that additional storage be given for the quadratic model
parameters. This is accessed through the vector
IPARAM, documented below.

6 Return for evaluation of function and Jacobian if reverse
communication is desired. See the Comments below.

Comments

1. Automatic workspace is

BCNLS 51N + M + 15MCON + (M + MCON)(N + 1) + 4MX + NA(NA + 8) +
5(M + MX + 14) + 70 units, or

DBCNLS 92N + M +26MCON + 2(M + MCON)(N + 1) + 7MX + 2NA(NA + 8)
+ 10(M + MX + 14) + 99 units.

where MX = MAX(M, N), NA = MCON + 2N + 6

Workspace may be explicitly provided, if desired, by use of
B2NLS/DB2NLS. The reference is

CALL B2NLS (FCN, M, N, MCON, C, LDC, BL, BU,
 IRTYPE, XLB, XUB, XGUESS, X, RNORM,
 ISTAT, IPARAM, RPARAM, JAC, F, FJ, LDFJ,
 IWORK, LIWORK, WORK, LWORK)

The additional arguments are as follows:

IPARAM — Integer vector of length six used to change certain default
attributes of BCNLS. (Input).
If the default parameters are desired for BCNLS, set IPARAM(1) to zero.
Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, the following steps should be taken before calling B2NLS:

CALL B7NLS (IPARAM, RPARAM)

Set nondefault values for IPARAM and RPARAM.

IMSL MATH/LIBRARY Chapter 8: Optimization • 967

If double precision is being used, DB7NLS should be called instead.
Following is a list of parameters and the default values.

IPARAM(1) = Initialization flag.

IPARAM(2) = ITMAX, the maximum number of iterations allowed.
Default: 75

IPARAM(3) = a flag that suppresses the use of the quadratic model in the
inner loop. If set to one, then the quadratic model is never used.
Otherwise use the quadratic model where appropriate. This option
decreases the amount of workspace as well as the computing overhead
required. A user may wish to determine if the application really requires
the use of the quadratic model.
Default: 0

IPARAM(4) = NTERMS, one more than the maximum number of terms
used in the quadratic model.
Default: 5

IPARAM(5) = RCSTAT, a flag that determines whether forward or reverse
communication is used. If set to zero, forward communication through
functions FCN and JAC is used. If set to one, reverse communication is
used, and the dummy routines B10LS/DB10LS and B11LS/DB11LS may
be used in place of FCN and JAC, respectively. When BCNLS returns with
ISTAT = 6, arrays F and FJ are filled with f(x) and the Jacobian of f(x),
respectively. BCNLS is then called again.
Default: 0

IPARAM(6) = a flag that determines whether the analytic Jacobian, as
supplied in JAC, is used, or if a finite difference approximation is
computed. If set to zero, JAC is not accessed and finite differences are
used. If set to one, JAC is used to compute the Jacobian.
Default: 0

RPARAM — Real vector of length 7 used to change certain default
attributes of BCNLS. (Input)

For the description of RPARAM, we make the following definitions:
FC current value of the length of f (x)
FB best value of length of f (x)
FL value of length of f (x) at the previous step
PV predicted value of length of f (x), after the step is taken, using

the approximating model
ε machine epsilon = amach(4)

The conditions |FB − PV| ≤ TOLSNR*FB and |FC − PV| ≤ TOLP*FB and
|FC − FL| ≤ TOLSNR*FB together with taking a full model step, must be
satisfied before the condition ISTAT = 2 is returned. (Decreasing any of
the values for TOLF, TOLD, TOLX, TOLSNR, or TOLP will likely increase
the number of iterations required for convergence.)

968 • Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(1) = TOLF, tolerance used for stopping when FC ≤ TOLF.

Default 1.E 5: min(,)− ε
RPARAM(2) = TOLX, tolerance for stopping when change to x values has
length less than or equal to TOLX*length of x values.

Default 1.E 5: min(,)− ε
RPARAM(3) = TOLD, tolerance for stopping when change to x values has
length less than pr equal to TOLD.

Default 1.E 5: min(,)− ε
RPARAM(4) = TOLSNR, tolerance used in stopping condition ISTAT = 2.
Default: 1.E−5

RPARAM(5) = TOLP, tolerance used in stopping condition ISTAT = 2.
Default: 1.E−5

RPARAM(6) = TOLUSE, tolerance used to avoid values of x in the
quadratic model’s interpolation of previous points. Decreasing this value
may result in more terms being included in the quadratic model.

Default: ε
RPARAM(7) = COND, largest condition number to allow when solving for
the quadratic model coefficients. Increasing this value may result in
more terms being included in the quadratic model.
Default: 30

JAC — User-supplied SUBROUTINE to evaluate the Jacobian. The usage
is
CALL JAC(M, N, X, FJAC, LDFJAC), where
M − Number of functions. (Input)
N − Number of variables. (Input)
X − Array of length N containing the point at which the Jacobian will be
evaluated. (Input)
FJAC − The computed M × N Jacobian at the point X. (Output)
LDFJAC − Leading dimension of the array FJAC. (Input)
The routine JAC must be declared EXTERNAL in the calling program.

F — Real vector of length N used to pass f(x) if reverse communication
(IPARAM(4)) is enabled. (Input)

FJ — Real array of size M × N used to store the Jacobian matrix of f(x) if
reverse communication (IPARAM(4)) is enabled. (Input)
Specifically,

FJ i j
f

x
i

j
,0 5 = ∂

∂

LDFJ — Leading dimension of FJ exactly as specified in the dimension
statement of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 8: Optimization • 969

IWORK — Integer work vector of length LIWORK.

LIWORK — Length of work vector IWORK. LIWORK must be at least
5MCON + 12N + 47 + MAX(M, N)

WORK — Real work vector of length LWORK

LWORK — Length of work vector WORK. LWORK must be at least 41N +
6M + 11MCON + (M + MCON)(N + 1) + NA(NA + 7) + 8 MAX(M, N) + 99.
Where NA = MCON + 2N + 6.

2. Informational errors
Type Code
 3 1 The function f (x) has reached a value that may be a

local minimum. However, the bounds on the trust
region defining the size of the step are being hit at
each step. Thus, the situation is suspect. (Situations of
this type can occur when the solution is at infinity at
some of the components of the unknowns, x).

 3 2 The model problem solver has noted a value for the
linear or quadratic model problem residual vector
length that is greater than or equal to the current value
of the function, i.e. the Euclidean length of f (x). This
situation probably means that the evaluation of f (x)
has more uncertainty or noise than is possible to
account for in the tolerances used to not a local
minimum. The value of x is suspect, but a minimum
has probably been found.

 3 3 More than ITMAX iterations were taken to obtain the
solution. The value obtained for x is suspect, although
it is the best set of x values that occurred in the entire
computation. The value of ITMAX can be increased
though the IPARAM vector.

Algorithm

The routine BCNLS solves the nonlinear least squares problem

min f xi
i

m

=
∑

1

20 5
subject to

b Cx b

x x x
l u

l u

≤ ≤
≤ ≤

BCNLS is based on the routine DQED by R.J. Hanson and F.T. Krogh. The section
of BCNLS that approximates, using finite differences, the Jacobian of f(x) is a
modification of JACBF by D.E. Salane.

970 • Chapter 8: Optimization IMSL MATH/LIBRARY

Example 1

This example finds the four variables x�, x�, x�, x� that are in the model function

h t x e x ex t x t0 5 = +1 3
2 4

There are values of h(t) at five values of t.

h(0.05) = 2.206

h(0.1) = 1.994

h(0.4) = 1.35

h(0.5) = 1.216

h(1.0) = 0.7358

There are also the constraints that x�, x� ≤ 0, x�, x� ≥ 0, and x� and x� must be
separated by at least 0.05. Nothing more about the values of the parameters is
know so the initial guess is 0.

 INTEGER MCON, N
 PARAMETER (MCON=1, N=4)
c SPECIFICATIONS FOR PARAMETERS
 INTEGER LDC, M
 PARAMETER (M=5, LDC=MCON)
c SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IRTYPE(MCON), ISTAT, NOUT
 REAL BL(MCON), C(MCON,N), RNORM, X(N), XGUESS(N), XLB(N),
 & XUB(N)
c SPECIFICATIONS FOR SUBROUTINES
 EXTERNAL BCNLS, SSET, UMACH, WRRRN
c SPECIFICATIONS FOR FUNCTIONS
 EXTERNAL FCN
c
 CALL UMACH (2, NOUT)
c Define the separation between x(2)
c and x(4)
 C(1,1) = 0.0
 C(1,2) = 1.0
 C(1,3) = 0.0
 C(1,4) = -1.0
 BL(1) = 0.05
 IRTYPE(1) = 2
c Set lower bounds on variables
 XLB(1) = 0.0
 XLB(2) = 1.0E30
 XLB(3) = 0.0
 XLB(4) = 1.0E30
c Set upper bounds on variables
 XUB(1) = -1.0E30
 XUB(2) = 0.0
 XUB(3) = -1.0E30
 XUB(4) = 0.0
c Set initial guess to 0.0
 CALL SSET (N, 0.0, XGUESS, 1)
c
 CALL BCNLS (FCN, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB,

IMSL MATH/LIBRARY Chapter 8: Optimization • 971

 & XUB, XGUESS, X, RNORM, ISTAT)
c
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 WRITE (NOUT,99999) RNORM
99999 FORMAT (/, ’rnorm = ’, E10.5)
 END
c
 SUBROUTINE FCN (M, N, X, F)
c SPECIFICATIONS FOR ARGUMENTS
 INTEGER M, N
 REAL X(*), F(*)
c SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I
c SPECIFICATIONS FOR SAVE VARIABLES
 REAL H(5), T(5)
 SAVE H, T
c SPECIFICATIONS FOR INTRINSICS
 INTRINSIC EXP
 REAL EXP
c
 DATA T/0.05, 0.1, 0.4, 0.5, 1.0/
 DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/
c
 DO 10 I=1, M
 F(I) = X(1)*EXP(X(2)*T(I)) + X(3)*EXP(X(4)*T(I)) - H(I)
 10 CONTINUE
 RETURN
 END

Output
 X
 1 2 3 4
 1.999 -1.000 0.500 -9.954
rnorm = .42438E-03

Example 2

This example solves the same problem as the last example, but reverse
communication is used to evaluate f(x) and the Jacobian of f(x). The use of the
quadratic model is turned off.

 INTEGER LDC, LDFJ, M, MCON, N
 PARAMETER (M=5, MCON=1, N=4, LDC=MCON, LDFJ=M)
c Specifications for local variables
 INTEGER I, IPARAM(6), IRTYPE(MCON), ISTAT, IWORK(1000),
 & LIWORK, LWORK, NOUT
 REAL BL(MCON), C(MCON,N), F(M), FJ(M,N), RNORM, RPARAM(7),
 & WORK(1000), X(N), XGUESS(N), XLB(N), XUB(N)
 REAL H(5), T(5)
 SAVE H, T
 INTRINSIC EXP
 REAL EXP
c Specifications for subroutines
 EXTERNAL B2NLS, B7NLS, SSET, UMACH, WRRRN
c Specifications for functions
 EXTERNAL B10LS, B11LS
c
 DATA T/0.05, 0.1, 0.4, 0.5, 1.0/

972 • Chapter 8: Optimization IMSL MATH/LIBRARY

 DATA H/2.206, 1.994, 1.35, 1.216, 0.7358/
c
 CALL UMACH (2, NOUT)
c Define the separation between x(2)
c and x(4)
 C(1,1) = 0.0
 C(1,2) = 1.0
 C(1,3) = 0.0
 C(1,4) = -1.0
 BL(1) = 0.05
 IRTYPE(1) = 2
c Set lower bounds on variables
 XLB(1) = 0.0
 XLB(2) = 1.0E30
 XLB(3) = 0.0
 XLB(4) = 1.0E30
c Set upper bounds on variables
 XUB(1) = -1.0E30
 XUB(2) = 0.0
 XUB(3) = -1.0E30
 XUB(4) = 0.0
c Set initial guess to 0.0
 CALL SSET (N, 0.0, XGUESS, 1)
c Call B7NLS to set default parameters
 CALL B7NLS (IPARAM, RPARAM)
c Suppress the use of the quadratic
c model, evaluate functions and
c Jacobian by reverse communication
 IPARAM(3) = 1
 IPARAM(5) = 1
 IPARAM(6) = 1
 LWORK = 1000
 LIWORK = 1000
c Specify dummy routines for FCN
c and JAC since we are using reverse
c communication
 10 CONTINUE
 CALL B2NLS (B10LS, M, N, MCON, C, LDC, BL, BL, IRTYPE, XLB,
 & XUB, XGUESS, X, RNORM, ISTAT, IPARAM, RPARAM,
 & B11LS, F, FJ, LDFJ, IWORK, LIWORK, WORK, LWORK)
c
c Evaluate functions if the routine
c returns with ISTAT = 6
 IF (ISTAT .EQ. 6) THEN
 DO 20 I=1, M
 FJ(I,1) = EXP(X(2)*T(I))
 FJ(I,2) = T(I)*X(1)*FJ(I,1)
 FJ(I,3) = EXP(X(4)*T(I))
 FJ(I,4) = T(I)*X(3)*FJ(I,3)
 F(I) = X(1)*FJ(I,1) + X(3)*FJ(I,3) - H(I)
 20 CONTINUE
 GO TO 10
 END IF
c
 CALL WRRRN (’X’, 1, N, X, 1, 0)
 WRITE (NOUT,99999) RNORM
99999 FORMAT (/, ’rnorm = ’, E10.5)
 END

IMSL MATH/LIBRARY Chapter 8: Optimization • 973

 Output
 X
 1 2 3 4
 1.999 -1.000 0.500 -9.954
rnorm = .42413E-03

DLPRS/DDLPRS (Single/Double precision)
Solve a linear programming problem via the revised simplex algorithm.

Usage
CALL DLPRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB, XUB,
 OBJ, XSOL, DSOL)

Arguments

M — Number of constraints. (Input)

NVAR — Number of variables. (Input)

A — M by NVAR matrix containing the coefficients of the M constraints. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)
LDA must be at least M.

BL — Vector of length M containing the lower limit of the general constraints; if
there is no lower limit on the I-th constraint, then BL(I) is not referenced.
(Input)

BU — Vector of length M containing the upper limit of the general constraints; if
there is no upper limit on the I-th constraint, then BU(I) is not referenced; if there
are no range constraints, BL and BU can share the same storage locations. (Input)

C — Vector of length NVAR containing the coefficients of the objective function.
(Input)

IRTYPE — Vector of length M indicating the types of general constraints in the
matrix A. (Input)
Let R(I) = A(I, 1) * XSOL(1) + … + A(I, NVAR) * XSOL(NVAR). Then, the value
of IRTYPE(I) signifies the following:

IRTYPE(I) I-th Constraint
0 BL(I).EQ.R(I).EQ.BU(I)
1 R(I).LE.BU(I)
2 R(I).GE.BL(I)
3 BL(I).LE.R(I).LE.BU(I)

XLB — Vector of length NVAR containing the lower bound on the variables; if
there is no lower bound on a variable, then 1.0E30 should be set as the lower
bound. (Input)

974 • Chapter 8: Optimization IMSL MATH/LIBRARY

XUB — Vector of length NVAR containing the upper bound on the variables; if
there is no upper bound on a variable, then −1.0E30 should be set as the upper
bound. (Input)

OBJ — Value of the objective function. (Output)

XSOL — Vector of length NVAR containing the primal solution. (Output)

DSOL — Vector of length M containing the dual solution. (Output)

Comments

1. Automatic workspace usage is

DLPRS M * M + 57 * M + 3 * NVAR units, or
DDLPRS 2 * M * M + 85 * M + 3 * NVAR units.

Workspace may be explicitly provided, if desired, by use of
D2PRS/DD2PRS. The reference is

CALL D2PRS (M, NVAR, A, LDA, BL, BU, C, IRTYPE, XLB,
 XUB, OBJ, XSOL, DSOL, AWK, LDAWK, WK,
 IWK)

The additional arguments are as follows:

AWK — Real work array of dimension 1 by 1. (AWK is not used in the
new implementation of the revised simplex algorithm. It is retained
merely for calling sequence consistency.)

LDAWK — Leading dimension of AWK exactly as specified in the
dimension statement of the calling program. LDAWK should be 1. (LDAWK
is not used in the new implementation of the revised simplex algorithm.
It is retained merely for calling sequence consistency.)

WK — Real work vector of length M * (M + 28).

IWK — Integer work vector of length 29 * M + 3 * NVAR.

2. Informational errors
Type Code
 3 1 The problem is unbounded.
 4 2 Maximum number of iterations exceeded.
 3 3 The problem is infeasible.
 4 4 Numerical difficulty occurred; using double precision

may help.
 4 5 The bounds are inconsistent.

Algorithm

The routine DLPRS uses a revised simplex method to solve linear programming
problems, i.e., problems of the form

min
x

T
n
c x

∈R

IMSL MATH/LIBRARY Chapter 8: Optimization • 975

subject to bO ≤ Ax ≤ bX

xO ≤ x ≤ xX

where c is the objective coefficient vector, A is the coefficient matrix, and the
vectors bO, bX, xO and xX are the lower and upper bounds on the constraints and the
variables, respectively.

For a complete description of the revised simplex method, see Murtagh (1981) or
Murty (1983).

Example

A linear programming problem is solved.
 INTEGER LDA, M, NVAR
 PARAMETER (M=2, NVAR=2, LDA=M)
C M = number of constraints
C NVAR = number of variables
C
 INTEGER I, IRTYPE(M), NOUT
 REAL A(LDA,NVAR), B(M), C(NVAR), DSOL(M), OBJ, XLB(NVAR),
 & XSOL(NVAR), XUB(NVAR)
 EXTERNAL DLPRS, SSCAL, UMACH
C
C Set values for the following problem
C
C Max 1.0*XSOL(1) + 3.0*XSOL(2)
C
C XSOL(1) + XSOL(2) .LE. 1.5
C XSOL(1) + XSOL(2) .GE. 0.5
C
C 0 .LE. XSOL(1) .LE. 1
C 0 .LE. XSOL(2) .LE. 1
C
 DATA XLB/2*0.0/, XUB/2*1.0/
 DATA A/4*1.0/, B/1.5, .5/, C/1.0, 3.0/
 DATA IRTYPE/1, 2/
C To maximize, C must be multiplied by
C -1.
 CALL SSCAL (NVAR, -1.0E0, C, 1)
C Solve the LP problem. Since there is
C no range constraint, only B is
C needed.
 CALL DLPRS (M, NVAR, A, LDA, B, B, C, IRTYPE, XLB, XUB, OBJ,
 & XSOL, DSOL)
C OBJ must be multiplied by -1 to get
C the true maximum.
 OBJ = -OBJ
C DSOL must be multiplied by -1 for
C maximization.
 CALL SSCAL (M, -1.0E0, DSOL, 1)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) OBJ, (XSOL(I),I=1,NVAR), (DSOL(I),I=1,M)
C
99999 FORMAT (//, ’ Objective = ’, F9.4, //, ’ Primal ’,
 & ’Solution =’, 2F9.4, //, ’ Dual solution =’, 2F9.4)

976 • Chapter 8: Optimization IMSL MATH/LIBRARY

C
 END

Output
Objective = 3.5000

Primal Solution = 0.5000 1.0000

Dual solution = 1.0000 0.0000

SLPRS/DSLPRS (Single/Double precision)
Solve a sparse linear programming problem via the revised simplex algorithm.

Usage
CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C, IRTYPE,
 XLB, XUB, OBJ, XSOL, DSOL)

Arguments

M — Number of constraints. (Input)

NVAR — Number of variables. (Input)

NZ — Number of nonzero coefficients in the matrix A. (Input)

A — Vector of length NZ containing the coefficients of the M constraints. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding
element in A. (Input)

JCOL — Vector of length NZ containing the column numbers of the
corresponding elements in A. (Input)

BL — Vector of length M containing the lower limit of the general constraints; if
there is no lower limit on the I-th constraint, then BL(I) is not referenced.
(Input)

BU — Vector of length M containing the lower limit of the general constraints; if
there is no lower limit on the I-th constraint, then BU(I) is not referenced.
(Input)

C — Vector of length NVAR containing the coefficients of the objective function.
(Input)

IRTYPE — Vector of length M indicating the types of general constraints in the
matrix A. (Input)
Let R(I) = A(I, 1)*XSOL(1) + … + A(I, NVAR)*XSOL(NVAR)

IRTYPE(I) I-th CONSTRAINT
 0 BL(I) = R(I) = BU(I)
 1 R(I) ≤ BU(I)

IMSL MATH/LIBRARY Chapter 8: Optimization • 977

 2 R(I) ≥ BL(I)
 3 BL(I) ≤ R(I) ≤ BU(I)

XLB — Vector of length NVAR containing the lower bound on the variables; if
there is no lower bound on a variable, then 1.0E30 should be set as the lower
bound. (Input)

XUB — Vector of length NVAR containing the upper bound on the variables; if
there is no upper bound on a variable, then −1.0E30 should be set as the upper
bound. (Input)

OBJ — Value of the objective function. (Output)

XSOL — Vector of length NVAR containing the primal solution. (Output)

DSOL — Vector of length M containing the dual solution. (Output)

Comments

1. Automatic workspace is

S2PRS 5NVAR + 62M + 2MAX(NZ + NVAR + 8, 4NVAR + 7) units, or
DS2PRS 9NVAR + 85M + 3MAX(NZ + NVAR + 8, 4NVAR + 7) units.

Workspace may be explicitly provided, if desired, by use of
S2PRS/DS2PRS. The reference is

CALL S2PRS (M, NVAR, NZ, A, IROW, JCOL, BL, BU, C,
 IRTYPE, XLB, XUB, OBJ, XSOL, DSOL,
 IPARAM, RPARAM, COLSCL, ROWSCL, WORK,
 LW, IWORK, LIW)

The additional arguments are as follows:

IPARAM — Integer parameter vector of length 12. If the default
parameters are desired for SLPRS, then set IPARAM(1) to zero and call
the routine SLPRS. Otherwise, if any nondefault parameters are desired
for IPARAM or RPARAM, then the following steps should be taken before
calling SLPRS:

CALL S5PRS (IPARAM, RPARAM)

Set nondefault values for IPARAM and RPARAM.

Note that the call to S5PRS will set IPARAM and RPARAM to their default
values so only nondefault values need to be set above.

IPARAM(1) = 0 indicates that a minimization problem is solved. If set to
1, a maximization problem is solved.
Default: 0

IPARAM(2) = switch indicating the maximum number of iterations to be
taken before returning to the user. If set to zero, the maximum number of
iterations taken is set to 3*(NVARS+M). If positive, that value is used as
the iteration limit.
Default: IPARAM(2) = 0

978 • Chapter 8: Optimization IMSL MATH/LIBRARY

IPARAM(3) = indicator for choosing how columns are selected to enter
the basis. If set to zero, the routine uses the steepest edge pricing
strategy which is the best local move. If set to one, the minimum reduced
cost pricing strategy is used. The steepest edge pricing strategy generally
uses fewer iterations than the minimum reduced cost pricing, but each
iteration costs more in terms of the amount of calculation performed.
However, this is very problem-dependent.
Default: IPARAM(3) = 0

IPARAM(4) = MXITBR, the number of iterations between recalculating the
error in the primal solution is used to monitor the error in solving the
linear system. This is an expensive calculation and every tenth iteration
is generally enough.
Default: IPARAM(4) = 10

IPARAM(5) = NPP, the number of negative reduced costs (at most) to be
found at each iteration of choosing a variable to enter the basis. If set to
zero, NPP = NVARS will be used, implying that all of the reduced costs
are computed at each such step. This “Partial pricing” may increase the
total number of iterations required. However, it decreases the number of
calculation required at each iteration. The effect on overall efficiency is
very problem-dependent. If set to some positive number, that value is
used as NPP.
Default: IPARAM(5) = 0

IPARAM(6) = IREDFQ, the number of steps between basis matrix
redecompositions. Redecompositions also occur whenever the linear
systems for the primal and dual systems have lost half their working
precision.
Default: IPARAM(6) = 50

IPARAM(7) = LAMAT, the length of the portion of WORK that is allocated
to sparse matrix storage and decomposition. LAMAT must be greater than
NZ + NVARS + 4.
Default: LAMAT = NZ + NVARS + 5

IPARAM(8) = LBM, then length of the portion of IWORK that is allocated
to sparse matrix storage and decomposition. LBM must be positive.
Default: LBM = 8*M

IPARAM(9) = switch indicating that partial results should be saved after
the maximum number of iterations, IPARAM(2), or at the optimum. If
IPARAM(9) is not zero, data essential to continuing the calculation is
saved to a file, attached to unit number IPARAM(9). The data saved
includes all the information about the sparse matrix A and information
about the current basis. If IPARAM(9) is set to zero, partial results are not
saved. It is the responsibility of the calling program to open the output
file.

IPARAM(10) = switch indicating that partial results have been computed
and stored on unit number IPARAM(10), if greater than zero.

IMSL MATH/LIBRARY Chapter 8: Optimization • 979

If IPARAM(10) is zero, a new problem is started.
Default: IPARAM(10) = 0

IPARAM(11) = switch indicating that the user supplies scale factors for
the columns of the matrix A. If IPARAM(11) = 0, SLPRS computes the
scale factors as the reciprocals of the max norm of each column. If
IPARAM(11) is set to one, element I of the vector COLSCL is used as the
scale factor for column I of the matrix A. The scaling is implicit, so no
input data is actually changed.
Default: IPARAM(11) = 0

IPARAM(12) = switch indicating that the user supplied scale factors for
the rows of the matrix A. If IPARAM(12) is set to zero, no row scaling is
one. If IPARAM(12) is set to 1, element I of the vector ROWSCL is used as
the scale factor for row I of the matrix A. The scaling is implicit, so no
input data is actually changed.
Default: IPARAM(12) = 0

RPARAM — Real parameter vector of length 7.
RPARAM(1) = COSTSC, a scale factor for the vector of costs. Normally
SLPRS computes this scale factor to be the reciprocal of the max norm if
the vector costs after the column scaling has been applied. If RPARAM(1)
is zero, SLPRS compute COSTSC.
Default: RPARAM(1) = 0.0

RPARAM(2) = ASMALL, the smallest magnitude of nonzero entries in the
matrix A. If RPARAM(2) is nonzero, checking is done to ensure that all
elements of A are at least as large as RPARAM(2). Otherwise, no checking
is done.
Default: RPARAM(2) = 0.0

RPARAM(3) = ABIG, the largest magnitude of nonzero entries in the
matrix A. If RPARAM(3) is nonzero, checking is done to ensure that all
elements of A are no larger than RPARAM(3). Otherwise, no checking is
done.
Default: RPARAM(3) = 0.0

RPARAM(4) = TOLLS, the relative tolerance used in checking if the
residuals are feasible. RPARAM(4) is nonzero, that value is used as
TOLLS, otherwise the default value is used.
Default: TOLLS = 1000.0*amach(4)

RPARAM(5) = PHI, the scaling factor used to scale the reduced cost error
estimates. In some environments, it may be necessary to reset PHI to the
range [0.01, 0.1], particularly on machines with short word length and
working precision when solving a large problem. If RPARAM(5) is
nonzero, that value is used as PHI, otherwise the default value is used.
Default: PHI = 1.0

980 • Chapter 8: Optimization IMSL MATH/LIBRARY

RPARAM(6) = TOLABS, an absolute error test on feasibility. Normally a
relative test is used with TOLLS (see RPARAM(4)). If this test fails, an
absolute test will be applied using the value TOLABS.
Default: TOLABS = 0.0

RPARAM(7) = pivot tolerance of the underlying sparse factorization
routine. If RPARAM(7) is set to zero, the default pivot tolerance is used,
otherwise, the RPARAM(7) is used.
Default: RPARAM(7) = 0.1

COLSCL — Array of length NVARS containing column scale factors for
the matrix A. (Input).
COLSCL is not used if IPARAM(11) is set to zero.

ROWSCL — Array of length M containing row scale factors for the
matrix A. (Input)
ROWSCL is not used if IPARAM(12) is set to zero.

WORK — Work array of length LW.

LW — Length of real work array. LW must be at least 4NVAR + 23M +
MAX(NZ + NVAR + 8, 4NVAR + 7).

IWORK — Integer work array of length LIW.

LIW — Length of integer work array. LIW must be at least NVAR + 39M
+ MAX(NZ + NVAR + 8, 4NVAR + 7).

Algorithm

This subroutine solves problems of the form

min c7x

subject to

b Ax b

x x x
l u

l u

≤ ≤
≤ ≤

,

where c is the objective coefficient vector, A is the coefficient matrix, and the
vectors bO, bX, xO, and xX are the lower and upper bounds on the constraints and the
variables, respectively. SLPRS is designed to take advantage of sparsity in A. The
routine is based on DPLO by Hanson and Hiebert.

Example

Solve a linear programming problem, with

IMSL MATH/LIBRARY Chapter 8: Optimization • 981

A =

�

!

"

$

######

0 0 5

1 0 5

1

0 5

1

.

.

.

O

O

defined in sparse coordinate format.

 INTEGER M, NVAR
 PARAMETER (M=200, NVAR=200)
c Specifications for local variables
 INTEGER INDEX, IROW(3*M), J, JCOL(3*M), NOUT, NZ
 REAL A(3*M), DSOL(M), OBJ, XSOL(NVAR)
 INTEGER IRTYPE(M)
 REAL B(M), C(NVAR), XL(NVAR), XU(NVAR)
c Specifications for subroutines
 EXTERNAL SLPRS, UMACH
c
 DATA B/199*1.7, 1.0/
 DATA C/-1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0,
 & -10.0, 190*-1.0/
 DATA XL/200*0.1/
 DATA XU/200*2.0/
 DATA IRTYPE/200*1/
c
 CALL UMACH (2, NOUT)
c Define A
 INDEX = 1
 DO 10 J=2, M
c Superdiagonal element
 IROW(INDEX) = J - 1
 JCOL(INDEX) = J
 A(INDEX) = 0.5
c Diagonal element
 IROW(INDEX+1) = J
 JCOL(INDEX+1) = J
 A(INDEX+1) = 1.0
 INDEX = INDEX + 2
 10 CONTINUE
 NZ = INDEX - 1
c
c
 XL(4) = 0.2
 CALL SLPRS (M, NVAR, NZ, A, IROW, JCOL, B, B, C, IRTYPE, XL, XU,
 & OBJ, XSOL, DSOL)
c
 WRITE (NOUT,99999) OBJ
c
99999 FORMAT (/, ’The value of the objective function is ’, E12.6)
c
 END

982 • Chapter 8: Optimization IMSL MATH/LIBRARY

Output
The value of the objective function is -.280971E+03

QPROG/DQPROG (Single/Double precision)
Solve a quadratic programming problem subject to linear equality/inequality
constraints.

Usage
CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAG,
 SOL, NACT, IACT, ALAMDA)

Arguments

NVAR — The number of variables. (Input)

NCON — The number of linear constraints. (Input)

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality contraints in the first NEQ rows followed by the
inequality constraints.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length NCON containing right-hand sides of the linear constraints.
(Input)

G — Vector of length NVAR containing the coefficients of the linear term of the
objective function. (Input)

H — NVAR by NVAR matrix containing the Hessian matrix of the objective
function. (Input)
H should be symmetric positive definite; if H is not positive definite, the algorithm
attempts to solve the QP problem with H replaced by a H + DIAG * I such that H +
DIAG * I is positive definite. See Comment 3.

LDH — Leading dimension of H exactly as specified in the dimension statement
of the calling program. (Input)

DIAG — Scalar equal to the multiple of the identity matrix added to H to give a
positive definite matrix. (Output)

SOL — Vector of length NVAR containing solution. (Output)

NACT — Final number of active constraints. (Output)

IACT — Vector of length NVAR containing the indices of the final active
constraints in the first NACT positions. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization • 983

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates
of the final active constraints in the first NACT positions. (Output)

Comments

1. Automatic workspace usage is

QPROG (3 * NVAR**2 + 11 * NVAR)/2 + NCON units, or
DQPROG (3 * NVAR**2 + 11 * NVAR) + 2 * NCON units.

Workspace may be explicitly provided, if desired, by use of
Q2ROG/DQ2ROG. The reference is

CALL Q2ROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH,
 DIAG, SOL, NACT, IACT, ALAMDA, WK)

The additional argument is

WK — Work vector of length (3 * NVAR**2 + 11 * NVAR)/2 + NCON.

2. Informational errors
Type Code
 3 1 Due to the effect of computer rounding error, a change

in the variables fail to improve the objective function
value; usually the solution is close to optimum.

 4 2 The system of equations is inconsistent. There is no
solution.

3. If a perturbation of H, H + DIAG * I, was used in the QP problem, then
H + DIAG * I should also be used in the definition of the Lagrange
multipliers.

Algorithm

The routine QPROG is based on M.J.D. Powell’s implementation of the Goldfarb
and Idnani (1983) dual quadratic programming (QP) algorithm for convex QP
problems subject to general linear equality/inequality constraints, i.e., problems
of the form

min
x

T T
n

g x x Hx
∈

+
R

1

2

subject to A1x = b1

A2x ≥ b2

given the vectors b1, b2, and g and the matrices H, A1, and A2. H is required to be
positive definite. In this case, a unique x solves the problem or the constraints are
inconsistent. If H is not positive definite, a positive definite perturbation of H is
used in place of H. For more details, see Powell (1983, 1985).

984 • Chapter 8: Optimization IMSL MATH/LIBRARY

Example

A quadratic programming problem is solved.
C Declare variables
 INTEGER LDA, LDH, NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=2, NVAR=5, LDA=NCON, LDH=NVAR)
C
 INTEGER IACT(NVAR), K, NACT, NOUT
 REAL A(LDA,NVAR), ALAMDA(NVAR), B(NCON), DIAG, G(NVAR),
 & H(LDH,LDH), SOL(NVAR)
 EXTERNAL QPROG, UMACH
C
C Set values of A, B, G and H.
C A = (1.0 1.0 1.0 1.0 1.0)
C (0.0 0.0 1.0 -2.0 -2.0)
C
C B = (5.0 -3.0)
C
C G = (-2.0 0.0 0.0 0.0 0.0)
C
C H = (2.0 0.0 0.0 0.0 0.0)
C (0.0 2.0 -2.0 0.0 0.0)
C (0.0 -2.0 2.0 0.0 0.0)
C (0.0 0.0 0.0 2.0 -2.0)
C (0.0 0.0 0.0 -2.0 2.0)
C
 DATA A/1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -2.0, 1.0, -2.0/
 DATA B/5.0, -3.0/
 DATA G/-2.0, 4*0.0/
 DATA H/2.0, 5*0.0, 2.0, -2.0, 3*0.0, -2.0, 2.0, 5*0.0, 2.0,
 & -2.0, 3*0.0, -2.0, 2.0/
C
 CALL QPROG (NVAR, NCON, NEQ, A, LDA, B, G, H, LDH, DIAG, SOL,
 & NACT, IACT, ALAMDA)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (SOL(K),K=1,NVAR)
99999 FORMAT (’ The solution vector is’, /, ’ SOL = (’, 5F6.1,
 & ’)’)
C
 END

Output
The solution vector is
SOL = (1.0 1.0 1.0 1.0 1.0)

LCONF/DLCONF (Single/Double precision)
Minimize a general objective function subject to linear equality/inequality
constraints.

Usage
CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,
 XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,
 ALAMDA)

IMSL MATH/LIBRARY Chapter 8: Optimization • 985

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Value of NVAR. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

NVAR — The number of variables. (Input)

NCON — The number of linear constraints (excluding simple bounds). (Input)

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality constraint gradients in the first NEQ rows,
followed by the inequality constraint gradients.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length NCON containing right-hand sides of the linear constraints.
(Input)
Specifically, the constraints on the variables X(I), I = 1, …, NVAR are A(K, 1) *
X(1) + … + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, …, NEQ.A(K, 1) * X(1) + …
+ A(K, NVAR) * X(NVAR).LE.B(K), K = NEQ + 1, …, NCON. Note that the data that
define the equality constraints come before the data of the inequalities.

XLB — Vector of length NVAR containing the lower bounds on the variables;
choose a very large negative value if a component should be unbounded below or
set XLB(I) = XUB(I) to freeze the I-th variable. (Input)
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, …, NVAR.

XUB — Vector of length NVAR containing the upper bounds on the variables;
choose a very large positive value if a component should be unbounded above.
(Input)
Specifically, these simple bounds are X(I).LE.XUB(I), I = 1, …, NVAR.

XGUESS — Vector of length NVAR containing the initial guess of the minimum.
(Input)

ACC — The nonnegative tolerance on the first order conditions at the calculated
solution. (Input)

MAXFCN — On input, maximum number of function evaluations allowed.
(Input/ Output)
On output, actual number of function evaluations needed.

SOL — Vector of length NVAR containing solution. (Output)

OBJ — Value of the objective function. (Output)

986 • Chapter 8: Optimization IMSL MATH/LIBRARY

NACT — Final number of active constraints. (Output)

IACT — Vector containing the indices of the final active constraints in the first
NACT positions. (Output)
Its length must be at least NCON + 2 * NVAR.

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates
of the final active constraints in the first NACT positions. (Output)

Comments

1. Automatic workspace usage is

LCONF NVAR**2 + 11 * NVAR + NCON units, or
DLCONF 2 * (NVAR**2 + 11* NVAR + NCON) units.

Workspace may be explicitly provided, if desired, by use of
L2ONF/DL2ONF. The reference is

CALL L2ONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB,
 XUB, XGUESS, ACC, MAXFCN, SOL, OBJ,
 NACT, IACT, ALAMDA, IPRINT, INFO, WK)

The additional arguments are as follows:

IPRINT — Print option (see Comment 3). (Input)

INFO — Informational flag (see Comment 3). (Output)

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON.

2. Informational errors
Type Code
 4 4 The equality constraints are inconsistent.
 4 5 The equality constraints and the bounds on the

variables are found to be inconsistent.
 4 6 No vector X satisfies all of the constraints. In

particular, the current active constraints prevent any
change in X that reduces the sum of constraint
violations.

 4 7 Maximum number of function evaluations exceeded.
 4 9 The variables are determined by the equality

constraints.

3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT — This argument must be set by the user to specify the
frequency of printing during the execution of the routine LCONF. There
is no printed output if IPRINT = 0. Otherwise, after ensuring feasibility,
information is given every IABS(IPRINT) iterations and whenever a
parameter called TOL is reduced. The printing provides the values of
X(.), F(.) and G(.) = GRAD(F) if IPRINT is positive. If IPRINT is
negative, this information is augmented by the current values of IACT(K)
K = 1, …, NACT, PAR(K) K = 1, …, NACT and RESKT(I) I = 1,

IMSL MATH/LIBRARY Chapter 8: Optimization • 987

…, N. The reason for returning to the calling program is also displayed
when IPRINT is nonzero.

INFO — On exit from L2ONF, INFO will have one of the following
integer values to indicate the reason for leaving the routine:
INFO = 1 SOL is feasible, and the condition that depends on ACC

is satisfied.
INFO = 2 SOL is feasible, and rounding errors are preventing

further progress.
INFO = 3 SOL is feasible, but the objective function fails to

decrease although a decrease is predicted by the
current gradient vector.

INFO = 4 In this case, the calculation cannot begin because LDA

is less than NCON or because the lower bound on a
variable is greater than the upper bound.

INFO = 5 This value indicates that the equality constraints are
inconsistent. These constraints include any
components of X(.) that are frozen by setting
XL(I) = XU(I).

INFO = 6 In this case there is an error return because the
equality constraints and the bounds on the variables
are found to be inconsistent.

INFO = 7 This value indicates that there is no vector of variables
that satisfies all of the constraints. Specifically, when
this return or an INFO = 6 return occurs, the current
active constraints (whose indices are IACT(K), K = 1,
…, NACT) prevent any change in X(.) that reduces the
sum of constraint violations. Bounds are only included
in this sum if INFO = 6.

INFO = 8 Maximum number of function evaluations exceeded.
INFO = 9 The variables are determined by the equality

constraints.

Algorithm

The routine LCONF is based on M.J.D. Powell’s TOLMIN, which solves linearly
constrained optimization problems, i.e., problems of the form

min
x n

f x
∈R

0 5
subject to A1x = b1

A2x ≤ b2

xO ≤ x ≤ xX

given the vectors b1, b2, xO and xX and the matrices A1, and A2.

988 • Chapter 8: Optimization IMSL MATH/LIBRARY

The algorithm starts by checking the equality constraints for inconsistency and

redundancy. If the equality constraints are consistent, the method will revise x0,
the initial guess provided by the user, to satisfy

A1x = b1

Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is
done by solving a sequence of quadratic programming subproblems to minimize
the sum of the constraint or bound violations.

Now, for each iteration with a feasible xN, let JN be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as
inequality constraints. Let IN be the set of indices of active constraints. The
following quadratic programming problem

min f x d f x d B dk T k T k3 8 3 8+ ∇ + 1

2

subject to aMd = 0 j ∈ IN

aMd ≤ 0 j ∈ JN

is solved to get (dN, λN) where aM is a row vector representing either a constraint in
A1or A2 or a bound constraint on x. In the latter case, the aM = eL for the bound

constraint xL ≤ (xX)L and aM = −eL for the constraint −xL ≤ (−xO)L. Here, eL is a vector

with a 1 as the i-th component, and zeroes elsewhere. λN are the Lagrange

multipliers, and BN is a positive definite approximation to the second derivative ∇

2f(xN).

After the search direction dN is obtained, a line search is performed to locate a

better point. The new point xN��= xN + αNdN has to satisfy the conditions

f x d f x d f xk k k k k k T k+ ≤ + ∇α α3 8 3 8 3 8 3 80 1.

and

d f x d d f xk T k k k k T k3 8 3 8 3 8 3 8∇ + ≥ ∇α 0 7.

The main idea in forming the set JN is that, if any of the inequality constraints

restricts the step-length αN, then its index is not in JN. Therefore, small steps are
likely to be avoided.

Finally, the second derivative approximation, BN , is updated by the BFGS
formula, if the condition

d f x d f xk T k k k k3 8 3 8 3 8∇ + − ∇ >α 0

IMSL MATH/LIBRARY Chapter 8: Optimization • 989

holds. Let xN ← xN�1, and start another iteration.

The iteration repeats until the stopping criterion

∇ − ≤f x Ak k k3 8 λ τ
2

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell
(1988, 1989).

Since a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact gradient can be easily
provided, routine LCONG (page 990) should be used instead.

Example

The problem from Schittkowski (1987)

min f(x) = −x1x2x3

subject to −x1 − 2x2 − 2x3 ≤ 0

x1 +2x2 + 2x3 ≤ 72

0 ≤ x1 ≤ 20

0 ≤ x2 ≤ 11

0 ≤ x3 ≤ 42

is solved with an initial guess x1 = 10, x2 = 10 and x3 = 10.

C Declaration of variables
 INTEGER LDA, NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=0, NVAR=3, LDA=NCON)
C
 INTEGER IACT(8), MAXFCN, NACT, NOUT
 REAL A(NCON,NVAR), ACC, ALAMDA(NVAR), B(NCON), OBJ,
 & SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR)
 EXTERNAL FCN, LCONF, UMACH
C
C Set values for the following problem.
C
C Min -X(1)*X(2)*X(3)
C
C -X(1) - 2*X(2) - 2*X(3) .LE. 0
C X(1) + 2*X(2) + 2*X(3) .LE. 72
C
C 0 .LE. X(1) .LE. 20
C 0 .LE. X(2) .LE. 11
C 0 .LE. X(3) .LE. 42
C
 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/
 DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/
 DATA ACC/0.0/, MAXFCN/400/

990 • Chapter 8: Optimization IMSL MATH/LIBRARY

C
 CALL UMACH (2, NOUT)
C
 CALL LCONF (FCN, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB, XGUESS,
 & ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA)
C
 WRITE (NOUT,99998) ’Solution:’
 WRITE (NOUT,99999) SOL
 WRITE (NOUT,99998) ’Function value at solution:’
 WRITE (NOUT,99999) OBJ
 WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN
 STOP
99998 FORMAT (//, ’ ’, A, I4)
99999 FORMAT (1X, 5F16.6)
 END
C
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(*), F
C
 F = -X(1)*X(2)*X(3)
 RETURN
 END

Output
Solution:
 20.000000 11.000000 15.000000

Function value at solution:
-3300.000000

Number of function evaluations: 5

LCONG/DLCONG (Single/Double precision)
Minimize a general objective function subject to linear equality/inequality
constraints.

Usage
CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB,
 XUB, XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT,
 ALAMDA)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Value of NVAR. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

IMSL MATH/LIBRARY Chapter 8: Optimization • 991

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Value of NVAR. (Input)
X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by GRAD.
G – Vector of length N containing the values of the gradient of the
objective function evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

NVAR — The number of variables. (Input)

NCON — The number of linear constraints (excluding simple bounds). (Input)

NEQ — The number of linear equality constraints. (Input)

A — NCON by NVAR matrix. (Input)
The matrix contains the equality constraint gradients in the first NEQ rows,
followed by the inequality constraint gradients.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of length NCON containing right-hand sides of the linear constraints.
(Input)
Specifically, the constraints on the variables X(I), I = 1, …, NVAR are A(K, 1) *
X(1) + … + A(K, NVAR) * X(NVAR).EQ.B(K), K = 1, …, NEQ.A(K, 1) * X(1) + …
+ A(K, NVAR) * X(NVAR).LE.B(K), K = NEQ + 1, …, NCON. Note that the data that
define the equality constraints come before the data of the inequalities.

XLB — Vector of length NVAR containing the lower bounds on the variables;
choose a very large negative value if a component should be unbounded below or
set XLB(I) = XUB(I) to freeze the I-th variable. (Input)
Specifically, these simple bounds are XLB(I).LE.X(I), I = 1, …, NVAR.

XUB — Vector of length NVAR containing the upper bounds on the variables;
choose a very large positive value if a component should be unbounded above.
(Input)
Specifically, these simple bounds are X(I).LE. XUB(I), I = 1, …, NVAR.

XGUESS — Vector of length NVAR containing the initial guess of the minimum.
(Input)

ACC — The nonnegative tolerance on the first order conditions at the calculated
solution. (Input)

MAXFCN — On input, maximum number of function evaluations
allowed.(Input/ Output)
On output, actual number of function evaluations needed.

SOL — Vector of length NVAR containing solution. (Output)

OBJ — Value of the objective function. (Output)

NACT — Final number of active constraints. (Output)

992 • Chapter 8: Optimization IMSL MATH/LIBRARY

IACT — Vector containing the indices of the final active constraints in the first
NACT positions. (Output)
Its length must be at least NCON + 2 * NVAR.

ALAMDA — Vector of length NVAR containing the Lagrange multiplier estimates
of the final active constraints in the first NACT positions. (Output)

Comments

1. Automatic workspace usage is

LCONG NVAR**2 + 11 * NVAR + NCON units, or
DLCONG 2 * (NVAR**2 + 11 * NVAR + NCON) units.

Workspace may be explicitly provided, if desired, by use of
L2ONG/DL2ONG. The reference is

CALL L2ONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B,
 XLB, XUB, XGUESS, ACC, MAXFCN, SOL, OBJ,
 NACT, IACT, ALAMDA, IPRINT, INFO, WK)

The additional arguments are as follows:

IPRINT — Print option (see Comment 3). (Input)

INFO — Informational flag (see Comment 3). (Output)

WK — Real work vector of length NVAR**2 + 11 * NVAR + NCON.

2. Informational errors
Type Code
 4 4 The equality constraints are inconsistent.
 4 5 The equality constraints and the bounds on the

variables are found to be inconsistent.
 4 6 No vector X satisfies all of the constraints. In

particular, the current active constraints prevent any
change in X that reduces the sum of constraint
violations.

 4 7 Maximum number of function evaluations exceeded.
 4 9 The variables are determined by the equality

constraints.

3. The following are descriptions of the arguments IPRINT and INFO:

IPRINT — This argument must be set by the user to specify the
frequency of printing during the execution of the routine LCONG. There
is no printed output if IPRINT = 0. Otherwise, after ensuring feasibility,
information is given every IABS(IPRINT) iterations and whenever a
parameter called TOL is reduced. The printing provides the values of
X(.), F(.) and G(.) = GRAD(F) if IPRINT is positive. If IPRINT is
negative, this information is augmented by the current values of IACT(K)
K = 1, …, NACT, PAR(K) K = 1, …, NACT and RESKT(I) I = 1, …, N. The
reason for returning to the calling program is also displayed when
IPRINT is nonzero.

IMSL MATH/LIBRARY Chapter 8: Optimization • 993

INFO — On exit from L2ONG, INFO will have one of the following
integer values to indicate the reason for leaving the routine:
INFO = 1 SOL is feasible and the condition that depends on ACC

is satisfied.
INFO = 2 SOL is feasible and rounding errors are preventing

further progress.
INFO = 3 SOL is feasible but the objective function fails to

decrease although a decrease is predicted by the
current gradient vector.

INFO = 4 In this case, the calculation cannot begin because LDA

is less than NCON or because the lower bound on a
variable is greater than the upper bound.

INFO = 5 This value indicates that the equality constraints are
inconsistent. These constraints include any
components of X(.) that are frozen by setting
XL(I) = XU(I).

INFO = 6 In this case, there is an error return because the
equality constraints and the bounds on the variables
are found to be inconsistent.

INFO = 7 This value indicates that there is no vector of variables
that satisfies all of the constraints. Specifically, when
this return or an INFO = 6 return occurs, the current
active constraints (whose indices are IACT(K), K = 1,
…, NACT) prevent any change in X(.) that reduces the
sum of constraint violations, where only bounds are
included in this sum if INFO = 6.

INFO = 8 Maximum number of function evaluations exceeded.
INFO = 9 The variables are determined by the equality

constraints.

Algorithm

The routine LCONG is based on M.J.D. Powell’s TOLMIN, which solves linearly
constrained optimization problems, i.e., problems of the form

min
x n

f x
∈R

0 5
subject to A1x = b1

A2x ≤ b2

xO ≤ x ≤ xX

given the vectors b1, b2, xO and xX and the matrices A1, and A2.

The algorithm starts by checking the equality constraints for inconsistency and

redundancy. If the equality constraints are consistent, the method will revise x0,
the initial guess provided by the user, to satisfy

994 • Chapter 8: Optimization IMSL MATH/LIBRARY

A1x = b1

Next, x0 is adjusted to satisfy the simple bounds and inequality constraints. This is
done by solving a sequence of quadratic programming subproblems to minimize
the sum of the constraint or bound violations.

Now, for each iteration with a feasible xN, let JN be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as
inequality constraints. Let IN be the set of indices of active constraints. The
following quadratic programming problem

min f x d f x d B dk T k T k3 8 3 8+ ∇ + 1

2

subject to aMd = 0 j ∈ IN

aMd ≤ 0 j ∈ JN

is solved to get (dN, λN) where aM is a row vector representing either a constraint in
A1or A2 or a bound constraint on x. In the latter case, the aM = eL for the bound

constraint xL ≤ (xX)L and aM = − eL for the constraint − xL ≤ (− xO)L. Here, eL is a

vector with a 1 as the i-th component, and zeroes elsewhere. λN are the Lagrange

multipliers, and BN is a positive definite approximation to the second derivative ∇

2f(xN).

After the search direction dN is obtained, a line search is performed to locate a

better point. The new point xN��= xN + αNdN has to satisfy the conditions

f x d f x d f xk k k k k k T k+ ≤ + ∇α α3 8 3 8 3 8 3 80 1.

and

d f x d d f xk T k k k k T k3 8 3 8 3 8 3 8∇ + ≥ ∇α 0 7.

The main idea in forming the set JN is that, if any of the inequality constraints

restricts the step-length αN, then its index is not in JN. Therefore, small steps are
likely to be avoided.

Finally, the second derivative approximation, BN, is updated by the BFGS
formula, if the condition

d f x d f xk T k k k k3 8 3 8 3 8∇ + − ∇ >α 0

holds. Let xN ← xN��, and start another iteration.

The iteration repeats until the stopping criterion

IMSL MATH/LIBRARY Chapter 8: Optimization • 995

∇ − ≤f x Ak k k3 8 λ τ
2

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell
(1988, 1989).

Example

The problem from Schittkowski (1987)

min f(x) = −x1x2x3

subject to −x1 − 2x2 − 2x3 ≤ 0

x1 +2x2 + 2x3 ≤ 72

0 ≤ x1 ≤ 20

0 ≤ x2 ≤ 11

0 ≤ x3 ≤ 42

is solved with an initial guess x1 = 10, x2 = 10 and x3 = 10.

C Declaration of variables
 INTEGER LDA, NCON, NEQ, NVAR
 PARAMETER (NCON=2, NEQ=0, NVAR=3, LDA=NCON)
C
 INTEGER IACT(8), MAXFCN, NACT, NOUT
 REAL A(NCON,NVAR), ACC, ALAMDA(NVAR), B(NCON), OBJ,
 & SOL(NVAR), XGUESS(NVAR), XLB(NVAR), XUB(NVAR)
 EXTERNAL FCN, GRAD, LCONG, UMACH
C
C Set values for the following problem.
C
C Min -X(1)*X(2)*X(3)
C
C -X(1) - 2*X(2) - 2*X(3) .LE. 0
C X(1) + 2*X(2) + 2*X(3) .LE. 72
C
C 0 .LE. X(1) .LE. 20
C 0 .LE. X(2) .LE. 11
C 0 .LE. X(3) .LE. 42
C
 DATA A/-1.0, 1.0, -2.0, 2.0, -2.0, 2.0/, B/0.0, 72.0/
 DATA XLB/3*0.0/, XUB/20.0, 11.0, 42.0/, XGUESS/3*10.0/
 DATA ACC/0.0/, MAXFCN/400/
C
 CALL UMACH (2, NOUT)
C
 CALL LCONG (FCN, GRAD, NVAR, NCON, NEQ, A, LDA, B, XLB, XUB,
 & XGUESS, ACC, MAXFCN, SOL, OBJ, NACT, IACT, ALAMDA)
C
 WRITE (NOUT,99998) ’Solution:’
 WRITE (NOUT,99999) SOL
 WRITE (NOUT,99998) ’Function value at solution:’
 WRITE (NOUT,99999) OBJ
 WRITE (NOUT,99998) ’Number of function evaluations:’, MAXFCN

996 • Chapter 8: Optimization IMSL MATH/LIBRARY

 STOP
99998 FORMAT (//, ’ ’, A, I4)
99999 FORMAT (1X, 5F16.6)
 END
C
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(*), F
C
 F = -X(1)*X(2)*X(3)
 RETURN
 END
C
 SUBROUTINE GRAD (N, X, G)
 INTEGER N
 REAL X(*), G(*)
C
 G(1) = -X(2)*X(3)
 G(2) = -X(1)*X(3)
 G(3) = -X(1)*X(2)
 RETURN
 END

Output
Solution:
20.000000 11.000000 15.000000

Function value at solution:
-3300.000000

Number of function evaluations: 5

NCONF/DNCONF (Single/Double precision)
Solve a general nonlinear programming problem using the successive quadratic
programming algorithm and a finite difference gradient.

Usage
CALL NCONF (FCN, M, ME, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, IPRINT, MAXITN, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the functions at a given point.
The usage is CALL FCN (M, ME, N, X, ACTIVE, F, G), where

M – Total number of constraints. (Input)
ME – Number of equality constraints. (Input)
N – Number of variables. (Input)
X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.
ACTIVE – Logical vector of length MMAX indicating the active
constraints. (Input)
MMAX = MAX(1, M)

IMSL MATH/LIBRARY Chapter 8: Optimization • 997

F – The computed function value at the point X. (Output)
G – Vector of length MMAX containing the values of constraints at point X.
(Output)

FCN must be declared EXTERNAL in the calling program.

M — Total number of constraints. (Input)

ME — Number of equality constraints. (Input)

N — Number of variables. (Input)

XGUESS — Vector of length N containing an initial guess of the computed
solution. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable; all other variables will

have the same bounds.

XLB — Vector of length N containing the lower bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)
If there is no lower bound for a variable, then the corresponding XLB value should
be set to −1.0E6.

XUB — Vector of length N containing the upper bounds on variables. (Input, if
IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3)
If there is no upper bound for a variable, then the corresponding XLB value should
be set to 1.0E6.

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
All values of XSCALE must be greater than zero. In the absence of other
information, set all entries to 1.0.

IPRINT — Parameter indicating the desired output level. (Input)

IPRINT Action
0 No output printed.
1 Only a final convergence analysis is given.
2 One line of intermediate results are printed in each iteration.
3 Detailed information is printed in each iteration.

MAXITN — Maximum number of iterations allowed. (Input)

X — Vector of length N containing the computed solution. (Output)

FVALUE — Scalar containing the value of the objective function at the
computed solution. (Output)

998 • Chapter 8: Optimization IMSL MATH/LIBRARY

Comments

1. Automatic workspace usage is

NCONF N * (3 * N + 38 + MMAX) + 7 * MMAX + 6 * M + MAX(N, M) + 91
units, or

DNCONF 2 * N * (3 * N + 38 + MMAX) + 14 * MMAX + 12 * M + MAX(N, M)
+ 163 units.
MMAX = MAX(1, M)

Workspace may be explicitly provided, if desired, by use of
N2ONF/DN2ONF. The reference is

CALL N2ONF (FCN, M, ME, N, XGUESS, IBTYPE, XLB, XUB,
 XSCALE, IPRINT, MAXITN, X, FVALUE, WK,
 LWK, IWK, LIWK, CONWK)

The additional arguments are as follows:

WK — Work vector of length N * (3 * N + 38 + MMAX) + 6 * MMAX + 6 *
M + 72

LWK — Length of WK.

IWK — Work vector of length 19 + MAX(M, N).

LIWK — Length of LIWK.

CONWK — Work vector of length MMAX.

2. Informational errors
Type Code
 4 1 Search direction uphill.
 4 2 Line search took more than 5 function calls.
 4 3 Maximum number of iterations exceeded.
 4 4 Search direction is close to zero.
 4 5 The constraints for the QP subproblem are

inconsistent.

3. If reverse communication is desired, then N0ONF/DN0ONF can be used
rather than using an external subroutine to evaluate the function. The
reference is

CALL N0ONF (IDO, M, ME, N, IBTYPE, XLB, XUB, IPRINT,
 MAXITN, X, FVALUE, G, DF, DG, LDDG, U,
 C, LDC, D, ACC, SCBOU, MAXFUN, ACTIVE,
 MODE, WK, IWK, CONWK)

The additional arguments are as follows:

IDO — Reverse communication parameter indicating task to be done.
(Input/Output)

On the initial call, IDO must be set to 0; and initial values must be
passed into N0ONF/DN0ONF for X, FVALUE, G, DF, and DG. If the routine
returns with IDO = 1, then the user has to compute FVALUE and G with

IMSL MATH/LIBRARY Chapter 8: Optimization • 999

respect to X. If the routine returns with IDO = 2, then the user has to
compute DF and DG with respect to X. The user has to call the routine
repeatedly until IDO does not equal to 1 or 2.

X — Vector of length N containing the initial guesses to the solution on
input and the solution on output. (Input/Output)

FVALUE — Scalar containing the objective function value evaluated at
the current X. (Input)

G — Vector of length MMAX containing constraint values at the current X.
(Input)
MMAX is MAX(1, M).

DF — Vector of length N containing the gradient of the objective
function evaluated at the current X. (Input)

DG — Array of dimension MMAX by N containing the gradient of the
constraints evaluated at the current X. (Input)

LDDG — Leading dimension of DG exactly as specified in the
dimension statement of the calling program. (Input)

U — Vector of length M + N + N + 2 containing the multipliers of the
nonlinear constraints and of the bounds. (Output)
The first M locations contain the multipliers for the nonlinear constraints.
The second N locations contain the multipliers for the lower bounds. The
third N locations contain the multipliers for the upper bounds.

C — Array of dimension N + 1 by N + 1 containing the final
approximation to the Hessian. (Output)

LDC — Leading dimension of C exactly as specified in the dimension
statement of the calling program. (Input)

D — Vector of length N + 1 containing the diagonal elements of the
Hessian. (Output)

ACC — Final accuracy. (Input)

SCBOU — Scalar containing the scaling variable for the problem
function. (Input)
In the absence of further information, SCBOU may be set to 1.0E3.

MAXFUN — Scalar containing the maximum allowable function calls
during the line search. (Input)

ACTIVE — Logical vector of length 2 * MMAX + 13. (Input/Output)
The first MMAX locations are used to determine which gradient
constraints are active and must be set to .TRUE. on input. If ACTIVE(I)
is .TRUE., then DG(I, K) is evaluated for K = 1, N. The last MMAX + 13
locations are used for workspace.

1000 • Chapter 8: Optimization IMSL MATH/LIBRARY

MODE — Desired solving version for the algorithm. (Input)
If MODE = 2; then reverse communication is used. If MODE = 3; then
reverse communication is used and initial guesses for the multipliers and
Hessian matrix of the Lagrange function are provided on input.

WK — Work vector of length 2 * N * (N + 16) + 4 * MMAX + 5 * M + 68.

IWK — Work vector of length 19 + MAX(M, N).

CONWK — Work vector of length M.

Algorithm

The routine NCONF is based on subroutine NLPQL, a FORTRAN code developed
by Schittkowski (1986). It uses a successive quadratic programming method to
solve the general nonlinear programming problem. The problem is stated as
follows:

min
x n

f x
∈R

0 5
subject to for

for

g x j m

g x j m m

x x x

j e

j e

l u

0 5
0 5

= =

≥ = +

≤ ≤

0 1

0 1

, , ,

, , ,

K

K

where all problem functions are assumed to be continuously differentiable. The
method, based on the iterative formulation and solution of quadratic programming
subproblems, obtains subproblems by using a quadratic approximation of the
Lagrangian and by linearizing the constraints. That is,

min
d

T
k k

T
n

d B d f x d
∈

+ ∇
R

1

2
1 6

subject to ∇ + = =

∇ + ≥ = +

− ≤ ≤ −

g x d g x j m

g x d g x j m m

x x d x x

j k
T

j k e

j k
T

j k e

l k u k

1 6 1 6
1 6 1 6

0 1

0 1

, , ,

, , ,

K

K

where BN is a positive definite approximation of the Hessian and xN is the current
iterate. Let dN be the solution of the subproblem. A line search is used to find a
new point xN�1,

xN�1= xN + λdN, λ ∈ (0, 1]

such that a “merit function” will have a lower function value at the new point.
Here, the augmented Lagrange function (Schittkowski 1986) is used as the merit
function.

IMSL MATH/LIBRARY Chapter 8: Optimization • 1001

When optimality is not achieved, BN is updated according to the modified BFGS
formula (Powell 1978). Note that this algorithm may generate infeasible points
during the solution process. Therefore, if feasibility must be maintained for
intermediate points, then this routine may not be suitable. For more theoretical
and practical details, see Stoer (1985), Schittkowski (1983, 1986) and Gill et al.
(1985).

Since a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision
arithmetic is recommended. Also, whenever the exact gradient can be easily
provided, routine NCONG (page 1003) should be used instead.

Within NCONF, there is a user-callable subroutine N0ONF that gives the user the
option to use “reverse communication.” This option allows the user to evaluate
the functions and gradients in the main program. This option is useful when it is
difficult to do the function evaluation in the fixed form required by NCONF.

Example 1

The problem

min

/

F x x x

g x x x

g x x x

0 5 1 6 1 6
0 5

0 5 3 8

= − + −

= − + =

= − − + ≥

1
2

2
2

1 1 2

2 1
2

2
2

2 1

2 1 0

4 1 0

subject to

is solved with an initial guess (2.0, 2.0).
 INTEGER IBTYPE, IPRINT, M, MAXITN, ME, N
 PARAMETER (IBTYPE=0, IPRINT=0, M=2, MAXITN=100, ME=1, N=2)
C
 REAL FVALUE, X(N), XGUESS(N), XLB(N), XSCALE(N), XUB(N)
 EXTERNAL FCN, NCONF, WRRRN
C
 DATA XGUESS/2.0E0, 2.0E0/, XSCALE/2*1.0E0/
 DATA XLB/-1.0E6, -1.0E6/, XUB/1.0E6, 1.0E6/
C
 CALL NCONF (FCN, M, ME, N, XGUESS, IBTYPE, XLB, XUB, XSCALE,
 & IPRINT, MAXITN, X, FVALUE)
C
 CALL WRRRN (’The solution is’, N, 1, X, N, 0)
 END
C
 SUBROUTINE FCN (M, ME, N, X, ACTIVE, F, G)
 INTEGER M, ME, N
 REAL X(*), F, G(*)
 LOGICAL ACTIVE(*)
C Himmelblau problem 1
 F = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
C
 IF (ACTIVE(1)) G(1) = X(1) - 2.0E0*X(2) + 1.0E0
 IF (ACTIVE(2)) G(2) = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 RETURN

1002 • Chapter 8: Optimization IMSL MATH/LIBRARY

 END

Output
The solution is
 1 0.8229
 2 0.9114

Example 2

This example uses the reverse communication option to solve the same problem
as Example 1.

 INTEGER LDC, LDDG, LWK, M, ME, N
 PARAMETER (M=2, ME=1, N=2, LDC=N+1, LDDG=M,
 & LWK=2*N*(N+16)+9*M+68)
C
 INTEGER IBTYPE, IDO, IPRINT, IWK(19+M), MAXFUN, MAXITN,
 & MODE
 REAL ACC, AMACH, C(LDC,N+1), CONWK(M), D(N+1), DF(N),
 & DG(LDDG,N), FVALUE, G(M), SCBOU, SQRT,
 & U(M+N+N+2), WK(LWK), X(N), XLB(N), XUB(N)
 LOGICAL ACTIVE(2*M+13)
 INTRINSIC SQRT
 EXTERNAL AMACH, N0ONF
C
 DATA IBTYPE/3/, MAXITN/100/, MODE/2/, MAXFUN/10/, IPRINT/0/
 DATA X/2.0E0, 2.0E0/, XLB(1)/-1.0E6/, XUB(1)/1.0E6/, SCBOU/1.0E3/
C Set final accuracy (ACC)
 ACC = SQRT(AMACH(4))
C
 ACTIVE(1) = .TRUE.
 ACTIVE(2) = .TRUE.
 IDO = 0
 10 IF (IDO.EQ.0 .OR. IDO.EQ.1) THEN
C Evaluate the function at X.
 FVALUE = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
C Evaluate the constraints at X.
 G(1) = X(1) - 2.0E0*X(2) + 1.0E0
 G(2) = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 END IF
C
 IF (IDO.EQ.0 .OR. IDO.EQ.2) THEN
C Evaluate the function gradient at X.
 DF(1) = 2.0E0*(X(1)-2.0E0)
 DF(2) = 2.0E0*(X(2)-1.0E0)
C If active evaluate the constraint
C gradient at X.
 IF (ACTIVE(1)) THEN
 DG(1,1) = 1.0E0
 DG(1,2) = -2.0E0
 END IF
C
 IF (ACTIVE(2)) THEN
 DG(2,1) = -0.5E0*X(1)
 DG(2,2) = -2.0E0*X(2)
 END IF
 END IF
C Call N0ONF for the next update.

IMSL MATH/LIBRARY Chapter 8: Optimization • 1003

C
 CALL N0ONF (IDO, M, ME, N, IBTYPE, XLB, XUB, IPRINT, MAXITN, X,
 & FVALUE, G, DF, DG, LDDG, U, C, LDC, D, ACC, SCBOU,
 & MAXFUN, ACTIVE, MODE, WK, IWK, CONWK)
C If IDO does not equal 1 or 2, exit.
 IF (IDO.EQ.1 .OR. IDO.EQ.2) GO TO 10
C Print the solution
 CALL WRRRN (’The solution is’, N, 1, X, N, 0)
C
 END

Output
The solution is
 1 0.8229
 2 0.9114

NCONG/DNCONG (Single/Double precision)
Solve a general nonlinear programming problem using the successive quadratic
programming algorithm and a user-supplied gradient.

Usage
CALL NCONG (FCN, GRAD, M, ME, N, XGUESS, IBTYPE, XLB, XUB,
 IPRINT, MAXITN, X, FVALUE)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the functions at a given point.
The usage is CALL FCN (M, ME, N, X, ACTIVE, F, G), where

M – Total number of constraints. (Input)
ME – Number of equality constraints. (Input)
N – Number of variables. (Input)
X – The point at which the functions are evaluated. (Input)
X should not be changed by FCN.
ACTIVE – Logical vector of length MMAX indicating the active
constraints. (Input)
F – The computed function value at the point X. (Output)
G – Vector of length MMAX containing the values of constraints at point X.
(Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — User-supplied SUBROUTINE to evaluate the gradients at a given point.
The usage is CALL GRAD (M, ME, MMAX, N, X, ACTIVE, F, G, DF,
DG), where

M – Total number of constraints. (Input)
ME – Number of equality constraints. (Input)
MMAX – Maximum of (1, M). (Input)
N – Number of variables. (Input)

1004 • Chapter 8: Optimization IMSL MATH/LIBRARY

X – Vector of length N at which point the function is evaluated. (Input)
X should not be changed by FCN.
ACTIVE – Logical vector of length MMAX indicating the active
constraints. (Input)
F – The computed function value at the point X. (Input)
G – Vector of length MMAX containing the values of the constraints at
point X. (Input)
DF – Vector of length N containing the values of the gradient of the
objective function. (Output)
DG – MMAX by N array containing the values of the gradients for the
active constraints. (Output)

GRAD must be declared EXTERNAL in the calling program.

M — Total number of constraints. (Input)

ME — Number of equality constraints. (Input)

N — Number of variables. (Input)

XGUESS — Vector of length N containing an initial guess of the computed
solution. (Input)

IBTYPE — Scalar indicating the types of bounds on variables. (Input)

IBTYPE Action
0 User will supply all the bounds.
1 All variables are nonnegative.
2 All variables are nonpositive.
3 User supplies only the bounds on 1st variable, all other variables will

have the same bounds.

XLB — Vector of length N containing the lower bounds on the variables. (Input,
if IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is
no lower bound on a variable, then the corresponding XLB value should be set to
−1.0E6.

XUB — Vector of length N containing the upper bounds on the variables. (Input,
if IBTYPE = 0; output, if IBTYPE = 1 or 2; input/output, if IBTYPE = 3) If there is
no upper bound on a variable, then the corresponding XUB value should be set to
1.0E6.

IPRINT — Parameter indicating the desired output level. (Input)

IPRINT Action
0 No output printed.
1 Only a final convergence analysis is given.
2 One line of intermediate results is printed for each iteration.
3 Detailed information is printed for each iteration.

MAXITN — Maximum number of iterations allowed. (Input)

X — Vector of length N containing the computed solution. (Output)

IMSL MATH/LIBRARY Chapter 8: Optimization • 1005

FVALUE — Scalar containing the value of the objective function at the
computed solution. (Output)

Comments

1. Automatic workspace usage is

NCONG N * (3 * N + 38 + MMAX) + 6 * (M + MMAX) + MAX(N, M) + 91
units, or

DNCONG 2 * N * (3 * N + 38 + MMAX) + 12 * (M + MMAX) + MAX(N, M) +
163 units.
MMAX = MAX(1, M)

Workspace may be explicitly provided, if desired, by use of
N2ONG/DN2ONG. The reference is

CALL N2ONG (FCN, GRAD, M, ME, N, XGUESS, IBTYPE,
 XLB, XUB, IPRINT, MAXITN, X, FVALUE, WK,
 LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Work vector of length N * (3 * N + 38 + MMAX) + 6 * (M + MMAX)
+ 72.

LWK — Scalar containing the value for the length of WK.

IWK — Work vector of length 19 + MAX(M, N).

LIWK — Scalar containing the value for the length of IWK.

2. Informational errors
Type Code
 4 1 Search direction uphill.
 4 2 Line search took more than 5 function calls.
 4 3 Maximum number of iterations exceeded.
 4 4 Search direction is close to zero.
 4 5 The constraints for the QP subproblem are

inconsistent.

Algorithm

The routine NCONG is based on subroutine NLPQL, a FORTRAN code developed
by Schittkowski (1986). It uses a successive quadratic programming method to
solve the general nonlinear programming problem. The problem is stated as
follows:

min
x n

f x
∈R

0 5

1006 • Chapter 8: Optimization IMSL MATH/LIBRARY

subject to for

for

g x j m

g x j m m

x x x

j e

j e

l u

0 5
0 5

= =

≥ = +

≤ ≤

0 1

0 1

, , ,

, , ,

K

K

where all problem functions are assumed to be continuously differentiable. The
method, based on the iterative formulation and solution of quadratic programming
subproblems, obtains subproblems by using a quadratic approximation of the
Lagrangian and by linearizing the constraints. That is,

min
d

T
k k

T
n

d B d f x d
∈

+ ∇
R

1

2
1 6

subject to ∇ + = =

∇ + ≥ = +

− ≤ ≤ −

g x d g x j m

g x d g x j m m

x x d x x

j k
T

j k e

j k
T

j k e

l k u k

1 6 1 6
1 6 1 6

0 1

0 1

, , ,

, , ,

K

K

where BN is a positive definite approximation of the Hessian and xN is the current
iterate. Let dN be the solution of the subproblem. A line search is used to find a
new point xN��,

xN�1 = xN + λdN, λ∈ (0, 1]

such that a “merit function” will have a lower function value at the new point.
Here, the augmented Lagrange function (Schittkowski 1986) is used as the merit
function.

When optimality is not achieved, BN is updated according to the modified BFGS
formula (Powell 1978). Note that this algorithm may generate infeasible points
during the solution process. Therefore, if feasibility must be maintained for
intermediate points, then this routine may not be suitable. For more theoretical
and practical details, see Stoer (1985), Schittkowski (1983, 1986) and Gill et al.
(1985).

Example

The problem

min

/

F x x x

g x x x

g x x x

0 5 1 6 1 6
0 5

0 5

= − + −

= − + =

= − − + ≥

1
2

2
2

1 1 2

2 1
2

2
2

2 1

2 1 0

4 1 0

subject to

is solved with an initial guess (2.0, 2.0).
 INTEGER IBTYPE, IPRINT, M, MAXITN, ME, N
 PARAMETER (IBTYPE=0, IPRINT=0, M=2, MAXITN=100, ME=1, N=2)
C
 REAL FVALUE, X(N), XGUESS(N), XLB(N), XUB(N)

IMSL MATH/LIBRARY Chapter 8: Optimization • 1007

 EXTERNAL FCN, GRAD, NCONG, WRRRN
C
 DATA XGUESS/2.0E0, 2.0E0/
 DATA XLB/-1.0E6, -1.0E6/, XUB/1.0E6, 1.0E6/
C
 CALL NCONG (FCN, GRAD, M, ME, N, XGUESS, IBTYPE, XLB, XUB,
 & IPRINT, MAXITN, X, FVALUE)
C
 CALL WRRRN (’The solution is’, N, 1, X, N, 0)
 END
C
 SUBROUTINE FCN (M, ME, N, X, ACTIVE, F, G)
 INTEGER M, ME, N
 REAL X(*), F, G(*)
 LOGICAL ACTIVE(*)
C Himmelblau problem 1
 F = (X(1)-2.0E0)**2 + (X(2)-1.0E0)**2
C
 IF (ACTIVE(1)) G(1) = X(1) - 2.0E0*X(2) + 1.0E0
 IF (ACTIVE(2)) G(2) = -(X(1)**2)/4.0E0 - X(2)**2 + 1.0E0
 RETURN
 END
C
 SUBROUTINE GRAD (M, ME, MMAX, N, X, ACTIVE, F, G, DF, DG)
 INTEGER M, ME, MMAX, N
 REAL X(*), F, G(*), DF(*), DG(MMAX,*)
 LOGICAL ACTIVE(*)
C
 DF(1) = 2.0E0*(X(1)-2.0E0)
 DF(2) = 2.0E0*(X(2)-1.0E0)
C
 IF (ACTIVE(1)) THEN
 DG(1,1) = 1.0E0
 DG(1,2) = -2.0E0
 END IF
C
 IF (ACTIVE(2)) THEN
 DG(2,1) = -0.5E0*X(1)
 DG(2,2) = -2.0E0*X(2)
 END IF
 RETURN
 END

Output
 The solution is
 1 0.8229
 2 0.9114

CDGRD/DCDGRD (Single/Double precision)
Approximate the gradient using central differences.

Usage
CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC)

1008 • Chapter 8: Optimization IMSL MATH/LIBRARY

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XC — Vector of length N containing the point at which the gradient is to be
estimated. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
In the absence of other information, set all entries to 1.0.

EPSFCN — Estimate for the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.

GC — Vector of length N containing the estimated gradient at XC. (Output)

Comments

This is Algorithm A5.6.4, Dennis and Schnabel, 1983, page 323.

Algorithm

The routine CDGRD uses the following finite-difference formula to estimate the
gradient of a function of n variables at x:

f x h e f x h e

h
i ni i i i

i

+ − −
=

1 6 1 6
2

1 for , ,K

where hL = ε1/2 max{|xL|, 1/sL} sign(xL), ε is the machine epsilon, sL is the scaling
factor of the i-th variable, and eL is the i-th unit vector. For more details, see
Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and
rounding error, users should be aware of possible poor performance. When
possible, high precision arithmetic is recommended.

Example

In this example, the gradient of f(x) = x1 − x1x2 − 2 is estimated by the finite-
difference method at the point (1.0, 1.0).

 INTEGER I, N, NOUT
 PARAMETER (N=2)
 REAL EPSFCN, GC(N), XC(N), XSCALE(N)

IMSL MATH/LIBRARY Chapter 8: Optimization • 1009

 EXTERNAL CDGRD, FCN, UMACH
C Initialization.
 DATA XSCALE/2*1.0E0/, XC/2*1.0E0/
C Set function noise.
 EPSFCN = 0.01
C
 CALL CDGRD (FCN, N, XC, XSCALE, EPSFCN, GC)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (GC(I),I=1,N)
99999 FORMAT (’ The gradient is’, 2F8.2, /)
C
 END
C
 SUBROUTINE FCN (N, X, F)
 INTEGER N
 REAL X(N), F
C
 F = X(1) - X(1)*X(2) - 2.0E0
C
 RETURN
 END

Output
The gradient is 0.00 -1.00

FDGRD/DFDGRD (Single/Double precision)
Approximate the gradient using forward differences.

Usage
CALL FDGRD (FCN, N, XC, XSCALE, FC, EPSFCN, GC)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XC — Vector of length N containing the point at which the gradient is to be
estimated. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
In the absence of other information, set all entries to 1.0.

FC — Scalar containing the value of the function at XC. (Input)

1010 • Chapter 8: Optimization IMSL MATH/LIBRARY

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.

GC — Vector of length N containing the estimated gradient at XC. (Output)

Comments

This is Algorithm A5.6.3, Dennis and Schnabel, 1983, page 322.

Algorithm

The routine FDGRD uses the following finite-difference formula to estimate the
gradient of a function of n variables at x:

f x h e f x

h
i ni i

i

+ −
=

1 6 0 5
 for 1, ,K

where hL = ε1/2 max{|xL|, 1/sL} sign(xL), ε is the machine epsilon, eL is the i-th unit
vector, and sL is the scaling factor of the i-th variable. For more details, see
Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and
rounding error, users should be aware of possible poor performance. When
possible, high precision arithmetic is recommended. When accuracy of the
gradient is important, IMSL routine CDGRD (page 1007) should be used.

Example

In this example, the gradient of f(x) = x1 − x1x2 − 2 is estimated by the finite-
difference method at the point (1.0, 1.0).

 INTEGER I, N, NOUT
 PARAMETER (N=2)
 REAL EPSFCN, FC, GC(N), XC(N), XSCALE(N)
 EXTERNAL FCN, FDGRD, UMACH
C Initialization.
 DATA XSCALE/2*1.0E0/, XC/2*1.0E0/
C Set function noise.
 EPSFCN = 0.01
C Get function value at current
C point.
 CALL FCN (N, XC, FC)
C
 CALL FDGRD (FCN, N, XC, XSCALE, FC, EPSFCN, GC)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) (GC(I),I=1,N)
99999 FORMAT (’ The gradient is’, 2F8.2, /)
C
 END
C
 SUBROUTINE FCN (N, X, F)
 INTEGER N

IMSL MATH/LIBRARY Chapter 8: Optimization • 1011

 REAL X(N), F
C
 F = X(1) - X(1)*X(2) - 2.0E0
C
 RETURN
 END

Output
The gradient is 0.00 -1.00

FDHES/DFDHES (Single/Double precision)
Approximate the Hessian using forward differences and function values.

Usage
CALL FDHES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XC — Vector of length N containing the point at which the Hessian is to be
approximated. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
In the absence of other information, set all entries to 1.0.

FC — Function value at XC. (Input)

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.

H — N by N matrix containing the finite difference approximation to the Hessian
in the lower triangle. (Output)

LDH — Row dimension of H exactly as specified in the dimension statement of
the calling program. (Input)

Comments

1. Automatic workspace usage is

1012 • Chapter 8: Optimization IMSL MATH/LIBRARY

FDHES 2 * N units, or
DFDHES 4 * N units.

Workspace may be explicitly provided, if desired, by use of
F2HES/DF2HES. The reference is

CALL F2HES (FCN, N, XC, XSCALE, FC, EPSFCN, H, LDH,
 WK1, WK2)

The additional arguments are as follows:

WK1 — Real work vector of length N.

WK2 — Real work vector of length N.

2. This is Algorithm A5.6.2 from Dennis and Schnabel, 1983; page 321.

Algorithm

The routine FDHES uses the following finite-difference formula to estimate the
Hessian matrix of function f at x:

f x h e h e f x h e f x h e f x

h h

i i j j i i j j

i j

+ + − + − + +3 8 1 6 3 8 0 5

where hL = ε1/3 max{|xL|, 1/sL} sign(xL), hM = ε1/3 max{|xM|, 1/sL} sign(xM), ε is the
machine epsilon or user-supplied estimate of the relative noise, sL and sM are the
scaling factors of the i-th and j-th variables, and eL and eM are the i-th and j-th unit
vectors, respectively. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and
rounding error, users should be aware of possible poor performance. When
possible, high precision arithmetic is recommended.

Example

The Hessian is estimated for the following function at (1, −1)

f x x x x0 5 = − −1
2

1 2 2
C Declaration of variables
 INTEGER N, LDHES, NOUT
 PARAMETER (N=2, LDHES=2)
 REAL XC(N), XSCALE(N), FVALUE, HES(LDHES,N), EPSFCN
 EXTERNAL FCN
C Initialization
 DATA XSCALE/2*1.0E0/, XC/1.0E0,-1.0E0/
C Set function noise
 EPSFCN = 0.001
C Evaluate the function at
C current point
 CALL FCN (N, XC, FVALUE)
C Get Hessian forward difference
C approximation
 CALL FDHES (FCN, N, XC, XSCALE, FVALUE, EPSFCN, HES, LDHES)

IMSL MATH/LIBRARY Chapter 8: Optimization • 1013

C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((HES(I,J),J=1,I),I=1,N)
99999 FORMAT (’ The lower triangle of the Hessian is’, /,
 & 5X,F10.2,/,5X,2F10.2,/)
C
 END
C
 SUBROUTINE FCN (N, X, F)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X(N), F
C
 F = X(1)*(X(1) - X(2)) - 2.0E0
C
 RETURN
 END

Output
 The lower triangle of the Hessian is
 2.00
 -1.00 0.00

GDHES/DGDHES (Single/Double precision)
Approximate the Hessian using forward differences and a user-supplied gradient.

Usage
CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH)

Arguments

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – The point at which the gradient is evaluated. (Input)
X should not be changed by GRAD.
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

XC — Vector of length N containing the point at which the Hessian is to be
estimated. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
In the absence of other information, set all entries to 1.0.

GC — Vector of length N containing the gradient of the function at XC. (Input)

1014 • Chapter 8: Optimization IMSL MATH/LIBRARY

EPSFCN — Estimate of the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.

H — N by N matrix containing the finite-difference approximation to the Hessian
in the lower triangular part and diagonal. (Output)

LDH — Leading dimension of H exactly as specified in the dimension statement
of the calling program. (Input)

Comments

1. Automatic workspace usage is

GDHES N units, or
DGDHES 2 * N units.

Workspace may be explicitly provided, if desired, by use of
G2HES/DG2HES. The reference is

CALL G2HES (GRAD, N, XC, XSCALE, GC, EPSFCN, H, LDH,
 WK)

The additional argument is

WK — Work vector of length N.

2. This is Algorithm A5.6.1, Dennis and Schnabel, 1983; page 320.

Algorithm

The routine GDHES uses the following finite-difference formula to estimate the
Hessian matrix of function F at x:

g x h e g x

h

j j

j

+ −3 8 0 5

where hM = ε1/2 max{|xM|, 1/sM} sign(xM), ε is the machine epsilon, sM is the scaling
factor of the j-th variable, g is the analytic gradient of F at x, and eM is the j-th unit
vector. For more details, see Dennis and Schnabel (1983).

Since the finite-difference method has truncation error, cancellation error, and
rounding error, users should be aware of possible poor performance. When
possible, high precision arithmetic is recommended.

Example

The Hessian is estimated by the finite-difference method at point (1.0, 1.0) from
the following gradient functions:

g x x

g x x
1 1 2

2 1 1

2 2

1

= −
= +

C Declaration of variables

IMSL MATH/LIBRARY Chapter 8: Optimization • 1015

 INTEGER N, LDHES, NOUT
 PARAMETER (N=2, LDHES=2)
 REAL XC(N), XSCALE(N), GC(N), HES(LDHES,N), EPSFCN
 EXTERNAL GRAD
C
 DATA XSCALE/2*1.0E0/, XC/2*1.0E0/
C Set function noise
 EPSFCN = 0.0
C Evaluate the gradient at the
C current point
 CALL GRAD (N, XC, GC)
C Get Hessian forward-difference
C approximation
 CALL GDHES (GRAD, N, XC, XSCALE, GC, EPSFCN, HES, LDHES)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((HES(I,J),J=1,N),I=1,N)
99999 FORMAT (’ THE HESSIAN IS’, /, 2(5X,2F10.2,/),/)
C
 END
C
 SUBROUTINE GRAD (N, X, G)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER N
 REAL X(N), G(N)
C
 G(1) = 2.0E0*X(1)*X(2) - 2.0E0
 G(2) = X(1)*X(1) + 1.0E0
C
 RETURN
 END

Output
 THE HESSIAN IS
 2.00 2.00
 2.00 0.00

FDJAC/DFDJAC (Single/Double precision)
Approximate the Jacobian of M functions in N unknowns using forward
differences.

Usage
CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC,
 LDFJAC)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)
N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.

1016 • Chapter 8: Optimization IMSL MATH/LIBRARY

F – The computed function at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

M — The number of functions. (Input)

N — The number of variables. (Input)

XC — Vector of length N containing the point at which the gradient is to be
estimated. (Input)

XSCALE — Vector of length N containing the diagonal scaling matrix for the
variables. (Input)
In the absence of other information, set all entries to 1.0.

FC — Vector of length M containing the function values at XC. (Input)

EPSFCN — Estimate for the relative noise in the function. (Input)
EPSFCN must be less than or equal to 0.1. In the absence of other information, set
EPSFCN to 0.0.

FJAC — M by N matrix containing the estimated Jacobian at XC. (Output)

LDFJAC — Leading dimension of FJAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

FDJAC M units, or
DFDJAC 2 * M units.

Workspace may be explicitly provided, if desired, by use of
F2JAC/DF2JAC. The reference is

CALL F2JAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC,
 LDFJAC, WK)

The additional argument is

WK — Work vector of length M.

2. This is Algorithm A5.4.1, Dennis and Schnabel, 1983, page 314.

Algorithm

The routine FDJAC uses the following finite-difference formula to estimate the
Jacobian matrix of function f at x:

f x h e f x

h

j j

j

+ −3 8 0 5

where eM is the j-th unit vector, hM = ε1/2 max{|xM|, 1/sM} sign(xM), ε is the machine
epsilon, and sM is the scaling factor of the j-th variable. For more details, see
Dennis and Schnabel (1983).

IMSL MATH/LIBRARY Chapter 8: Optimization • 1017

Since the finite-difference method has truncation error, cancellation error, and
rounding error, users should be aware of possible poor performance. When
possible, high precision arithmetic is recommended.

Example

In this example, the Jacobian matrix of

f x x x

f x x x x
1 1 2

2 1 1 2

2

1

0 5
0 5

= −
= − +

is estimated by the finite-difference method at the point (1.0, 1.0).
C Declaration of variables
 INTEGER N, M, LDFJAC, NOUT
 PARAMETER (N=2, M=2, LDFJAC=2)
 REAL FJAC(LDFJAC,N), XSCALE(N), XC(N), FC(M), EPSFCN
 EXTERNAL FCN, FDJAC, UMACH
C
 DATA XSCALE/2*1.0E0/, XC/2*1.0E0/
C Set function noise
 EPSFCN = 0.01
C Evaluate the function at the
C current point
 CALL FCN (M, N, XC, FC)
C Get Jacobian forward-difference
C approximation
 CALL FDJAC (FCN, M, N, XC, XSCALE, FC, EPSFCN, FJAC, LDFJAC)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) ((FJAC(I,J),J=1,N),I=1,M)
99999 FORMAT (’ The Jacobian is’, /, 2(5X,2F10.2,/),/)
C
 END
C
 SUBROUTINE FCN (M, N, X, F)
C SPECIFICATIONS FOR ARGUMENTS
 INTEGER M, N
 REAL X(N), F(M)
C
 F(1) = X(1)*X(2) - 2.0E0
 F(2) = X(1) - X(1)*X(2) + 1.0E0
C
 RETURN
 END

Output
 The Jacobian is
 1.00 1.00
 0.00 -1.00

1018 • Chapter 8: Optimization IMSL MATH/LIBRARY

CHGRD/DCHGRD (Single/Double precision)
Check a user-supplied gradient of a function.

Usage
CALL CHGRD (FCN, GRAD, N, X, INFO)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function of which the
gradient will be checked. The usage is CALL FCN (N, X, F), where

N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

GRAD — Vector of length N containing the estimated gradient at X. (Input)

N — Dimension of the problem. (Input)

X — Vector of length N containing the point at which the gradient is to be
checked. (Input)

INFO — Integer vector of length N. (Output)

INFO(I) = 0 means the user-supplied gradient is a poor estimate of the numerical
gradient at the point X(I).

INFO(I) = 1 means the user-supplied gradient is a good estimate of the numerical
gradient at the point X(I).

INFO(I) = 2 means the user-supplied gradient disagrees with the numerical
gradient at the point X(I), but it might be impossible to calculate the numerical
gradient.

INFO(I) = 3 means the user-supplied gradient and the numerical gradient are both
zero at X(I), and, therefore, the gradient should be rechecked at a different point.

Comments

1. Automatic workspace usage is

CHGRD 2 * N + 2 units, or
DCHGRD 4 * N + 4 units.

Workspace may be explicitly provided, if desired, by use of
C2GRD/DC2GRD. The reference is

CALL C2GRD (FCN, GRAD, N, X, INFO, FX, XSCALE,
 EPSFCN, XNEW)

IMSL MATH/LIBRARY Chapter 8: Optimization • 1019

The additional arguments are as follows:

FX — The functional value at X.

XSCALE — Real vector of length N containing the diagonal scaling
matrix.

EPSFCN — The relative “noise” of the function FCN.

XNEW — Real work vector of length N.

2. Informational errors
Type Code
 4 1 The user-supplied gradient is a poor estimate of the

numerical gradient.

Algorithm

The routine CHGRD uses the following finite-difference formula to estimate the
gradient of a function of n variables at x:

g x
f x h e f x

h
i ni

i i

i
0 5 1 6 0 5

=
+ −

for = , ,1K

where hL = ε1/2 max{|xL|, 1/sL} sign(xL), ε is the machine epsilon, eL�is the i-th unit
vector, and sL is the scaling factor of the i-th variable.

The routine CHGRD checks the user-supplied gradient ∇f(x) by comparing it with
the finite-difference gradient g(x). If

g x f x f xi i i0 5 0 51 6 0 51 6− ∇ < ∇τ

where τ = ε1/4, then (∇f(x))L, which is the i-th element of ∇f(x), is declared
correct; otherwise, CHGRD computes the bounds of calculation error and
approximation error. When both bounds are too small to account for the
difference, (∇f(x))L is reported as incorrect. In the case of a large error bound,

CHGRD uses a nearly optimal stepsize to recompute gL(x) and reports that (∇f(x))L
is correct if

g x f x f xi i i0 5 0 51 6 0 51 6− ∇ < ∇2τ

Otherwise, (∇f(x))L is considered incorrect unless the error bound for the optimal

step is greater than τ |(∇f(x))L|. In this case, the numeric gradient may be
impossible to compute correctly. For more details, see Schnabel (1985).

Example

The user-supplied gradient of

f x x x ei
t x x0 5 1 6= + − −

2

2
3

4/

1020 • Chapter 8: Optimization IMSL MATH/LIBRARY

at (625, 1, 3.125, 0.25) is checked where t = 2.125.
C Declare variables
 INTEGER N
 PARAMETER (N=4)
C
 INTEGER INFO(N)
 REAL GRAD(N), X(N)
 EXTERNAL CHGRD, DRIV, FCN, WRIRN
C
C Input values for point X
C X = (625.0, 1.0, 3.125, .25)
C
 DATA X/625.0E0, 1.0E0, 3.125E0, 0.25E0/
C
 CALL DRIV (N, X, GRAD)
C
 CALL CHGRD (FCN, GRAD, N, X, INFO)
 CALL WRIRN (’The information vector’, 1, N, INFO, 1, 0)
C
 END
C
 SUBROUTINE FCN (N, X, FX)
 INTEGER N
 REAL X(N), FX
C
 REAL EXP
 INTRINSIC EXP
C
 FX = X(1) + X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))
 RETURN
 END
C
 SUBROUTINE DRIV (N, X, GRAD)
 INTEGER N
 REAL X(N), GRAD(N)
C
 REAL EXP
 INTRINSIC EXP
C
 GRAD(1) = 1.0E0
 GRAD(2) = EXP(-1.0E0*(2.125E0-X(3))**2/X(4))
 GRAD(3) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*2.0E0/X(4)*
 & (2.125-X(3))
 GRAD(4) = X(2)*EXP(-1.0E0*(2.125E0-X(3))**2/X(4))*
 & (2.125E0-X(3))**2/(X(4)*X(4))
 RETURN
 END

Output
 The information vector
 1 2 3 4
 1 1 1 1

IMSL MATH/LIBRARY Chapter 8: Optimization • 1021

CHHES/DCHHES (Single/Double precision)
Check a user-supplied Hessian of an analytic function.

Usage
CALL CHHES (GRAD, HESS, N, X, INFO, LDINFO)

Arguments

GRAD — User-supplied SUBROUTINE to compute the gradient at the point X.
The usage is CALL GRAD (N, X, G), where

N – Length of X and G. (Input)
X – The point at which the gradient is evaluated. X should not be
changed by GRAD. (Input)
G – The gradient evaluated at the point X. (Output)

GRAD must be declared EXTERNAL in the calling program.

HESS — User-supplied SUBROUTINE to compute the Hessian at the point X. The
usage is CALL HESS (N, X, H, LDH), where

N – Length of X. (Input)
X – The point at which the Hessian is evaluated. (Input)
X should not be changed by HESS.
H – The Hessian evaluated at the point X. (Output)
LDH – Leading dimension of H exactly as specified in in the dimension
statement of the calling program. (Input)

HESS must be declared EXTERNAL in the calling program.

N — Dimension of the problem. (Input)

X — Vector of length N containing the point at which the Hessian is to be
checked. (Input)

INFO — Integer matrix of dimension N by N. (Output)

INFO(I, J) = 0 means the Hessian is a poor estimate for function I at the point
X(J).

INFO(I, J) = 1 means the Hessian is a good estimate for function I at the point
X(J).

INFO(I, J) = 2 means the Hessian disagrees with the numerical Hessian for
function I at the point X(J), but it might be impossible to calculate the numerical
Hessian.

INFO(I, J) = 3 means the Hessian for function I at the point X(J) and the
numerical Hessian are both zero, and, therefore, the gradient should be rechecked
at a different point.

LDINFO — Leading dimension of INFO exactly as specified in the dimension
statement of the calling program. (Input)

1022 • Chapter 8: Optimization IMSL MATH/LIBRARY

Comments

Automatic workspace usage is

CHHES N * (N + 5) + 1 units, or
DCHHES 2 * N * (N + 5) + 2 units.

Workspace may be explicitly provided, if desired, by use of C2HES/DC2HES. The
reference is

CALL C2HES (GRAD, HESS, N, X, INFO, LDINFO, G, HX, HS,
 XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:

G — Vector of length N containing the value of the gradient GRD at X.

HX — Real matrix of dimension N by N containing the Hessian evaluated at X.

HS — Real work vector of length N.

XSCALE — Vector of length N used to store the diagonal scaling matrix for the
variables.

EPSFCN — Estimate of the relative noise in the function.

INFT — Vector of length N. For I = 1 through N, INFT contains information
about the Jacobian.

NEWX — Real work array of length N.

Algorithm

The routine CHHES uses the following finite-difference formula to estimate the
Hessian of a function of n variables at x:

B x g x h e g x h j nij i j j i j0 5 3 8 0 54 9= + − =/ , ,for 1K

where hM = ε1/2max{|xM|, 1/sM} sign(xM), ε is the machine epsilon, eM is the j-th unit
vector, sM is the scaling factor of the j-th variable, and gL(x) is the gradient of the
function with respect to the i-th variable.

Next, CHHES checks the user-supplied Hessian H(x) by comparing it with the
finite difference approximation B(x). If

|BLM(x) − HLM(x)| < τ |HLM(x)|

where τ = ε1/4, then HLM(x) is declared correct; otherwise, CHHES computes the
bounds of calculation error and approximation error. When both bounds are too
small to account for the difference, HLM(x) is reported as incorrect. In the case of a
large error bound, CHHES uses a nearly optimal stepsize to recompute BLM(x) and
reports that BLM(x) is correct if

|BLM(x) − HLM(x)| < 2τ |HLM(x)|

IMSL MATH/LIBRARY Chapter 8: Optimization • 1023

Otherwise, HLM(x) is considered incorrect unless the error bound for the optimal

step is greater than τ |HLM(x)|. In this case, the numeric approximation may be
impossible to compute correctly. For more details, see Schnabel (1985).

Example

The user-supplied Hessian of

f x x x x0 5 3 8 1 6= − + −100 12 1
2 2

1
2

at (−1.2, 1.0) is checked, and the error is found.

 INTEGER LDINFO, N
 PARAMETER (N=2, LDINFO=N)
C
 INTEGER INFO(LDINFO,N)
 REAL X(N)
 EXTERNAL CHHES, GRD, HES
C
C Input values for X
C X = (-1.2, 1.0)
C
 DATA X/-1.2, 1.0/
C
 CALL CHHES (GRD, HES, N, X, INFO, LDINFO)
C
 END
C
 SUBROUTINE GRD (N, X, UG)
 INTEGER N
 REAL X(N), UG(N)
C
 UG(1) = -400.0*X(1)*(X(2)-X(1)*X(1)) + 2.0*X(1) - 2.0
 UG(2) = 200.0*X(2) - 200.0*X(1)*X(1)
 RETURN
 END
C
 SUBROUTINE HES (N, X, HX, LDHS)
 INTEGER N, LDHS
 REAL X(N), HX(LDHS,N)
C
 HX(1,1) = -400.0*X(2) + 1200.0*X(1)*X(1) + 2.0
 HX(1,2) = -400.0*X(1)
 HX(2,1) = -400.0*X(1)
C A sign change is made to HX(2,2)
C
 HX(2,2) = -200.0
 RETURN
 END

Output
*** FATAL ERROR 1 from CHHES. The Hessian evaluation with respect to
*** X(2) and X(2) is a poor estimate.

1024 • Chapter 8: Optimization IMSL MATH/LIBRARY

CHJAC/DCHJAC (Single/Double precision)
Check a user-supplied Jacobian of a system of equations with M functions in N
unknowns.

Usage
CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO)

Arguments

FCN — User-supplied SUBROUTINE to evaluate the function to be minimized.
The usage is CALL FCN (M, N, X, F), where

M – Length of F. (Input)
N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
F – The computed function value at the point X. (Output)

FCN must be declared EXTERNAL in the calling program.

JAC — User-supplied SUBROUTINE to evaluate the Jacobian at a point X. The
usage is CALL JAC (M, N, X, FJAC, LDFJAC), where

M – Length of F. (Input)
N – Length of X. (Input)
X – The point at which the function is evaluated. (Input)
X should not be changed by FCN.
FJAC – The computed M by N Jacobian at the point X. (Output)
LDFJAC – Leading dimension of FJAC. (Input)

JAC must be declared EXTERNAL in the calling program.

M — The number of functions in the system of equations. (Input)

N — The number of unknowns in the system of equations. (Input)

X — Vector of length N containing the point at which the Jacobian is to be
checked. (Input)

INFO — Integer matrix of dimension M by N. (Output)

INFO(I, J) = 0 means the user-supplied Jacobian is a poor estimate for function I

at the point X(J).

INFO(I, J) = 1 means the user-supplied Jacobian is a good estimate for function
I at the point X(J).

INFO(I, J) = 2 means the user-supplied Jacobian disagrees with the numerical
Jacobian for function I at the point X(J), but it might be impossible to calculate
the numerical Jacobian.

IMSL MATH/LIBRARY Chapter 8: Optimization • 1025

INFO(I, J) = 3 means the user-supplied Jacobian for function I at the point X(J)
and the numerical Jacobian are both zero. Therefore, the gradient should be
rechecked at a different point.

LDINFO — Leading dimension of INFO exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

CHJAC M * (N + 1) + 4 * N + 1 units, or
DCHJAC 2 * M * (N + 1) + 7 * N + 2 units.

Workspace may be explicitly provided, if desired, by use of
C2JAC/DC2JAC. The reference is

CALL C2JAC (FCN, JAC, N, X, INFO, LDINFO, FX, FJAC,
 GRAD, XSCALE, EPSFCN, INFT, NEWX)

The additional arguments are as follows:

FX — Vector of length M containing the value of each function in FCN at
X.

FJAC — Real matrix of dimension M by N containing the Jacobian of
FCN evaluated at X.

GRAD — Real work vector of length N used to store the gradient of each
function in FCN.

XSCALE — Vector of length N used to store the diagonal scaling matrix
for the variables.

EPSFCN — Estimate of the relative noise in the function.

INFT — Vector of length N. For I = 1 through N, INFT contains
information about the Jacobian.

NEWX — Real work array of length N.

2. Informational errors
Type Code
 4 1 The user-supplied Jacobian is a poor estimate of the

numerical Jacobian.

Algorithm

The routine CHJAC uses the following finite-difference formula to estimate the
gradient of the i-th function of n variables at x:

gLM(x) = (fL(x + hMeM) − fL(x))/hM for j = 1, …, n

where hM = ε1/2max{|xM|, 1/sM} sign(xM), ε is the machine epsilon, eM is the j-th unit
vector, and sM is the scaling factor of the j-th variable.

1026 • Chapter 8: Optimization IMSL MATH/LIBRARY

Next, CHJAC checks the user-supplied Jacobian J(x) by comparing it with the
finite difference gradient gL(x). If

|gLM(x) − JLM(x)| < τ |JLM(x)|

where τ = ε1/4, then JLM(x) is declared correct; otherwise, CHJAC computes the
bounds of calculation error and approximation error. When both bounds are too
small to account for the difference, JLM(x) is reported as incorrect. In the case of a
large error bound, CHJAC uses a nearly optimal stepsize to recompute gLM(x) and
reports that JLM(x) is correct if

|gLM(x) − JLM(x)| < 2τ |JLM(x)|

Otherwise, JLM(x) is considered incorrect unless the error bound for the optimal

step is greater than τ |JLM(x)|. In this case, the numeric gradient may be impossible
to compute correctly. For more details, see Schnabel (1985).

Example

The user-supplied Jacobian of

f x

f x x

1 1

2 2 1
2

1

10

= −

= −3 8
at (−1.2, 1.0) is checked.

 INTEGER LDINFO, N
 PARAMETER (M=2,N=2,LDINFO=M)
C
 INTEGER INFO(LDINFO,N)
 REAL X(N)
 EXTERNAL CHJAC, FCN, JAC, WRIRN
C
C Input value for X
C X = (-1.2, 1.0)
C
 DATA X/-1.2, 1.0/
C
 CALL CHJAC (FCN, JAC, M, N, X, INFO, LDINFO)
 CALL WRIRN (’The information matrix’, M, N, INFO, LDINFO, 0)
C
 END
C
 SUBROUTINE FCN (M, N, X, F)
 INTEGER M, N
 REAL X(N), F(M)
C
 F(1) = 1.0 - X(1)
 F(2) = 10.0*(X(2)-X(1)*X(1))
 RETURN
 END
C
 SUBROUTINE JAC (M, N, X, FJAC, LDFJAC)
 INTEGER M, N, LDFJAC

IMSL MATH/LIBRARY Chapter 8: Optimization • 1027

 REAL X(N), FJAC(LDFJAC,N)
C
 FJAC(1,1) = -1.0
 FJAC(1,2) = 0.0
 FJAC(2,1) = -20.0*X(1)
 FJAC(2,2) = 10.0
 RETURN
 END

Output
*** WARNING ERROR 2 from C2JAC. The numerical value of the Jacobian
*** evaluation for function 1 at the point X(2) = 1.000000E+00 and
*** the user-supplied value are both zero. The Jacobian for this
*** function should probably be re-checked at another value for
*** this point.

The information matrix
 1 2
1 1 3
2 1 1

GGUES/DGGUES (Single/Double precision)
Generate points in an N-dimensional space.

Usage
CALL GGUES (N, A, B, K, IDO, S)

Arguments

N — Dimension of the space. (Input)

A — Vector of length N. (Input)
See B.

B — Real vector of length N. (Input)
A and B define the rectangular region in which the points will be generated, i.e.,
A(I) < S(I) < B(I) for I = 1, 2, …, N. Note that if B(I) < A(I), then B(I) < S(I) <
A(I).

K — The number of points to be generated. (Input)

IDO — Initialization parameter. (Input/Output)
IDO must be set to zero for the first call. GGUES resets IDO to 1 and returns the
first generated point in S. Subsequent calls should be made with IDO = 1.

S — Vector of length N containing the generated point. (Output)
Each call results in the next generated point being stored in S.

Comments

1. Automatic workspace usage is

1028 • Chapter 8: Optimization IMSL MATH/LIBRARY

GGUES N units, or
DGGUES 2 * N units.

Workspace may be explicitly provided, if desired, by use of
G2UES/DG2UES. The reference is

CALL G2UES (N, A, B, K, IDO, S, WK, IWK)

The additional argument is

WK — Work vector of length N. WK must be preserved between calls to
G2UES.

IWK — Work vector of length 10. IWK must be preserved between calls
to G2UES.

2. Informational error
Type Code
 4 1 Attempt to generate more than K points.

3. The routine GGUES may be used with any nonlinear optimization routine
that requires starting points. The rectangle to be searched (defined by A,
B, and N) must be determined; and the number of starting points, K, must
be chosen. One possible use for GGUES would be to call GGUES to
generate a point in the chosen rectangle. Then, call the nonlinear
optimization routine using this point as an initial guess for the solution.
Repeat this process K times. The number of iterations that the
optimization routine is allowed to perform should be quite small (5 to
10) during this search process. The best (or best several) point(s) found
during the search may be used as an initial guess to allow the
optimization routine to determine the optimum more accurately. In this
manner, an N dimensional rectangle may be effectively searched for a
global optimum of a nonlinear function. The choice of K depends upon
the nonlinearity of the function being optimized. A function with many
local optima requires a larger value than a function with only a few local
optima.

Algorithm

The routine GGUES generates starting points for algorithms that optimize
functions of several variables−or, almost equivalently−algorithms that solve
simultaneous nonlinear equations.

The routine GGUES is based on systematic placement of points to optimize the
dispersion of the set. For more details, see Aird and Rice (1977).

Example

We want to search the rectangle with vertices at coordinates (1, 1), (3, 1), (3, 2),
and (1, 2) ten times for a global optimum of a nonlinear function. To do this, we
need to generate starting points. The following example illustrates the use of
GGUES in this process:

IMSL MATH/LIBRARY Chapter 8: Optimization • 1029

C Variable Declarations
 INTEGER N
 PARAMETER (N=2)
C
 INTEGER IDO, J, K, NOUT
 REAL A(N), B(N), S(N)
 EXTERNAL GGUES, UMACH
C Initializations
C
C A = (1.0, 1.0)
C B = (3.0, 2.0)
C
 DATA A/1.0, 1.0/
 DATA B/3.0, 2.0/
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998)
99998 FORMAT (’ Point Number’, 7X, ’Generated Point’)
C
 K = 10
 IDO = 0
 DO 10 J=1, K
 CALL GGUES (N, A, B, K, IDO, S)
C
 WRITE (NOUT,99999) J, S(1), S(2)
99999 FORMAT (1X, I7, 14X, ’(’, F4.1, ’,’, F6.3, ’)’)
C
 10 CONTINUE
C
 END

Output
Point Number Generated Point
 1 (1.5, 1.125)
 2 (2.0, 1.500)
 3 (2.5, 1.750)
 4 (1.5, 1.375)
 5 (2.0, 1.750)
 6 (1.5, 1.625)
 7 (2.5, 1.250)
 8 (1.5, 1.875)
 9 (2.0, 1.250)
 10 (2.5, 1.500)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1031

Chapter 9: Basic Matrix/Vector
Operations

Routines
9.1. Basic Linear Algebra Subprograms (BLAS)

Set a vector to a constant value, xL ← a SSET 1037
Copy a vector, yL ← xL.. SCOPY 1037
Scale a vector by a constant, xL ← axL SSCAL 1037
Set a vector to a constant multiple of a vector, yL ← axL SVCAL 1038
Add a constant to a vector, xL ←xL + aSADD 1038
Subtract a vector from a constant, xL ← a − xL SSUB 1038
Add a multiple of one vector to another, yL ← axL + yL...........SAXPY 1038
Swap two vectors, yL↔ xL ..SSWAP 1038

Compute x7y or x+y ...SDOT 1039

Compute extended precision x7y or x+y DSDOT 1039

Compute extended precision a + x7y or a + x+ySDSDOT 1039

Compute ACC + b + x7y
with extended precision accumulator................................. SDDOTI 1040
Compute zL ← xLyL ... SHPROD 1040
Compute Σ xLyLzL ..SXYZ 1040
Compute Σ xL ..SSUM 1041
Compute Σ |xL|.. SASUM 1041
Compute ||x||2 ... SNRM2 1041
Compute Π xL .. SPRDCT 1041
Find the index i such that xL�= minM xM ISMIN 1042
Find the index i such that xL= maxM xMISMAX 1042
Find the index i such that |xL| = minM�|xM|.................................ISAMIN 1042
Find the index i such that |xL| = maxM |xM|.............................. ISAMAX 1042
Construct a Givens rotation ..SROTG 1043
Apply a Givens rotation..SROT 1043
Construct a modified Givens rotation...............................SROTMG 1044

1032 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Apply a modified Givens rotation.. SROTM 1045
Matrix-vector multiply, general.. SGEMV 1049
Matrix-vector multiply, banded.. SGBMV 1049
Matrix-vector multiply, Hermitian .. CHEMV 1050
Matrix-vector multiply, Hermitian and banded CHBMV 1050
Matrix-vector multiply, symmetric and realSSYMV 1050
Matrix-vector multiply, symmetric and bandedSSBMV 1050
Matrix-vector multiply, triangular..STRMV 1050
Matrix-vector multiply, triangular and banded......................STBMV 1051
Matrix-vector solve, triangular ... STRSV 1051
Matrix-vector solve, triangular and bandedSTBSV 1051
Rank-one matrix update, general and real SGER 1052
Rank-one matrix update, general, complex,
and transpose... CGERU 1052
Rank-one matrix update, general, complex,
and conjugate transpose .. CGERC 1052
Rank-one matrix update,
Hermitian and conjugate transpose....................................... CHER 1052
Rank-two matrix update,
Hermitian and conjugate transpose..................................... CHER2 1052
Rank-one matrix update, symmetric and real.........................SSYR 1053
Rank-two matrix update, symmetric and realSSYR2 1053
Matrix-matrix multiply, general..SGEMM 1053
Matrix-matrix multiply, symmetric SSYMM 1053
Matrix-matrix multiply, Hermitian ..CHEMM 1054
Rank-k update, symmetric ... SSYRK 1054
Rank-k update, Hermitian..CHERK 1054
Rank-2k update, symmetric ... SSYR2K 1055
Rank-2k update, Hermitian..CHER2K 1055
Matrix-matrix multiply, triangular... STRMM 1055
Matrix-matrix solve, triangular ...STRSM 1056

9.2. Other Matrix/Vector Operations

9.2.1 Matrix Copy
Real general ...CRGRG 1058
Complex general ..CCGCG 1059
Real band ..CRBRB 1060
Complex band ...CCBCB 1061

9.2.2 Matrix Conversion
Real general to real band ... CRGRB 1063
Real band to real general ... CRBRG 1064
Complex general to complex band..................................... CCGCB 1065
Complex band to complex general CCBCG 1066
Real general to complex general..CRGCG 1068
Real rectangular to complex rectangular............................ CRRCR 1069
Real band to complex band...CRBCB 1070
Real symmetric to real general..CSFRG 1071
Complex Hermitian to complex generalCHFCG 1072
Real symmetric band to real band.......................................CSBRB 1074

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1033

Complex Hermitian band to complex band CHBCB 1075
Real rectangular matrix to its transpose TRNRR 1076

9.2.3 Matrix Multiplication

Compute X7 X ..MXTXF 1078

Compute X7 Y ..MXTYF 1079

Compute XY7 ...MXYTF 1080
Multiply two real rectangular matrices................................ MRRRR 1082
Multiply two complex rectangular matrices MCRCR 1084
Compute matrix Hadamard product....................................HRRRR 1085

Compute the bilinear form x7Ay ...BLINF 1087
Compute the matrix polynomial p(A) POLRG 1088

9.2.4 Matrix-Vector Multiplication
Real rectangular matrix times a real vectorMURRV 1090
Real band matrix times a real vectorMURBV 1091
Complex rectangular matrix times a complex vectorMUCRV 1093
Complex band matrix times a complex vectorMUCBV 1094

9.2.5 Matrix Addition
Real band matrix plus a real band matrixARBRB 1096
Complex band matrix plus a complex band matrixACBCB 1097

9.2.6 Matrix Norm
∞-norm of a real rectangular matrix NRIRR 1099
1-norm of a real rectangular matrix..................................... NR1RR 1100
Frobenius norm of a real rectangular matrix NR2RR 1101
1-norm of a real band matrix..NR1RB 1103
1-norm of a complex band matrix ..NR1CB 1104

9.2.7 Distance Between Two Points
Euclidean distance...DISL2 1105
1-norm distance ...DISL1 1106
∞-norm distance..DISLI 1107

9.2.8 Vector Convolutions
Convolution of real vectors..VCONR 1108
Convolution of complex vectors ..VCONC 1110

9.3. Extended Precision Arithmetic
Initialize a real accumulator, ACC ← aDQINI 1112
Store a real accumulator, a ← ACC......................................DQSTO 1112
Add to a real accumulator, ACC ← ACC + aDQADD 1113
Add a product to a real accumulator, ACC ← ACC + abDQMUL 1113
Initialize a complex accumulator, ACC ← a............................. ZQINI 1113
Store a complex accumulator, a ← ACC ZQSTO 1113
Add to a complex accumulator, ACC ←ACC + a ZQADD 1113
Add a product to a complex accumulator,
ACC ← ACC + ab ... ZQMUL 1113

1034 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Basic Linear Algebra Subprograms
The basic linear algebra subprograms, normally referred to as the BLAS, are
routines for low-level operations such as dot products, matrix times vector, and
matrix times matrix. Lawson et al. (1979) published the original set of 38 BLAS.
The IMSL BLAS collection includes these 38 subprograms plus additional ones
that extend their functionality. Since Dongarra et al. (1988 and 1990) published
extensions to this set, it is customary to refer to the original 38 as Level 1 BLAS.
The Level 1 operations are performed on one or two vectors of data. An extended
set of subprograms perform operations involving a matrix and one or two vectors.
These are called the Level 2 BLAS (page 1046). An additional extended set of
operations on matrices is called the Level 3 BLAS (page 1046).

Users of the BLAS will often benefit from using versions of the BLAS supplied
by hardware vendors, if available. This can provide for more efficient execution
of many application programs. The BLAS provided by IMSL are written in
FORTRAN. Those supplied by vendors may be written in other languages, such
as assembler. The documentation given below for the BLAS is compatible with a
vendor’s version of the BLAS that conforms to the published specifications.

Programming Notes for Level 1 BLAS

The Level 1 BLAS do not follow the usual IMSL naming conventions. Instead,
the names consist of a prefix of one or more of the letters “I,” “ S,” “ D,” “ C” and
“Z;” a root name; and sometimes a suffix. For subprograms involving a mixture of
data types, the output type is indicated by the first prefix letter. The suffix denotes
a variant algorithm. The prefix denotes the type of the operation according to the
following table:

I Integer

S Real C Complex

D Double Z Double complex

SD Single and Double CZ Single and double complex

DQ Double and Quadruple ZQ Double and quadruple complex

Vector arguments have an increment parameter that specifies the storage space or
stride between elements. The correspondence between the vectors x and y and the
arguments SX and SY, and INCX and INCY is

x

y

i

i

=
∗ + ≥

∗ + <

%
&K
'K

=
∗ + ≥

∗ + <

%
&K
'K

SX I INCX

SX I N INCX

SY I INCY

SY I N INCY

-1 if INCX 0

- if INCX 0

-1 if INCY 0

- if INCY 0

0 51 6
0 51 6
0 51 6
0 51 6

1

1

1

1

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1035

Function subprograms SXYZ, DXYZ, page 1040, refer to a third vector argument z.
The storage increment INCZ for z is defined like INCX, INCY. In the Level 1
BLAS, only positive values of INCX are allowed for operations that have a single
vector argument. The loops in all of the Level 1 BLAS process the vector
arguments in order of increasing i. For INCX, INCY, INCZ < 0, this implies
processing in reverse storage order.

The function subprograms in the Level 1 BLAS are all illustrated by means of an
assignment statement. For example, see SDOT (page 1039). Any value of a
function subprogram can be used in an expression or as a parameter passed to a
subprogram as long as the data types agree.

Descriptions of the Level 1 BLAS Subprograms

The set of Level 1 BLAS are summarized in Table 9.1. This table also lists the
page numbers where the subprograms are described in more detail.

Specification of the Level 1 BLAS

With the definitions,

MX = max {1, 1 + (N − 1)|INCX|}

MY = max {1, 1 + (N − 1)|INCY|}

MZ = max {1, 1 + (N − 1)|INCZ|}

the subprogram descriptions assume the following FORTRAN declarations:
IMPLICIT INTEGER (I-N)
IMPLICIT REAL S
IMPLICIT DOUBLE PRECISION D
IMPLICIT COMPLEX C
IMPLICIT DOUBLE COMPLEX Z

INTEGER IX(MX)
REAL SX(MX), SY(MY), SZ(MZ),
 SPARAM(5)
DOUBLE PRECISION DX(MX), DY(MY), DZ(MZ),
 DPARAM(5)

DOUBLE PRECISION DACC(2), DZACC(4)
COMPLEX CX(MX), CY(MY)
DOUBLE COMPLEX ZX(MX), ZY(MY)

Since FORTRAN 77 does not include the type DOUBLE COMPLEX, subprograms
with DOUBLE COMPLEX arguments are not available for all systems. Some systems
use the declaration COMPLEX * 16 instead of DOUBLE COMPLEX.

In the following descriptions, the original BLAS are marked with an * in the left
column.

1036 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Table 9.1: Level 1 Basic Linear Algebra Subprograms

Operation Integer Real Double Complex
Double
Complex Pg.

xL�← a ISET SSET DSET CSET ZSET 1037

yL ← xL ICOPY SCOPY DCOPY CCOPY ZCOPY 1037

xL ← axL

a ∈ R

SSCAL DSCAL CSCAL

CSSCAL

ZSCAL

ZDSCAL

1037

yL ← axL

a ∈ R

SVCAL DVCAL CVCAL

CSVCAL

ZVCAL

ZDVCAL

1038

xL ← xL + a IADD SADD DADD CADD ZADD 1038

xL ← a − xL ISUB SSUB DSUB CSUB ZSUB 1038

yL ← axL + yL SAXPY DAXPY CAXPY ZAXPY 1038

yL ↔ xL ISWAP SSWAP DSWAP CSWAP ZSWAP 1038

x ⋅ y

x ⋅ y

SDOT DDOT CDOTU

CDOTC

ZDOTU

ZDOTC

1039

x ⋅ y †

x ⋅ y †

DSDOT CZDOTU

CZDOTC

ZQDOTU

ZQDOTC

1039

a + x ⋅ y †

a + x ⋅ y †

SDSDOT DQDDOT CZUDOT

CZCDOT

ZQUDOT

ZQCDOT

1039

b + x ⋅ y †

ACC + b + x ⋅ y †

SDDOTI

SDDOTA

DQDOTI

DQDOTA

CZDOTI

CZDOTA

ZQDOTI

ZQDOTA

1040

zL ← xLyL SHPROD DHPROD 1040

∑ xLyLzL SXYZ DXYZ 1040

∑ xL ISUM SSUM DSUM 1041

∑ |xL| SASUM DASUM SCASUM DZASUM 1041

||x||2 SNRM2 DNRM2 SCNRM2 DZNRM2 1041

Π xL SPRDCT DPRDCT 1041

i : xL = minM xM IIMIN ISMIN IDMIN 1042

i : xL = maxM xM IIMAX ISMAX IDMAX 1042

i : |xL| = minM |xM| ISAMIN IDAMIN ICAMIN IZAMIN 1042

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1037

Operation Integer Real Double Complex
Double
Complex Pg.

i : |xL| = maxM |xM| ISAMAX IDAMAX ICAMAX IZAMAX 1042

Construct Givens
rotation

SROTG DROTG 1043

Apply Givens
rotation

SROT DROT CSROT ZDROT 1043

Construct
modified Givens
transform

SROTMG DROTMG 1044

Apply modified
Givens transform

SROTM DROTM CSROTM ZDROTM 1045

†Higher precision accumulation used

Set a Vector to a Constant Value
CALL ISET (N, IA, IX, INCX)
CALL SSET (N, SA, SX, INCX)
CALL DSET (N, DA, DX, INCX)
CALL CSET (N, CA, CX, INCX)
CALL ZSET (N, ZA, ZX, INCX)

These subprograms set xL ← a for i = 1, 2, …, N. If N ≤ 0, then the subprograms
return immediately.

Copy a Vector
 CALL ICOPY (N, IX, INCX, IY, INCY)

*CALL SCOPY (N, SX, INCX, SY, INCY)
*CALL DCOPY (N, DX, INCX, DY, INCY)
*CALL CCOPY (N, CX, INCX, CY, INCY)
 CALL ZCOPY (N, ZX, INCX, ZY, INCY)

These subprograms set yL ← xL for i = 1, 2, …, N. If N ≤ 0, then the subprograms
return immediately.

Scale a Vector

*CALL SSCAL (N, SA, SX, INCX)
*CALL DSCAL (N, DA, DX, INCX)
*CALL CSCAL (N, CA, CX, INCX)
 CALL ZSCAL (N, ZA, ZX, INCX)

*CALL CSSCAL (N, SA, CX, INCX)
 CALL ZDSCAL (N, DA, ZX, INCX)

These subprograms set xL ← axL for i = 1, 2, …, N. If N ≤ 0, then the subprograms
return immediately. CAUTION: For CSSCAL and ZDSCAL, the scalar quantity a is
real and the vector x is complex.

1038 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Multiply a Vector by a Constant
CALL SVCAL (N, SA, SX, INCX, SY, INCY)
CALL DVCAL (N, DA, DX, INCX, DY, INCY)
CALL CVCAL (N, CA, CX, INCX, CY, INCY)
CALL ZVCAL (N, ZA, ZX, INCX, ZY, INCY)
CALL CSVCAL (N, SA, CX, INCX, CY, INCY)
CALL ZDVCAL (N, DA, ZX, INCX, ZY, INCY)

These subprograms set yL ← axL for i = 1, 2, …, N. If N ≤ 0, then the subprograms
return immediately. CAUTION: For CSVCAL and ZDVCAL, the scalar quantity a is
real and the vector x is complex.

Add a Constant to a Vector
CALL IADD (N, IA, IX, INCX)
CALL SADD (N, SA, SX, INCX)
CALL DADD (N, DA, DX, INCX)
CALL CADD (N, CA, CX, INCX)
CALL ZADD (N, ZA, ZX, INCX)

These subprograms set xL ← xL + a for i = 1, 2, …, N. If N ≤ 0, then the
subprograms return immediately.

Subtract a Vector from a Constant
CALL ISUB (N, IA, IX, INCX)
CALL SSUB (N, SA, SX, INCX)
CALL DSUB (N, DA, DX, INCX)
CALL CSUB (N, CA, CX, INCX)
CALL ZSUB (N, ZA, ZX, INCX)

These subprograms set xL ← a − xL for i = 1, 2, …, N. If N ≤ 0, then the
subprograms return immediately.

Constant Times a Vector Plus a Vector

*CALL SAXPY (N, SA, SX, INCX, SY, INCY)
*CALL DAXPY (N, DA, DX, INCX, DY, INCY)
*CALL CAXPY (N, CA, CX, INCX, CY, INCY)
 CALL ZAXPY (N, ZA, ZX, INCX, ZY, INCY)

These subprograms set yL ← axL + yL for i = 1, 2, …, N. If N ≤ 0, then the
subprograms return immediately.

Swap Two Vectors
 CALL ISWAP (N, IX, INCX, IY, INCY)

*CALL SSWAP (N, SX, INCX, SY, INCY)
*CALL DSWAP (N, DX, INCX, DY, INCY)
*CALL CSWAP (N, CX, INCX, CY, INCY)
 CALL ZSWAP (N, ZX, INCX, ZY, INCY)

These subprograms perform the exchange yL ↔ xL for i = 1, 2, …, N. If N ≤ 0,
then the subprograms return immediately.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1039

Dot Product

*SW = SDOT (N, SX, INCX, SY, INCY)
*DW = DDOT (N, DX, INCX, DY, INCY)
*CW = CDOTU (N, CX, INCX, CY, INCY)
*CW = CDOTC (N, CX, INCX, CY, INCY)
 ZW = ZDOTU (N, ZX, INCX, ZY, INCY)
 ZW = ZDOTC (N, ZX, INCX, ZY, INCY)

The function subprograms SDOT, DDOT, CDOTU, and ZDOTU compute

x yii

N
i=∑ 1

The function subprograms CDOTC and ZDOTC compute

x yii

N
i=∑ 1

The suffix C indicates that the complex conjugates of xL are used. The suffix U

indicates that the unconjugated values of xL are used. If N ≤ 0, then the
subprograms return zero.

Dot Product with Higher Precision Accumulation

*DW = DSDOT (N, SX, INCX, SY, INCY)
 CW = CZDOTC (N, CX, INCX, CY, INCY)
 CW = CZDOTU (N, CX, INCX, CY, INCY)
 ZW = ZQDOTC (N, ZX, INCX, ZY, INCY)
 ZW = ZQDOTU (N, ZX, INCX, ZY, INCY)

The function subprogram DSDOT computes

x yii

N
i=∑ 1

using double precision accumulation. The function subprograms CZDOTU and
ZQDOTU compute

x yii

N
i=∑ 1

using double and quadruple complex accumulation, respectively. The function
subprograms CZDOTC and ZQDOTC compute

x yii

N
i=∑ 1

using double and quadruple complex accumulation, respectively. If N ≤ 0, then
the subprograms return zero.

Constant Plus Dot Product with Higher Precision Accumulation

*SW = SDSDOT (N, SA, SX, INCX, SY, INCY)
 DW = DQDDOT (N, DA, DX, INCX, DY, INCY)
 CW = CZCDOT (N, CA, CX, INCX, CY, INCY)
 CW = CZUDOT (N, CA, CX, INCX, CY, INCY)

1040 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

 ZW = ZQCDOT (N, ZA, ZX, INCX, ZY, INCY)
 ZW = ZQUDOT (N, ZA, ZX, INCX, ZY, INCY)

The function subprograms SDSDOT, DQDDOT, CZUDOT, and ZQUDOT compute

a x yii

N
i+ =∑ 1

using higher precision accumulation where SDSDOT uses double precision
accumulation, DQDDOT uses quadruple precision accumulation, CZUDOT uses
double complex accumulation, and ZQUDOT uses quadruple complex
accumulation. The function subprograms CZCDOT and ZQCDOT compute

a x yii

N
i+ =∑ 1

using double complex and quadruple complex accumulation, respectively. If N ≤
 0, then the subprograms return zero.

Dot Product Using the Accumulator
 SW = SDDOTI (N, SB, DACC, SX, INCX, SY, INCY)
 SW = SDDOTA (N, SB, DACC, SX, INCX, SY, INCY)
 CW = CZDOTI (N, CB, DACC, CX, INCX, CY, INCY)
 CW = CZDOTA (N, CB, DACC, CX, INCX, CY, INCY)

*DW = DQDOTI (N, DB, DACC, DX, INCX, DY, INCY)
*DW = DQDOTA (N, DB, DACC, DX, INCX, DY, INCY)
 ZW = ZQDOTI (N, ZB, DZACC, ZX, INCX, ZY, INCY)
 ZW = ZQDOTA (N, ZB, DZACC, ZX, INCX, ZY, INCY)

The variable DACC, a double precision array of length two, is used as a quadruple
precision accumulator. DZACC, a double precision array of length four, is its
complex analog. The function subprograms, with a name ending in I, initialize
DACC to zero. All of the function subprograms then compute

DACC + + =∑b x yii

N
i1

and store the result in DACC. The result, converted to the precision of the function,
is also returned as the function value. If N ≤ 0, then the function subprograms
return zero.

Hadamard Product
CALL SHPROD (N, SX, INCX, SY, INCY, SZ, INCZ)
CALL DHPROD (N, DX, INCX, DY, INCY, DZ, INCZ)

These subprograms set zL ← xLyL for i = 1, 2, …, N. If N ≤ 0, then the subprograms
return immediately.

Triple Inner Product
SW = SXYZ (N, SX, INCX, SY, INCY, SZ, INCZ)
DW = DXYZ (N, DX, INCX, DY, INCY, DZ, INCZ)

These function subprograms compute

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1041

x y zii

N
i i=∑ 1

If N ≤ 0 then the subprograms return zero.

Sum of the Elements of a Vector
IW = ISUM (N, IX, INCX)
SW = SSUM (N, SX, INCX)
DW = DSUM (N, DX, INCX)

These function subprograms compute

xii

N

=∑ 1

If N ≤ 0, then the subprograms return zero.

Sum of the Absolute Values of the Elements of a Vector

*SW = SASUM (N, SX, INCX)
*DW = DASUM (N, DX, INCX)
*SW = SCASUM (N, CX, INCX)
 DW = DZASUM (N, ZX, INCX)

The function subprograms SASUM and DASUM compute

xii

N

=∑ 1

The function subprograms SCASUM and DZASUM compute

ℜ + ℑ=∑ x xi ii

N

1

If N ≤ 0, then the subprograms return zero. CAUTION: For SCASUM and DZASUM,
the function subprogram returns a real value.

Euclidean or l 2 Norm of a Vector

*SW = SNRM2 (N, SX, INCX)
*DW = DNRM2 (N, DX, INCX)
*SW = SCNRM2 (N, CX, INCX)
 DW = DZNRM2 (N, ZX, INCX)

These function subprograms compute

xii

N 2
1

1 2

=∑
If N ≤ 0, then the subprograms return zero. CAUTION: For SCNRM2 and DZNRM2,
the function subprogram returns a real value.

Product of the Elements of a Vector
SW = SPRDCT (N, SX, INCX)
DW = DPRDCT (N, DX, INCX)

1042 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

These function subprograms compute

xii

N

=∏ 1

If N ≤ 0, then the subprograms return zero.

Index of Element Having Minimum Value
IW = IIMIN (N, IX, INCX)
IW = ISMIN (N, SX, INCX)
IW = IDMIN (N, DX, INCX)

These function subprograms compute the smallest index i such that
xL�= min1�M�1 xM. If N ≤ 0, then the subprograms return zero.

Index of Element Having Maximum Value
IW = IIMAX (N, IX, INCX)
IW = ISMAX (N, SX, INCX)
IW = IDMAX (N, DX, INCX)

These function subprograms compute the smallest index i such that
xL = max1�M�1 xM. If N ≤ 0, then the subprograms return zero.

Index of Element Having Minimum Absolute Value
IW = ISAMIN (N, SX, INCX)
IW = IDAMIN (N, DX, INCX)
IW = ICAMIN (N, CX, INCX)
IW = IZAMIN (N, ZX, INCX)

The function subprograms ISAMIN and IDAMIN compute the smallest index i
such that |xL| = min1�M�1 |xM|. The function subprograms ICAMIN and IZAMIN
compute the smallest index i such that

ℜ + ℑ = ℜ + ℑ
≤ ≤

x x x xi i
j N

j jmin
1

If N ≤ 0, then the subprograms return zero.

Index of Element Having Maximum Absolute Value

*IW = ISAMAX (N, SX, INCX)
*IW = IDAMAX (N, DX, INCX)
*IW = ICAMAX (N, CX, INCX)
 IW = IZAMAX (N, ZX, INCX)

The function subprograms ISAMAX and IDAMAX compute the smallest index i
such that |xL| = max1�M�1 |xM|. The function subprograms ICAMAX and IZAMAX
compute the smallest index i such that

ℜ + ℑ = ℜ + ℑ
≤ ≤

x x x xi i
j N

j jmax
1

If N ≤ 0, then the subprograms return zero.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1043

Construct a Givens Plane Rotation

*CALL SROTG (SA, SB, SC, SS)
*CALL DROTG (SA, SB, SC, SS)

Given the values a and b, these subprograms compute

c
a r r

r
=

≠
=

%&'
/ if

if

0

1 0

and

s
b r r

r
=

≠
=

%&'
/ if

if

0

1 0

where r = σ(a2 + b2)1/2 and

σ =
>%&'

sign() if

sign() otherwise

a a b

b

Then, the values c, s and r satisfy the matrix equation

c s

s c

a

b

r

−
�
!

"
$#

�
!

"
$# = �

!
"
$#0

The introduction of σ is not essential to the computation of the Givens rotation
matrix; but its use permits later stable reconstruction of c and s from just one
stored number, an idea due to Stewart (1976). For this purpose, the subprogram
also computes

z
s s c c

c c s
=

< =
< ≤

%&'
if or

if

0

1 0/

In addition to returning c and s, the subprograms return r overwriting a, and z
overwriting b.

Reconstruction of c and s from z can be done as follows:

If z = 1, then set c = 0 and s = 1

If |z| < 1, then set

c z s z= − =1 2 and

If |z| > 1, then set

c z s c= 1 1 2/ and = -

Apply a Plane Rotation

*CALL SROT (N, SX, INCX, SY, INCY, SC, SS)
*CALL DROT (N, DX, INCX, DY, INCY, DC, DS)

1044 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

 CALL CSROT (N, CX, INCX, CY, INCY, SC, SS)
 CALL ZDROT (N, ZX, INCX, ZY, INCY, DC, DS)

These subprograms compute

x

y

c s

s c

x

y
i N

i

i

i

i

�
!

"
$# ←

−
�
!

"
$# =

�
!

"
$# = for 1, ,K

If N ≤ 0, then the subprograms return immediately. CAUTION: For CSROT and
ZDROT, the scalar quantities c and s are real, and x and y are complex.

Construct a Modified Givens Transformation

*CALL SROTMG (SD1, SD2, SX1, SY1, SPARAM)
*CALL DROTMG (DD1, DD2, DX1, DY1, DPARAM)

The input quantities d1, d2, x1 and y1 define a 2-vector [w1, z1]7 by the following:

w

z

d

d

x

y
i

i

i

i

�
!

"
$# =

�
!

"
$
##

�
!

"
$#

1

2

0

0

The subprograms determine the modified Givens rotation matrix H that
transforms y1, and thus, z1 to zero. They also replace d1, d2 and x1 with

~
,

~ ~d d x1 2 1 and

respectively. That is,

~ ~

~

~

~

~w d

d
H

x

y

d

d

x

y

x1 1

2

1

1

1

2

1

1

1

0

0

0

0

0 0

�
!

"
$# =

�

!

"

$
##

�
!

"
$# =

�

!

"

$
##

�
!

"
$# =

�
!

"
$#

A representation of this matrix is stored in the array SPARAM or DPARAM. The
form of the matrix H is flagged by PARAM(1).

PARAM(1) = 1. In this case,

d x d y1 1
2

2 1
2≤

and

H =
−

�
!

"
$#

PARAM

PARAM

()

()

2 1

1 5

The elements PARAM(3) and PARAM(4) are not changed.

PARAM(1) = 0. In this case,

d x d y1 1
2

2 1
2>

and

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1045

H = �
!

"
$#

1

1

PARAM

PARAM

(4)

(3)

The elements PARAM(2) and PARAM(5) are not changed.

PARAM(1) = −1. In this case, rescaling was done and

H = �
!

"
$#

PARAM PARAM

PARAM PARAM

() ()

() ()

2 4

3 5

PARAM(1) = −2. In this case, H = I where I is the identity matrix. The elements
PARAM(2), PARAM(3), PARAM(4) and PARAM(5) are not changed.

The values of d1, d2 and x1 are changed to represent the effect of the
transformation. The quantity y1, which would be zeroed by the transformation, is
left unchanged.

The input value of d1 should be nonnegative, but d2 can be negative for the
purpose of removing data from a least-squares problem.

See Lawson et al. (1979) for further details.

Apply a Modified Givens Transformation

*CALL SROTM (N, SX, INCX, SY, INCY, SPARAM)
*CALL DROTM (N, DX, INCX, DY, INCY, DPARAM)
 CALL CSROTM (N, CX, INCX, CY, INCY, SPARAM)
 CALL ZDROTM (N, ZX, INCX, ZY, INCY, DPARAM)

If PARAM(1) = 1.0, then these subprograms compute

x

y

x

y
i N

i

i

i

i

�
!

"
$# ←

−
�
!

"
$#

�
!

"
$# =

PARAM

PARAM

()

()
, ,

2 1

1 5
1 for K

If PARAM(1) = 0.0, then the subprograms compute

x

y

x

y
i N

i

i

i

i

�
!

"
$# ← �

!
"
$#

�
!

"
$# =

1 4

3 1
1

PARAM

PARAM

()

()
, , for K

If PARAM(1) = −1.0, then the subprograms compute

x

y

x

y
i N

i

i

i

i

�
!

"
$# ← �

!
"
$#

�
!

"
$# =

PARAM PARAM

PARAM PARAM

() ()

() ()
, ,

2 4

3 5
1 for K

If N ≤ 0 or if PARAM(1) = −2.0, then the subprograms return immediately.
CAUTION: For CSROTM and ZDROTM, the scalar quantities PARAM(*) are real and
x and y are complex.

1046 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Programming Notes for Level 2 and Level 3 BLAS

For definitions of the matrix data structures used in the discussion below, see
page 1206. The Level 2 and Level 3 BLAS, like the Level 1 BLAS, do not follow
the IMSL naming conventions. Instead, the names consist of a prefix of one of the
letters “S,” “ D,” “ C” or “Z.” Next is a root name denoting the kind of matrix. This

is followed by a suffix indicating the type of the operation.1 The prefix denotes
the type of operation according to the following table:

S Real C Complex

D Double Z Double Complex

The root names for the kind of matrix:
GE GEneral GB General Band

SY SYmmetric SB Symmetric Band

HE HErmitian HB Hermitian Band

TR TRiangular TB Triangular Band

The suffixes for the type of operation:
MV Matrix-Vector Product SV Solve for Vector
R Rank-One Update
RU Rank-One Update, Unconjugated RC Rank-One Update, Conjugated
R2 Rank-Two Update
MM Matrix-Multiply SM Symmetric Matrix Multiply
RK Rank-K Update R2K Rank 2K Update

1IMSL does not support the Packed Symmetric, Packed-Hermitian, or Packed-
Triangular data structures, with respective root names SP, HP or TP, nor any
extended precision versions of the Level 2 BLAS.

The specifications of the operations are provided by subprogram arguments of
CHARACTER*1 data type. Both lower and upper case of the letter have the same
meaning:

TRANS, TRANSA, TRANSB ’N’ No Transpose

’T’ Transpose

’C’ Conjugage and Transpose
UPLO ’L’ Lower Triangular

’U’ Upper Triangular
DIAG ’N’ Non-unit Triangular

’U’ Unit Triangular
SIDE ’L’ Multiply “ A” Matrix on Left side or

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1047

’R’ Right side of the “B” matrix

Note: See the “Triangular Mode” section in the Reference Material (page 1208)
for definitions of these terms.

Descriptions of the Level 2 and Level 3 BLAS

The subprograms for Level 2 and Level 3 BLAS that perform operations
involving the expression βy or βC do not require that the contents of y or C be
defined when β = 0. In that case, the expression βy or βC is defined to be zero.
Note that for the _GEMV and _GBMV subprograms, the dimensions of the vectors x
and y are implied by the specification of the operation. If TRANS = ’N’ , the
dimension of y is m; if TRANS = ’T’ or = ’C’ , the dimension of y is n. The Level
2 and Level 3 BLAS are summarized in Table 9.2. This table also lists the page
numbers where the subprograms are described in more detail.

Specification of the Level 2 BLAS

Type and dimension for variables occurring in the subprogram specifications are
INTEGER INCX, INCY, NCODA, NLCA, NUCA, LDA, M, N
CHARACTER*1 DIAG, TRANS, UPLO

REAL SALPHA, SBETA, SX(*), SY(*), SA(LDA,*)
DOUBLE PRECISION DALPHA, DBETA, DX(*), DY(*), DA(LDA,*)
COMPLEX CALPHA, CBETA, CX(*), CY(*), CA(LDA,*)
DOUBLE COMPLEX ZALPHA, ZBETA, ZX(*), ZY(*), ZA(LDA,*)

There is a lower bound on the leading dimension LDA. It must be ≥ the number of
rows in the matrix that is contained in this array. Vector arguments have an
increment parameter that specifies the storage space or stride between elements.
The correspondence between the vector x, y and the arguments SX, SY and INCX,
INCY is

x

y

i

i

=
∗ + >

∗ + <

%
&K
'K

=
∗ + >

∗ + <

%
&K
'K

SX I INCX

SX I N INCX

SY I INCY

SY I N INCY

-1 if INCX 0

- if INCX 0

-1 if INCY 0

- if INCY 0

0 51 6
0 51 6
0 51 6
0 51 6

1

1

1

1

In the Level 2 BLAS, only nonzero values of INCX, INCY are allowed for
operations that have vector arguments. The Level 3 BLAS do not refer to INCX,
INCY.

Specification of the Level 3 BLAS

Type and dimension for variables occurring in the subprogram specifications are
INTEGER K, LDA, LDB, LDC, M, N
CHARACTER*1 DIAG, TRANS, TRANSA, TRANSB, SIDE, UPLO
REAL SALPHA, SBETA, SA(LDA,*), SB(LDB,*),

1048 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

 SC(LDC,*)
DOUBLE PRECISION DALPHA, DBETA, DA(LDA,*), DB(LDB,*),
 DC(LDC,*)
COMPLEX CALPHA, CBETA, CA(LDA,*), CB(LDB,*),
 CC(LDC,*)
DOUBLE COMPLEX ZALPHA, ZBETA, ZA(LDA,*), ZB(LDB,*),
 ZC(LDC,*)

Each of the integers K, M, N must be ≥ 0. It is an error if any of them are < 0. If
any of them are = 0, the subprograms return immediately. There are lower bounds
on the leading dimensions LDA, LDB, LDC. Each must be ≥ the number of rows in
the matrix that is contained in this array.

Table 9.2: Level 2 and 3 Basic Linear Algebra Subprograms

Operation Real Double Complex
Double
Complex Pg.

Matrix-Vector Multiply, General SGEMV DGEMV CGEMV ZGEMV 1049

Matrix-Vector Multiply, Banded SGBMV DGBMV CGBMV ZGBMV 1049

Matrix-Vector Multiply, Hermitian CHEMV ZHEMV 1050

Matrix-Vector Multiply,
Hermitian and Banded

CHBMV ZHBMV 1050

Matrix-Vector Multiply
Symmetric and Real

SSYMV DSYMV 1050

Matrix-Vector Multiply,
Symmetric and Banded

SSBMV DSBMV 1050

Matrix-Vector Multiply, Triangular STRMV DTRMV CTRMV ZTRMV 1050

Matrix-Vector Multiply,
Triangular and Banded

STBMV DTBMV CTBMV ZTBMV 1051

Matrix-Vector Solve, Triangular STRSV DTRSV CTRSV ZTRSV 1051

Matrix-Vector Solve,
Triangular and Banded

STBSV DTBSV CTBSV ZTBSV 1051

Rank-One Matrix Update,
General and Real

SGER DGER 1052

Rank-One Matrix Update,
General, Complex and Transpose

CGERU ZGERU 1052

Rank-One Matrix Update,
General, Complex, and Conjugate
Transpose

CGERC ZGERC 1052

Rank-One Matrix Update,
Hermitian and Conjugate Transpose

CHER ZHER 1052

Rank-Two Matrix Update,
Hermitian and Conjugate Transpose

CHER2 ZHER2 1052

Rank-One Matrix Update,
Symmetric and Real

SSYR DSYR 1053

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1049

Operation Real Double Complex
Double
Complex Pg.

Rank-Two Matrix Update,
Symmetric and Real

SSYR2 DSYR2 1053

Matrix--Matrix Multiply, General SGEMM DGEMM CGEMM ZGEMM 1053

Matrix-Matrix Multiply, Symmetric SSYMM DSYMM CSYMM ZSYMM 1053

Matrix-Matrix Multiply, Hermitian CHEMM ZHEMM 1054

Rank - k Update, Symmetric SSYRK DSYRK CSYRK ZSYRK 1054

Rank - k Update, Hermitian CHERK ZHERK 1054

Rank - 2k Update, Symmetric SSYR2K DSYR2K CSYR2K ZSYR2K 1055

Rank - 2k Update, Hermitian CHER2K ZHER2K 1055

Matrix-Matrix Multiply, Triangular STRMM DTRMM CTRMM ZTRMM 1055

Matrix-Matrix solve, Triangular STRSM DTRSM CTRSM ZTRSM 1056

Matrix–Vector Multiply, General
CALL SGEMV (TRANS, M, N, SALPHA, SA, LDA, SX, INCX,
 SBETA,SY, INCY)
CALL DGEMV (TRANS, M, N, DALPHA, DA, LDA, DX, INCX, DBETA,
 DY, INCY)
CALL CGEMV (TRANS, M, N, CALPHA, CA, LDA, CX, INCX, CBETA,
 CY, INCY)
CALL ZGEMV (TRANS, M, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA,
 ZY, INCY)

For all data types, A is an M × N matrix. These subprograms set y to one of the

expressions: y ← αAx + βy, y ← αA7x + βy, or for complex data,

y A yT← +α β
The character flag TRANS determines the operation.

Matrix–Vector Multiply, Banded
CALL SGBMV (TRANS, M, N, NLCA, NUCA SALPHA, SA, LDA, SX,
 INCX, SBETA,SY, INCY)
CALL DGBMV (TRANS, M, N, NLCA, NUCA DALPHA, DA, LDA, DX,
 INCX, DBETA,DY, INCY)
CALL CGBMV (TRANS, M, N, NLCA, NUCA CALPHA, CA, LDA, CX,
 INCX, CBETA,CY, INCY)
CALL ZGBMV (TRANS, M, N, NLCA, NUCA ZALPHA, ZA, LDA, ZX,
 INCX, ZBETA,ZY, INCY)

For all data types, A is an M × N matrix with NLCA lower codiagonals and NUCA
upper codiagonals. The matrix is stored in band storage mode. These

subprograms set y to one of the expressions: y ← αAx + βy, y ← αA7x + βy, or
for complex data,

1050 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

y A x yT← +α β
The character flag TRANS determines the operation.

Matrix-Vector Multiply, Hermitian
CALL CHEMV (UPLO, N, CALPHA, CA, LDA, CX, INCX, CBETA,
 CY,INCY)
CALL ZHEMV (UPLO, N, ZALPHA, ZA, LDA, ZX, INCX, ZBETA, ZY,
 INCY)

For all data types, A is an N × N matrix. These subprograms set y ← αAx + βy
where A is an Hermitian matrix. The matrix A is either referenced using its upper
or lower triangular part. The character flag UPLO determines the part used.

Matrix-Vector Multiply, Hermitian and Banded
CALL CHBMV (UPLO, N, NCODA, CALPHA, CA, LDA, CX, INCX,
 CBETA, CY,INCY)
CALL ZHBMV (UPLO, N, NCODA, ZALPHA, ZA, LDA, ZX, INCX,
 ZBETA, ZY,INCY)

For all data types, A is an N × N matrix with NCODA codiagonals. The matrix is
stored in band Hermitian storage mode. These subprograms set y ← αAx + βy.
The matrix A is either referenced using its upper or lower triangular part. The
character flag UPLO determines the part used.

Matrix-Vector Multiply, Symmetric and Real
CALL SSYMV (UPLO, N, SALPHA, SA, LDA, SX, INCX, SBETA, SY,
 INCY)
CALL DSYMV (UPLO, N, DALPHA, DA, LDA, DX, INCX, DBETA, DY,
 INCY)

For all data types, A is an N × N matrix. These subprograms set y ← αAx + βy
where A is a symmetric matrix. The matrix A is either referenced using its upper
or lower triangular part. The character flag UPLO determines the part used.

Matrix-Vector Multiply, Symmetric and Banded
CALL SSBMV (UPLO, N, NCODA, SALPHA, SA, LDA, SX, INCX,
 SBETA, SY,INCY)
CALL DSBMV (UPLO, N, NCODA, DALPHA, DA, LDA, DX, INCX,
 DBETA, DY,INCY)

For all data types, A is an N × N matrix with NCODA codiagonals. The matrix is
stored in band symmetric storage mode. These subprograms set y ← αAx + βy.
The matrix A is either referenced using its upper or lower triangular part. The
character flag UPLO determines the part used.

Matrix-Vector Multiply, Triangular
CALL STRMV (UPLO, TRANS, DIAG, N, SA, LDA, SX, INCX)
CALL DTRMV (UPLO, TRANS, DIAG, N, DA, LDA, DX, INCX)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1051

CALL CTRMV (UPLO, TRANS, DIAG, N, CA, LDA, CX, INCX)
CALL ZTRMV (UPLO, TRANS, DIAG, N, ZA, LDA, ZX, INCX)

For all data types, A is an N × N triangular matrix. These subprograms set x to one

of the expressions: x ← Ax, x ←A7x, or for complex data,

x A xT←
The matrix A is either referenced using its upper or lower triangular part and is
unit or nonunit triangular. The character flags UPLO, TRANS, and DIAG determine
the part of the matrix used and the operation performed.

Matrix-Vector Multiply, Triangular and Banded
CALL STBMV (UPLO, TRANS, DIAG, N, NCODA, SA, LDA, SX, INCX)
CALL DTBMV (UPLO, TRANS, DIAG, N, NCODA, DA, LDA, DX, INCX)
CALL CTBMV (UPLO, TRANS, DIAG, N, NCODA, CA, LDA, CX, INCX)
CALL ZTBMV (UPLO, TRANS, DIAG, N, NCODA, ZA, LDA, ZX, INCX)

For all data types, A is an N × N matrix with NCODA codiagonals. The matrix is
stored in band triangular storage mode. These subprograms set x to one of the

expressions: x ← Ax, x ← A7x, or for complex data,

x A xT←
The matrix A is either referenced using its upper or lower triangular part and is
unit or nonunit triangular. The character flags UPLO, TRANS, and DIAG determine
the part of the matrix used and the operation performed.

Matrix-Vector Solve, Triangular
CALL STRSV (UPLO, TRANS, DIAG, N, SA, LDA, SX, INCX)
CALL DTRSV (UPLO, TRANS, DIAG, N, DA, LDA, DX, INCX)
CALL CTRSV (UPLO, TRANS, DIAG, N, CA, LDA, CX, INCX)
CALL ZTRSV (UPLO, TRANS, DIAG, N, ZA, LDA, ZX, INCX)

For all data types, A is an N × N triangular matrix. These subprograms solve x for

one of the expressions: x ← A-1 x, x ← (A-1)7x, or for complex data,

x A xT←
−3 8 1

The matrix A is either referenced using its upper or lower triangular part and is
unit or nonunit triangular. The character flags UPLO, TRANS, and DIAG determine
the part of the matrix used and the operation performed.

Matrix-Vector Solve, Triangular and Banded
CALL STBSV (UPLO, TRANS, DIAG, N, NCODA, SA, LDA, SX, INCX)
CALL DTBSV (UPLO, TRANS, DIAG, N, NCODA, DA, LDA, DX, INCX)
CALL CTBSV (UPLO, TRANS, DIAG, N, NCODA, CA, LDA, CX, INCX)
CALL ZTBSV (UPLO, TRANS, DIAG, N, NCODA, ZA, LDA, ZX, INCX)

1052 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

For all data types, A is an N × N triangular matrix with NCODA codiagonals. The
matrix is stored in band triangular storage mode. These subprograms solve x for

one of the expressions: x ← A-1 x, x ← (AT)-1x, or for complex data,

x A xT←
−3 8 1

The matrix A is either referenced using its upper or lower triangular part and is
unit or nonunit triangular. The character flags UPLO, TRANS, and DIAG determine
the part of the matrix used and the operation performed.

Rank-One Matrix Update, General and Real
CALL SGER (M, N, SALPHA, SX, INCX, SY, INCY, SA, LDA)
CALL DGER (M, N, DALPHA, DX, INCX, DY, INCY, DA, LDA

For all data types, A is an M × N matrix. These subprograms set A ← A + αxy7.

Rank-One Matrix Update, General, Complex, and Transpose
CALL CGERU (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)
CALL ZGERU (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

For all data types, A is an M × N matrix. These subprograms set A ← A + αxy7.

Rank-One Matrix Update, General, Complex, and Conjugate
Transpose
CALL CGERC (M, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)
CALL ZGERC (M, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

For all data types, A is an M × N matrix. These subprograms set

A A xyT← + α

Rank-One Matrix Update, Hermitian and Conjugate Transpose
CALL CHER (UPLO, N, SALPHA, CX, INCX, CA, LDA)
CALL ZHER (UPLO, N, DALPHA, ZX, INCX, ZA, LDA)

For all data types, A is an N × N matrix. These subprograms set

A A xx T← + α
where A is Hermitian. The matrix A is either referenced by its upper or lower
triangular part. The character flag UPLO determines the part used. CAUTION:
Notice the scalar parameter α is real, and the data in the matrix and vector are
complex.

Rank-Two Matrix Update, Hermitian and Conjugate Transpose
CALL CHER2 (UPLO, N, CALPHA, CX, INCX, CY, INCY, CA, LDA)
CALL ZHER2 (UPLO, N, ZALPHA, ZX, INCX, ZY, INCY, ZA, LDA)

For all data types, A is an N × N matrix. These subprograms set

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1053

A A xy yxT T← + +α α
where A is an Hermitian matrix. The matrix A is either referenced by its upper or
lower triangular part. The character flag UPLO determines the part used.

Rank-One Matrix Update, Symmetric and Real
CALL SSYR (UPLO, N, SALPHA, SX, INCX, SA, LDA)
CALL DSYR (UPLO, N, DALPHA, DX, INCX, DA, LDA)

For all data types, A is an N × N matrix. These subprograms set A ← A + αxx7
where A is a symmetric matrix. The matrix A is either referenced by its upper or
lower triangular part. The character flag UPLO determines the part used.

Rank-Two Matrix Update, Symmetric and Real
CALL SSYR2 (UPLO, N, SALPHA, SX, INCX, SY, INCY, SA, LDA)
CALL DSYR2 (UPLO, N, DALPHA, DX, INCX, DY, INCY, DA, LDA)

For all data types, A is an N × N matrix. These subprograms set A ← A + αxy7 +

αyx7 where A is a symmetric matrix. The matrix A is referenced by its upper or
lower triangular part. The character flag UPLO determines the part used.

Matrix-Matrix Multiply, General
CALL SGEMM (TRANSA, TRANSB, M, N, K, SALPHA, SA, LDA, SB,
 LDB, SBETA, SC, LDC)
CALL DGEMM (TRANSA, TRANSB, M, N, K, DALPHA, DA, LDA, DB,
 LDB, DBETA, DC, LDC)
CALL CGEMM (TRANSA, TRANSB, M, N, K, CALPHA, CA, LDA, CB,
 LDB, CBETA, CC, LDC)
CALL ZGEMM (TRANSA, TRANSB, M, N, K, ZALPHA, ZA, LDA, ZB,
 LDB, ZBETA, ZC, LDC)

For all data types, these subprograms set C0�� 1 to one of the expressions:

C AB C C A B C C AB C C A B C

C AB C C A B C C A B C

C A B C C A B C

T T T T

T T T T

T T T T

← + ← + ← + ← +

← + ← + ← +

← + ← +

α β α β α β α β

α β α β α β

α β α β

, , , ,

, , ,

,

or for complex data,

The character flags TRANSA and TRANSB determine the operation to be
performed. Each matrix product has dimensions that follow from the fact that C
has dimension M × N.

Matrix-Matrix Multiply, Symmetric
CALL SSYMM (SIDE, UPLO, M, N, SALPHA, SA, LDA, SB, LDB,
 SBETA, SC, LDC)
CALL DSYMM (SIDE, UPLO, M, N, DALPHA, DA, LDA, DB, LDB,
 DBETA, DC, LDC)
CALL CSYMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB,
 CBETA, CC, LDC)

1054 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

CALL ZSYMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB,
 ZBETA, ZC, LDC)

For all data types, these subprograms set C0�� 1 to one of the expressions: C ← α
AB + βC or C ← αBA + βC, where A is a symmetric matrix. The matrix A is
referenced either by its upper or lower triangular part. The character flags SIDE
and UPLO determine the part of the matrix used and the operation performed.

Matrix-Matrix Multiply, Hermitian
CALL CHEMM (SIDE, UPLO, M, N, CALPHA, CA, LDA, CB, LDB,
 CBETA, CC, LDC)
CALL ZHEMM (SIDE, UPLO, M, N, ZALPHA, ZA, LDA, ZB, LDB,
 ZBETA, ZC, LDC)

For all data types, these subprograms set C0 � 1 to one of the expressions: C ← α
AB + βC or C ← αBA + βC, where A is an Hermitian matrix. The matrix A is
referenced either by its upper or lower triangular part. The character flags SIDE
and UPLO determine the part of the matrix used and the operation performed.

Rank-k Update, Symmetric
CALL SSYRK (UPLO, TRANS, N, K, SALPHA, SA, LDA, SBETA, SC,
 LDC)
CALL DSYRK (UPLO, TRANS, N, K, DALPHA, DA, LDA, DBETA, DC,
 LDC)
CALL CSYRK (UPLO, TRANS, N, K, CALPHA, CA, LDA, CBETA, CC,
 LDC)
CALL ZSYRK (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZBETA, ZC,
 LDC)

For all data types, these subprograms set C0�� 1 to one of the expressions: C ← α

AA7 + βC or C ← αA7A + βC. The matrix C is referenced either by its upper or
lower triangular part. The character flags UPLO and TRANS determine the part of
the matrix used and the operation performed. In subprogram CSYRK and ZSYRK,
only values ’N’ or ’T’ are allowed for TRANS; ’C’ is not acceptable.

Rank-k Update, Hermitian
CALL CHERK (UPLO, TRANS, N, K, SALPHA, CA, LDA, SBETA, CC,
 LDC)
CALL ZHERK (UPLO, TRANS, N, K, DALPHA, ZA, LDA, DBETA, ZC,
 LDC)

For all data types, these subprograms set C1���1 to one of the expressions:

C AA C C A A CT T← + ← +α β α β or

The matrix C is referenced either by its upper or lower triangular part. The
character flags UPLO and TRANS determine the part of the matrix used and the
operation performed. CAUTION: Notice the scalar parameters α and β are real,
and the data in the matrices are complex. Only values ’N’ or ’C’ are allowed for
TRANS; ’T’ is not acceptable.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1055

Rank-2k Update, Symmetric
CALL SSYR2K (UPLO, TRANS, N, K, SALPHA, SA, LDA, SB, LDB,
 SBETA, SC, LDC)

CALL DSYR2K (UPLO, TRANS, N, K, DALPHA, DA, LDA, DB, LDB,
 DBETA, DC, LDC)

CALL CSYR2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB,
 CBETA, CC, LDC)

CALL ZSYR2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB,
 ZBETA, ZC, LDC)

For all data types, these subprograms set C1���1 to one of the expressions:

C AB A C A B B A CT T T T← + ← + +α αβ β α α β+ C or

The matrix C is referenced either by its upper or lower triangular part. The
character flags UPLO and TRANS determine the part of the matrix used and the
operation performed. In subprogram CSYR2K and ZSYR2K, only values ’N’ or
’T’ are allowed for TRANS; ’C’ is not acceptable.

Rank-2k Update, Hermitian
CALL CHER2K (UPLO, TRANS, N, K, CALPHA, CA, LDA, CB, LDB,
 SBETA, CC, LDC)
CALL ZHER2K (UPLO, TRANS, N, K, ZALPHA, ZA, LDA, ZB, LDB,
 DBETA, ZC, LDC)

For all data types, these subprograms set C1���1 to one of the expressions:

C AB BA C A B B A CT T T T← + ← + +α α β α α β+ C or

The matrix C is referenced either by its upper or lower triangular part. The
character flags UPLO and TRANS determine the part of the matrix used and the
operation performed. CAUTION: Notice the scalar parameter β is real, and the
data in the matrices are complex. In subprogram CHER2K and ZHER2K, only
values ’N’ or ’C’ are allowed for TRANS; ’T’ is not acceptable.

Matrix-Matrix Multiply, Triangular
CALL STRMM (SIDE, UPLO, TRANSA, DIAG, M, N, SALPHA, SA,
 LDA, SB, LDB)
CALL DTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, DALPHA, DA,
 LDA, DB, LDB)
CALL CTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, CALPHA, CA,
 LDA, CB,LDB)
CALL ZTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ZALPHA, ZA,
 LDA, ZB, LDB)

For all data types, these subprograms set B0�� 1 to one of the_expressions:

B AB B A B B BA B BA

B A B B BA

T T

T T

← ← ← ←

← ←

α α α α

α α

, ,

,

, ,

or for complex data, or

1056 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

where A is a triangular matrix. The matrix A is either referenced using its upper or
lower triangular part and is unit or nonunit triangular. The character flags SIDE,
UPLO, TRANSA, and DIAG determine the part of the matrix used and the operation
performed.

Matrix-Matrix Solve, Triangular
CALL STRSM (SIDE, UPLO, TRANSA, DIAG, M, N, SALPHA, SA,
 LDA, SB, LDB)
CALL DTRSM (SIDE, UPLO, TRANSA, DIAG, M, N, DALPHA, DA,
 LDA, DB, LDB)
CALL CTRSM (SIDE, UPLO, TRANSA, DIAG, M, N, CALPHA, CA,
 LDA, CB, LDB)
CALL ZTRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ZALPHA, ZA,
 LDA, ZB, LDB)

For all data types, these subprograms set B0�� 1 to one of the expressions:

B A B B BA B A B B B A

B A B B B A

T

T T

← ← ← ←

← ←

− − − −

− −

α α α α

α α

1 1 1 1

1 1

, ,

,

, ,

or for complex data, or

T3 8 3 8
3 8 3 8

where A is a triangular matrix. The matrix A is either referenced using its upper or
lower triangular part and is unit or nonunit triangular. The character flags SIDE,
UPLO, TRANSA, and DIAG determine the part of the matrix used and the operation
performed.

Other Matrix/Vector Operations
This section describes a set of routines for matrix/vector operations. The matrix
copy and conversion routines are summarized by the following table:

To

From Real
General

Complex
General

Real
Band

Complex
Band

Real General CRGRG
p. 1058

CRGCG
p. 1068

CRGRB
p. 1063

Complex General CCGCG
p. 1059

CCGCB
p. 1065

Real Band CRBRG
p. 1064

CRBRB
p. 1060

CRBCB
p. 1070

Complex Band CCBCG
p. 1066

CCBCB
p. 1061

Symmetric Full CSFRG
p. 1071

Hermitian Full CHFCG
p. 1072

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1057

Symmetric Band CSBRB
p. 1074

Hermitian Band CHBCB
p. 1075

1058 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

The matrix multiplication routines are summarized as follows:

AB A

B Real
Rect.

Complex
Rect.

Real
Band

Complex
Band

Real Rectangular MRRRR
p. 1082

Complex Rect. MCRCR
p. 1084

Vector MURRV
p. 1090

MUCRV
p. 1093

MURBV
p. 1091

MUCBV
p. 1094

The matrix norm routines are summarized as follows:

||A|| Real
Rectangular

Real
Band

Complex
Band

∞-norm NRIRR
p. 1099

1-norm NR1RR
p. 1100

NR1RB
p. 1103

NR1CB
p. 1104

Frobenius NR2RR
p. 1101

CRGRG/DCRGRG (Single/Double precision)
Copy a real general matrix.

Usage
CALL CRGRG (N, A, LDA, B, LDB)

Arguments

N — Order of the matrices. (Input)

A — Matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Matrix of order N containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine CRGRG copies the real N × N general matrix A into the real N × N
general matrix B.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1059

Example

A real 3 × 3 general matrix is copied into another real 3 × 3 general matrix.

C Declare variables
 INTEGER LDA, LDB, N
 PARAMETER (LDA=3, LDB=3, N=3)
C
 REAL A(LDA,N), B(LDB,N)
 EXTERNAL CRGRG, WRRRN
C Set values for A
C A = (0.0 1.0 1.0)
C (-1.0 0.0 1.0)
C (-1.0 -1.0 0.0)
C
 DATA A/0.0, 2* - 1.0, 1.0, 0.0, -1.0, 2*1.0, 0.0/
C Copy real matrix A to real matrix B
 CALL CRGRG (N, A, LDA, B, LDB)
C Print results
 CALL WRRRN (’B’, N, N, B, LDB, 0)
 END

Output
 B
 1 2 3
1 0.000 1.000 1.000
2 -1.000 0.000 1.000
3 -1.000 -1.000 0.000

CCGCG/DCCGCG (Single/Double precision)
Copy a complex general matrix.

Usage
CALL CCGCG (N, A, LDA, B, LDB)

Arguments

N — Order of the matrices A and B. (Input)

A — Complex matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine CCGCG copies the complex N × N general matrix A into the complex
N × N general matrix B.

1060 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Example

A complex 3 × 3 general matrix is copied into another complex 3 × 3 general
matrix.

C Declare variables
 INTEGER LDA, LDB, N
 PARAMETER (LDA=3, LDB=3, N=3)
C
 COMPLEX A(LDA,N), B(LDB,N)
 EXTERNAL CCGCG, WRCRN
C Set values for A
C A = (0.0+0.0i 1.0+1.0i 1.0+1.0i)
C (-1.0-1.0i 0.0+0.0i 1.0+1.0i)
C (-1.0-1.0i -1.0-1.0i 0.0+0.0i)
C
 DATA A/(0.0,0.0), 2*(-1.0,-1.0), (1.0,1.0), (0.0,0.0),
 & (-1.0,-1.0), 2*(1.0,1.0), (0.0,0.0)/
C Copy matrix A to matrix B
 CALL CCGCG (N, A, LDA, B, LDB)
C Print results
 CALL WRCRN (’B’, N, N, B, LDB, 0)
 END

Output
 B
 1 2 3
1 (0.000, 0.000) (1.000, 1.000) (1.000, 1.000)
2 (-1.000,-1.000) (0.000, 0.000) (1.000, 1.000)
3 (-1.000,-1.000) (-1.000,-1.000) (0.000, 0.000)

CRBRB/DCRBRB (Single/Double precision)
Copy a real band matrix stored in band storage mode.

Usage
CALL CRBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

Arguments

N — Order of the matrices A and B. (Input)

A — Real band matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Real band matrix of order N containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1061

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NLCA.

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Algorithm

The routine CRBRB copies the real band matrix A in band storage mode into the
real band matrix B in band storage mode.

Example

A real band matrix of order 3, in band storage mode with one upper codiagonal,
and one lower codiagonal is copied into another real band matrix also in band
storage mode.

C Declare variables
 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB
 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)
C
 REAL A(LDA,N), B(LDB,N)
 EXTERNAL CRBRB, WRRRN
C Set values for A (in band mode)
C A = (0.0 1.0 1.0)
C (1.0 1.0 1.0)
C (1.0 1.0 0.0)
C
 DATA A/0.0, 7*1.0, 0.0/
C Copy A to B
 CALL CRBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)
C Print results
 CALL WRRRN (’B’, NUCB+NLCB+1, N, B, LDB, 0)
 END

Output
 B
 1 2 3
1 0.000 1.000 1.000
2 1.000 1.000 1.000
3 1.000 1.000 0.000

CCBCB/DCCBCB (Single/Double precision)
Copy a complex band matrix stored in complex band storage mode.

Usage
CALL CCBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

Arguments

N — Order of the matrices A and B. (Input)

1062 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

A — Complex band matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NLCA.

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Algorithm

The routine CCBCB copies the complex band matrix A in band storage mode into
the complex band matrix B in band storage mode.

Example

A complex band matrix of order 3 in band storage mode with one upper
codiagonal and one lower codiagonal is copied into another complex band matrix
in band storage mode.

C Declare variables
 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB
 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)
C
 COMPLEX A(LDA,N), B(LDB,N)
 EXTERNAL CCBCB, WRCRN
C Set values for A (in band mode)
C A = (0.0+0.0i 1.0+1.0i 1.0+1.0i)
C (1.0+1.0i 1.0+1.0i 1.0+1.0i)
C (1.0+1.0i 1.0+1.0i 0.0+0.0i)
C
 DATA A/(0.0,0.0), 7*(1.0,1.0), (0.0,0.0)/
C Copy A to B
 CALL CCBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)
C Print results
 CALL WRCRN (’B’, NUCB+NLCB+1, N, B, LDB, 0)
 END

Output
 B
 1 2 3
1 (0.000, 0.000) (1.000, 1.000) (1.000, 1.000)
2 (1.000, 1.000) (1.000, 1.000) (1.000, 1.000)
3 (1.000, 1.000) (1.000, 1.000) (0.000, 0.000)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1063

CRGRB/DCRGRB (Single/Double precision)
Convert a real general matrix to a matrix in band storage mode.

Usage
CALL CRGRB (N, A, LDA, NLC, NUC, B, LDB)

Arguments

N — Order of the matrices A and B. (Input)

A — Real N by N matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLC — Number of lower codiagonals in B. (Input)

NUC — Number of upper codiagonals in B. (Input)

B — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage
mode. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine CRGRB converts the real general N × N matrix A with mX = NUC upper
codiagonals and mO = NLC lower codiagonals into the real band matrix B of order
N. The first mX rows of B then contain the upper codiagonals of A, the next row
contains the main diagonal of A, and the last mO rows of B contain the lower
codiagonals of A.

Example

A real 4 × 4 matrix with one upper codiagonal and three lower codiagonals is
copied to a real band matrix of order 4 in band storage mode.

C Declare variables
 INTEGER LDA, LDB, N, NLC, NUC
 PARAMETER (LDA=4, LDB=5, N=4, NLC=3, NUC=1)
C
 REAL A(LDA,N), B(LDB,N)
 EXTERNAL CRGRB, WRRRN
C Set values for A
C A = (1.0 2.0 0.0 0.0)
C (-2.0 1.0 3.0 0.0)
C (0.0 -3.0 1.0 4.0)
C (-7.0 0.0 -4.0 1.0)
C
 DATA A/1.0, -2.0, 0.0, -7.0, 2.0, 1.0, -3.0, 0.0, 0.0, 3.0, 1.0,
 & -4.0, 0.0, 0.0, 4.0, 1.0/
C Convert A to band matrix B

1064 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

 CALL CRGRB (N, A, LDA, NLC, NUC, B, LDB)
C Print results
 CALL WRRRN (’B’, NUC+NLC+1, N, B, LDB, 0)
 END

Output
 B
 1 2 3 4
1 0.000 2.000 3.000 4.000
2 1.000 1.000 1.000 1.000
3 -2.000 -3.000 -4.000 0.000
4 0.000 0.000 0.000 0.000
5 -7.000 0.000 0.000 0.000

CRBRG/DCRBRG (Single/Double precision)
Convert a real matrix in band storage mode to a real general matrix.

Usage
CALL CRBRG (N, A, LDA, NLC, NUC, B, LDB)

Arguments

N — Order of the matrices A and B. (Input)

A — Real (NUC + 1 + NLC) by N array containing the band matrix in band storage
mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLC — Number of lower codiagonals in A. (Input)

NUC — Number of upper codiagonals in A. (Input)

B — Real N by N array containing the matrix. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine CRBRG converts the real band matrix A of order N in band storage
mode into the real N × N general matrix B with mX = NUC upper codiagonals and
mO�= NLC lower codiagonals. The first mX rows of A are copied to the upper
codiagonals of B, the next row of A is copied to the diagonal of B, and the last mO
rows of A are copied to the lower codiagonals of B.

Example

A real band matrix of order 3 in band storage mode with one upper codiagonal
and one lower codiagonal is copied to a 3 × 3 real general matrix.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1065

C Declare variables
 INTEGER LDA, LDB, N, NLC, NUC
 PARAMETER (LDA=3, LDB=3, N=3, NLC=1, NUC=1)
C
 REAL A(LDA,N), B(LDB,N)
 EXTERNAL CRBRG, WRRRN
C Set values for A (in band mode)
C A = (0.0 1.0 1.0)
C (4.0 3.0 2.0)
C (2.0 2.0 0.0)
C
 DATA A/0.0, 4.0, 2.0, 1.0, 3.0, 2.0, 1.0, 2.0, 0.0/
C Convert band matrix A to matrix B
 CALL CRBRG (N, A, LDA, NLC, NUC, B, LDB)
C Print results
 CALL WRRRN (’B’, N, N, B, LDB, 0)
 END

Output
 B
 1 2 3
1 4.000 1.000 0.000
2 2.000 3.000 1.000
3 0.000 2.000 2.000

CCGCB/DCCGCB (Single/Double precision)
Convert a complex general matrix to a matrix in complex band storage mode.

Usage
CALL CCGCB (N, A, LDA, NLC, NUC, B, LDB)

Arguments

N — Order of the matrices A and B. (Input)

A — Complex N by N array containing the matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLC — Number of lower codiagonals in B. (Input)

NUC — Number of upper codiagonals in B. (Input)

B — Complex (NUC + 1 + NLC) by N array containing the band matrix in band
storage mode. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

1066 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Algorithm

The routine CCGCB converts the complex general matrix A of order N with
mX = NUC upper codiagonals and mO�= NLC lower codiagonals into the complex
band matrix B of order N in band storage mode. The first mX rows of B then
contain the upper codiagonals of A, the next row contains the main diagonal of A,
and the last mO rows of B contain the lower codiagonals of A.

Example

A complex general matrix of order 4 with one upper codiagonal and three lower
codiagonals is copied to a complex band matrix of order 4 in band storage mode.

C Declare variables
 INTEGER LDA, LDB, N, NLC, NUC
 PARAMETER (LDA=4, LDB=5, N=4, NLC=3, NUC=1)
C
 COMPLEX A(LDA,N), B(LDB,N)
 EXTERNAL CCGCB, WRCRN
C Set values for A
C A = (1.0+0.0i 2.0+1.0i 0.0+0.0i 0.0+0.0i)
C (-2.0+1.0i 1.0+0.0i 3.0+2.0i 0.0+0.0i)
C (0.0+0.0i -3.0+2.0i 1.0+0.0i 4.0+3.0i)
C (-7.0+1.0i 0.0+0.0i -4.0+3.0i 1.0+0.0i)
C
 DATA A/(1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0), (2.0,1.0),
 & (1.0,0.0), (-3.0,2.0), (0.0,0.0), (0.0,0.0), (3.0,2.0),
 & (1.0,0.0), (-4.0,3.0), (0.0,0.0), (0.0,0.0), (4.0,3.0),
 & (1.0,0.0)/
C Convert A to band matrix B
 CALL CCGCB (N, A, LDA, NLC, NUC, B, LDB)
C Print results
 CALL WRCRN (’B’, NUC+NLC+1, N, B, LDB, 0)
 END

Output
 B
 1 2 3 4
1 (0.000, 0.000) (2.000, 1.000) (3.000, 2.000) (4.000, 3.000)
2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)
3 (-2.000, 1.000) (-3.000, 2.000) (-4.000, 3.000) (0.000, 0.000)
4 (0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)
5 (-7.000, 1.000) (0.000, 0.000) (0.000, 0.000) (0.000, 0.000)

CCBCG/DCCBCG (Single/Double precision)
Convert a complex matrix in band storage mode to a complex matrix in full
storage mode.

Usage
CALL CCBCG (N, A, LDA, NLC, NUC, B, LDB)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1067

Arguments

N — Order of the matrices A and B. (Input)

A — Complex (NUC + 1 + NLC) by N matrix containing the band matrix in band
mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLC — Number of lower codiagonals in A. (Input)

NUC — Number of upper codiagonals in A. (Input)

B — Complex N by N matrix containing the band matrix in full mode. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine CCBCG converts the complex band matrix A of order N with mX = NUC

upper codiagonals and mO = NLC lower codiagonals into the N × N complex
general matrix B. The first mX rows of A are copied to the upper codiagonals of B,
the next row of A is copied to the diagonal of B, and the last mO rows of A are
copied to the lower codiagonals of B.

Example

A complex band matrix of order 4 in band storage mode with one upper
codiagonal and three lower codiagonals is copied into a 4 × 4 complex general
matrix.

C Declare variables
 INTEGER LDA, LDB, N, NLC, NUC
 PARAMETER (LDA=5, LDB=4, N=4, NLC=3, NUC=1)
C
 COMPLEX A(LDA,N), B(LDB,N)
 EXTERNAL CCBCG, WRCRN
C Set values for A (in band mode)
C A = (0.0+0.0i 2.0+1.0i 3.0+2.0i 4.0+3.0i)
C (1.0+0.0i 1.0+0.0i 1.0+0.0i 1.0+0.0i)
C (-2.0+1.0i -3.0+2.0i -4.0+3.0i 0.0+0.0i)
C (0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
C (-7.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
C
 DATA A/(0.0,0.0), (1.0,0.0), (-2.0,1.0), (0.0,0.0), (-7.0,1.0),
 & (2.0,1.0), (1.0,0.0), (-3.0,2.0), 2*(0.0,0.0), (3.0,2.0),
 & (1.0,0.0), (-4.0,3.0), 2*(0.0,0.0), (4.0,3.0), (1.0,0.0),
 & 3*(0.0,0.0)/
C Convert band matrix A to matrix B
 CALL CCBCG (N, A, LDA, NLC, NUC, B, LDB)
C Print results
 CALL WRCRN (’B’, N, N, B, LDB, 0)
 END

1068 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Output
 B
 1 2 3 4
1 (1.000, 0.000) (2.000, 1.000) (0.000, 0.000) (0.000, 0.000)
2 (-2.000, 1.000) (1.000, 0.000) (3.000, 2.000) (0.000, 0.000)
3 (0.000, 0.000) (-3.000, 2.000) (1.000, 0.000) (4.000, 3.000)
4 (-7.000, 1.000) (0.000, 0.000) (-4.000, 3.000) (1.000, 0.000)

CRGCG/DCRGCG (Single/Double precision)
Copy a real general matrix to a complex general matrix.

Usage
CALL CRGCG (N, A, LDA, B, LDB)

Arguments

N — Order of the matrices A and B. (Input)

A — Real matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Comments

The matrices A and B may be the same.

Algorithm

The routine CRGCG copies a real N × N matrix to a complex N × N matrix.

Example

A 3 × 3 real matrix is copied to a 3 × 3 complex matrix.

C Declare variables
 INTEGER LDA, LDB, N
 PARAMETER (LDA=3, LDB=3, N=3)
C
 REAL A(LDA,N)
 COMPLEX B(LDB,N)
 EXTERNAL CRGCG, WRCRN
C Set values for A
C A = (2.0 1.0 3.0)
C (4.0 1.0 0.0)
C (-1.0 2.0 0.0)
C
 DATA A/2.0, 4.0, -1.0, 1.0, 1.0, 2.0, 3.0, 0.0, 0.0/
C Convert real A to complex B

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1069

 CALL CRGCG (N, A, LDA, B, LDB)
C Print results
 CALL WRCRN (’B’, N, N, B, LDB, 0)
 END

Output
 B
 1 2 3
1 (2.000, 0.000) (1.000, 0.000) (3.000, 0.000)
2 (4.000, 0.000) (1.000, 0.000) (0.000, 0.000)
3 (-1.000, 0.000) (2.000, 0.000) (0.000, 0.000)

CRRCR/DCRRCR (Single/Double precision)
Copy a real rectangular matrix to a complex rectangular matrix.

Usage
CALL CRRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)

Arguments

NRA — Number of rows in A. (Input)

NCA — Number of columns in A. (Input)

A — Real NRA by NCA rectangular matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NRB — Number of rows in B. (Input)
It must be the same as NRA.

NCB — Number of columns in B. (Input)
It must be the same as NCA.

B — Complex NRB by NCB rectangular matrix containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Comments

The matrices A and B may be the same.

Algorithm

The routine CRRCR copies a real rectangular matrix to a complex rectangular
matrix.

Example

A 3 × 2 real matrix is copied to a 3 × 2 complex matrix.

1070 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

C Declare variables
 INTEGER LDA, LDB, NCA, NCB, NRA, NRB
 PARAMETER (LDA=3, LDB=3, NCA=2, NCB=2, NRA=3, NRB=3)
C
 REAL A(LDA,NCA)
 COMPLEX B(LDB,NCB)
 EXTERNAL CRRCR, WRCRN
C Set values for A
C A = (1.0 4.0)
C (2.0 5.0)
C (3.0 6.0)
C
 DATA A/1.0, 2.0, 3.0, 4.0, 5.0, 6.0/
C Convert real A to complex B
 CALL CRRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)
C Print results
 CALL WRCRN (’B’, NRB, NCB, B, LDB, 0)
 END

Output
 B
 1 2
1 (1.000, 0.000) (4.000, 0.000)
2 (2.000, 0.000) (5.000, 0.000)
3 (3.000, 0.000) (6.000, 0.000)

CRBCB/DCRBCB (Single/Double precision)
Convert a real matrix in band storage mode to a complex matrix in band storage
mode.

Usage
CALL CRBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)

Arguments

N — Order of the matrices A and B. (Input)

A — Real band matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

B — Complex matrix of order N containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NLCA.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1071

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Algorithm

The routine CRBCB converts a real band matrix in band storage mode with NUCA

upper codiagonals and NLCA lower codiagonals into a complex band matrix in
band storage mode with NUCB upper codiagonals and NLCB lower codiagonals.

Example

A real band matrix of order 3 in band storage mode with one upper codiagonal
and one lower codiagonal is copied into another complex band matrix in band
storage mode.

C Declare variables
 INTEGER LDA, LDB, N, NLCA, NLCB, NUCA, NUCB
 PARAMETER (LDA=3, LDB=3, N=3, NLCA=1, NLCB=1, NUCA=1, NUCB=1)
C
 REAL A(LDA,N)
 COMPLEX B(LDB,N)
 EXTERNAL CRBCB, WRCRN
C Set values for A (in band mode)
C A = (0.0 1.0 1.0)
C (1.0 1.0 1.0)
C (1.0 1.0 0.0)
C
 DATA A/0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0/
C Convert real band matrix A
C to complex band matrix B
 CALL CRBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB)
C Print results
 CALL WRCRN (’B’, NUCB+NLCB+1, N, B, LDB, 0)
 END

Output
 B
 1 2 3
1 (0.000, 0.000) (1.000, 0.000) (1.000, 0.000)
2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)
3 (1.000, 0.000) (1.000, 0.000) (0.000, 0.000)

CSFRG/DCSFRG (Single/Double precision)
Extend a real symmetric matrix defined in its upper triangle to its lower triangle.

Usage
CALL CSFRG (N, A, LDA)

Arguments

N — Order of the matrix A. (Input)

A — N by N symmetric matrix of order N to be filled out. (Input/Output)

1072 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine CSFRG converts an N × N matrix A in symmetric mode into a general
matrix by filling in the lower triangular portion of A using the values defined in its
upper triangular portion.

Example

The lower triangular portion of a real 3 × 3 symmetric matrix is filled with the
values defined in its upper triangular portion.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
C
 REAL A(LDA,N)
 EXTERNAL CSFRG, WRRRN
C Set values for A
C A = (0.0 3.0 4.0)
C (1.0 5.0)
C (2.0)
C
 DATA A/3*0.0, 3.0, 1.0, 0.0, 4.0, 5.0, 2.0/
C Fill the lower portion of A
 CALL CSFRG (N, A, LDA)
C Print results
 CALL WRRRN (’A’, N, N, A, LDA, 0)
 END

Output
 A
 1 2 3
1 0.000 3.000 4.000
2 3.000 1.000 5.000
3 4.000 5.000 2.000

CHFCG/DCHFCG (Single/Double precision)
Extend a complex Hermitian matrix defined in its upper triangle to its lower
triangle.

Usage
CALL CHFCG (N, A, LDA)

Arguments

N — Order of the matrix. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1073

A — Complex Hermitian matrix of order N. (Input/Output)
On input, the upper triangle of A defines a Hermitian matrix. On output, the lower
triangle of A is defined so that A is Hermitian.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

Comments
Informational errors
Type Code
 3 1 The matrix is not Hermitian. It has a diagonal entry with a small

imaginary part.
 4 2 The matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Algorithm

The routine CHFCG converts an N × N complex matrix A in Hermitian mode into a
complex general matrix by filling in the lower triangular portion of A using the
values defined in its upper triangular portion.

Example

A complex 3 × 3 Hermitian matrix defined in its upper triangle is extended to its
lower triangle.

C Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
C
 COMPLEX A(LDA,N)
 EXTERNAL CHFCG, WRCRN
C Set values for A
C A = (1.0+0.0i 1.0+1.0i 1.0+2.0i)
C (2.0+0.0i 2.0+2.0i)
C (3.0+0.0i)
C
 DATA A/(1.0,0.0), 2*(0.0,0.0), (1.0,1.0), (2.0,0.0), (0.0,0.0),
 & (1.0,2.0), (2.0,2.0), (3.0,0.0)/
C Fill in lower Hermitian matrix
 CALL CHFCG (N, A, LDA)
C Print results
 CALL WRCRN (’A’, N, N, A, LDA, 0)
 END

Output
 A
 1 2 3
1 (1.000, 0.000) (1.000, 1.000) (1.000, 2.000)
2 (1.000,-1.000) (2.000, 0.000) (2.000, 2.000)
3 (1.000,-2.000) (2.000,-2.000) (3.000, 0.000)

1074 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

CSBRB/DCSBRB (Single/Double precision)
Copy a real symmetric band matrix stored in band symmetric storage mode to a
real band matrix stored in band storage mode.

Usage
CALL CSBRB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB)

Arguments

N — Order of the matrices A and B. (Input)

A — Real band symmetric matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NUCA — Number of codiagonals in A. (Input)

B — Real band matrix of order N containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NUCA.

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Algorithm

The routine CSBRB copies a real matrix A stored in symmetric band mode to a
matrix B stored in band mode. The lower codiagonals of B are set using the
values from the upper codiagonals of A.

Example

A real matrix of order 4 in band symmetric storage mode with 2 upper
codiagonals is copied to a real matrix in band storage mode with 2 upper
codiagonals and 2 lower codiagonals.

C Declare variables
 INTEGER LDA, LDB, N, NLCB, NUCA, NUCB
 PARAMETER (N=4, NUCA=2, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA,
 & LDB=NLCB+NUCB+1)
C
 REAL A(LDA,N), B(LDB,N)
 EXTERNAL CSBRB, WRRRN
C Set values for A, in band mode
C A = (0.0 0.0 2.0 1.0)
C (0.0 2.0 3.0 1.0)
C (1.0 2.0 3.0 4.0)
C
 DATA A/2*0.0, 1.0, 0.0, 2.0, 2.0, 2.0, 3.0, 3.0, 1.0, 1.0, 4.0/

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1075

C Copy A to B
 CALL CSBRB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB)
C Print results
 CALL WRRRN (’B’, NLCB+NUCB+1, N, B, LDB, 0)
 END

Output
 B
 1 2 3 4
1 0.000 0.000 2.000 1.000
2 0.000 2.000 3.000 1.000
3 1.000 2.000 3.000 4.000
4 2.000 3.000 1.000 0.000
5 2.000 1.000 0.000 0.000

CHBCB/DCHBCB (Single/Double precision)
Copy a complex Hermitian band matrix stored in band Hermitian storage mode to
a complex band matrix stored in band storage mode.

Usage
CALL CHBCB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB)

Arguments

N — Order of the matrices A and B. (Input)

A — Complex band Hermitian matrix of order N. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NUCA — Number of codiagonals in A. (Input)

B — Complex band matrix of order N containing a copy of A. (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NLCB — Number of lower codiagonals in B. (Input)
NLCB must be at least as large as NUCA.

NUCB — Number of upper codiagonals in B. (Input)
NUCB must be at least as large as NUCA.

Comments
Informational errors
Type Code
 3 1 An element on the diagonal has a complex part that is near

zero, the complex part is set to zero.
 4 1 An element on the diagonal has a complex part that is not zero.

1076 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Algorithm

The routine CSBRB copies a complex matrix A stored in Hermitian band mode to
a matrix B stored in complex band mode. The lower codiagonals of B are filled
using the values in the upper codiagonals of A.

Example

A complex Hermitian matrix of order 3 in band Hermitian storage mode with one
upper codiagonal is copied to a complex matrix in band storage mode.

C Declare variables
 INTEGER LDA, LDB, N, NLCB, NUCA, NUCB
 PARAMETER (N=3, NUCA=1, LDA=NUCA+1, NLCB=NUCA, NUCB=NUCA,
 & LDB=NLCB+NUCB+1)
C
 COMPLEX A(LDA,N), B(LDB,N)
 EXTERNAL CHBCB, WRCRN
C Set values for A (in band mode)
C A = (0.0+0.0i -1.0+1.0i -2.0+2.0i)
C (1.0+0.0i 1.0+0.0i 1.0+0.0i)
C
 DATA A/(0.0,0.0), (1.0,0.0), (-1.0,1.0), (1.0,0.0), (-2.0,2.0),
 & (1.0,0.0)/
C Copy a complex Hermitian band matrix
C to a complex band matrix
 CALL CHBCB (N, A, LDA, NUCA, B, LDB, NLCB, NUCB)
C Print results
 CALL WRCRN (’B’, NLCB+NUCB+1, N, B, LDB, 0)
 END

Output
 B
 1 2 3
1 (0.000, 0.000) (-1.000, 1.000) (-2.000, 2.000)
2 (1.000, 0.000) (1.000, 0.000) (1.000, 0.000)
3 (-1.000,-1.000) (-2.000,-2.000) (0.000, 0.000)

TRNRR/DTRNRR (Single/Double precision)
Transpose a rectangular matrix.

Usage
CALL TRNRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA matrix in full storage mode. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1077

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NRB — Number of rows of B. (Input)
NRB must be equal to NCA.

NCB — Number of columns of B. (Input)
NCB must be equal to NRA.

B — Real NRB by NCB matrix in full storage mode containing the transpose of A.
(Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Comments

If LDA = LDB and NRA = NCA, then A and B can occupy the same storage locations;
otherwise, A and B must be stored separately.

Algorithm

The routine TRNRR computes the transpose B = A7 of a real rectangular matrix A.

Example

Transpose the 5 × 3 real rectangular matrix A into the 3 × 5 real rectangular
matrix B.

C Declare variables
 INTEGER LDA, LDB, NCA, NCB, NRA, NRB
 PARAMETER (LDA=5, LDB=3, NCA=3, NCB=5, NRA=5, NRB=3)
C
 REAL A(LDA,NCA), B(LDB,NCB)
 EXTERNAL TRNRR, WRRRN
C Set values for A
C A = (11.0 12.0 13.0)
C (21.0 22.0 23.0)
C (31.0 32.0 33.0)
C (41.0 42.0 43.0)
C (51.0 52.0 53.0)
C
 DATA A/11.0, 21.0, 31.0, 41.0, 51.0, 12.0, 22.0, 32.0, 42.0,
 & 52.0, 13.0, 23.0, 33.0, 43.0, 53.0/
C B = transpose(A)
 CALL TRNRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB)
C Print results
 CALL WRRRN (’B = trans(A)’, NRB, NCB, B, LDB, 0)
 RETURN
 END

Output
 B = trans(A)
 1 2 3 4 5
1 11.00 21.00 31.00 41.00 51.00

1078 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

2 12.00 22.00 32.00 42.00 52.00
3 13.00 23.00 33.00 43.00 53.00

MXTXF/DMXTXF (Single/Double precision)
Compute the transpose product of a matrix, A7A.

Usage
CALL MXTXF (NRA, NCA, A, LDA, NB, B, LDB)

Arguments

NRA — Number of rows in A. (Input)

NCA — Number of columns in A. (Input)

A — Real NRA by NCA rectangular matrix. (Input)
The transpose product of A is to be computed.

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NB — Order of the matrix B. (Input)
NB must be equal to NCA.

B — Real NB by NB symmetric matrix containing the transpose product A7A.
(Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine MXTXF computes the real general matrix B = A7A given the real
rectangular matrix A.

Example

Multiply the transpose of a 3 × 4 real matrix by itself. The output matrix will be a
4 × 4 real symmetric matrix.

C Declare variables
 INTEGER LDA, LDB, NB, NCA, NRA
 PARAMETER (LDA=3, LDB=4, NB=4, NCA=4, NRA=3)
C
 REAL A(LDA,NCA), B(LDB,NB)
 EXTERNAL MXTXF, WRRRN
C Set values for A
C A = (3.0 1.0 4.0 2.0)
C (0.0 2.0 1.0 -1.0)
C (6.0 1.0 3.0 2.0)
C
 DATA A/3.0, 0.0, 6.0, 1.0, 2.0, 1.0, 4.0, 1.0, 3.0, 2.0, -1.0,

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1079

 & 2.0/
C Compute B = trans(A)*A
 CALL MXTXF (NRA, NCA, A, LDA, NB, B, LDB)
C Print results
 CALL WRRRN (’B = trans(A)*A’, NB, NB, B, LDB, 0)
 END

Output
 B = trans(A)*A
 1 2 3 4
1 45.00 9.00 30.00 18.00
2 9.00 6.00 9.00 2.00
3 30.00 9.00 26.00 13.00
4 18.00 2.00 13.00 9.00

MXTYF/DMXTYF (Single/Double precision)
Multiply the transpose of matrix A by matrix B, A7B.

Usage
CALL MXTYF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,
 C, LDC)

Arguments

NRA — Number of rows in A. (Input)

NCA — Number of columns in A. (Input)

A — Real NRA by NCA matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NRB — Number of rows in B. (Input)
NRB must be the same as NRA.

NCB — Number of columns in B. (Input)

B — Real NRB by NCB matrix. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NRC — Number of rows of C. (Input)
NRC must be equal to NCA.

NCC — Number of columns of C. (Input)
NCC must be equal to NCB.

C — Real NCA by NCB matrix containing the transpose product A7B. (Output)

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)

1080 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Algorithm

The routine MXTYF computes the real general matrix C = A7B given the real
rectangular matrices A and B.

Example

Multiply the transpose of a 3 × 4 real matrix by a 3 × 3 real matrix. The output
matrix will be a 4 × 3 real matrix.

C Declare variables
 INTEGER LDA, LDB, LDC, NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (LDA=3, LDB=3, LDC=4, NCA=4, NCB=3, NCC=3, NRA=3,
 & NRB=3, NRC=4)
C
 REAL A(LDA,NCA), B(LDB,NCB), C(LDC,NCC)
 EXTERNAL MXTYF, WRRRN
C Set values for A
C A = (1.0 0.0 2.0 0.0)
C (3.0 4.0 -1.0 0.0)
C (2.0 1.0 2.0 1.0)
C
C Set values for B
C B = (-1.0 2.0 0.0)
C (3.0 0.0 -1.0)
C (0.0 5.0 2.0)
C
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0,
 & 1.0/
 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0/
C Compute C = trans(A)*B
 CALL MXTYF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)
C Print results
 CALL WRRRN (’C = trans(A)*B’, NRC, NCC, C, LDC, 0)
 END

Output
 C = trans(A)*B
 1 2 3
1 8.00 12.00 1.00
2 12.00 5.00 -2.00
3 -5.00 14.00 5.00
4 0.00 5.00 2.00

MXYTF/DMXYTF (Single/Double precision)
Multiply a matrix A by the transpose of a matrix B, AB7.

Usage
CALL MXYTF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,
 C, LDC)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1081

Arguments

NRA — Number of rows in A. (Input)

NCA — Number of columns in A. (Input)

A — Real NRA by NCA rectangular matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NRB — Number of rows in B. (Input)

NCB — Number of columns in B. (Input)
NCB must be the same as NCA.

B — Real NRB by NCB rectangular matrix. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NRC — Number of rows of C. (Input)
NRC must be equal to NRA.

NCC — Number of columns of C. (Input)
NCC must be equal to NRB.

C — Real NRC by NCC rectangular matrix containing the transpose product AB7.
(Output)

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine MXYTF computes the real general matrix C = AB7 given the real
rectangular matrices A and B.

Example

Multiply a 3 × 4 real matrix by the transpose of a 3 × 4 real matrix. The output
matrix will be a 3 × 3 real matrix.

C Declare variables
 INTEGER LDA, LDB, LDC, NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (LDA=3, LDB=3, LDC=3, NCA=4, NCB=4, NCC=3, NRA=3,
 & NRB=3, NRC=3)
C
 REAL A(LDA,NCA), B(LDB,NCB), C(LDC,NCC)
 EXTERNAL MXYTF, WRRRN
C Set values for A
C A = (1.0 0.0 2.0 0.0)
C (3.0 4.0 -1.0 0.0)
C (2.0 1.0 2.0 1.0)
C
C Set values for B
C B = (-1.0 2.0 0.0 2.0)

1082 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

C (3.0 0.0 -1.0 -1.0)
C (0.0 5.0 2.0 5.0)
C
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0,
 & 1.0/
 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0,
 & 5.0/
C Compute C = A*trans(B)
 CALL MXYTF (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)
C Print results
 CALL WRRRN (’C = A*trans(B)’, NRC, NCC, C, LDC, 0)
 END

Output
 C = A*trans(B)
 1 2 3
1 -1.00 1.00 4.00
2 5.00 10.00 18.00
3 2.00 3.00 14.00

MRRRR/DMRRRR (Single/Double precision)
Multiply two real rectangular matrices, AB.

Usage
CALL MRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,
 C, LDC)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA matrix in full storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NRB — Number of rows of B. (Input)
NRB must be equal to NCA.

NCB — Number of columns of B. (Input)

B — Real NRB by NCB matrix in full storage mode. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NRC — Number of rows of C. (Input)
NRC must be equal to NRA.

NCC — Number of columns of C. (Input)
NCC must be equal to NCB.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1083

C — Real NRC by NCC matrix containing the product AB in full storage mode.
(Output)

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

Given the real rectangular matrices A and B, MRRRR computes the real rectangular
matrix C = AB.

Example

Multiply a 3 × 4 real matrix by a 4 × 3 real matrix. The output matrix will be a 3
× 3 real matrix.

C Declare variables
 INTEGER LDA, LDB, LDC, NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (LDA=3, LDB=4, LDC=3, NCA=4, NCB=3, NCC=3, NRA=3,
 & NRB=4, NRC=3)
C
 REAL A(LDA,NCA), B(LDB,NCB), C(LDC,NCC)
 EXTERNAL MRRRR, WRRRN
C Set values for A
C A = (1.0 0.0 2.0 0.0)
C (3.0 4.0 -1.0 0.0)
C (2.0 1.0 2.0 1.0)
C
C Set values for B
C B = (-1.0 0.0 2.0)
C (3.0 5.0 2.0)
C (0.0 0.0 -1.0)
C (2.0 -1.0 5.0)
C
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0,
 & 1.0/
 DATA B/-1.0, 3.0, 0.0, 2.0, 0.0, 5.0, 0.0, -1.0, 2.0, 2.0, -1.0,
 & 5.0/
C Compute C = A*B
 CALL MRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)
C Print results
 CALL WRRRN (’C = A*B’, NRC, NCC, C, LDC, 0)
 END

Output
 C = A*B
 1 2 3
1 -1.00 0.00 0.00
2 9.00 20.00 15.00
3 3.00 4.00 9.00

1084 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

MCRCR/DMCRCR (Single/Double precision)
Multiply two complex rectangular matrices, AB.

Usage
CALL MCRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,
 C, LDC)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Complex NRA by NCA rectangular matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NRB — Number of rows of B. (Input)
NRB must be equal to NCA.

NCB — Number of columns of B. (Input)

B — Complex NRB by NCB rectangular matrix. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NRC — Number of rows of C. (Input)
NRC must be equal to NRA.

NCC — Number of columns of C. (Input)
NCC must be equal to NCB.

C — Complex NRC by NCC rectangular matrix containing the product A * B.
(Output)

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

Given the complex rectangular matrices A and B, MCRCR computes the complex
rectangular matrix C = AB.

Example

Multiply a 3 × 4 complex matrix by a 4 × 3 complex matrix. The output matrix
will be a 3 × 3 complex matrix.

C Declare variables
 INTEGER LDA, LDB, LDC, NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (LDA=3, LDB=4, LDC=3, NCA=4, NCB=3, NCC=3, NRA=3,
 & NRB=4, NRC=3)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1085

C
 COMPLEX A(LDA,NCA), B(LDB,NCB), C(LDC,NCC)
 EXTERNAL MCRCR, WRCRN
C Set values for A
C A = (1.0 + 1.0i -1.0+ 2.0i 0.0 + 1.0i 0.0 - 2.0i)
C (3.0 + 7.0i 6.0 - 4.0i 2.0 - 1.0i 0.0 + 1.0i)
C (1.0 + 0.0i 1.0 - 2.0i -2.0+ 0.0i 0.0 + 0.0i)
C
C Set values for B
C B = (2.0 + 1.0i 3.0 + 2.0i 3.0 + 1.0i)
C (2.0 - 1.0i 4.0 - 2.0i 5.0 - 3.0i)
C (1.0 + 0.0i 0.0 - 1.0i 0.0 + 1.0i)
C (2.0 + 1.0i 1.0 + 2.0i 0.0 - 1.0i)
C
 DATA A/(1.0,1.0), (3.0,7.0), (1.0,0.0), (-1.0,2.0), (6.0,-4.0),
 & (1.0,-2.0), (0.0,1.0), (2.0,-1.0), (-2.0,0.0), (0.0,-2.0),
 & (0.0,1.0), (0.0,0.0)/
 DATA B/(2.0,1.0), (2.0,-1.0), (1.0,0.0), (2.0,1.0), (3.0,2.0),
 & (4.0,-2.0), (0.0,-1.0), (1.0,2.0), (3.0,1.0), (5.0,-3.0),
 & (0.0,1.0), (0.0,-1.0)/
C Compute C = A*B
 CALL MCRCR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)
C Print results
 CALL WRCRN (’C = A*B’, NRC, NCC, C, LDC, 0)
 END

Output
 C = A*B
 1 2 3
1 (3.00, 5.00) (6.00, 13.00) (0.00, 17.00)
2 (8.00, 4.00) (8.00, -2.00) (22.00,-12.00)
3 (0.00, -4.00) (3.00, -6.00) (2.00,-14.00)

HRRRR/DHRRRR (Single/Double precision)
Compute the Hadamard product of two real rectangular matrices.

Usage
CALL HRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC,
 C, LDC)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA rectangular matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NRB — Number of rows of B. (Input)
NRB must be equal to NRA.

1086 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

NCB — Number of columns of B. (Input)
NCB must be equal to NCA.

B — Real NRB by NCB rectangular matrix. (Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NRC — Number of rows of C. (Input)
NRC must be equal to NRA.

NCC — Number of columns of C. (Input)
NCC must be equal to NCA.

C — Real NRC by NCC rectangular matrix containing the Hadamard product of A

and B. (Output)
If A is not needed, then C can share the same storage locations as A. Similarly, if B
is not needed, then C can share the same storage locations as B.

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)

Algorithm

The routine HRRRR computes the Hadamard product of two real matrices A and B
and returns a real matrix C, where CLM = ALMBLM.

Example

Compute the Hadamard product of two 4 × 4 real matrices. The output matrix
will be a 4 × 4 real matrix.

C Declare variables
 INTEGER LDA, LDB, LDC, NCA, NCB, NCC, NRA, NRB, NRC
 PARAMETER (LDA=4, LDB=4, LDC=4, NCA=4, NCB=4, NCC=4, NRA=4,
 & NRB=4, NRC=4)
C
 REAL A(LDA,NCA), B(LDB,NCB), C(LDC,NCC)
 EXTERNAL HRRRR, WRRRN
C Set values for A
C A = (-1.0 0.0 -3.0 8.0)
C (2.0 1.0 7.0 2.0)
C (3.0 -2.0 2.0 -6.0)
C (4.0 1.0 -5.0 -8.0)
C
C Set values for B
C B = (2.0 3.0 0.0 -10.0)
C (1.0 -1.0 4.0 2.0)
C (-1.0 -2.0 7.0 1.0)
C (2.0 1.0 9.0 0.0)
C
 DATA A/-1.0, 2.0, 3.0, 4.0, 0.0, 1.0, -2.0, 1.0, -3.0, 7.0, 2.0,
 & -5.0, 8.0, 2.0, -6.0, -8.0/
 DATA B/2.0, 1.0, -1.0, 2.0, 3.0, -1.0, -2.0, 1.0, 0.0, 4.0, 7.0,
 & 9.0, -10.0, 2.0, 1.0, 0.0/
C Compute Hadamard product of A and B
 CALL HRRRR (NRA, NCA, A, LDA, NRB, NCB, B, LDB, NRC, NCC, C, LDC)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1087

C Print results
 CALL WRRRN (’C = A (*) B’, NRC, NCC, C, LDC, 0)
 END

Output
 C = A (*) B
 1 2 3 4
1 -2.00 0.00 0.00 -80.00
2 2.00 -1.00 28.00 4.00
3 -3.00 4.00 14.00 -6.00
4 8.00 1.00 -45.00 0.00

BLINF/DBLINF (Single/Double precision)
Compute the bilinear form x7Ay.

Usage
BLINF(NRA, NCA, A, LDA, X, Y)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

X — Real vector of length NRA. (Input)

Y — Real vector of length NCA. (Input)

BLINF — The value of x7Ay is returned in BLINF. (Output)

Comments

The quadratic form can be computed by calling BLINF with the vector X in place
of the vector Y.

Algorithm

Given the real rectangular matrix A and two vectors x and y, BLINF computes the

bilinear form x7Ay.

Example

Compute the bilinear form x7Ay, where x is a vector of length 5, A is a 5 × 2
matrix and y is a vector of length 2.

C Declare variables
 INTEGER LDA, NCA, NRA

1088 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

 PARAMETER (LDA=5, NCA=2, NRA=5)
C
 INTEGER NOUT
 REAL A(LDA,NCA), BLINF, VALUE, X(NRA), Y(NCA)
 EXTERNAL BLINF, UMACH
C Set values for A
C A = (-2.0 2.0)
C (3.0 -6.0)
C (-4.0 7.0)
C (1.0 -8.0)
C (0.0 10.0)
C Set values for X
C X = (1.0 -2.0 3.0 -4.0 -5.0)
C Set values for Y
C Y = (-6.0 3.0)
C
 DATA A/-2.0, 3.0, -4.0, 1.0, 0.0, 2.0, -6.0, 7.0, -8.0, 10.0/
 DATA X/1.0, -2.0, 3.0, -4.0, -5.0/
 DATA Y/-6.0, 3.0/
C Compute bilinear form
 VALUE = BLINF(NRA,NCA,A,LDA,X,Y)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The bilinear form trans(x)*A*y = ’, VALUE
 END

Output
The bilinear form trans(x)*A*y = 195.000

POLRG/DPOLRG (Single/Double precision)
Evaluate a real general matrix polynomial.

Usage
CALL POLRG (N, A, LDA, NCOEF, COEF, B, LDB)

Arguments

N — Order of the matrix A. (Input)

A — N by N matrix for which the polynomial is to be computed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NCOEF — Number of coefficients. (Input)

COEF — Vector of length NCOEF containing the coefficients of the polynomial
in order of increasing power. (Input)

B — N by N matrix containing the value of the polynomial evaluated at A.
(Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1089

Comments

Automatic workspace usage is

POLRG N * N units, or
DPOLRG 2 * N * N units.

Workspace may be explicitly provided, if desired, by use of P2LRG/DP2LRG. The
reference is

CALL P2LRG (N, A, LDA, NCOEF, COEF, B, LDB, WORK)

The additional argument is

WORK — Work vector of length N * N.

Algorithm

Let m = NCOEF and c = COEF.

The routine POLRG computes the matrix polynomial

B c Ak
k

k

m

= −

=
∑ 1

1

using Horner’s scheme

B c A c I A c I A c Im m m= + + + +− −K K1 2 11 62 73 8
where I is the N × N identity matrix.

Example

This example evaluates the matrix polynomial 3I + A + 2A2, where A is a 3 × 3
matrix.

C Declare variables
 INTEGER LDA, LDB, N, NCOEF
 PARAMETER (N=3, NCOEF=3, LDA=N, LDB=N)
C
 REAL A(LDA,N), B(LDB,N), COEF(NCOEF)
 EXTERNAL POLRG, WRRRN
C Set values of A and COEF
C
C A = (1.0 3.0 2.0)
C (-5.0 1.0 7.0)
C (1.0 5.0 -4.0)
C
C COEF = (3.0, 1.0, 2.0)
C
 DATA A/1.0, -5.0, 1.0, 3.0, 1.0, 5.0, 2.0, 7.0, -4.0/
 DATA COEF/3.0, 1.0, 2.0/
C
C Evaluate B = 3I + A + 2*A**2
 CALL POLRG (N, A, LDA, NCOEF, COEF, B, LDB)
C Print B
 CALL WRRRN (’B = 3I + A + 2*A**2’, N, N, B, LDB, 0)

1090 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

 END

Output
 B = 3I + A + 2*A**2
 1 2 3
1 -20.0 35.0 32.0
2 -11.0 46.0 -55.0
3 -55.0 -19.0 105.0

MURRV/DMURRV (Single/Double precision)
Multiply a real rectangular matrix by a vector.

Usage
CALL MURRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA rectangular matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NX — Length of the vector X. (Input)
NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH
is equal to 2.

X — Real vector of length NX. (Input)

IPATH — Integer flag. (Input)
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the
product Y = trans(A) * X is computed, where trans(A) is the transpose of A.

NY — Length of the vector Y. (Input)
NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH
is equal to 2.

Y — Real vector of length NY containing the product A * X if IPATH is equal to 1
and the product trans(A) * X if IPATH is equal to 2. (Output)

Algorithm

If IPATH = 1, MURRV computes y = Ax, where A is a real general matrix and x and

y are real vectors. If IPATH = 2, MURRV computes y = A7x.

Example

Multiply a 3 × 3 real matrix by a real vector of length 3. The output vector will be
a real vector of length 3.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1091

C Declare variables
 INTEGER LDA, NCA, NRA, NX, NY
 PARAMETER (LDA=3, NCA=3, NRA=3, NX=3, NY=3)
C
 INTEGER IPATH
 REAL A(LDA,NCA), X(NX), Y(NY)
 EXTERNAL MURRV, WRRRN
C Set values for A and X
C A = (1.0 0.0 2.0)
C (0.0 3.0 0.0)
C (4.0 1.0 2.0)
C
C X = (1.0 2.0 1.0)
C
C
 DATA A/1.0, 0.0, 4.0, 0.0, 3.0, 1.0, 2.0, 0.0, 2.0/
 DATA X/1.0, 2.0, 1.0/
C Compute y = Ax
 IPATH = 1
 CALL MURRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y)
C Print results
 CALL WRRRN (’y = Ax’, 1, NY, Y, 1, 0)
 END

Output
 y = Ax
 1 2 3
3.000 6.000 8.000

MURBV/DMURBV (Single/Double precision)
Multiply a real band matrix in band storage mode by a real vector.

Usage
CALL MURBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y)

Arguments

N — Order of the matrix. (Input)

A — Real NLCA + NUCA + 1 by N band matrix stored in band mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

NX — Length of the vector X. (Input)
NX must be equal to N.

X — Real vector of length NX. (Input)

1092 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

IPATH — Integer flag. (Input)
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the
product Y = trans(A) * X is computed, where trans(A) is the transpose of A.

NY — Length of vector Y. (Input)
NY must be equal to N.

Y — Real vector of length NY containing the product A * X if IPATH is equal to 1
and the product trans(A) * X if IPATH is equal to 2. (Output)

Algorithm

If IPATH = 1, MURBV computes y = Ax, where A is a real band matrix and x and y

are real vectors. If IPATH = 2, MURBV computes y = A7x.

Example

Multiply a real band matrix of order 6, with two upper codiagonals and two lower
codiagonals stored in band mode, by a real vector of length 6. The output vector
will be a real vector of length 6.

C Declare variables
 INTEGER LDA, N, NLCA, NUCA, NX, NY
 PARAMETER (LDA=5, N=6, NLCA=2, NUCA=2, NX=6, NY=6)
C
 INTEGER IPATH
 REAL A(LDA,N), X(NX), Y(NY)
 EXTERNAL MURBV, WRRRN
C Set values for A (in band mode)
C A = (0.0 0.0 1.0 2.0 3.0 4.0)
C (0.0 1.0 2.0 3.0 4.0 5.0)
C (1.0 2.0 3.0 4.0 5.0 6.0)
C (-1.0 -2.0 -3.0 -4.0 -5.0 0.0)
C (-5.0 -6.0 -7.0 -8.0 0.0 0.0)
C
C Set values for X
C X = (-1.0 2.0 -3.0 4.0 -5.0 6.0)
C
 DATA A/0.0, 0.0, 1.0, -1.0, -5.0, 0.0, 1.0, 2.0, -2.0, -6.0,
 & 1.0, 2.0, 3.0, -3.0, -7.0, 2.0, 3.0, 4.0, -4.0, -8.0, 3.0,
 & 4.0, 5.0, -5.0, 0.0, 4.0, 5.0, 6.0, 0.0, 0.0/
 DATA X/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0/
C Compute y = Ax
 IPATH = 1
 CALL MURBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y)
C Print results
 CALL WRRRN (’y = Ax’, 1, NY, Y, 1, 0)
 END

Output
 y = Ax
 1 2 3 4 5 6
-2.00 7.00 -11.00 17.00 10.00 29.00

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1093

MUCRV/DMUCRV (Single/Double precision)
Multiply a complex rectangular matrix by a complex vector.

Usage
CALL MUCRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Complex NRA by NCA rectangular matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NX — Length of the vector X. (Input)
NX must be equal to NCA if IPATH is equal to 1. NX must be equal to NRA if IPATH
is equal to 2.

X — Complex vector of length NX. (Input)

IPATH — Integer flag. (Input)
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the
product Y = trans(A) * X is computed, where trans(A) is the transpose of A.

NY — Length of the vector Y. (Input)
NY must be equal to NRA if IPATH is equal to 1. NY must be equal to NCA if IPATH
is equal to 2.

Y — Complex vector of length NY containing the product A * X if IPATH is equal
to 1 and the product trans(A) * X if IPATH is equal to 2. (Output)

Algorithm

If IPATH = 1, MUCRV computes y = Ax, where A is a complex general matrix and x

and y are complex vectors. If IPATH = 2, MUCRV computes y = A7x.

Example

Multiply a 3 × 3 complex matrix by a complex vector of length 3. The output
vector will be a complex vector of length 3.

C Declare variables
 INTEGER LDA, NCA, NRA, NX, NY
 PARAMETER (LDA=3, NCA=3, NRA=3, NX=3, NY=3)
C
 INTEGER IPATH
 COMPLEX A(LDA,NCA), X(NX), Y(NY)
 EXTERNAL MUCRV, WRCRN
C
C Set values for A and X

1094 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

C A = (1.0 + 2.0i 3.0 + 4.0i 1.0 + 0.0i)
C (2.0 + 1.0i 3.0 + 2.0i 0.0 - 1.0i)
C (2.0 - 1.0i 1.0 + 0.0i 0.0 + 1.0i)
C
C X = (1.0 - 1.0i 2.0 - 2.0i 0.0 - 1.0i)
C
 DATA A/(1.0,2.0), (2.0,1.0), (2.0,-1.0), (3.0,4.0), (3.0,2.0),
 & (1.0,0.0), (1.0,0.0), (0.0,-1.0), (0.0,1.0)/
 DATA X/(1.0,-1.0), (2.0,-2.0), (0.0,-1.0)/
C Compute y = Ax
 IPATH = 1
 CALL MUCRV (NRA, NCA, A, LDA, NX, X, IPATH, NY, Y)
C Print results
 CALL WRCRN (’y = Ax’, 1, NY, Y, 1, 0)
 END

Output
 y = Ax
 1 2 3
(17.00, 2.00) (12.00, -3.00) (4.00, -5.00)

MUCBV/DMUCBV (Single/Double precision)
Multiply a complex band matrix in band storage mode by a complex vector.

Usage
CALL MUCBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y)

Arguments

N — Order of the matrix. (Input)

A — Complex NLCA + NUCA + 1 by N band matrix stored in band mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals in A. (Input)

NUCA — Number of upper codiagonals in A. (Input)

NX — Length of the vector X. (Input)
NX must be equal to N.

X — Complex vector of length NX. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1095

IPATH — Integer flag. (Input)
IPATH = 1 means the product Y = A * X is computed. IPATH = 2 means the
product Y = trans(A) * X is computed, where trans(A) is the transpose of A.

NY — Length of vector Y. (Input)
NY must be equal to N.

Y — Complex vector of length NY containing the product A * X if IPATH is equal
to 1 and the product trans(A) * X if IPATH is equal to 2. (Output)

Algorithm

If IPATH = 1, MUCBV computes y = Ax, where A is a complex band matrix and x

and y are complex vectors. If IPATH = 2, MUCBV computes y = A7x.

Example

Multiply the transpose of a complex band matrix of order 4, with one upper
codiagonal and two lower codiagonals stored in band mode, by a complex vector
of length 3. The output vector will be a complex vector of length 3.

C Declare variables
 INTEGER LDA, N, NLCA, NUCA, NX, NY
 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1, NX=4, NY=4)
C
 INTEGER IPATH
 COMPLEX A(LDA,N), X(NX), Y(NY)
 EXTERNAL MUCBV, WRCRN
C Set values for A (in band mode)
C A = (0.0+ 0.0i 1.0+ 2.0i 3.0+ 4.0i 5.0+ 6.0i)
C (-1.0- 1.0i -1.0- 1.0i -1.0- 1.0i -1.0- 1.0i)
C (-1.0+ 2.0i -1.0+ 3.0i -2.0+ 1.0i 0.0+ 0.0i)
C (2.0+ 0.0i 0.0+ 2.0i 0.0+ 0.0i 0.0+ 0.0i)
C
C Set values for X
C X = (3.0 + 4.0i 0.0 + 0.0i 1.0 + 2.0i -2.0 - 1.0i)
C
 DATA A/(0.0,0.0), (-1.0,-1.0), (-1.0,2.0), (2.0,0.0), (1.0,2.0),
 & (-1.0,-1.0), (-1.0,3.0), (0.0,2.0), (3.0,4.0), (-1.0,-1.0),
 & (-2.0,1.0), (0.0,0.0), (5.0,6.0), (-1.0,-1.0), (0.0,0.0),
 & (0.0,0.0)/
 DATA X/(3.0,4.0), (0.0,0.0), (1.0,2.0), (-2.0,-1.0)/
C Compute y = Ax
 IPATH = 2
 CALL MUCBV (N, A, LDA, NLCA, NUCA, NX, X, IPATH, NY, Y)
C Print results
 CALL WRCRN (’y = Ax’, 1, NY, Y, 1, 0)
 END

Output
 y = Ax
 1 2 3 4
(3.00, -3.00) (-10.00, 7.00) (6.00, -3.00) (-6.00, 19.00)

1096 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

ARBRB/DARBRB (Single/Double precision)
Add two band matrices, both in band storage mode.

Usage
CALL ARBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C,
 LDC, NLCC, NUCC)

Arguments

N — Order of the matrices A, B and C. (Input)

A — N by N band matrix with NLCA lower codiagonals and NUCA upper
codiagonals stored in band mode with dimension (NLCA + NUCA + 1) by N.
(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — N by N band matrix with NLCB lower codiagonals and NUCB upper
codiagonals stored in band mode with dimension (NLCB + NUCB + 1) by N.
(Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NLCB — Number of lower codiagonals of B. (Input)

NUCB — Number of upper codiagonals of B. (Input)

C — N by N band matrix with NLCC lower codiagonals and NUCC upper
codiagonals containing the sum A + B in band mode with dimension (NLCC +
NUCC + 1) by N. (Output)

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)

NLCC — Number of lower codiagonals of C. (Input)
NLCC must be at least as large as max(NLCA, NLCB).

NUCC — Number of upper codiagonals of C. (Input)
NUCC must be at least as large as max(NUCA, NUCB).

Algorithm

The routine ARBRB adds two real matrices stored in band mode, returning a real
matrix stored in band mode.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1097

Example

Add two real matrices of order 4 stored in band mode. Matrix A has one upper
codiagonal and one lower codiagonal. Matrix B has no upper codiagonals and
two lower codiagonals. The output matrix C, has one upper codiagonal and two
lower codiagonals.

C Declare variables
 INTEGER LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC
 PARAMETER (LDA=3, LDB=3, LDC=4, N=4, NLCA=1, NLCB=2, NLCC=2,
 & NUCA=1, NUCB=0, NUCC=1)
C
 INTEGER NBC
 REAL A(LDA,N), B(LDB,N), C(LDC,N)
 EXTERNAL ARBRB, WRRRN
C Set values for A (in band mode)
C A = (0.0 2.0 3.0 -1.0)
C (1.0 1.0 1.0 1.0)
C (0.0 3.0 4.0 0.0)
C
C Set values for B (in band mode)
C B = (3.0 3.0 3.0 3.0)
C (1.0 -2.0 1.0 0.0)
C (-1.0 2.0 0.0 0.0)
C
 DATA A/0.0, 1.0, 0.0, 2.0, 1.0, 3.0, 3.0, 1.0, 4.0, -1.0, 1.0,
 & 0.0/
 DATA B/3.0, 1.0, -1.0, 3.0, -2.0, 2.0, 3.0, 1.0, 0.0, 3.0, 0.0,
 & 0.0/
C Add A and B to obtain C (in band
C mode)
 CALL ARBRB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C, LDC,
 & NLCC, NUCC)
C Print results
 NBC = NLCC + NUCC + 1
 CALL WRRRN (’C = A+B’, NBC, N, C, LDC, 0)
 END

Output
 C = A+B
 1 2 3 4
1 0.000 2.000 3.000 -1.000
2 4.000 4.000 4.000 4.000
3 1.000 1.000 5.000 0.000
4 -1.000 2.000 0.000 0.000

ACBCB/DACBCB (Single/Double precision)
Add two complex band matrices, both in band storage mode.

Usage
CALL ACBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C,
 LDC, NLCC, NUCC)

1098 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Arguments

N — Order of the matrices A, B and C. (Input)

A — N by N complex band matrix with NLCA lower codiagonals and NUCA upper
codiagonals stored in band mode with dimension (NLCA + NUCA + 1) by N.
(Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — N by N complex band matrix with NLCB lower codiagonals and NUCB upper
codiagonals stored in band mode with dimension (NLCB + NUCB + 1) by N.
(Input)

LDB — Leading dimension of B exactly as specified in the dimension statement
of the calling program. (Input)

NLCB — Number of lower codiagonals of B. (Input)

NUCB — Number of upper codiagonals of B. (Input)

C — N by N complex band matrix with NLCC lower codiagonals and NUCC upper
codiagonals containing the sum A + B in band mode with dimension (NLCC +
NUCC + 1) by N. (Output)

LDC — Leading dimension of C exactly as specified in the dimension statement
of the calling program. (Input)

NLCC — Number of lower codiagonals of C. (Input)
NLCC must be at least as large as max(NLCA, NLCB).

NUCC — Number of upper codiagonals of C. (Input)
NUCC must be at least as large as max(NUCA, NUCB).

Algorithm

The routine ACBCB adds two complex matrices stored in band mode, returning a
complex matrix stored in band mode.

Example

Add two complex matrices of order 4 stored in band mode. Matrix A has two
upper codiagonals and no lower codiagonals. Matrix B has no upper codiagonals
and two lower codiagonals. The output matrix C has two upper codiagonals and
two lower codiagonals.

C Declare variables
 INTEGER LDA, LDB, LDC, N, NLCA, NLCB, NLCC, NUCA, NUCB, NUCC
 PARAMETER (LDA=3, LDB=3, LDC=5, N=3, NLCA=0, NLCB=2, NLCC=2,
 & NUCA=2, NUCB=0, NUCC=2)
C

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1099

 INTEGER NBC
 COMPLEX A(LDA,N), B(LDB,N), C(LDC,N)
 EXTERNAL ACBCB, WRCRN
C Set values for A (in band mode)
C A = (0.0 + 0.0i 0.0 + 0.0i 3.0 - 2.0i)
C (0.0 + 0.0i -1.0+ 3.0i 6.0 + 0.0i)
C (1.0 + 4.0i 5.0 - 2.0i 3.0 + 1.0i)
C
C Set values for B (in band mode)
C B = (3.0 + 1.0i 4.0 + 1.0i 7.0 - 1.0i)
C (-1.0- 4.0i 9.0 + 3.0i 0.0 + 0.0i)
C (2.0 - 1.0i 0.0 + 0.0i 0.0 + 0.0i)
C
 DATA A/(0.0,0.0), (0.0,0.0), (1.0,4.0), (0.0,0.0), (-1.0,3.0),
 & (5.0,-2.0), (3.0,-2.0), (6.0,0.0), (3.0,1.0)/
 DATA B/(3.0,1.0), (-1.0,-4.0), (2.0,-1.0), (4.0,1.0), (9.0,3.0),
 & (0.0,0.0), (7.0,-1.0), (0.0,0.0), (0.0,0.0)/
C Compute C = A+B
 CALL ACBCB (N, A, LDA, NLCA, NUCA, B, LDB, NLCB, NUCB, C, LDC,
 & NLCC, NUCC)
C Print results
 NBC = NLCC + NUCC + 1
 CALL WRCRN (’C = A+B’, NBC, N, C, LDC, 0)
 END

Output
 C = A+B
 1 2 3
1 (0.00, 0.00) (0.00, 0.00) (3.00, -2.00)
2 (0.00, 0.00) (-1.00, 3.00) (6.00, 0.00)
3 (4.00, 5.00) (9.00, -1.00) (10.00, 0.00)
4 (-1.00, -4.00) (9.00, 3.00) (0.00, 0.00)
5 (2.00, -1.00) (0.00, 0.00) (0.00, 0.00)

NRIRR/DNRIRR (Single/Double precision)
Compute the infinity norm of a real matrix.

Usage
CALL NRIRR (NRA, NCA, A, LDA, ANORM)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA matrix whose infinity norm is to be computed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

ANORM — Real scalar containing the infinity norm of A. (Output)

1100 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Algorithm

The routine NRIRR computes the infinity norm of a real rectangular matrix A. If m
= NRA and n = NCA, then the ∞-norm of A is

A A
i m

ij
j

n

∞ ≤ ≤ =
= ∑max

1 1

This is the maximum of the sums of the absolute values of the row elements.

Example

Compute the infinity norm of a 3 × 4 real rectangular matrix.

C Declare variables
 INTEGER LDA, NCA, NRA
 PARAMETER (LDA=3, NCA=4, NRA=3)
C
 INTEGER NOUT
 REAL A(LDA,NCA), ANORM
 EXTERNAL NRIRR, UMACH
C
C Set values for A
C A = (1.0 0.0 2.0 0.0)
C (3.0 4.0 -1.0 0.0)
C (2.0 1.0 2.0 1.0)
C
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0,
 & 1.0/
C Compute the infinity norm of A
 CALL NRIRR (NRA, NCA, A, LDA, ANORM)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The infinity norm of A is ’, ANORM
 END

Output
The infinity norm of A is 8.00000

NR1RR/DNR1RR (Single/Double precision)
Compute the 1-norm of a real matrix.

Usage
CALL NR1RR (NRA, NCA, A, LDA, ANORM)

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA matrix whose 1-norm is to be computed. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1101

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

ANORM — Real scalar containing the 1-norm of A. (Output)

Algorithm

The routine NR1RR computes the 1-norm of a real rectangular matrix A. If
m = NRA and n = NCA, then the 1-norm of A is

A A
j n

ij
i

m

1
1 1

=
≤ ≤ =

∑max

This is the maximum of the sums of the absolute values of the column elements.

Example

Compute the 1-norm of a 3 × 4 real rectangular matrix.

C Declare variables
 INTEGER LDA, NCA, NRA
 PARAMETER (LDA=3, NCA=4, NRA=3)
C
 INTEGER NOUT
 REAL A(LDA,NCA), ANORM
 EXTERNAL NR1RR, UMACH
C
C Set values for A
C A = (1.0 0.0 2.0 0.0)
C (3.0 4.0 -1.0 0.0)
C (2.0 1.0 2.0 1.0)
C
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0,
 & 1.0/
C Compute the L1 norm of A
 CALL NR1RR (NRA, NCA, A, LDA, ANORM)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM
 END

Output
The 1-norm of A is 6.00000

NR2RR/DNR2RR (Single/Double precision)
Compute the Frobenius norm of a real rectangular matrix.

Usage
CALL NR2RR (NRA, NCA, A, LDA, ANORM)

1102 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Arguments

NRA — Number of rows of A. (Input)

NCA — Number of columns of A. (Input)

A — Real NRA by NCA rectangular matrix. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

ANORM — Frobenius norm of A. (Output)

Algorithm

The routine NR2RR computes the Frobenius norm of a real rectangular matrix A.
If m = NRA and n = NCA, then the Frobenius norm of A is

A Aij
j

n

i

m

2
2

11

1 2

=
�
!

"
$
##==

∑∑

Example

Compute the Frobenius norm of a 3 × 4 real rectangular matrix.

C Declare variables
 INTEGER LDA, NCA, NRA
 PARAMETER (LDA=3, NCA=4, NRA=3)
C
 INTEGER NOUT
 REAL A(LDA,NCA), ANORM
 EXTERNAL NR2RR, UMACH
C
C Set values for A
C A = (1.0 0.0 2.0 0.0)
C (3.0 4.0 -1.0 0.0)
C (2.0 1.0 2.0 1.0)
C
 DATA A/1.0, 3.0, 2.0, 0.0, 4.0, 1.0, 2.0, -1.0, 2.0, 0.0, 0.0,
 & 1.0/
C
C Compute Frobenius norm of A
 CALL NR2RR (NRA, NCA, A, LDA, ANORM)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The Frobenius norm of A is ’, ANORM
 END

Output
The Frobenius norm of A is 6.40312

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1103

NR1RB/DNR1RB (Single/Double precision)
Compute the 1-norm of a real band matrix in band storage mode.

Usage
CALL NR1RB (N, A, LDA, NLCA, NUCA, ANORM)

Arguments

N — Order of the matrix. (Input)

A — Real (NUCA + NLCA + 1) by N array containing the N by N band matrix in
band storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

ANORM — Real scalar containing the 1-norm of A. (Output)

Algorithm

The routine NR1RB computes the 1-norm of a real band matrix A. The 1-norm of a
matrix A is

A A
j N

ij
i

N

1
1 1

=
≤ ≤ =

∑max

This is the maximum of the sums of the absolute values of the column elements.

Example

Compute the 1-norm of a 4 × 4 real band matrix stored in band mode.

C Declare variables
 INTEGER LDA, N, NLCA, NUCA
 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1)
C
 INTEGER NOUT
 REAL A(LDA,N), ANORM
 EXTERNAL NR1RB, UMACH
C
C Set values for A (in band mode)
C A = (0.0 2.0 2.0 3.0)
C (-2.0 -3.0 -4.0 -1.0)
C (2.0 1.0 0.0 0.0)
C (0.0 1.0 0.0 0.0)
C
 DATA A/0.0, -2.0, 2.0, 0.0, 2.0, -3.0, 1.0, 1.0, 2.0, -4.0, 0.0,
 & 0.0, 3.0, -1.0, 2*0.0/
C Compute the L1 norm of A
 CALL NR1RB (N, A, LDA, NLCA, NUCA, ANORM)

1104 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM
 END

Output
The 1-norm of A is 7.00000

NR1CB/DNR1CB (Single/Double precision)
Compute the 1-norm of a complex band matrix in band storage mode.

Usage
CALL NR1CB (N, A, LDA, NLCA, NUCA, ANORM)

Arguments

N — Order of the matrix. (Input)

A — Complex (NUCA + NLCA + 1) by N array containing the N by N band matrix
in band storage mode. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

ANORM — Real scalar containing the 1-norm of A. (Output)

Algorithm

The routine NR1CB computes the 1-norm of a complex band matrix A. The 1-
norm of a complex matrix A is

A A A
j N

ij ij
i

N

1
1 1

= ℜ + ℑ
≤ ≤ =

∑max

Example

Compute the 1-norm of a complex matrix of order 4 in band storage mode.
C Declare variables
 INTEGER LDA, N, NLCA, NUCA
 PARAMETER (LDA=4, N=4, NLCA=2, NUCA=1)
C
 INTEGER NOUT
 REAL ANORM
 COMPLEX A(LDA,N)
 EXTERNAL NR1CB, UMACH
C
C Set values for A (in band mode)
C A = (0.0+0.0i 2.0+3.0i -1.0+1.0i -2.0-1.0i)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1105

C (-2.0+3.0i 1.0+0.0i -4.0-1.0i 0.0-4.0i)
C (2.0+2.0i 4.0+6.0i 3.0+2.0i 0.0+0.0i)
C (0.0-1.0i 2.0+1.0i 0.0+0.0i 0.0+0.0i)
C
 DATA A/(0.0,0.0), (-2.0,3.0), (2.0,2.0), (0.0,-1.0), (2.0,3.0),
 & (1.0,0.0), (4.0,6.0), (2.0,1.0), (-1.0,1.0), (-4.0,-1.0),
 & (3.0,2.0), (0.0,0.0), (-2.0,-1.0), (0.0,-4.0), (0.0,0.0),
 & (0.0,0.0)/
C Compute the L1 norm of A
 CALL NR1CB (N, A, LDA, NLCA, NUCA, ANORM)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 1-norm of A is ’, ANORM
 END

Output
The 1-norm of A is 19.0000

DISL2/DDISL2 (Single/Double precision)
Compute the Euclidean (2-norm) distance between two points.

Usage
DISL2(N, X, INCX, Y, INCY)

Arguments

N — Length of the vectors X and Y. (Input)

X — Vector of length max(N * |INCX|, 1). (Input)

INCX — Displacement between elements of X. (Input)
The I-th element of X is X(1 + (I − 1) * INCX) if INCX is greater than or equal to
zero or X(1 + (I − N) * INCX) if INCX is less than zero.

Y — Vector of length max(N * |INCY|, 1). (Input)

INCY — Displacement between elements of Y. (Input)
The I-th element of Y is Y(1 + (I − 1) * INCY) if INCY is greater than or equal to
zero or Y(1 + (I − N) * INCY) if INCY is less than zero.

DISL2 — Euclidean (2-norm) distance between the points X and Y. (Output)

Algorithm

The function DISL2 computes the Euclidean (2-norm) distance between two
points x and y. The Euclidean distance is defined to be

x yi i
i

N

−
�
!

"
$##=

∑ 1 62

1

1 2

1106 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Example

Compute the Euclidean (2-norm) distance between two vectors of length 4.
C Declare variables
 INTEGER INCX, INCY, N
 PARAMETER (INCX=1, INCY=1, N=4)
C
 INTEGER NOUT
 REAL DISL2, VAL, X(N), Y(N)
 EXTERNAL DISL2, UMACH
C
C Set values for X and Y
C X = (1.0 -1.0 0.0 2.0)
C
C Y = (4.0 2.0 1.0 -3.0)
C
 DATA X/1.0, -1.0, 0.0, 2.0/
 DATA Y/4.0, 2.0, 1.0, -3.0/
C Compute L2 distance
 VAL = DISL2(N,X,INCX,Y,INCY)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 2-norm distance is ’, VAL
 END

Output
The 2-norm distance is 6.63325

DISL1/DDISL1 (Single/Double precision)
Compute the 1-norm distance between two points.

Usage
DISL1(N, X, INCX, Y, INCY)

Arguments

N — Length of the vectors X and Y. (Input)

X — Vector of length max(N * |INCX|, 1). (Input)

INCX — Displacement between elements of X. (Input)
The I-th element of X is X(1 + (I − 1) * INCX) if INCX is greater than or equal to
zero or X(1 + (I − N) * INCX) if INCX is less than zero.

Y — Vector of length max(N * |INCY|, 1). (Input)

INCY — Displacement between elements of Y. (Input)
The I-th element of Y is Y(1 + (I − 1) * INCY) if INCY is greater than or equal to
zero or Y(1 + (I − N) * INCY) if INCY is less than zero.

DISL1 — 1-norm distance between the points X and Y. (Output)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1107

Algorithm

The function DISL1 computes the 1-norm distance between two points x and y.
The 1-norm distance is defined to be

x yi i
i

N

−
=
∑

1

Example

Compute the 1-norm distance between two vectors of length 4.
C Declare variables
 INTEGER INCX, INCY, N
 PARAMETER (INCX=1, INCY=1, N=4)
C
 INTEGER NOUT
 REAL DISL1, VAL, X(N), Y(N)
 EXTERNAL DISL1, UMACH
C
C Set values for X and Y
C X = (1.0 -1.0 0.0 2.0)
C
C Y = (4.0 2.0 1.0 -3.0)
C
 DATA X/1.0, -1.0, 0.0, 2.0/
 DATA Y/4.0, 2.0, 1.0, -3.0/
C Compute L1 distance
 VAL = DISL1(N,X,INCX,Y,INCY)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The 1-norm distance is ’, VAL
 END

Output
The 1-norm distance is 12.0000

DISLI/DDISLI (Single/Double precision)
Compute the infinity norm distance between two points.

Usage
DISLI(N, X, INCX, Y, INCY)

Arguments

N — Length of the vectors X and Y. (Input)

X — Vector of length max(N * |INCX|, 1). (Input)

INCX — Displacement between elements of X. (Input)
The I-th element of X is X(1 + (I − 1) *INCX) if INCX is greater than or equal to
zero or X(1 + (I − N) * INCX) if INCX is less than zero.

1108 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Y — Vector of length max(N * |INCY|, 1). (Input)

INCY — Displacement between elements of Y. (Input)
The I-th element of Y is Y(1 + (I − 1) * INCY) if INCY is greater than or equal to
zero or Y(1 + (I − N) * INCY) if INCY is less than zero.

DISLI — Infinity norm distance between the points X and Y. (Output)

Algorithm

The function DISLI computes the 1-norm distance between two points x and y.
The 1norm distance is defined to be

max
1≤ ≤

−
i N

i ix y

Example

Compute the ∞-norm distance between two vectors of length 4.

C Declare variables
 INTEGER INCX, INCY, N
 PARAMETER (INCX=1, INCY=1, N=4)
C
 INTEGER NOUT
 REAL DISLI, VAL, X(N), Y(N)
 EXTERNAL DISLI, UMACH
C
C Set values for X and Y
C X = (1.0 -1.0 0.0 2.0)
C
C Y = (4.0 2.0 1.0 -3.0)
C
 DATA X/1.0, -1.0, 0.0, 2.0/
 DATA Y/4.0, 2.0, 1.0, -3.0/
C Compute L-infinity distance
 VAL = DISLI(N,X,INCX,Y,INCY)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The infinity-norm distance is ’, VAL
 END

Output
The infinity-norm distance is 5.00000

VCONR/DVCONR (Single/Double precision)
Compute the convolution of two real vectors.

Usage
CALL VCONR (NX, X, NY, Y, NZ, Z)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1109

Arguments

NX — Length of the vector X. (Input)

X — Vector of length NX. (Input)

NY — Length of the vector Y. (Input)

Y — Vector of length NY. (Input)

NZ — Length of the vector Z. (Input)
NZ must be at least NX + NY − 1.

Z — Vector of length NZ containing the convolution Z = X * Y. (Output)

Comments

Automatic workspace usage is

VCONR 12 * (NX + NY − 1) + 15 units, or
DVCONR 24 * (NX + NY − 1) + 30 units.

Workspace may be explicitly provided, if desired, by use of V2ONR/DV2ONR. The
reference is

CALL V2ONR (NX, X, NY, Y, NZ, Z, XWK, YWK, ZWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NX + NY − 1.

YWK — Complex work array of length NX + NY − 1.

ZWK — Complex work array of length NX + NY − 1.

WK — Real work array of length 6 * (NX + NY − 1) + 15.

Algorithm

The routine VCONR computes the convolution z of two real vectors x and y. Let n[
= NX, n\ = NY and n] = NZ. The vector z is defined to be

z x y j nj j k k
k

n

z

x

= − +
=

∑ 1
1

1 2for = , , , K

where n] = n[+ n\ − 1. If the index j − k + 1 is outside the range 1, 2, …, n[, then
xM�-�N�+�� is taken to be zero.

The fast Fourier transform is used to compute the convolution. Define the
complex vector u of length n] = n[+ n\ − 1 to be

u x x xnx
= 1 2 0 0, , , , , ,K K3 8

The complex vector v, also of length n], is defined similarly using y. Then, by the
Fourier convolution theorem,

1110 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

$ $ $w u v i ni i i z= for = , , , 1 2 K

where the $u indicates the Fourier transform of u computed via IMSL routine
FFTCF (page 772). IMSL routine FFTCB (page 774) is used to compute the
complex vector w from $w . The vector z is then found by taking the real part of
the vector w.

Example

In this example, the convolution of a vector x of length 8 and a vector y of length
3 is computed. The resulting vector z is of length 8 + 3 − 1 = 10. (The vector y is
sometimes called a filter.)

 INTEGER NX, NY, NZ
 PARAMETER (NX=8, NY=3, NZ=NX+NY-1)
C
 REAL X(NX), Y(NY), Z(NZ)
 EXTERNAL VCONR, WRRRN
C Set values for X
C X = (1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0)
C Set values for Y
C Y = (0.0 0.0 1.0)
C
 DATA X/1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0/
 DATA Y/0.0, 0.0, 1.0/
C Compute vector convolution
C Z = X * Y
 CALL VCONR (NX, X, NY, Y, NZ, Z)
C Print results
 CALL WRRRN (’Z = X (*) Y’, 1, NZ, Z, 1, 0)
 END

Output
 Z = X (*) Y
 1 2 3 4 5 6 7 8 9 10
0.000 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

VCONC/DVCONC (Single/Double precision)
Compute the convolution of two complex vectors.

Usage
CALL VCONC (NX, X, NY, Y, NZ, Z)

Arguments

NX — Length of the vector X. (Input)

X — Complex vector of length NX. (Input)

NY — Length of the vector Y. (Input)

Y — Complex vector of length NY. (Input)

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1111

NZ — Length of the vector Z. (Input)
NZ must be at least NX + NY − 1.

Z — Complex vector of length NZ containing the convolution Z = X * Y.
(Output)

Comments

Automatic workspace usage is

VCONC 10 * (NX + NY −1) + 15 units, or
DVCONC 20 * (NX + NY −1) + 30 units.

Workspace may be explicitly provided, if desired, by use of V2ONC/DV2ONC. The
reference is

CALL V2ONC (NX, X, NY, Y, NZ, Z, XWK, YWK, WK)

The additional arguments are as follows:

XWK — Complex work array of length NX + NY − 1.

YWK — Complex work array of length NX + NY − 1.

WK — Real work arrary of length 6 * (NX + NY −1) + 15.

Algorithm

The routine VCONC computes the convolution z of two complex vectors x and y.
Let n[= NX, then n\ = NY and n] = NZ. The vector z is defined to be

z x y j nj j k k
k

n

z

x

= − +
=

∑ 1
1

1 2for = , , , K

where n] = n[�+ n\ − 1. If the index j − k + 1 is outside the range 1, 2, …, n[, then
xM�-�N�+�� is taken to be zero.

The fast Fourier transform is used to compute the convolution. Define the
complex vector u of length n] = n[+ n\ − 1 to be

u x x xnz
= 1 2 0 0, , , , , ,K K3 8

The complex vector v, also of length n], is defined similarly using y. Then, by the
Fourier convolution theorem,

$ $ $z u v i ni i i z= for = , , ,1 2 K

where the $u indicates the Fourier transform of u computed using IMSL routine
FFTCF (page 754). The complex vector z is computed from $w via IMSL routine
FFTCB (page 756).

1112 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

Example

In this example, the convolution of a vector x of length 4 and a vector y of length
3 is computed. The resulting vector z is of length 4 + 3 − 1 = 6. (The vector y is
sometimes called a filter.)

 INTEGER NX, NY, NZ
 PARAMETER (NX=4, NY=3, NZ=NX+NY-1)
C
 COMPLEX X(NX), Y(NY), Z(NZ)
 EXTERNAL VCONC, WRCRN
C Set values for X
C X = (1.0+2.0i 3.0+4.0i 5.0+6.0i 7.0+8.0i)
C Set values for Y
C Y = (0.0+0i 0.0+0i 1.0+0i)
C
 DATA X/(1.0,2.0), (3.0,4.0), (5.0,6.0), (7.0,8.0)/
 DATA Y/(0.0,0.0), (0.0,0.0), (1.0,1.0)/
C Compute vector convolution
C Z = X * Y
 CALL VCONC (NX, X, NY, Y, NZ, Z)
C Print results
 CALL WRCRN (’Z = X (*) Y’, 1, NZ, Z, 1, 0)
 END

Output
 Z = X (*) Y
 1 2 3 4
(0.00, 0.00) (0.00, 0.00) (-1.00, 3.00) (-1.00, 7.00)

 5 6
(-1.00, 11.00) (-1.00, 15.00)

Extended Precision Arithmetic
This section describes a set of routines for mixed precision arithmetic. The
routines are designed to allow the computation and use of the full quadruple
precision result from the multiplication of two double precision numbers. An
array called the accumulator stores the result of this multiplication. The result of
the multiplication is added to the current contents of the accumulator. It is also
possible to add a double precision number to the accumulator or to store a double
precision approximation in the accumulator.

The mixed double precision arithmetic routines are described below. The
accumulator array, QACC, is a double precision array of length 2. Double
precision variables are denoted by DA and DB. Available operations are:

Initialize a real accumulator, QACC ← DA.

CALL DQINI (DA, QACC)

Store a real accumulator, DA ← QACC.

CALL DQSTO (QACC, DA)

Add to a real accumulator, QACC ← QACC + DA.

IMSL MATH/LIBRARY Chapter 9: Basic Matrix/Vector Operations • 1113

CALL DQADD (DA, QACC)

Add a product to a real accumulator, QACC ← QACC + DA*DB.

CALL DQMUL (DA, DB, QACC)

There are also mixed double complex arithmetic versions of the above routines.
The accumulator, ZACC, is a double precision array of length 4. Double complex
variables are denoted by ZA and ZB. Available operations are:

Initialize a complex accumulator, ZACC ← ZA.

CALL ZQINI (ZA, ZACC)

Store a complex accumulator, ZA ← ZACC.

CALL ZQSTO (ZACC, ZA)

Add to a complex accumulator, ZACC ← ZACC + ZA.

CALL ZQADD (ZA, ZACC)

Add a product to a complex accumulator, ZACC ← ZACC + ZA * ZB.

CALL ZQMUL (ZA, ZB, ZACC)

Example

In this example, the value of 1.0D0/3.0D0 is computed in quadruple precision
using Newton’s method. Four iterations of

x x x axk k k k+ = + −1
23 8

with a = 3 are taken. The error ax − 1 is then computed. The results are accurate
to approximately twice the usual double precision accuracy, as given by the IMSL
routine DMACH(4), page 1173. Since DMACH is machine dependent, the actual
accuracy obtained is also machine dependent.

 INTEGER I, NOUT
 DOUBLE PRECISION A, DACC(2), DMACH, ERROR, SACC(2), X(2), X1, X2
 EXTERNAL DMACH, DQADD, DQINI, DQMUL, DQSTO, UMACH
C
 CALL UMACH (2, NOUT)
 A = 3.0D0
 CALL DQINI (1.0001D0/A, X)
C Compute X(K+1) = X(K) - A*X(K)*X(K)
C + X(K)
 DO 10 I=1, 4
 X1 = X(1)
 X2 = X(2)
C Compute X + X
 CALL DQADD (X1, X)
 CALL DQADD (X2, X)
C Compute X*X
 CALL DQINI (0.0D0, DACC)
 CALL DQMUL (X1, X1, DACC)
 CALL DQMUL (X1, X2, DACC)
 CALL DQMUL (X1, X2, DACC)
 CALL DQMUL (X2, X2, DACC)

1114 • Chapter 9: Basic Matrix/Vector Operations IMSL MATH/LIBRARY

C Compute -A*(X*X)
 CALL DQINI (0.0D0, SACC)
 CALL DQMUL (-A, DACC(1), SACC)
 CALL DQMUL (-A, DACC(2), SACC)
C Compute -A*(X*X) + (X + X)
 CALL DQADD (SACC(1), X)
 CALL DQADD (SACC(2), X)
 10 CONTINUE
C Compute A*X - 1
 CALL DQINI (0.0D0, SACC)
 CALL DQMUL (A, X(1), SACC)
 CALL DQMUL (A, X(2), SACC)
 CALL DQADD (-1.0D0, SACC)
 CALL DQSTO (SACC, ERROR)
C ERROR should be less than MACHEPS**2
 WRITE (NOUT,99999) ERROR, ERROR/DMACH(4)**2
C
99999 FORMAT (’ A*X - 1 = ’, D15.7, ’ = ’, F10.5, ’*MACHEPS**2’)
 END

Output
A*X - 1 = 0.6162976D-32 = 0.12500*MACHEPS**2

IMSL MATH/LIBRARY Chapter 10: Utilities • 1115

Chapter 10: Utilities

Routines
10.1. Print

Real rectangular matrix
with integer row and column labels....................................WRRRN 1116
Real rectangular matrix with given format and labels WRRRL 1118
Integer rectangular matrix
with integer row and column labels..................................... WRIRN 1121
Integer rectangular matrix with given format and labels WRIRL 1123
Complex rectangular matrix
with row and column labels..WRCRN 1125
Complex rectangular matrix
with given format and labels... WRCRL 1127
Set or retrieve options for printing a matrix WROPT 1130
Set or retrieve page width and length PGOPT 1137

10.2. Permute
Elements of a vector ...PERMU 1138
Rows/columns of a matrix... PERMA 1139

10.3. Sort
Real vector by algebraic value.. SVRGN 1141
Real vector by algebraic value
and permutations returned.. SVRGP 1142
Integer vector by algebraic value ..SVIGN 1143
Integer vector by algebraic value
and permutations returned..SVIGP 1144
Real vector by absolute value..SVRBN 1145
Real vector by absolute value
and permutations returned...SVRBP 1146
Integer vector by absolute value ... SVIBN 1148
Integer vector by absolute value
and permutations returned.. SVIBP 1149

10.4. Search
Sorted real vector for a number ...SRCH 1150
Sorted integer vector for a numberISRCH 1152

1116 • Chapter 10: Utilities IMSL MATH/LIBRARY

Sorted character vector for a stringSSRCH 1153

10.5. Character String Manipulation
Get the character corresponding to a given ASCII valueACHAR 1155
Get the integer ASCII value for a given character..............IACHAR 1156
Get upper case integer ASCII value for a character..............ICASE 1157
Case-insensitive version comparing two strings.....................IICSR 1157
Case-insensitive version of intrinsic function INDEX.............. IIDEX 1159
Convert a character string with digits to an integerCVTSI 1160

10.6. Time, Date, and Version
CPU time ...CPSEC 1161
Time of day... TIMDY 1161
Today’s date .. TDATE 1162
Number of days from January 1, 1900, to the given date.... NDAYS 1163
Date for the number of days from January 1, 1900.............. NDYIN 1164
Day of week for given date .. IDYWK 1165
Version, system, and serial numbersVERML 1166

10.7. Random Number Generation
Retrieve the current value of the seed.................................RNGET 1167
Initialize a random seed... RNSET 1168
Select the uniform (0,1) generator.......................................RNOPT 1169
Generate pseudorandom numbers (function form)RNUNF 1170
Generate pseudorandom numbersRNUN 1171

10.8. Options Manager
Get and put type INTEGER options..IUMAG 1173
Get and put type REAL options.. SUMAG 1175
Get and put type DOUBLE PRECISION optionsDUMAG 1178

10.9. Line Printer Graphics
Print plot of up to 10 sets of pointsPLOTP 1181

10.10. Miscellaneous
Decompose an integer into its prime factorsPRIME 1183
Return mathematical and physical constants......................CONST 1185
Convert a quantity to different units...................................... CUNIT 1187

Compute a b2 2+ without underflow or overflow............HYPOT 1190

WRRRN/DWRRRN (Single/Double precision)
Print a real rectangular matrix with integer row and column labels.

Usage
CALL WRRRN (TITLE, NRA, NCA, A, LDA, ITRING)

IMSL MATH/LIBRARY Chapter 10: Utilities • 1117

Arguments

TITLE — Character string specifying the title. (Input)
TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /”
within the title to create a new line. Long titles are automatically wrapped.

NRA — Number of rows. (Input)

NCA — Number of columns. (Input)

A — NRA by NCA matrix to be printed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

ITRING — Triangle option. (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of A is printed, including the diagonal.
2 Upper triangle of A excluding the diagonal of A is printed.
−1 Lower triangle of A is printed, including the diagonal.
−2 Lower triangle of A excluding the diagonal of A is printed.

Comments

1. A single D, E, or F format is chosen automatically in order to print 4
significant digits for the largest element of A in absolute value. Routine
WROPT (page 1130) can be used to change the default format.

2. Horizontal centering, a method for printing large matrices, paging,
printing a title on each page, and many other options can be selected by
invoking WROPT.

3. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1137).

4. Output is written to the unit specified by UMACH (page 1201).

Algorithm

Routine WRRRN prints a real rectangular matrix with the rows and columns labeled
1, 2, 3, and so on. WRRRN can restrict printing to the elements of the upper or
lower triangles of matrices via the ITRING option. Generally,
ITRING ≠ 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For
a column vector, set NRA to the length of the array and set NCA = 1. For a row
vector, set NRA = 1 and set NCA to the length of the array. In both cases, set LDA =
NRA and set ITRING = 0.

Example

The following example prints all of a 3 × 4 matrix A where aLM= i + j/10.

1118 • Chapter 10: Utilities IMSL MATH/LIBRARY

 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
C
 INTEGER I, J
 REAL A(LDA,NCA)
 EXTERNAL WRRRN
C
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = I + J*0.1
 10 CONTINUE
 20 CONTINUE
C Write A matrix.
 CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
 END

Output
 A
 1 2 3 4
1 1.100 1.200 1.300 1.400
2 2.100 2.200 2.300 2.400
3 3.100 3.200 3.300 3.400

WRRRL/DWRRRL (Single/Double precision)
Print a real rectangular matrix with a given format and labels.

Usage
CALL WRRRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,
 CLABEL)

Arguments

TITLE — Character string specifying the title. (Input)
TITLE set equal to a blank character(s) suppresses printing of the title.

NRA — Number of rows. (Input)

NCA — Number of columns. (Input)

A — NRA by NCA matrix to be printed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

ITRING — Triangle option. (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of A is printed, including the diagonal.
2 Upper triangle of A excluding the diagonal of A is printed.
−1 Lower triangle of A is printed, including the diagonal.
−2 Lower triangle of A excluding the diagonal of A is printed.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1119

FMT — Character string containing formats. (Input)
If FMT is set to a blank character(s), the format used is specified by WROPT

(page 1130). Otherwise, FMT must contain exactly one set of parentheses and one
or more edit descriptors. For example, FMT = ’ (F10.3)’ specifies this F format
for the entire matrix. FMT = ’ (2E10.3, 3F10.3)’ specifies an E format for
columns 1 and 2 and an F format for columns 3, 4 and 5. If the end of FMT is
encountered and if some columns of the matrix remain, format control continues
with the first format in FMT. Even though the matrix A is real, an I format can be
used to print the integer part of matrix elements of A. The most useful formats are
special formats, called the “V and W formats,” that can be used to specify pretty
formats automatically. Set FMT = ’ (V10.4)’ if you want a single D, E, or F format
selected automatically with field width 10 and with 4 significant digits. Set FMT =
’ (W10.4)’ if you want a single D, E, F, or I format selected automatically with
field width 10 and with 4 significant digits. While the V format prints trailing
zeroes and a trailing decimal point, the W format does not. See Comment 4 for
general descriptions of the V and W formats. FMT may contain only D, E, F, G, I , V,
or W edit descriptors, e.g., the X descriptor is not allowed.

RLABEL — CHARACTER * (*) vector of labels for rows of A. (Input)
If rows are to be numbered consecutively 1, 2, …, NRA, use
RLABEL(1) = ’NUMBER’. If no row labels are desired, use RLABEL(1) = ’NONE’ .
Otherwise, RLABEL is a vector of length NRA containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of A. (Input)
If columns are to be numbered consecutively 1, 2, …, NCA, use
CLABEL(1) = ’NUMBER’. If no column labels are desired, use
CLABEL(1) = ’NONE’ . Otherwise, CLABEL(1) is the heading for the row labels,
and either CLABEL(2) must be ’NUMBER’or ’NONE’ , or CLABEL must be a vector
of length NCA + 1 with CLABEL(1 + j) containing the column heading for the j-th
column.

Comments

1. Automatic workspace is used only if all of the following three conditions
are met: (1) FMT contains V or W edit descriptors. (2) FMT is not a single
V or W format with no repetition factor. (3) WROPT has previously been
invoked with IOPT = −2 and ISET = 0. In this case, workspace usage is

WRRRL 10 * NCA character units, or
DWRRRL10 * NCA character units.

Workspace may be explicitly provided, if desired, by use of
W2RRL/DW2RRL. The reference is

CALL W2RRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT,
 RLABEL, CLABEL, CHWK)

The additional argument is

1120 • Chapter 10: Utilities IMSL MATH/LIBRARY

CHWK — CHARACTER * 10 work vector of length NCA. This workspace
is referenced only if all three conditions indicated at the beginning of
this comment are met. Otherwise, CHWK is not referenced and can be a
CHARACTER * 10 vector of length one.

2. The output appears in the following form:

TITLE

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) xxxxx xxxxx xxxxx

RLABEL(2) xxxxx xxxxx xxxxx

3. Use “% /” within titles or labels to create a new line. Long titles or labels
are automatically wrapped.

4. For printing numbers whose magnitudes are unknown, the G format in
FORTRAN is useful; however, the decimal points will generally not be
aligned when printing a column of numbers. The V and W formats are
special formats used by this routine to select a D, E, F, or I format so that
the decimal points will be aligned. The V and W formats are specified as
Vn.d and Wn.d. Here, n is the field width and d is the number of
significant digits generally printed. Valid values for n are 3, 4,…, 40.
Valid values for d are 1, 2, …, n − 2. If FMT specifies one format and
that format is a V or W format, all elements of the matrix A are examined
to determine one FORTRAN format for printing. If FMT specifies more
than one format, FORTRAN formats are generated separately from each
V or W format.

5. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1137).

6. Horizontal centering, method for printing large matrices, paging, method
for printing NaN (not a number), printing a title on each page, and many
other options can be selected by invoking WROPT (page 1130).

7. Output is written to the unit specified by UMACH (page 1201).

Algorithm

Routine WRRRL prints a real rectangular matrix (stored in A) with row and column
labels (specified by RLABEL and CLABEL, respectively) according to a given
format (stored in FMT). WRRRL can restrict printing to the elements of upper or
lower triangles of matrices via the ITRING option. Generally, ITRING ≠ 0 is used
with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For
a column vector, set NRA to the length of the array and set NCA = 1. For a row
vector, set NRA = 1 and set NCA to the length of the array. In both cases, set LDA =
NRA, and set ITRING = 0.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1121

Example

The following example prints all of a 3 × 4 matrix A where aLM = (i + j/10)10M-3.
 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
C
 INTEGER I, J
 REAL A(LDA,NCA)
 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5
 EXTERNAL WRRRL
C
 DATA FMT/’(W10.6)’/
 DATA CLABEL/’ ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/
 DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/
C
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = (I+J*0.1)*10.0**(J-3)
 10 CONTINUE
 20 CONTINUE
C Write A matrix.
 CALL WRRRL (’A’, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL)
 END

Output
 A
 Col 1 Col 2 Col 3 Col 4
Row 1 0.011 0.120 1.300 14.000
Row 2 0.021 0.220 2.300 24.000
Row 3 0.031 0.320 3.300 34.000

WRIRN
Print an integer rectangular matrix with integer row and column labels.

Usage
CALL WRIRN (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING)

Arguments

TITLE — Character string specifying the title. (Input)
TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /”
within the title to create a new line. Long titles are automatically wrapped.

NRMAT — Number of rows. (Input)

NCMAT — Number of columns. (Input)

MAT — NRMAT by NCMAT matrix to be printed. (Input)

LDMAT — Leading dimension of MAT exactly as specified in the dimension
statement in the calling program. (Input)

ITRING — Triangle option. (Input)

1122 • Chapter 10: Utilities IMSL MATH/LIBRARY

ITRING Action
0 Full matrix is printed.
1 Upper triangle of MAT is printed, including the diagonal.
2 Upper triangle of MAT excluding the diagonal of MAT is printed.
−1 Lower triangle of MAT is printed, including the diagonal.
−2 Lower triangle of MAT excluding the diagonal of MAT is printed.

Comments

1. All the entries in MAT are printed using a single I format. The field width
is determined by the largest absolute entry.

2. Horizontal centering, a method for printing large matrices, paging,
printing a title on each page, and many other options can be selected by
invoking WROPT (page 1130).

3. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1137).

4. Output is written to the unit specified by UMACH (page 1201).

Algorithm

Routine WRIRN prints an integer rectangular matrix with the rows and columns
labeled 1, 2, 3, and so on. WRIRN can restrict printing to elements of the upper
and lower triangles of matrices via the ITRING option. Generally, ITRING ≠ 0 is
used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For
a column vector, set NRMAT to the length of the array and set NCMAT = 1. For a
row vector, set NRMAT = 1 and set NCMAT to the length of the array. In both cases,
set LDMAT = NRMAT and set ITRING = 0:

Example

The following example prints all of a 3 × 4 matrix A = MAT where aLM = 10i + j.

 INTEGER ITRING, LDMAT, NCMAT, NRMAT
 PARAMETER (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)
C
 INTEGER I, J, MAT(LDMAT,NCMAT)
 EXTERNAL WRIRN
C
 DO 20 I=1, NRMAT
 DO 10 J=1, NCMAT
 MAT(I,J) = I*10 + J
 10 CONTINUE
 20 CONTINUE
C Write MAT matrix.
 CALL WRIRN (’MAT’, NRMAT, NCMAT, MAT, LDMAT, ITRING)
 END

IMSL MATH/LIBRARY Chapter 10: Utilities • 1123

Output
 MAT
 1 2 3 4
1 11 12 13 14
2 21 22 23 24
3 31 32 33 34

WRIRL
Print an integer rectangular matrix with a given format and labels.

Usage
CALL WRIRL (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT,
 RLABEL, CLABEL)

Arguments

TITLE — Character string specifying the title. (Input)
TITLE set equal to a blank character(s) suppresses printing of the title.

NRMAT — Number of rows. (Input)

NCMAT — Number of columns. (Input)

MAT — NRMAT by NCMAT matrix to be printed. (Input)

LDMAT — Leading dimension of MAT exactly as specified in the dimension
statement in the calling program. (Input)

ITRING — Triangle option. (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of MAT is printed, including the diagonal.
2 Upper triangle of MAT excluding the diagonal of MAT is printed.
−1 Lower triangle of MAT is printed, including the diagonal.
−2 Lower triangle of MAT excluding the diagonal of MAT is printed.

FMT — Character string containing formats. (Input)
If FMT is set to a blank character(s), the format used is a single I format with field
width determined by the largest absolute entry. Otherwise, FMT must contain
exactly one set of parentheses and one or more I edit descriptors. For example,
FMT = ’(I10)’ specifies this I format for the entire matrix. FMT = ’(2I10,

3I5)’ specifies an I10 format for columns 1 and 2 and an I5 format for columns
3, 4 and 5. If the end of FMT is encountered and if some columns of the matrix
remain, format control continues with the first format in FMT. FMT may only
contain the I edit descriptor, e.g., the X edit descriptor is not allowed.

RLABEL — CHARACTER * (*) vector of labels for rows of MAT. (Input)
If rows are to be numbered consecutively 1, 2, …, NRMAT, use
RLABEL(1) = ’NUMBER’. If no row labels are desired, use

1124 • Chapter 10: Utilities IMSL MATH/LIBRARY

 RLABEL(1) = ’NONE’ . Otherwise, RLABEL is a vector of length NRMAT

containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of MAT. (Input)
If columns are to be numbered consecutively 1, 2, …, NCMAT, use
CLABEL(1) = ’NUMBER’. If no column labels are desired, use
CLABEL(1) = ’NONE’ . Otherwise, CLABEL(1) is the heading for the row labels,
and either CLABEL(2) must be ’NUMBER’ or ’NONE’ , or CLABEL must be a
vector of length

NCMAT + 1 with CLABEL(1 + j) containing the column heading for the j-th column.

Comments

1. The output appears in the following form:

TITLE

CLABEL(1) CLABEL(2) CALBEL(3) CLABEL 4)

RLABEL(1) xxxxx xxxxx xxxxx

RLABEL(2) xxxxx xxxxx xxxxx

2. Use “% /” within titles or labels to create a new line. Long titles or labels
are automatically wrapped.

3. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1137).

4. Horizontal centering, a method for printing large matrices, paging,
printing a title on each page, and many other options can be selected by
invoking WROPT (page 1130).

5. Output is written to the unit specified by UMACH (page 1201).

Algorithm

Routine WRIRL prints an integer rectangular matrix (stored in MAT) with row and
column labels (specified by RLABEL and CLABEL, respectively), according to a
given format (stored in FMT). WRIRL can restrict printing to the elements of upper
or lower triangles of matrices via the ITRING option. Generally,
ITRING ≠ 0 is used with symmetric matrices. In addition, one-dimensional arrays
can be printed as column or row vectors. For a column vector, set NRMAT to the
length of the array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set
NCMAT to the length of the array. In both cases, set LDMAT = NRMAT, and set
ITRING = 0.

Example

The following example prints all of a 3 × 4 matrix A = MAT where aLM= 10i + j.

 INTEGER ITRING, LDMAT, NCMAT, NRMAT

IMSL MATH/LIBRARY Chapter 10: Utilities • 1125

 PARAMETER (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)
C
 INTEGER I, J, MAT(LDMAT,NCMAT)
 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5
 EXTERNAL WRIRL
C
 DATA FMT/’(I2)’/
 DATA CLABEL/’ ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/
 DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/
C
 DO 20 I=1, NRMAT
 DO 10 J=1, NCMAT
 MAT(I,J) = I*10 + J
 10 CONTINUE
 20 CONTINUE
C Write MAT matrix.
 CALL WRIRL (’MAT’, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT,
 & RLABEL, CLABEL)
 END

Output
 MAT
 Col 1 Col 2 Col 3 Col 4
Row 1 11 12 13 14
Row 2 21 22 23 24
Row 3 31 32 33 34

WRCRN/DWRCRN (Single/Double precision)
Print a complex rectangular matrix with integer row and column labels.

Usage
CALL WRCRN (TITLE, NRA, NCA, A, LDA, ITRING)

Arguments

TITLE — Character string specifying the title. (Input)
TITLE set equal to a blank character(s) suppresses printing of the title. Use “% /”
within the title to create a new line. Long titles are automatically wrapped.

NRA — Number of rows. (Input)

NCA — Number of columns. (Input)

A — Complex NRA by NCA matrix to be printed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

ITRING — Triangle option. (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of A is printed, including the diagonal.

1126 • Chapter 10: Utilities IMSL MATH/LIBRARY

2 Upper triangle of A excluding the diagonal of A is printed.
−1 Lower triangle of A is printed, including the diagonal.
−2 Lower triangle of A excluding the diagonal of A is printed.

Comments

1. A single D, E, or F format is chosen automatically in order to print 4
significant digits for the largest real or imaginary part in absolute value
of all the complex numbers in A. Routine WROPT (page 1130) can be
used to change the default format.

2. Horizontal centering, a method for printing large matrices, paging,
method for printing NaN (not a number), and printing a title on each
page can be selected by invoking WROPT.

3. A page width of 78 characters is used. Page width and page length can
be reset by invoking subroutine PGOPT (page 1137).

4. Output is written to the unit specified by UMACH (page 1201).

Algorithm

Routine WRCRN prints a complex rectangular matrix with the rows and columns
labeled 1, 2, 3, and so on. WRCRN can restrict printing to the elements of the upper
or lower triangles of matrices via the ITRING option. Generally,
ITRING ≠ 0 is used with Hermitian matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For
a column vector, set NRA to the length of the array, and set NCA = 1. For a row
vector, set NRA = 1, and set NCA to the length of the array. In both cases, set LDA
= NRA, and set ITRING = 0.

Example

This example prints all of a 3 × 4 complex matrix A with elements

a m ni imn = + −, where = 1
 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
C
 INTEGER I, J
 COMPLEX A(LDA,NCA), CMPLX
 INTRINSIC CMPLX
 EXTERNAL WRCRN
C
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = CMPLX(I,J)
 10 CONTINUE
 20 CONTINUE
C Write A matrix.
 CALL WRCRN (’A’, NRA, NCA, A, LDA, ITRING)
 END

IMSL MATH/LIBRARY Chapter 10: Utilities • 1127

Output
 A
 1 2 3 4
1 (1.000, 1.000) (1.000, 2.000) (1.000, 3.000) (1.000, 4.000)
2 (2.000, 1.000) (2.000, 2.000) (2.000, 3.000) (2.000, 4.000)
3 (3.000, 1.000) (3.000, 2.000) (3.000, 3.000) (3.000, 4.000)

WRCRL/DWRCRL (Single/Double precision)
Print a complex rectangular matrix with a given format and labels.

Usage
CALL WRCRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,
 CLABEL)

Arguments

TITLE — Character string specifying the title. (Input)
TITLE set equal to a blank character(s) suppresses printing of the title.

NRA — Number of rows. (Input)

NCA — Number of columns. (Input)

A — Complex NRA by NCA matrix to be printed. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program. (Input)

ITRING — Triangle option. (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of A is printed, including the diagonal.
2 Upper triangle of A excluding the diagonal of A is printed.
−1 Lower triangle of A is printed, including the diagonal.
−2 Lower triangle of A excluding the diagonal of A is printed.

FMT — Character string containing formats. (Input)
If FMT is set to a blank character(s), the format used is specified by WROPT

(page 1130). Otherwise, FMT must contain exactly one set of parentheses and
one or more edit descriptors. Because a complex number consists of two parts (a
real and an imaginary part), two edit descriptors are used for printing a single
complex number. FMT = ’(E10.3, F10.3)’ specifies an E format for the real
part and an F format for the imaginary part. FMT = ’(F10.3)’ uses an F
format for both the real and imaginary parts. If the end of FMT is encountered
and if all columns of the matrix have not been printed, format control continues
with the first format in FMT. Even though the matrix A is complex, an I format
can be used to print the integer parts of the real and imaginary components of
each complex number. The most useful formats are special formats, called the
“V and W formats,” that can be used to specify pretty formats automatically. Set

1128 • Chapter 10: Utilities IMSL MATH/LIBRARY

FMT = ’(V10.4)’ if you want a single D, E, or F format selected automatially
with field width 10 and with 4 significant digits. Set FMT = ’(W10.4)’ if you
want a single D, E, F, or I format selected automatically with field width 10 and
with 4 significant digits. While the V format prints trailing zeroes and a trailing
decimal point, the W format does not. See Comment 4 for general descriptions of
the V and W formats. FMT may contain only D, E, F, G, I , V, or W edit descriptors,
e.g., the X descriptor is not allowed.

RLABEL — CHARACTER * (*) vector of labels for rows of A. (Input)
If rows are to be numbered consecutively 1, 2, …, NRA, use RLABEL(1) =
’NUMBER’. If no row labels are desired, use RLABEL(1) = ’NONE’ . Otherwise,
RLABEL is a vector of length NRA containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of A. (Input)
If columns are to be numbered consecutively 1, 2, …, NCA, use CLABEL(1) =
’NUMBER’. If no column labels are desired, use CLABEL(1) = ’NONE’ .
Otherwise, CLABEL(1) is the heading for the row labels, and either CLABEL(2)
must be ’NUMBER’ or ’NONE’ , or CLABEL must be a vector of length NCA + 1
with CLABEL(1 + j) containing the column heading for the j-th column.

Comments

1. Automatic workspace is used only if all of the following three conditions
are met: (1) FMT contains V or W edit descriptors. (2) FMT is not a single
V or W format with no repetition factor. (3) WROPT has previously been
invoked with IOPT = −2 and ISET = 0. In this case, workspace usage is

WRCRL 20 * NCA character units, or
DWRCRL20 * NCA character units.

Workspace may be explicitly provided, if desired, by use of
W2CRL/DW2CRL. The reference is

CALL W2CRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT,
 RLABEL, CLABEL, CHWK)

The additional argument is

CHWK — CHARACTER * 10 work vector of length 2 * NCA. This
workspace is referenced only if all three conditions indicated at the
beginning of this comment are met. Otherwise, CHWK is not referenced
and can be a CHARACTER * 10 vector of length one.

2. The output appears in the following form:

TITLE

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx)

RLABEL(2) (xxxxx,xxxxx) (xxxxx,xxxxx) (xxxxx,xxxxx)

IMSL MATH/LIBRARY Chapter 10: Utilities • 1129

3. Use “% /” within titles or labels to create a new line. Long titles or labels
are automatically wrapped.

4. For printing numbers whose magnitudes are unknown, the G format in
FORTRAN is useful; however, the decimal points will generally not be
aligned when printing a column of numbers. The V and W formats are
special formats used by this routine to select a D, E, F, or I format so that
the decimal points will be aligned. The V and W formats are specified as
Vn.d and Wn.d. Here, n is the field width, and d is the number of
significant digits generally printed. Valid values for n are 3, 4, …, 40.
Valid values for d are 1, 2, …, n − 2. If FMT specifies one format and
that format is a V or W format, all elements of the matrix A are examined
to determine one FORTRAN format for printing. If FMT specifies more
than one format, FORTRAN formats are generated separately from each
V or W format.

5. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1137).

6. Horizontal centering, a method for printing large matrices, paging,
method for printing NaN (not a number), printing a title on each page,
and may other options can be selected by invoking WROPT (page 1130).

7. Output is written to the unit specified by UMACH (page 1201).

Algorithm

Routine WRCRL prints a complex rectangular matrix (stored in A) with row and
column labels (specified by RLABEL and CLABEL, respectively) according to a
given format (stored in FMT). Routine WRCRL can restrict printing to the elements
of upper or lower triangles of matrices via the ITRING option. Generally, the
ITRING ≠ 0 is used with Hermitian matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For
a column vector, set NRA to the length of the array, and set NCA = 1. For a row
vector, set NRA = 1, and set NCA to the length of the array. In both cases, set LDA

= NRA, and set ITRING = 0.

Example

The following example prints all of a 3 × 4 matrix A with elements

a m ni imn = + + −. ,123456 10 5 where =
 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
C
 INTEGER I, J
 COMPLEX A(LDA,NCA), CMPLX
 CHARACTER CLABEL(5)*5, FMT*8, RLABEL(3)*5
 INTRINSIC CMPLX
 EXTERNAL WRCRL
C

1130 • Chapter 10: Utilities IMSL MATH/LIBRARY

 DATA FMT/’(W12.6)’/
 DATA CLABEL/’ ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/
 DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/
C
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = CMPLX(I,J) + 0.123456
 10 CONTINUE
 20 CONTINUE
C Write A matrix.
 CALL WRCRL (’A’, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL)
 END

Output
 A
 Col 1 Col 2
Row 1 (1.12346, 1.00000) (1.12346, 2.00000)
Row 2 (2.12346, 1.00000) (2.12346, 2.00000)
Row 3 (3.12346, 1.00000) (3.12346, 2.00000)

 Col 3 Col 4
Row 1 (1.12346, 3.00000) (1.12346, 4.00000)
Row 2 (2.12346, 3.00000) (2.12346, 4.00000)
Row 3 (3.12346, 3.00000) (3.12346, 4.00000)

WROPT
Set or retrieve an option for printing a matrix.

Usage
CALL WROPT (IOPT, ISET, ISCOPE)

Arguments

IOPT — Indicator of option type. (Input)

IOPT Description of Option Type
−1, 1 Horizontal centering or left justification of matrix to be printed
−2, 2 Method for printing large matrices
−3, 3 Paging
−4, 4 Method for printing NaN (not a number), and negative and positive

machine infinity.
−5, 5 Title option
−6, 6 Default format for real and complex numbers
−7, 7 Spacing between columns
−8, 8 Maximum horizontal space reserved for row labels
−9, 9 Indentation of continuation lines for row labels
−10, 10 Hot zone option for determining line breaks for row labels
−11, 11 Maximum horizontal space reserved for column labels
−12, 12 Hot zone option for determining line breaks for column labels
−13, 13 Hot zone option for determining line breaks for titles

IMSL MATH/LIBRARY Chapter 10: Utilities • 1131

IOPT Description of Option Type
−14, 14 Option for the label that appears in the upper left hand corner that can be

used as a heading for the row numbers or a label for the column
headings for WR**N routines

−15, 15 Option for skipping a line between invocations of WR**N routines,
provided a new page is not to be issued

−16, 16 Option for vertical alignment of the matrix values relative to the
associated row labels that occupy more than one line

0 Reset all the current settings saved in internal variables back to their last
setting made with an invocation of WROPT with ISCOPE = 1. (This
option is used internally by routines printing a matrix and is not useful
otherwise.)

If IOPT is negative, ISET and ISCOPE are input and are saved in internal
variables. If IOPT is positive, ISET is output and receives the currently active
setting for the option (if ISCOPE = 0) or the last global setting for the option (if
ISCOPE = 1). If IOPT = 0, ISET and ISCOPE are not referenced.

ISET — Setting for option selected by IOPT. (Input, if IOPT is negative; output,
if IOPT is positive; not referenced if IOPT = 0)

IOPT ISET Meaning

−1, 1 0 Matrix is left justified

1 Matrix is centered horizontally on page

−2, 2 0 A complete row is printed before the next row is
printed. Wrapping is used if necessary.

m Here, m is a positive integer. Let n1 be the
maximum number of columns beginning with
column 1 that fit across the page (as determined by
the widths of the printing formats). First, columns
1 through n1 are printed for rows 1 through m. Let
n2 be the maximum number of columns beginning
with column n1 + 1 that fit across the page.
Second, columns n1 + 1 through n1 + n2 are printed
for rows 1 through m. This continues until the last
columns are printed for rows 1 through m. Printing
continues in this fashion for the next m rows, etc.

1132 • Chapter 10: Utilities IMSL MATH/LIBRARY

IOPT ISET Meaning

−3, 3 −2 Printing begins on the next line, and no paging
occurs.

−1 Paging is on. Every invocation of a WR*** routine
begins on a new page, and paging occurs within
each invocation as is needed

0 Paging is on. The first invocation of a WR***
routine begins on a new page, and subsequent
paging occurs as is needed. With this option, every
invocation of a WR*** routine ends with a call to
WROPT to reset this option to k, a positive integer
giving the number of lines printed on the current
page.

k Here, k is a positive integer. Paging is on, and k
lines have been printed on the current page. If k is
less than the page length IPAGE (see PGOPT,
page 1137), then IPAGE − k lines are printed
before a new page instruction is issued. If k is
greater than or equal to IPAGE, then the first
invocation of a WR*** routine begins on a new
page. In any case, subsequent paging occurs as is
needed. With this option, every invocation of a
WR*** routine ends with a call to WROPT to reset
the value of k.

−4, 4 0 NaN is printed as a series of decimal points,
negative machine infinity is printed as a series of
minus signs, and positive machine infinity is
printed as a series of plus signs.

1 NaN is printed as a series of blank characters,
negative machine infinity is printed as a series of
minus signs, and positive machine infinity is
printed as a series of plus signs.

2 NaN is printed as “NaN,” negative machine
infinity is printed as “-Inf” and positive machine
infinity is printed as “Inf.”

3 NaN is printed as a series of blank characters,
negative machine infinity is printed as “-Inf,” and
positive machine infinity is printed as “Inf.”

−5, 5 0 Title appears only on first page.

1 Title appears on the first page and all continuation
pages.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1133

IOPT ISET Meaning

−6, 6 0 Format is (W10.4). See Comment 2.

1 Format is (W12.6). See Comment 2.

2 Format is (1PE12.5).

3 Format is Vn.4 where the field width n is
determined. See Comment 2.

4 Format is Vn.6 where the field width n is
determined. See Comment 2.

5 Format is 1PEn.d where n = d + 7, and d + 1 is the
maximum number of significant digits.

−7, 7 k1 Number of characters left blank between columns.
k1 must be between 0 and 5, inclusively.

−8, 8 k2 Maximum width (in characters) reserved for row
labels. k2 = 0 means use the default.

−9, 9 k3 Number of characters used to indent continuation
lines for row labels. k3 must be between 0 and 10,
inclusively.

−10, 10 k4 Width (in characters) of the hot zone where line
breaks in row labels can occur. k4 = 0 means use
the default. k4 must not exceed 50.

−11, 11 k5 Maximum width (in characters) reserved for
column labels. k5 = 0 means use the default.

−12, 12 k6 Width (in characters) of the hot zone where line
breaks in column labels can occur. k6 = 0 means
use the default. k6 must not exceed 50.

−13, 13 k7 Width (in characters) of the hot zone where line
breaks in titles can occur. k7 must be between 1
and 50, inclusively.

−14 0 There is no label in the upper left hand corner.

1 The label in the upper left hand corner is
“Component” if a row vector or column vector is
printed; the label is “Row/Column” if both the
number of rows and columns are greater than one;
otherwise, there is no label.

−15 0 A blank line is printed on each invocation of a
WR**N routine before the matrix title provided a
new page is not to be issued.

1 A blank line is not printed on each invocation of a
WR**N routine before the matrix title.

1134 • Chapter 10: Utilities IMSL MATH/LIBRARY

IOPT ISET Meaning

−16, 16 0 The matrix values are aligned vertically with the
last line of the associated row label for the case
IOPT = 2 and ISET is positive.

1 The matrix values are aligned vertically with the
first line of the associated row label.

ISCOPE — Indicator of the scope of the option. (Input if IOPT is nonzero; not
referenced if IOPT = 0)

ISCOPE Action
0 Setting is temporarily active for the next invocation of a WR*** matrix

printing routine.
1 Setting is active until it is changed by another invocation of WROPT.

Comments

1. This program can be invoked repeatedly before using a WR*** routine to
print a matrix. The matrix printing routines retrieve these settings to
determine the printing options. It is not necessary to call WROPT if a
default value of a printing option is desired. The defaults are as follows.

IOPT Default Value
for ISET

Meaning

1 0 Left justified

2 1000000 Number lines before wrapping

3 −2 No paging

4 2 NaN is printed as “NaN,” negative machine
infinity is printed as “-Inf” and positive
machine infinity is printed as “Inf.”

5 0 Title only on first page.

6 3 Default format is Vn.4.

7 2 2 spaces between columns.

8 0 Maximum row label width MAXRLW = 2 *
IPAGEW/3 if matrix has one column;
MAXRLW = IPAGEW/4 otherwise.

9 3 3 character indentation of row labels
continued beyond one line.

10 0 Width of row label hot zone is MAXRLW/3
characters.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1135

IOPT Default Value
for ISET

Meaning

11 0 Maximum column label width
MAXCLW = min{max (NW + NW/2, 15), 40}
for integer and real matrices, where NW is
the field width for the format corresponding
to the particular column.
MAXCLW = min{max(NW + NW/2, 15), 83} for
complex matrices, where NW is the sum of
the two field widths for the formats
corresponding to the particular column plus
3.

12 0 Width of column label hot zone is
MAXCLW/3 characters.

13 10 Width of hot zone for titles is 10 characters.

14 0 There is no label in the upper left hand
corner.

15 0 Blank line is printed.

16 0 The matrix values are aligned vertically
with the last line of the associated row label.

For IOPT = 8, the default depends on the current value for the page
width, IPAGEW (see PGOPT, page 1137).

2. The V and W formats are special formats that can be used to select a D, E,
F, or I format so that the decimal points will be aligned. The V and W
formats are specified as Vn.d and Wn.d. Here, n is the field width and d
is the number of significant digits generally printed. Valid values for n
are 3, 4, …, 40. Valid values for d are 1, 2, …, n − 2. While the V format
prints trailing zeroes and a trailing decimal point, the W format does not.

Algorithm

Routine WROPT allows the user to set or retrieve an option for printing a matrix.
The options controlled by WROPT include the following: horizontal centering, a
method for printing large matrices, paging, method for printing NaN (not a
number) and positive and negative machine infinities, printing titles, default
formats for numbers, spacing between columns, maximum widths reserved for
row and column labels, indentation of row labels that continue beyond one line,
widths of hot zones for breaking of labels and titles, the default heading for row
labels, whether to print a blank line between invocations of routines, and vertical
alignment of matrix entries with respect to row labels continued beyond one line.
(NaN and positive and negative machine infinities can be retrieved by AMACH and
DMACH, page 1201, that are documented in the section “Machine-Dependent
Constants” in the Reference Material.) Options can be set globally

1136 • Chapter 10: Utilities IMSL MATH/LIBRARY

(ISCOPE = 1) or temporarily for the next call to a printing routine
(ISCOPE = 0).

Example

The following example illustrates the effect of WROPT when printing a 3 × 4 real
matrix A with WRRRN (page 1116) where aLM = i + j/10. The first call to WROPT sets
horizontal printing so that the matrix is first printed horizontally centered on the
page. In the next invocation of WRRRN, the left-justification option has been set
via routine WROPT so the matrix is left justified when printed. Finally, because the
scope of left justification was only for the next call to a printing routine, the last
call to WRRRN results in horizontally centered printing.

 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
C
 INTEGER I, IOPT, ISCOPE, ISET, J
 REAL A(LDA,NCA)
 EXTERNAL WROPT, WRRRN
C
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = I + J*0.1
 10 CONTINUE
 20 CONTINUE
C Activate centering option.
C Scope is global.
 IOPT = -1
 ISET = 1
 ISCOPE = 1
C
 CALL WROPT (IOPT, ISET, ISCOPE)
C Write A matrix.
 CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
C Activate left justification.
C Scope is local.
 IOPT = -1
 ISET = 0
 ISCOPE = 0
 CALL WROPT (IOPT, ISET, ISCOPE)
 CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
 CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
 END

Output
 A
 1 2 3 4
1 1.100 1.200 1.300 1.400
2 2.100 2.200 2.300 2.400
3 3.100 3.200 3.300 3.400

 A
 1 2 3 4
1 1.100 1.200 1.300 1.400
2 2.100 2.200 2.300 2.400
3 3.100 3.200 3.300 3.400

IMSL MATH/LIBRARY Chapter 10: Utilities • 1137

 A
 1 2 3 4
1 1.100 1.200 1.300 1.400
2 2.100 2.200 2.300 2.400
3 3.100 3.200 3.300 3.400

PGOPT
Set or retrieve page width and length for printing.

Usage
CALL PGOPT (IOPT, IPAGE)

Arguments
IOPT — Page attribute option. (Input)

IOPT Description of Attribute
−1, 1 Page width.
−2, 2 Page length.

Negative values of IOPT indicate the setting IPAGE is input. Positive values
of IOPT indicate the setting IPAGE is output.

IPAGE — Value of page attribute. (Input, if IOPT is negative; output, if IOPT is
positive.)

IOPT Description of Attribute Settings for IPAGE
−1, 1 Page width (in characters) 10, 11, …
−2, 2 Page length (in lines) 10, 11, …

Algorithm

Routine PGOPT is used to set or retrieve the page width or the page length for
routines that perform printing.

Example

The following example illustrates the use of PGOPT to set the page width at 20
characters. Routine WRRRN (page 1116) is then used to print a 3 × 4 matrix A
where aLM= i + j/10.

 INTEGER ITRING, LDA, NCA, NRA
 PARAMETER (ITRING=0, LDA=10, NCA=4, NRA=3)
C
 INTEGER I, IOPT, IPAGE, J
 REAL A(LDA,NCA)
 EXTERNAL PGOPT, WRRRN
C
 DO 20 I=1, NRA
 DO 10 J=1, NCA
 A(I,J) = I + J*0.1
 10 CONTINUE

1138 • Chapter 10: Utilities IMSL MATH/LIBRARY

 20 CONTINUE
C Set page width.
 IOPT = -1
 IPAGE = 20
 CALL PGOPT (IOPT, IPAGE)
C Print the matrix A.
 CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
 END

Output
 A
 1 2
1 1.100 1.200
2 2.100 2.200
3 3.100 3.200

 3 4
1 1.300 1.400
2 2.300 2.400
3 3.300 3.400

PERMU/DPERMU (Single/Double precision)
Rearrange the elements of an array as specified by a permutation.

Usage
CALL PERMU (N, X, IPERMU, IPATH, XPERMU)

Arguments

N — Length of the arrays X and XPERMU. (Input)

X — Real vector of length N containing the array to be permuted. (Input)

IPERMU — Integer vector of length N containing a permutation
IPERMU(1), …, IPERMU(N) of the integers 1, …, N. (Input)

IPATH — Integer flag. (Input)
IPATH = 1 means IPERMU represents a forward permutation, i.e., X(IPERMU(I))
is moved to XPERMU(I). IPATH = 2 means IPERMU represents a backward
permutation, i.e., X(I) is moved to XPERMU(IPERMU(I)).

XPERMU — Real vector of length N containing the array X permuted. (Output)
If X is not needed, X and XPERMU can share the same storage locations.

Algorithm

Routine PERMU rearranges the elements of an array according to a permutation
vector. It has the option to do both forward and backward permutations.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1139

Example

This example rearranges the array X using IPERMU; forward permutation is
performed.

C Declare variables
 INTEGER IPATH, N
 PARAMETER (IPATH=1, N=4)
C
 INTEGER IPERMU(N), J, NOUT
 REAL X(N), XPERMU(N)
 EXTERNAL PERMU, UMACH
C Set values for X, IPERMU
C
C X = (5.0 6.0 1.0 4.0)
C IPERMU = (3 1 4 2)
C
 DATA X/5.0, 6.0, 1.0, 4.0/, IPERMU/3, 1, 4, 2/
C Permute X into XPERMU
 CALL PERMU (N, X, IPERMU, IPATH, XPERMU)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print results
 WRITE (NOUT,99999) (XPERMU(J),J=1,N)
C
99999 FORMAT (’ The output vector is:’, /, 10(1X,F10.2))
 END

Output
The Output vector is:
1.00 5.00 4.00 6.00

PERMA/DPERMA (Single/Double precision)
Permute the rows or columns of a matrix.

Usage
CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER)

Arguments

NRA — Number of rows. (Input)

NCA — Number of columns. (Input)

A — NRA by NCA matrix to be permuted. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

IPERMU — Vector of length K containing a permutation IPERMU(1), …,
IPERMU(K) of the integers 1, …, K where K = NRA if the rows of A are to be
permuted and K = NCA if the columns of A are to be permuted. (Input)

1140 • Chapter 10: Utilities IMSL MATH/LIBRARY

IPATH — Option parameter. (Input)
IPATH = 1 means the rows of A will be permuted. IPATH = 2 means the columns
of A will be permuted.

APER — NRA by NCA matrix containing the permuted matrix. (Output)
If A is not needed, A and APER can share the same storage locations.

LDAPER — Leading dimension of APER exactly as specified in the dimension
statement of the calling program. (Input)

Comments

Automatic workspace usage is

PERMA NCA units, or
DPERMA 2 * NCA units.

Workspace may be explicitly provided, if desired, by use of P2RMA/DP2RMA. The
reference is

CALL P2RMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER,
 WORK)

The additional argument is

WORK — Real work vector of length NCA.

Algorithm

Routine PERMA interchanges the rows or columns of a matrix using a permutation
vector such as the one obtained from routines SVRBP (page 1146) or SVRGP (page
1142).

The routine PERMA permutes a column (row) at a time by calling PERMU

(page 1138). This process is continued until all the columns (rows) are permuted.
On completion, let B = APER and pL = IPERMU(I), then

B Aij p ji
=

for all i, j.

Example

This example permutes the columns of a matrix A.
C Declare variables
 INTEGER IPATH, LDA, LDAPER, NCA, NRA
 PARAMETER (IPATH=2, LDA=3, LDAPER=3, NCA=5, NRA=3)
C
 INTEGER I, IPERMU(5), J, NOUT
 REAL A(LDA,NCA), APER(LDAPER,NCA)
 EXTERNAL PERMA, UMACH
C Set values for A, IPERMU
C A = (3.0 5.0 1.0 2.0 4.0)
C (3.0 5.0 1.0 2.0 4.0)
C (3.0 5.0 1.0 2.0 4.0)
C

IMSL MATH/LIBRARY Chapter 10: Utilities • 1141

C IPERMU = (3 4 1 5 2)
C
 DATA A/3*3.0, 3*5.0, 3*1.0, 3*2.0, 3*4.0/, IPERMU/3, 4, 1, 5, 2/
C Perform column permutation on A,
C giving APER
 CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print results
 WRITE (NOUT,99999) ((APER(I,J),J=1,NCA),I=1,NRA)
C
99999 FORMAT (’ The output matrix is:’, /, 3(5F8.1,/))
 END

Output
The Output matrix is:
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0
1.0 2.0 3.0 4.0 5.0

SVRGN/DSVRGN (Single/Double precision)
Sort a real array by algebraically increasing value.

Usage
CALL SVRGN (N, RA, RB)

Arguments

N — Number of elements in the array to be sorted. (Input)

RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)
If RA is not needed, RA and RB can share the same storage locations.

Algorithm

Routine SVRGN sorts the elements of an array, A, into ascending order by
algebraic value. The array A is divided into two parts by picking a central element
T of the array. The first and last elements of A are compared with T and
exchanged until the three values appear in the array in ascending order. The
elements of the array are rearranged until all elements greater than or equal to the
central element appear in the second part of the array and all those less than or
equal to the central element appear in the first part. The upper and lower
subscripts of one of the segments are saved, and the process continues iteratively
on the other segment. When one segment is finally sorted, the process begins
again by retrieving the subscripts of another unsorted portion of the array. On
completion, AM ≤ AL for j < i. For more details, see Singleton (1969), Griffin and
Redish (1970), and Petro (1970).

1142 • Chapter 10: Utilities IMSL MATH/LIBRARY

Example

This example sorts the 10-element array RA algebraically.
C Declare variables
 PARAMETER (N=10)
 REAL RA(N), RB(N)
C Set values for RA
C RA = (-1.0 2.0 -3.0 4.0 -5.0 6.0 -7.0 8.0 -9.0 10.0)
C
 DATA RA/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0, -9.0, 10.0/
C Sort RA by algebraic value into RB
 CALL SVRGN (N, RA, RB)
C Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99999) (RB(J),J=1,N)
C
99999 FORMAT (’ The output vector is:’, /, 10(1X,F5.1))
 END

Output
The Output vector is:
-9.0 -7.0 -5.0 -3.0 -1.0 2.0 4.0 6.0 8.0 10.0

SVRGP/DSVRGP (Single/Double precision)
Sort a real array by algebraically increasing value and return the permutation that
rearranges the array.

Usage
CALL SVRGP (N, RA, RB, IPERM)

Arguments

N — Number of elements in the array to be sorted. (Input)

RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)
If RA is not needed, RA and RB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)
On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM
contains a record of permutations made on the vector RA.

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with RA(I)
for I = 1, 2, …, N may be entered into IPERM(I) in any order. Note that these
integers must be unique.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1143

Algorithm

Routine SVRGP sorts the elements of an array, A, into ascending order by
algebraic value, keeping a record in P of the permutations to the array A. That is,
the elements of P are moved in the same manner as are the elements in A as A is
being sorted. The routine SVRGP uses the algorithm discussed in SVRGN (page
1141). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array RA algebraically.
C Declare variables
 PARAMETER (N=10)
 REAL RA(N), RB(N)
 INTEGER IPERM(N)
C Set values for RA and IPERM
C RA = (10.0 -9.0 8.0 -7.0 6.0 5.0 4.0 -3.0 -2.0 -1.0)
C
C IPERM = (1 2 3 4 5 6 7 8 9 10)
C
 DATA RA/10.0, -9.0, 8.0, -7.0, 6.0, 5.0, 4.0, -3.0, -2.0, -1.0/
 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
C Sort RA by algebraic value into RB
 CALL SVRGP (N, RA, RB, IPERM)
C Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99998) (RB(J),J=1,N)
 WRITE (NOUT, 99999) (IPERM(J),J=1,N)
C
99998 FORMAT (’ The output vector is:’, /, 10(1X,F5.1))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
 END

Output
The output vector is:
-9.0 -7.0 -3.0 -2.0 -1.0 4.0 5.0 6.0 8.0 10.0

The permutation vector is:
2 4 8 9 10 7 6 5 3 1

SVIGN
Sort an integer array by algebraically increasing value.

Usage
CALL SVIGN (N, IA, IB)

Arguments

N — Number of elements in the array to be sorted. (Input)

IA — Integer vector of length N containing the array to be sorted. (Input)

1144 • Chapter 10: Utilities IMSL MATH/LIBRARY

IB — Integer vector of length N containing the sorted array. (Output)
If IA is not needed, IA and IB can share the same storage locations.

Algorithm

Routine SVIGN sorts the elements of an integer array, A, into ascending order by
algebraic value. The routine SVIGN uses the algorithm discussed in SVRGN (page
1141). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array IA algebraically.
C Declare variables
 PARAMETER (N=10)
 INTEGER IA(N), IB(N)
C Set values for IA
C IA = (-1 2 -3 4 -5 6 -7 8 -9 10)
C
 DATA IA/-1, 2, -3, 4, -5, 6, -7, 8, -9, 10/
C Sort IA by algebraic value into IB
 CALL SVIGN (N, IA, IB)
C Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99999) (IB(J),J=1,N)
C
99999 FORMAT (’ The output vector is:’, /, 10(1X,I5))
 END

Output
The Output vector is:
-9 -7 -5 -3 -1 2 4 6 8 10

SVIGP
Sort an integer array by algebraically increasing value and return the permutation
that rearranges the array.

Usage
CALL SVIGP (N, IA, IB, IPERM)

Arguments

N — Number of elements in the array to be sorted. (Input)

IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)
If IA is not needed, IA and IB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)
On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM
contains a record of permutations made on the vector IA.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1145

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with IA(I)
for I = 1, 2, …, N may be entered into IPERM(I) in any order. Note that these
integers must be unique.

Algorithm

Routine SVIGP sorts the elements of an integer array, A, into ascending order by
algebraic value, keeping a record in P of the permutations to the array A. That is,
the elements of P are moved in the same manner as are the elements in A as A is
being sorted. The routine SVIGP uses the algorithm discussed in SVRGN (page
1141). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array IA algebraically.
C Declare variables
 PARAMETER (N=10)
 INTEGER IA(N), IB(N), IPERM(N)
C Set values for IA and IPERM
C IA = (10 -9 8 -7 6 5 4 -3 -2 -1)
C
C IPERM = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
C
 DATA IA/10, -9, 8, -7, 6, 5, 4, -3, -2, -1/
 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
C Sort IA by algebraic value into IB
 CALL SVIGP (N, IA, IB, IPERM)
C Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99998) (IB(J),J=1,N)
 WRITE (NOUT, 99999) (IPERM(J),J=1,N)
C
99998 FORMAT (’ The output vector is:’, /, 10(1X,I5))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
 END

Output
The Output vector is:
-9 -7 -3 -2 -1 4 5 6 8 10

The permutation vector is:
2 4 8 9 10 7 6 5 3 1

SVRBN/DSVRBN (Single/Double precision)
Sort a real array by nondecreasing absolute value.

Usage
CALL SVRBN (N, RA, RB)

1146 • Chapter 10: Utilities IMSL MATH/LIBRARY

Arguments

N — Number of elements in the array to be sorted. (Input)

RA — Vector of length N containing the array to be sorted. (Input)

RB — Vector of length N containing the sorted array. (Output)
If RA is not needed, RA and RB can share the same storage locations.

Algorithm

Routine SVRBN sorts the elements of an array, A, into ascending order by absolute
value. The routine SVRBN uses the algorithm discussed in SVRGN (page 1141). On
completion, |AM| ≤ |AL| for j < i.

Example

This example sorts the 10-element array RA by absolute value.
C Declare variables
 PARAMETER (N=10)
 REAL RA(N), RB(N)
C Set values for RA
C RA = (-1.0 3.0 -4.0 2.0 -1.0 0.0 -7.0 6.0 10.0 -7.0)
C
 DATA RA/-1.0, 3.0, -4.0, 2.0, -1.0, 0.0, -7.0, 6.0, 10.0, -7.0/
C Sort RA by absolute value into RB
 CALL SVRBN (N, RA, RB)
C Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99999) (RB(J),J=1,N)
C
99999 FORMAT (’ The output vector is :’, /, 10(1X,F5.1))
 END

Output
The Output vector is :
0.0 -1.0 -1.0 2.0 3.0 -4.0 6.0 -7.0 -7.0 10.0

SVRBP/DSVRBP (Single/Double precision)
Sort a real array by nondecreasing absolute value and return the permutation that
rearranges the array.

Usage
CALL SVRBP (N, RA, RB, IPERM)

Arguments

N — Number of elements in the array to be sorted. (Input)

RA — Vector of length N containing the array to be sorted. (Input)

IMSL MATH/LIBRARY Chapter 10: Utilities • 1147

RB — Vector of length N containing the sorted array. (Output)
If RA is not needed, RA and RB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)
On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM
contains a record of permutations made on the vector IA.

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with RA(I)
for I = 1, 2, …, N may be entered into IPERM(I) in any order. Note that these
integers must be unique.

Algorithm

Routine SVRBP sorts the elements of an array, A, into ascending order by absolute
value, keeping a record in P of the permutations to the array A. That is, the
elements of P are moved in the same manner as are the elements in A as A is
being sorted. The routine SVRBP uses the algorithm discussed in SVRGN

(page 1141). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array RA by absolute value.
C Declare variables
 PARAMETER (N=10)
 REAL RA(N), RB(N)
 INTEGER IPERM(N)
C Set values for RA and IPERM
C RA = (10.0 9.0 8.0 7.0 6.0 5.0 -4.0 3.0 -2.0 1.0)
C
C IPERM = (1 2 3 4 5 6 7 8 9 10)
C
 DATA RA/10.0, 9.0, 8.0, 7.0, 6.0, 5.0, -4.0, 3.0, -2.0, 1.0/
 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
C Sort RA by absolute value into RB
 CALL SVRBP (N, RA, RB, IPERM)
C Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99998) (RB(J),J=1,N)
 WRITE (NOUT, 99999) (IPERM(I),I=1,N)
C
99998 FORMAT (’ The output vector is:’, /, 10(1X,F5.1))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
 END

Output
The output vector is:
1.0 -2.0 3.0 -4.0 5.0 6.0 7.0 8.0 9.0 10.0
The permutation vector is:
10 9 8 7 6 5 4 3 2 1

1148 • Chapter 10: Utilities IMSL MATH/LIBRARY

SVIBN
Sort an integer array by nondecreasing absolute value.

Usage
CALL SVIBN (N, IA, IB)

Arguments

N — Number of elements in the array to be sorted. (Input)

IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)
If IA is not needed, IA and IB can share the same storage locations.

Algorithm

Routine SVIBN sorts the elements of an integer array, A, into ascending order by
absolute value. This routine SVIBN uses the algorithm discussed in SVRGN

(page 1141). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array IA by absolute value.
C Declare variables
 PARAMETER (N=10)
 INTEGER IA(N), IB(N)
C Set values for IA
C IA = (-1 3 -4 2 -1 0 -7 6 10 -7)
C
 DATA IA/-1, 3, -4, 2, -1, 0, -7, 6, 10, -7/
C Sort IA by absolute value into IB
 CALL SVIBN (N, IA, IB)
C Print results
 CALL UMACH (2,NOUT)
 WRITE (NOUT, 99999) (IB(J),J=1,N)
C
99999 FORMAT (’ The output vector is:’, /, 10(1X,I5))
 END

Output
The Output vector is:
0 -1 -1 2 3 -4 6 -7 -7 10

IMSL MATH/LIBRARY Chapter 10: Utilities • 1149

SVIBP
Sort an integer array by nondecreasing absolute value and return the permutation
that rearranges the array.

Usage
CALL SVIBP (N, IA, IB, IPERM)

Arguments

N — Number of elements in the array to be sorted. (Input)

IA — Integer vector of length N containing the array to be sorted. (Input)

IB — Integer vector of length N containing the sorted array. (Output)
If IA is not needed, IA and IB can share the same storage locations.

IPERM — Vector of length N. (Input/Output)
On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM
contains a record of permutations made on the vector IA.

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with IA(I)
for I = 1, 2, …, N may be entered into IPERM(I) in any order. Note that these
integers must be unique.

Algorithm

Routine SVIBP sorts the elements of an integer array, A, into ascending order by
absolute value, keeping a record in P of the permutations to the array A. That is,
the elements of P are moved in the same manner as are the elements in A as A is
being sorted. The routine SVIBP uses the algorithm discussed in SVRGN

(page 1141). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array IA by absolute value.
C Declare variables
 PARAMETER (N=10)
 INTEGER IA(N), IB(N), IPERM(N)
C Set values for IA
C IA = (10 9 8 7 6 5 -4 3 -2 1)
C
C IPERM = (1 2 3 4 5 6 7 8 9 10)
C
 DATA IA/10, 9, 8, 7, 6, 5, -4, 3, -2, 1/
 DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
C Sort IA by absolute value into IB
 CALL SVIBP (N, IA, IB, IPERM)
C Print results
 CALL UMACH (2,NOUT)

1150 • Chapter 10: Utilities IMSL MATH/LIBRARY

 WRITE (NOUT, 99998) (IB(J),J=1,N)
 WRITE (NOUT, 99999) (IPERM(J),J=1,N)
C
99998 FORMAT (’ The output vector is:’, /, 10(1X,I5))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
 END

Output
The Output vector is:
1 -2 3 -4 5 6 7 8 9 10

The permutation vector is:
10 9 8 7 6 5 4 3 2 1

SRCH/DSRCH (Single/Double precision)
Search a sorted vector for a given scalar and return its index.

Usage
CALL SRCH (N, VALUE, X, INCX, INDEX)

Arguments

N — Length of vector Y. (Input)

VALUE — Scalar to be searched for in Y. (Input)

X — Vector of length N * INCX. (Input)
Y is obtained from X for I = 1, 2, …, N by Y(I) = X(1 + (I − 1) * INCX). Y(1),
Y(2), …, Y(N) must be in ascending order.

INCX — Displacement between elements of X. (Input)
INCX must be greater than zero.

INDEX — Index of Y pointing to VALUE. (Output)
If INDEX is positive, VALUE is found in Y. If INDEX is negative, VALUE is not
found in Y.

INDEX Location of VALUE
1 thru N VALUE = Y(INDEX)
−1 VALUE < Y(1) or N = 0
−N thru −2 Y(−INDEX − 1) < VALUE < Y(INDEX)
−(N + 1) VALUE > Y(N)

Algorithm

Routine SRCH searches a real vector x (stored in X), whose n elements are sorted
in ascending order for a real number c (stored in VALUE). If c is found in x, its
index i (stored in INDEX) is returned so that xL = c. Otherwise, a negative number
i is returned for the index. Specifically,

IMSL MATH/LIBRARY Chapter 10: Utilities • 1151

if 1 ≤ i ≤ n then xL = c

if i = −1 then c < x1 or n = 0

if − n ≤ i ≤ − 2 then x-L-1 < c < x-L

if i = −(n + 1) then c > xQ

The argument INCX is useful if a row of a matrix, for example, row number I of a
matrix X, must be searched. The elements of row I are assumed to be in
ascending order. In this case, set INCX equal to the leading dimension of X
exactly as specified in the dimension statement in the calling program. With X
declared

REAL X(LDX,N)

the invocation

CALL SRCH (N, VALUE, X(I,1), LDX, INDEX)

returns an index that will reference a column number of X.

Routine SRCH performs a binary search. The routine is an implementation of
Algorithm B discussed by Knuth (1973, pages 407−411).

Example

This example searches a real vector sorted in ascending order for the value 653.0.
The problem is discussed by Knuth (1973, pages 407−409).

 INTEGER N
 PARAMETER (N=16)
C
 INTEGER INCX, INDEX, NOUT
 REAL VALUE, X(N)
 EXTERNAL SRCH, UMACH
C
 DATA X/61.0, 87.0, 154.0, 170.0, 275.0, 426.0, 503.0, 509.0,
 & 512.0, 612.0, 653.0, 677.0, 703.0, 765.0, 897.0, 908.0/
C
 INCX = 1
 VALUE = 653.0
 CALL SRCH (N, VALUE, X, INCX, INDEX)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’INDEX = ’, INDEX
 END

Output
INDEX = 11

1152 • Chapter 10: Utilities IMSL MATH/LIBRARY

ISRCH
Search a sorted integer vector for a given integer and return its index.

Usage
CALL ISRCH (N, IVALUE, IX, INCX, INDEX)

Arguments

N — Length of vector IY. (Input)

IVALUE — Scalar to be searched for in IY. (Input)

IX — Vector of length N * INCX. (Input)
IY is obtained from IX for I = 1, 2, …, N by IY(I) = IX(1 + (I − 1) * INCX).
IY(1), IY(2), …, IY(N) must be in ascending order.

INCX — Displacement between elements of IX. (Input)
INCX must be greater than zero.

INDEX — Index of IY pointing to IVALUE. (Output)
If INDEX is positive, IVALUE is found in IY. If INDEX is negative, IVALUE is not
found in IY.

INDEX Location of VALUE
1 thru N IVALUE = IY(INDEX)
−1 IVALUE < IY(1) or N = 0
−N thru −2 IY(−INDEX − 1) < IVALUE < IY(−INDEX)
−(N + 1) IVALUE > Y(N)

Algorithm

Routine ISRCH searches an integer vector x (stored in IX), whose n elements are
sorted in ascending order for an integer c (stored in IVALUE). If c is found in x, its
index i (stored in INDEX) is returned so that xL = c. Otherwise, a negative number
i is returned for the index. Specifically,

if 1 ≤ i ≤ n then xL = c

if i = −1 then c < x1 or n = 0

if −n ≤ i ≤ −2 then x-L-1< c < x-L

if i = −(n + 1) then c > xQ

The argument INCX is useful if a row of a matrix, for example, row number I of a
matrix IX, must be searched. The elements of row I are assumed to be in
ascending order. Here, set INCX equal to the leading dimension of IX exactly as
specified in the dimension statement in the calling program. With IX declared

INTEGER IX(LDIX,N)

the invocation

IMSL MATH/LIBRARY Chapter 10: Utilities • 1153

CALL ISRCH (N, IVALUE, IX(I,1), LDIX, INDEX)

returns an index that will reference a column number of IX.

The routine ISRCH performs a binary search. The routine is an implementation of
Algorithm B discussed by Knuth (1973, pages 407−411).

Example

This example searches an integer vector sorted in ascending order for the value
653. The problem is discussed by Knuth (1973, pages 407−409).

 INTEGER N
 PARAMETER (N=16)
C
 INTEGER INCX, INDEX, NOUT
 INTEGER IVALUE, IX(N)
 EXTERNAL ISRCH, UMACH
C
 DATA IX/61, 87, 154, 170, 275, 426, 503, 509, 512, 612, 653, 677,
 & 703, 765, 897, 908/
C
 INCX = 1
 IVALUE = 653
 CALL ISRCH (N, IVALUE, IX, INCX, INDEX)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’INDEX = ’, INDEX
 END

Output
INDEX = 11

SSRCH
Search a character vector, sorted in ascending ASCII order, for a given string and
return its index.

Usage
CALL SSRCH (N, STRING, CHX, INCX, INDEX)

Arguments

N — Length of vector CHY. (Input)

STRING — Character string to be searched for in CHY. (Input)

CHX — Vector of length N * INCX containing character strings. (Input)
CHY is obtained from CHX for I = 1, 2, …, N by CHY(I) = CHX(1 + (I − 1) *
INCX). CHY(1), CHY(2), …, CHY(N) must be in ascending ASCII order.

INCX — Displacement between elements of CHX. (Input)
INCX must be greater than zero.

1154 • Chapter 10: Utilities IMSL MATH/LIBRARY

INDEX — Index of CHY pointing to STRING. (Output)
If INDEX is positive, STRING is found in CHY. If INDEX is negative, STRING is
not found in CHY.

INDEX Location of STRING
1 thru N STRING = CHY(INDEX)
−1 STRING < CHY(1) or N = 0
−N thru −2 CHY(−INDEX − 1) < STRING < CHY(−INDEX)
−(N + 1) STRING > CHY(N)

Algorithm

Routine SSRCH searches a vector of character strings x (stored in CHX), whose n
elements are sorted in ascending ASCII order, for a character string c (stored in
STRING). If c is found in x, its index i (stored in INDEX) is returned so that xL = c.
Otherwise, a negative number i is returned for the index. Specifically,

if 1 ≤ i ≤ n then xL = c

if i = −1 then c < x1 or n = 0

if −n ≤ i ≤ − 2 then x-L-1< c < x-L

if i = −(n + 1) then c > xQ

Here, “<“ and “>” are in reference to the ASCII collating sequence. For
comparisons made between character strings c and xL with different lengths, the
shorter string is considered as if it were extended on the right with blanks to the
length of the longer string. (SSRCH uses FORTRAN intrinsic functions LLT and
LGT.)

The argument INCX is useful if a row of a matrix, for example, row number I of a
matrix CHX, must be searched. The elements of row I are assumed to be in
ascending ASCII order. In this case, set INCX equal to the leading dimension of
CHX exactly as specified in the dimension statement in the calling program. With
CHX declared

CHARACTER * 7 CHX(LDCHX,N)

the invocation

CALL SSRCH (N, STRING, CHX(I,1), LDCHX, INDEX)

returns an index that will reference a column number of CHX.

Routine SSRCH performs a binary search. The routine is an implementation of
Algorithm B discussed by Knuth (1973, pages 407−411).

Example

This example searches a CHARACTER * 2 vector containing 9 character strings,
sorted in ascending ASCII order, for the value ’CC’ .

 INTEGER N
 PARAMETER (N=9)

IMSL MATH/LIBRARY Chapter 10: Utilities • 1155

C
 INTEGER INCX, INDEX, NOUT
 CHARACTER CHX(N)*2, STRING*2
 EXTERNAL SSRCH, UMACH
C
 DATA CHX/’AA’, ’BB’, ’CC’, ’DD’, ’EE’, ’FF’, ’GG’, ’HH’,
 & ’II’/
C
 INCX = 1
 STRING = ’CC’
 CALL SSRCH (N, STRING, CHX, INCX, INDEX)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’INDEX = ’, INDEX
 END

Output
INDEX = 3

ACHAR
Return a character given its ASCII value.

Usage
ACHAR(I)

Arguments

I — Integer ASCII value of the character desired. (Input)
I must be greater than or equal to zero and less than or equal to 127.

ACHAR — CHARACTER * 1 string containing the character in the I-th position of
the ASCII collating sequence. (Output)

Algorithm

Routine ACHAR returns the character of the input ASCII value. The input value
should be between 0 and 127. If the input value is out of range, the value returned
in ACHAR is machine dependent.

Example

This example returns the character of the ASCII value 65.
 INTEGER I, NOUT
 CHARACTER ACHAR
 EXTERNAL ACHAR, UMACH
C
 CALL UMACH (2, NOUT)
C Get character for ASCII value
C of 65 (’A’)
 I = 65
 WRITE (NOUT,99999) I, ACHAR(I)
C

1156 • Chapter 10: Utilities IMSL MATH/LIBRARY

99999 FORMAT (’ For the ASCII value of ’, I2, ’, the character is : ’,
 & A1)
 END

Output
For the ASCII value of 65, the character is : A

IACHAR
Return the integer ASCII value of a character argument.

Usage
IACHAR(CH)

Arguments

CH — Character argument for which the integer ASCII value is desired. (Input)

IACHAR — Integer ASCII value for CH. (Output)
The character CH is in the IACHAR-th position of the ASCII collating sequence.

Algorithm

Routine IACHAR returns the ASCII value of the input character.

Example

This example gives the ASCII value of character A.
 INTEGER IACHAR, NOUT
 CHARACTER CH
 EXTERNAL IACHAR, UMACH
C
 CALL UMACH (2, NOUT)
C Get ASCII value for the character
C ’A’.
 CH = ’A’
 WRITE (NOUT,99999) CH, IACHAR(CH)
C
99999 FORMAT (’ For the character ’, A1, ’ the ASCII value is : ’,
 & I3)
 END

Output
For the character A the ASCII value is : 65

IMSL MATH/LIBRARY Chapter 10: Utilities • 1157

ICASE
Return the ASCII value of a character converted to uppercase.

Usage
ICASE(CH)

Arguments

CH — Character to be converted. (Input)

ICASE — Integer ASCII value for CH without regard to the case of CH. (Output)
Routine ICASE returns the same value as IACHAR (page 1156) for all but
lowercase letters. For these, it returns the IACHAR value for the corresponding
uppercase letter.

Algorithm

Routine ICASE converts a character to its integer ASCII value. The conversion is
case insensitive; that is, it returns the ASCII value of the corresponding uppercase
letter for a lowercase letter.

Example

This example shows the case insensitive conversion.
 INTEGER ICASE, NOUT
 CHARACTER CHR
 EXTERNAL ICASE, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Get ASCII value for the character
C ’a’.
 CHR = ’a’
 WRITE (NOUT,99999) CHR, ICASE(CHR)
C
99999 FORMAT (’ For the character ’, A1, ’ the ICASE value is : ’,
 & I3)
 END

Output
For the character a the ICASE value is : 65

IICSR
Compare two character strings using the ASCII collating sequence but without
regard to case.

Usage
IICSR(STR1, STR2)

1158 • Chapter 10: Utilities IMSL MATH/LIBRARY

Arguments

STR1 — First character string. (Input)

STR2 — Second character string. (Input)

IICSR — Comparison indicator. (Output)
Let USTR1 and USTR2 be the uppercase versions of STR1 and STR2, respectively.
The following table indicates the relationship between USTR1 and USTR2 as
determined by the ASCII collating sequence.

IICSR Meaning
−1 USTR1 precedes USTR2
0 USTR1 equals USTR2
1 USTR1 follows USTR2

Comments

If the two strings, STR1 and STR2, are of unequal length, the shorter string is
considered as if it were extended with blanks to the length of the longer string.

Algorithm

Routine IICSR compares two character strings. It returns −1 if the first string is
less than the second string, 0 if they are equal, and 1 if the first string is greater
than the second string. The comparison is case insensitive.

Example

This example shows different cases on comparing two strings.
 INTEGER IICSR, NOUT
 CHARACTER STR1*6, STR2*6
 EXTERNAL IICSR, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Compare String1 and String2
C String1 is ’bigger’ than String2
 STR1 = ’ABc 1’
 STR2 = ’ ’
 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
C
C String1 is ’equal’ to String2
 STR1 = ’AbC’
 STR2 = ’ABc’
 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
C
C String1 is ’smaller’ than String2
 STR1 = ’ABc’
 STR2 = ’aBC 1’
 WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
C
99999 FORMAT (’ For String1 = ’, A6, ’and String2 = ’, A6,
 & ’ IICSR = ’, I2, /)
 END

IMSL MATH/LIBRARY Chapter 10: Utilities • 1159

Output
For String1 = ABc 1 and String2 = IICSR = 1

For String1 = AbC and String2 = ABc IICSR = 0

For String1 = ABc and String2 = aBC 1 IICSR = -1

IIDEX
Determine the position in a string at which a given character sequence begins
without regard to case.

Usage
IIDEX(CHRSTR, KEY)

Arguments

CHRSTR — Character string to be searched. (Input)

KEY — Character string that contains the key sequence. (Input)

IIDEX — Position in CHRSTR where KEY begins. (Output)
If KEY occurs more than once in CHRSTR, the starting position of the first
occurrence is returned. If KEY does not occur in CHRSTR, then IIDEX returns a
zero.

Comments

If the length of KEY is greater than the length CHRSTR, IIDEX returns a zero.

Algorithm

Routine IIDEX searches for a key string in a given string and returns the index of
the starting element at which the key character string begins. It returns 0 if there is
no match. The comparison is case insensitive. For a case-sensitive version, use
the FORTRAN 77 intrinsic function INDEX.

Example

This example locates a key string.
 INTEGER IIDEX, NOUT
 CHARACTER KEY*5, STRING*10
 EXTERNAL IIDEX, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Locate KEY in STRING
 STRING = ’a1b2c3d4e5’
 KEY = ’C3d4E’
 WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)
C
 KEY = ’F’
 WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)

1160 • Chapter 10: Utilities IMSL MATH/LIBRARY

C
99999 FORMAT (’ For STRING = ’, A10, ’ and KEY = ’, A5, ’ IIDEX = ’, I2,
 & /)
 END

Output
For STRING = a1b2c3d4e5 and KEY = C3d4E IIDEX = 5

For STRING = a1b2c3d4e5 and KEY = F IIDEX = 0

CVTSI
Convert a character string containing an integer number into the corresponding
integer form.

Usage
CALL CVTSI (STRING, NUMBER)

Arguments

STRING — Character string containing an integer number. (Input)

NUMBER — The integer equivalent of STRING. (Output)

Algorithm

Routine CVTSI converts a character string containing an integer to an INTEGER

variable. Leading and trailing blanks in the string are ignored. If the string
contains something other than an integer, a terminal error is issued. If the string
contains an integer larger than can be represented by an INTEGER variable as
determined from routine IMACH (see page 1201 in the Reference Material), a
terminal error is issued.

Example

The string “12345” is converted to an INTEGER variable.
 INTEGER NOUT, NUMBER
 CHARACTER STRING*10
 EXTERNAL CVTSI, UMACH
C
 DATA STRING/’12345’/
C
 CALL CVTSI (STRING, NUMBER)
C
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’NUMBER = ’, NUMBER
 END

Output
NUMBER = 12345

IMSL MATH/LIBRARY Chapter 10: Utilities • 1161

CPSEC
Return CPU time used in seconds.

Usage
CPSEC ()

Arguments

CPSEC — CPU time used (in seconds) since first call to CPSEC. (Output)

Comments

1. The first call to CPSEC returns 0.0.

2. The accuracy of this routine depends on the hardware and the operating
system. On some systems, identical runs can produce timings differing
by more than 10 percent.

TIMDY
Get time of day.

Usage
CALL TIMDY (IHOUR, MINUTE, ISEC)

Arguments

IHOUR — Hour of the day. (Output)
IHOUR is between 0 and 23 inclusive.

MINUTE — Minute within the hour. (Output)
MINUTE is between 0 and 59 inclusive.

ISEC — Second within the minute. (Output)
ISEC is between 0 and 59 inclusive.

Algorithm

Routine TIMDY is used to retrieve the time of day.

Example

The following example uses TIMDY to return the current time. Obviously, the
output is dependent upon the time at which the program is run.

 INTEGER IHOUR, IMIN, ISEC, NOUT
 EXTERNAL TIMDY, UMACH
C
 CALL TIMDY (IHOUR, IMIN, ISEC)
 CALL UMACH (2, NOUT)

1162 • Chapter 10: Utilities IMSL MATH/LIBRARY

 WRITE (NOUT,*) ’Hour:Minute:Second = ’, IHOUR, ’:’, IMIN,
 & ’:’, ISEC
 IF (IHOUR .EQ. 0) THEN
 WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC,
 & ’ second(s) past midnight.’
 ELSE IF (IHOUR .LT. 12) THEN
 WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC,
 & ’ second(s) past ’, IHOUR, ’ am.’
 ELSE IF (IHOUR .EQ. 12) THEN
 WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC,
 & ’ second(s) past noon.’
 ELSE
 WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC,
 & ’ second(s) past ’, IHOUR-12, ’ pm.’
 END IF
 END

Output
Hour:Minute:Second = 16: 52: 29
The time is 52 minute(s), 29 second(s) past 4 pm.

TDATE
Get today’s date.

Usage
CALL TDATE (IDAY, MONTH, IYEAR)

Arguments

IDAY — Day of the month. (Output)
IDAY is between 1 and 31 inclusive.

MONTH — Month of the year. (Output)
MONTH is between 1 and 12 inclusive.

IYEAR — Year. (Output)
For example, IYEAR = 1985.

Algorithm

Routine TDATE is used to retrieve today’s date. Obviously, the output is
dependent upon the date the program is run.

Example

The following example uses TDATE to return today’s date.
 INTEGER IDAY, IYEAR, MONTH, NOUT
 EXTERNAL TDATE, UMACH
C
 CALL TDATE (IDAY, MONTH, IYEAR)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Day-Month-Year = ’, IDAY, ’-’, MONTH,

IMSL MATH/LIBRARY Chapter 10: Utilities • 1163

 & ’-’, IYEAR
 END

Output
Day-Month-Year = 2- 4- 1991

NDAYS
Compute the number of days from January 1, 1900, to the given date.

Usage
NDAYS(IDAY, MONTH, IYEAR)

Arguments

IDAY — Day of the input date. (Input)

MONTH — Month of the input date. (Input)

IYEAR — Year of the input date. (Input)
1950 would correspond to the year 1950 A.D. and 50 would correspond to year
50 A.D.

NDAYS — Function value. (Output)
If NDAYS is negative, it indicates the number of days prior to January 1, 1900.

Comments

1. Informational error
Type Code
 1 1 The Julian calendar, the first modern calendar, went

into use in 45 B.C. No calendar prior to 45 B.C. was
as universally used nor as accurate as the Julian.
Therefore, it is assumed that the Julian calendar was in
use prior to 45 B.C.

2. The number of days from one date to a second date can be computed by
two references to NDAYS and then calculating the difference.

3. The beginning of the Gregorian calendar was the first day after
October 4, 1582, which became October 15, 1582. Prior to that, the
Julian calendar was in use. NDAYS makes the proper adjustment for the
change in calendars.

Algorithm

Function NDAYS returns the number of days from January 1, 1900, to the given
date. The function NDAYS returns negative values for days prior to January 1,
1900. A negative IYEAR can be used to specify B.C. Input dates in year 0 and for
October 5, 1582, through October 14, 1582, inclusive, do not exist; consequently,
in these cases, NDAYS issues a terminal error.

1164 • Chapter 10: Utilities IMSL MATH/LIBRARY

Example

The following example uses NDAYS to compute the number of days from January
15, 1986, to February 28, 1986:

 INTEGER IDAY, IYEAR, MONTH, NDAY0, NDAY1, NDAYS, NOUT
 EXTERNAL NDAYS, UMACH
C
 IDAY = 15
 MONTH = 1
 IYEAR = 1986
 NDAY0 = NDAYS(IDAY,MONTH,IYEAR)
 IDAY = 28
 MONTH = 2
 IYEAR = 1986
 NDAY1 = NDAYS(IDAY,MONTH,IYEAR)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Number of days = ’, NDAY1 - NDAY0
 END

Output
Number of days = 44

NDYIN
Give the date corresponding to the number of days since January 1, 1900.

Usage
CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR)

Arguments

NDAYS — Number of days since January 1, 1900. (Input)

IDAY — Day of the input date. (Output)

MONTH — Month of the input date. (Output)

IYEAR — Year of the input date. (Output)
1950 would correspond to the year 195 A.D. and −50 would correspond to year
50 B.C.

Comments

The beginning of the Gregorian calendar was the first day after October 4, 1582,
which became October 15, 1582. Prior to that, the Julian calendar was in use.
Routine NDYIN makes the proper adjustment for the change in calendars.

Algorithm

Routine NDYIN computes the date corresponding to the number of days since
January 1, 1900. For an input value of NDAYS that is negative, the date

IMSL MATH/LIBRARY Chapter 10: Utilities • 1165

computed is prior to January 1, 1900. The routine NDYIN is the inverse of NDAYS
(page 1163).

Example

The following example uses NDYIN to compute the date for the 100th day of
1986. This is accomplished by first using NDAYS (page 1163) to get the “day
number” for December 31, 1985.

 INTEGER IDAY, IYEAR, MONTH, NDAYO, NDAYS, NOUT
 EXTERNAL NDAYS, NDYIN, UMACH
C
 NDAY0 = NDAYS(31,12,1985)
 CALL NDYIN (NDAY0+100, IDAY, MONTH, IYEAR)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Day 100 of 1986 is (day-month-year) ’, IDAY,
 & ’-’, MONTH, ’-’, IYEAR
 END

Output
Day 100 of 1986 is (day-month-year) 10- 4- 1986

IDYWK
Compute the day of the week for a given date.

Usage
IDYWK(IDAY, MONTH, IYEAR)

Arguments

IDAY — Day of the input date. (Input)

MONTH — Month of the input date. (Input)

IYEAR — Year of the input date. (Input)
1950 would correspond to the year 1950 A.D. and 50 would correspond to year
50 A.D.

IDYWK — Function value. (Output)
The value of IDYWK ranges from 1 to 7, where 1 corresponds to Sunday and 7
corresponds to Saturday.

Comments

1. Informational error
Type Code
 1 1 The Julian calendar, the first modern calendar, went

into use in 45 B.C. No calendar prior to 45 B.C. was
as universally used nor as accurate as the Julian.
Therefore, it is assumed that the Julian calendar was in
use prior to 45 B.C.

1166 • Chapter 10: Utilities IMSL MATH/LIBRARY

2. The beginning of the Gregorian calendar was the first day after October
4, 1582, which became October 15, 1582. Prior to that, the Julian
calendar was in use. Function IDYWK makes the proper adjustment for
the change in calendars.

Algorithm

Function IDYWK returns an integer code that specifies the day of week for a given
date. Sunday corresponds to 1, Monday corresponds to 2, and so forth.

A negative IYEAR can be used to specify B.C. Input dates in year 0 and for
October 5, 1582, through October 14, 1582, inclusive, do not exist; consequently,
in these cases, IDYWK issues a terminal error.

Example

The following example uses IDYWK to return the day of the week for February 24,
1963.

 INTEGER IDAY, IDYWK, IYEAR, MONTH, NOUT
 EXTERNAL IDYWK, UMACH
C
 IDAY = 24
 MONTH = 2
 IYEAR = 1963
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’IDYWK (index for day of week) = ’,
 & IDYWK(IDAY,MONTH,IYEAR)
 END

Output
IDYWK (index for day of week) = 1

VERML
Obtain IMSL MATH/LIBRARY-related version, system and serial numbers.

Usage
VERML(ISELCT)

Arguments
ISELCT — Option for the information to retrieve. (Input)

ISELCT VERML

1 IMSL MATH/LIBRARY version number
2 Operating system (and version number) for which the library was

produced.
3 Fortran compiler (and version number) for which the library was

produced.
4 IMSL MATH/LIBRARY serial number

IMSL MATH/LIBRARY Chapter 10: Utilities • 1167

VERML — CHARACTER string containing information. (Output)

Example

In this example, we print all of the information returned by VERML on a particular
machine. The output is omitted because the results are system dependent.

 INTEGER ISELCT, NOUT
 CHARACTER STRING(4)*50, TEMP*32, VERML*32
 EXTERNAL UMACH, VERML
C
 STRING(1) = ’(’’ IMSL MATH/LIBRARY Version Number: ’’,
 & A)’
 STRING(2) = ’(’’ Operating System ID Number: ’’, A)’
 STRING(3) = ’(’’ Fortran Compiler Version Number: ’’, A)’
 STRING(4) = ’(’’ IMSL MATH/LIBRARY Serial Number: ’’, A)’
C Print the versions and numbers.
 CALL UMACH (2, NOUT)
 DO 10 ISELCT=1, 4
 TEMP = VERML(ISELCT)
 WRITE (NOUT,STRING(ISELCT)) TEMP
 10 CONTINUE
 END

Output
IMSL MATH/LIBRARY Version Number: IMSL MATH/LIBRARY Version 2.0
Operating System ID Number: SunOS 4.1.1
Fortran Compiler Version Number: f77 Sun FORTRAN 1.3.1
IMSL MATH/LIBRARY Serial Number: 123456

RNGET
Retrieve the current value of the seed used in the IMSL random number
generators.

Usage
CALL RNGET (ISEED)

Arguments

ISEED — The seed of the random number generator. (Output)
ISEED is in the range (1, 2147483646).

Algorithm

Routine RNGET retrieves the current value of the “seed” used in the IMSL random
number generators. A reason for doing this would be to restart a simulation, using
RNSET to reset the seed.

Example

The following FORTRAN statements illustrate the use of RNGET:

1168 • Chapter 10: Utilities IMSL MATH/LIBRARY

 INTEGER ISEED
C Call RNSET to initialize the seed.
 CALL RNSET(123457)
C Do some simulations.
 ...
 ...
 CALL RNGET(ISEED)
C Save ISEED. If the simulation is to be continued
C in a different program, ISEED should be output,
C possibly to a file.
 ...
 ...
C When the simulations begun above are to be
C restarted, restore ISEED to the value obtained
C above and use as input to RNSET.
 CALL RNSET(ISEED)
C Now continue the simulations.
 ...
 ...

RNSET
Initialize a random seed for use in the IMSL random number generators.

Usage
CALL RNSET (ISEED)

Arguments

ISEED — The seed of the random number generator. (Input)
ISEED must be in the range (0, 2147483646). If ISEED is zero, a value is
computed using the system clock; and, hence, the results of programs using the
IMSL random number generators will be different at different times.

Algorithm

Routine RNSET is used to initialize the seed used in the IMSL random number
generators. If the seed is not initialized prior to invocation of any of the routines
for random number generation by calling RNSET, the seed is initialized via the
system clock. The seed can be reinitialized to a clock-dependent value by calling
RNSET with ISEED set to 0.

The effect of RNSET is to set some values in a FORTRAN COMMON block that is
used by the random number generators.

A common use of RNSET is in conjunction with RNGET (page 1167) to restart a
simulation.

Example

The following FORTRAN statements illustrate the use of RNSET:
 INTEGER ISEED

IMSL MATH/LIBRARY Chapter 10: Utilities • 1169

C Call RNSET to initialize the seed via the
C system clock.
 CALL RNSET(0)
C Do some simulations.
 ...
 ...
C Obtain the current value of the seed.
 CALL RNGET(ISEED)
C If the simulation is to be continued in a
C different program, ISEED should be output,
C possibly to a file.
 ...
 ...
C When the simulations begun above are to be
C restarted, restore ISEED to the value
C obtained above, and use as input to RNSET.
 CALL RNSET(ISEED)
C Now continue the simulations.
 ...
 ...

RNOPT
Select the uniform (0, 1) multiplicative congruential pseudorandom number
generator.

Usage
CALL RNOPT (IOPT)

Arguments

IOPT — Indicator of the generator. (Input)
The random number generator is either a multiplicative congruential generator

with modulus 231 − 1 or a GFSR generator. IOPT is used to choose the multiplier
and whether or not shuffling is done, or else to choose the GFSR method.

IOPT Generator
1 The multiplier 16807 is used.
2 The multiplier 16807 is used with shuffling.
3 The multiplier 397204094 is used.
4 The multiplier 397204094 is used with shuffling.
5 The multiplier 950706376 is used.
6 The multiplier 950706376 is used with shuffling.
7 GFSR, with the recursion XW = XW-1563 ⊕ XW-96 is used.

Algorithm

The IMSL uniform pseudorandom number generators use a multiplicative
congruential method, with or without shuffling or else a GFSR method. Routine
RNOPT determines which method is used; and in the case of a multiplicative

1170 • Chapter 10: Utilities IMSL MATH/LIBRARY

congruential method, it determines the value of the multiplier and whether or not
to use shuffling. The description of RNUN (page 1171) may provide some
guidance in the choice of the form of the generator. If no selection is made
explicitly, the generators use the multiplier 16807 without shuffling. This form of
the generator has been in use for some time (see Lewis, Goodman, and Miller,
1969). This is the generator formerly known as GGUBS in the IMSL Library. It is
the “minimal standard generator” discussed by Park and Miller (1988).

Example

The FORTRAN statement
CALL RNOPT(1)

would select the simple multiplicative congruential generator with multiplier
16807. Since this is the same as the default, this statement would have no effect
unless RNOPT had previously been called in the same program to select a different
generator.

RNUNF/DRNUNF (Single/Double precision)
Generate a pseudorandom number from a uniform (0, 1) distribution.

Usage
RNUNF()

Arguments

RNUNF — Function value, a random uniform (0, 1) deviate. (Output)

Comments

1. Routine RNSET (page 1168) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1169) can be used
to select the form of the generator.

2. This function has a side effect: it changes the value of the seed, which is
passed through a common block.

Algorithm

Routine RNUNF is the function form of RNUN (page 1171). The routine RNUNF

generates pseudorandom numbers from a uniform (0, 1) distribution. The
algorithm used is determined by RNOPT (page 1169). The values returned by
RNUNF are positive and less than 1.0.

If several uniform deviates are needed, it may be more efficient to obtain them all
at once by a call to RNUN rather than by several references to RNUNF.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1171

Example

In this example, RNUNF is used to generate five pseudorandom uniform numbers.
Since RNOPT (page 1169) is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.

 INTEGER I, ISEED, NOUT
 REAL R(5), RNUNF
 EXTERNAL RNSET, RNUNF, UMACH
C
 CALL UMACH (2, NOUT)
 ISEED = 123457
 CALL RNSET (ISEED)
 DO 10 I=1, 5
 R(I) = RNUNF()
 10 CONTINUE
 WRITE (NOUT,99999) R
99999 FORMAT (’ Uniform random deviates: ’, 5F8.4)
 END

Output
Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

RNUN/DRNUN (Single/Double precision)
Generate pseudorandom numbers from a uniform (0, 1) distribution.

Usage
CALL RNUN (NR, R)

Arguments

NR — Number of random numbers to generate. (Input)

R — Vector of length NR containing the random uniform (0, 1) deviates.
(Output)

Comments

The routine RNSET (page 1168) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1169) can be used to select the form
of the generator.

Algorithm

Routine RNUN generates pseudorandom numbers from a uniform (0,1) distribution
using either a multiplicative congruential method or a generalized feedback shift
register (GFSR) method. The form of the multiplicative congruential generator is

x cxi i≡ −−1
312 1mod3 8

1172 • Chapter 10: Utilities IMSL MATH/LIBRARY

Each xL�is then scaled into the unit interval (0,1). The possible values for c in the
IMSL generators are 16807, 397204094, and 950706376. The selection is made
by the routine RNOPT (page 1169). The choice of 16807 will result in the fastest
execution time. If no selection is made explicitly, the routines use the multiplier
16807.

The user can also select a shuffled version of the multiplicative congruential
generators. In this scheme, a table is filled with the first 128 uniform (0,1)
numbers resulting from the simple multiplicative congruential generator. Then,
for each xL from the simple generator, the low-order bits of xL are used to select a
random integer, j, from 1 to 128. The j-th entry in the table is then delivered as
the random number; and xL, after being scaled into the unit interval, is inserted
into the j-th position in the table.

The GFSR method is based on the recursion XW�= XW-1563 ⊕ XW-96. This generator,
which is different from earlier GFSR generators, was proposed by Fushimi
(1990), who discusses the theory behind the generator and reports on several
empirical tests of it. The values returned in R by RNUN are positive and less than
1.0. Values in R may be smaller than the smallest relative spacing, however.
Hence, it may be the case that some value R(i) is such that 1.0 − R(i) = 1.0.

Deviates from the distribution with uniform density over the interval (A, B) can be
obtained by scaling the output from RNUN. The following statements (in single
precision) would yield random deviates from a uniform (A, B) distribution:
 CALL RNUN (NR, R)
 CALL SSCAL (NR, B-A, R, 1)
 CALL SADD (NR, A, R, 1)

Example

In this example, RNUN is used to generate five pseudorandom uniform numbers.
Since RNOPT (page 1169) is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.

 INTEGER ISEED, NOUT, NR
 REAL R(5)
 EXTERNAL RNSET, RNUN, UMACH
C
 CALL UMACH (2, NOUT)
 NR = 5
 ISEED = 123457
 CALL RNSET (ISEED)
 CALL RNUN (NR, R)
 WRITE (NOUT,99999) R
99999 FORMAT (’ Uniform random deviates: ’, 5F8.4)
 END

Output
Uniform random deviates: .9662 .2607 .7663 .5693 .8448

IMSL MATH/LIBRARY Chapter 10: Utilities • 1173

IUMAG
This routine handles MATH/LIBRARY and STAT/LIBRARY type INTEGER
options.

Usage
CALL IUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, IVALS)

Arguments

PRODNM — Product name. Use either “MATH” or “STAT.” (Input)

ICHP — Chapter number of the routine that uses the options. (Input)

IACT — 1 if user desires to “get” or read options, or 2 if user desires to “put” or
write options. (Input)

NUMOPT — Size of IOPTS. (Input)

IOPTS — Integer array of size NUMOPT containing the option numbers to “get” or
“put.” (Input)

IVALS — Integer array containing the option values. These values are arrays
corresponding to the individual options in IOPTS in sequential order. The size of
IVALS is the sum of the sizes of the individual options. (Input/Output)

Comments

1. Users can normally avoid reading about options when first using a
routine that calls IUMAG.

2. Let I be any value between 1 and NUMOPT. A negative value of
IOPTS(I) refers to option number −IOPTS(I) but with a different effect:
For a “get” operation, the default values are returned in IVALS. For a
“put” operation, the default values replace the current values. In the case
of a “put,” entries of IVALS are not allocated by the user and are not
used by IUMAG.

3. Both positive and negative values of IOPTS can be used.

4. INTEGER Options

1 If the value is positive, print the next activity for any library
routine that uses the Options Manager codes IUMAG, SUMAG, or
DUMAG. Each printing step decrements the value if it is positive.
Default value is 0.

2 If the value is 2, perform error checking in IUMAG (page 1173),
SUMAG (page 1175), and DUMAG (page 1178) such as the
verifying of valid option numbers and the validity of input data.
If the value is 1, do not perform error checking. Default value is
2.

1174 • Chapter 10: Utilities IMSL MATH/LIBRARY

3 This value is used for testing the installation of IUMAG by other
IMSL software. Default value is 3.

Algorithm

The Options Manager routine IUMAG reads or writes INTEGER data for some
MATH/LIBRARY and STAT/LIBRARY codes. See Atchison and Hanson
(1991) for more complete details.

There are MATH/LIBRARY routines in Chapters 1, 2, and 5 that now use IUMAG
to communicate optional data from the user.

Example

The number of iterations allowed for the constrained least squares solver LCLSQ
that calls L2LSQ is changed from the default value of max(nra, nca) to the value
6. The default value is restored after the call to LCLSQ. This change has no effect
on the solution. It is used only for illustration. The first two arguments required
for the call to IUMAG are defined by the product name, “MATH,” and chapter
number, 1, where LCLSQ is documented. The argument IACT denotes a write or
“put” operation. There is one option to change so NUMOPT has the value 1. The
arguments for the option number, 14, and the new value, 6, are defined by reading
the documentation for LCLSQ.

C
C Solve the following in the least squares sense:
C 3x1 + 2x2 + x3 = 3.3
C 4x1 + 2x2 + x3 = 2.3
C 2x1 + 2x2 + x3 = 1.3
C x1 + x2 + x3 = 1.0
C
C Subject to: x1 + x2 + x3 <= 1
C 0 <= x1 <= .5
C 0 <= x2 <= .5
C 0 <= x3 <= .5
C
C --
C Declaration of variables
C
 INTEGER ICHP, IPUT, LDA, LDC, MCON, NCA, NEWMAX, NRA, NUMOPT
 PARAMETER (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWMAX=14, NRA=4,
 & NUMOPT=1, LDA=NRA, LDC=MCON)
C
 INTEGER IOPT(1), IRTYPE(MCON), IVAL(1), NOUT
 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA),
 & RESNRM, SNRM2, XLB(NCA), XSOL(NCA), XUB(NCA)
 EXTERNAL IUMAG, LCLSQ, SNRM2, UMACH
C Data initialization
C
 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0,
 & 1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/,
 & C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/
C --
C
C Reset the maximum number of

IMSL MATH/LIBRARY Chapter 10: Utilities • 1175

C iterations to use in the solver.
C The value 14 is the option number.
C The value 6 is the new maximum.
 IOPT(1) = NEWMAX
 IVAL(1) = 6
 CALL IUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, IVAL)
C -------------------------------------
C ---------------------------------
C
C Solve the bounded, constrained
C least squares problem.
C
 CALL LCLSQ (NRA, NCA, MCON, A, LDA, B, C, LDC, BC, BC, IRTYPE,
 & XLB, XUB, XSOL, RES)

C Compute the 2-norm of the residuals.
 RESNRM = SNRM2(NRA,RES,1)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) XSOL, RES, RESNRM
C -------------------------------------
C ---------------------------------
C Reset the maximum number of
C iterations to its default value.
C This is not required but is
C recommended programming practice.
 IOPT(1) = -IOPT(1)
 CALL IUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, IVAL)
C -------------------------------------
C ---------------------------------
C
99999 FORMAT (’ The solution is ’, 3F9.4, //, ’ The residuals ’,
 & ’evaluated at the solution are ’, /, 18X, 4F9.4, //,
 & ’ The norm of the residual vector is ’, F8.4)
C
 END

Output
The solution is 0.5000 0.3000 0.2000

The residuals evaluated at the solution are
-1.0000 0.5000 0.5000 0.0000

The norm of the residual vector is 1.2247

SUMAG
This routine handles MATH/LIBRARY and STAT/LIBRARY type SINGLE

PRECISION options.

Usage
CALL SUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, SVALS)

1176 • Chapter 10: Utilities IMSL MATH/LIBRARY

Arguments

PRODNM — Product name. Use either “MATH” or “STAT.” (Input)

ICHP — Chapter number of the routine that uses the options. (Input)

IACT — 1 if user desires to “get” or read options, or 2 if user desires to “put” or
write options. (Input)

NUMOPT — Size of IOPTS. (Input)

IOPTS — Integer array of size NUMOPT containing the option numbers to “get” or
“put.” (Input)

SVALS — Real array containing the option values. These values are arrays
corresponding to the individual options in IOPTS in sequential order. The size of
SVALS is the sum of the sizes of the individual options. (Input/Output)

Comments

1. Users can normally avoid reading about options when first using a
routine that calls SUMAG.

2. Let I be any value between 1 and NUMOPT. A negative value of
IOPTS(I) refers to option number −IOPTS(I) but with a different effect:
For a “get” operation, the default values are returned in SVALS. For a
“put” operation, the default values replace the current values. In the case
of a “put,” entries of SVALS are not allocated by the user and are not
used by SUMAG.

3. Both positive and negative values of IOPTS can be used.

4. Floating Point Options

1 This value is used for testing the installation of SUMAG by other
IMSL software. Default value is 3.0E0.

Algorithm

The Options Manager routine SUMAG reads or writes REAL data for some
MATH/LIBRARY and STAT/LIBRARY codes. See Atchison and Hanson
(1991) for more complete details. There are MATH/LIBRARY routines in
Chapters 1 and 5 that now use SUMAG to communicate optional data from the
user.

Example

The rank determination tolerance for the constrained least squares solver LCLSQ

that calls L2LSQ is changed from the default value of SQRT(AMACH(4)) to the
value 0.01. The default value is restored after the call to LCLSQ. This change has
no effect on the solution. It is used only for illustration. The first two arguments
required for the call to SUMAG are defined by the product name, “MATH,” and
chapter number, 1, where LCLSQ is documented. The argument IACT denotes a

IMSL MATH/LIBRARY Chapter 10: Utilities • 1177

write or “put” operation. There is one option to change so NUMOPT has the value
1. The arguments for the option number, 2, and the new value, 0.01E+0, are
defined by reading the documentation for LCLSQ.

C
C Solve the following in the least squares sense:
C 3x1 + 2x2 + x3 = 3.3
C 4x1 + 2x2 + x3 = 2.3
C 2x1 + 2x2 + x3 = 1.3
C x1 + x2 + x3 = 1.0
C
C Subject to: x1 + x2 + x3 <= 1
C 0 <= x1 <= .5
C 0 <= x2 <= .5
C 0 <= x3 <= .5
C
C --
C Declaration of variables
C
 INTEGER ICHP, IPUT, LDA, LDC, MCON, NCA, NEWTOL, NRA, NUMOPT
 PARAMETER (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWTOL=2, NRA=4,
 & NUMOPT=1, LDA=NRA, LDC=MCON)
C
 INTEGER IOPT(1), IRTYPE(MCON), NOUT
 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA),
 & RESNRM, SNRM2, SVAL(1), XLB(NCA), XSOL(NCA), XUB(NCA)
 EXTERNAL LCLSQ, SNRM2, SUMAG, UMACH
C Data initialization
C
 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, 2.0E0, 2.0E0, 1.0E0,
 & 1.0E0, 1.0E0, 1.0E0, 1.0E0/, B/3.3E0, 2.3E0, 1.3E0, 1.0E0/,
 & C/3*1.0E0/, BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/
C --
C
C Reset the rank determination
C tolerance used in the solver.
C The value 2 is the option number.
C The value 0.01 is the new tolerance.
C
 IOPT(1) = NEWTOL
 SVAL(1) = 0.01E+0
 CALL SUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, SVAL)
C -------------------------------------
C ---------------------------------
C
C Solve the bounded, constrained
C least squares problem.
C
 CALL LCLSQ (NRA, NCA, MCON, A, LDA, B, C, LDC, BC, BC, IRTYPE,
 & XLB, XUB, XSOL, RES)
C Compute the 2-norm of the residuals.
 RESNRM = SNRM2(NRA,RES,1)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) XSOL, RES, RESNRM
C -------------------------------------
C ---------------------------------
C Reset the rank determination
C tolerance to its default value.

1178 • Chapter 10: Utilities IMSL MATH/LIBRARY

C This is not required but is
C recommended programming practice.
 IOPT(1) = -IOPT(1)
 CALL SUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, SVAL)
C -------------------------------------
C ---------------------------------
C
99999 FORMAT (’ The solution is ’, 3F9.4, //, ’ The residuals ’,
 & ’evaluated at the solution are ’, /, 18X, 4F9.4, //,
 & ’ The norm of the residual vector is ’, F8.4)
C
 END

Output
The solution is 0.5000 0.3000 0.2000

The residuals evaluated at the solution are
-1.0000 0.5000 0.5000 0.0000

The norm of the residual vector is 1.2247

DUMAG
This routine handles MATH/LIBRARY and STAT/LIBRARY type DOUBLE

PRECISION options.

Usage
CALL DUMAG (PRODNM, ICHP, IACT, NUMOPT, IOPTS, DVALS)

Arguments

PRODNM — Product name. Use either “MATH” or “STAT.” (Input)

ICHP — Chapter number of the routine that uses the options. (Input)

IACT — 1 if user desires to “get” or read options, or 2 if user desires to “put” or
write options. (Input)

NUMOPT — Size of IOPTS. (Input)

IOPTS — Integer array of size NUMOPT containing the option numbers to “get” or
“put.” (Input)

DVALS — Double precision array containing the option values. These values are
arrays corresponding to the individual options in IOPTS in sequential order. The
size of DVALS is the sum of the sizes of the individual options. (Input/ Output)

Comments

1. Users can normally avoid reading about options when first using a
routine that calls DUMAG.

IMSL MATH/LIBRARY Chapter 10: Utilities • 1179

2. Let I be any value between 1 and NUMOPT. A negative value of
IOPTS(I) refers to option number −IOPTS(I) but with a different effect:
For a “get” operation, the default values are returned in DVALS. For a
“put” operation, the default values replace the current values. In the case
of a “put,” entries of DVALS are not allocated by the user and are not
used by DUMAG.

3. Both positive and negative values of IOPTS can be used.

4. Floating Point Options

1 This value is used for testing the installation of DUMAG by other
IMSL software. Default value is 3.0D0.

Algorithm

The Options Manager routine DUMAG reads or writes DOUBLE PRECISION data
for some MATH/LIBRARY and STAT/LIBRARY codes. See Atchison and
Hanson (1991) for more complete details. There are MATH/LIBRARY routines
in Chapters 1 and 5 that now use DUMAG to communicate optional data from the
user.

Example

The rank determination tolerance for the constrained least squares solver DLCLSQ

that calls DL2LSQ is changed from the default value of SQRT(DMACH(4)) to the
value 0.01. The default value is restored after the call to DLCLSQ. This change has
no effect on the solution. It is used only for illustration. The first two arguments
required for the call to DUMAG are defined by the product name, “MATH,” and
chapter number, 1, where DLCLSQ is documented. The argument IACT denotes a
write or “put” operation. There is one option to change so NUMOPT has the value
1. The arguments for the option number, 2, and the new value, 0.01D+0, are
defined by reading the documentation for DLCLSQ.

C
C Solve the following in the least squares sense:
C 3x1 + 2x2 + x3 = 3.3
C 4x1 + 2x2 + x3 = 2.3
C 2x1 + 2x2 + x3 = 1.3
C x1 + x2 + x3 = 1.0
C
C Subject to: x1 + x2 + x3 <= 1
C 0 <= x1 <= .5
C 0 <= x2 <= .5
C 0 <= x3 <= .5
C
C --
C Declaration of variables
C
 INTEGER ICHP, IPUT, LDA, LDC, MCON, NCA, NEWTOL, NRA, NUMOPT
 PARAMETER (ICHP=1, IPUT=2, MCON=1, NCA=3, NEWTOL=2, NRA=4,
 & NUMOPT=1, LDA=NRA, LDC=MCON)
C
 INTEGER IOPT(1), IRTYPE(MCON), NOUT

1180 • Chapter 10: Utilities IMSL MATH/LIBRARY

 DOUBLE PRECISION A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA),
 & DNRM2, DVAL(1), RES(NRA), RESNRM, XLB(NCA),
 & XSOL(NCA), XUB(NCA)
 EXTERNAL DLCLSQ, DNRM2, DUMAG, UMACH
C Data initialization
C
 DATA A/3.0D0, 4.0D0, 2.0D0, 1.0D0, 2.0D0, 2.0D0, 2.0D0, 1.0D0,
 & 1.0D0, 1.0D0, 1.0D0, 1.0D0/, B/3.3D0, 2.3D0, 1.3D0, 1.0D0/,
 & C/3*1.0D0/, BC/1.0D0/, IRTYPE/1/, XLB/3*0.0D0/, XUB/3*.5D0/
C --
C
C Reset the rank determination
C tolerance used in the solver.
C The value 2 is the option number.
C The value 0.01 is the new tolerance.
C
 IOPT(1) = NEWTOL
 DVAL(1) = 0.01D+0
 CALL DUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, DVAL)
C -------------------------------------
C ---------------------------------
C
C Solve the bounded, constrained
C least squares problem.
C
 CALL DLCLSQ (NRA, NCA, MCON, A, LDA, B, C, LDC, BC, BC, IRTYPE,
 & XLB, XUB, XSOL, RES)
C Compute the 2-norm of the residuals.
 RESNRM = DNRM2(NRA,RES,1)
C Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) XSOL, RES, RESNRM
C -------------------------------------
C ---------------------------------
C Reset the rank determination
C tolerance to its default value.
C This is not required but is
C recommended programming practice.
 IOPT(1) = -IOPT(1)
 CALL DUMAG (’math’, ICHP, IPUT, NUMOPT, IOPT, DVAL)
C -------------------------------------
C ---------------------------------
C
99999 FORMAT (’ The solution is ’, 3F9.4, //, ’ The residuals ’,
 & ’evaluated at the solution are ’, /, 18X, 4F9.4, //,
 & ’ The norm of the residual vector is ’, F8.4)
C
 END

Output
The solution is 0.5000 0.3000 0.2000

The residuals evaluated at the solution are
-1.0000 0.5000 0.5000 0.0000

The norm of the residual vector is 1.2247

IMSL MATH/LIBRARY Chapter 10: Utilities • 1181

PLOTP/DPLOTP (Single/Double precision)
Print a plot of up to 10 sets of points.

Usage
CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL,
 XTITLE, YTITLE, TITLE)

Arguments

NDATA — Number of independent variable data points. (Input)

NFUN — Number of sets of points. (Input)
NFUN must be less than or equal to 10.

X — Vector of length NDATA containing the values of the independent variable.
(Input)

A — Matrix of dimension NDATA by NFUN containing the NFUN sets of dependent
variable values. (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program. (Input)

INC — Increment between elements of the data to be used. (Input)
PLOTP plots X(1 + (I − 1) * INC) for I = 1, 2, …, NDATA.

RANGE — Vector of length four specifying minimum x, maximum x, minimum y
and maximum y. (Input)
PLOTP will calculate the range of the axis if the minimum and maximum of that
range are equal.

SYMBOL — CHARACTER string of length NFUN. (Input)
SYMBOL(I : I) is the symbol used to plot function I.

XTITLE — CHARACTER string used to label the x-axis. (Input)

YTITLE — CHARACTER string used to label the y-axis. (Input)

TITLE — CHARACTER string used to label the plot. (Input)

Comments

1. Informational errors
Type Code
 3 7 NFUN is greater than 10. Only the first 10 functions are

plotted.
 3 8 TITLE is too long. TITLE is truncated from the right

side.
 3 9 YTITLE is too long. YTITLE is truncated from the

right side.

1182 • Chapter 10: Utilities IMSL MATH/LIBRARY

 3 10 XTITLE is too long. XTITLE is truncated from the
right side. The maximum number of characters
allowed depends on the page width and the page
length. See Comment 5 below for more information.

2. YTITLE and TITLE are automatically centered.

3. For multiple plots, the character M is used if the same print position is
shared by two or more data sets.

4. Output is written to the unit specified by UMACH (page 1201).

5. Default page width is 78 and default page length is 60. They may be
changed by calling PGOPT (page 1137) in advance.

Algorithm

Routine PLOTP produces a line printer plot of up to ten sets of points
superimposed upon the same plot. A character “M” is printed to indicate multiple
points. The user may specify the x and y-axis plot ranges and plotting symbols.
Plot width and length may be reset in advance by calling PGOPT (page 1137).

Example

This example plots the sine and cosine functions from − 3.5 to + 3.5 and sets page
width and length to 78 and 40, respectively, by calling PGOPT (page 1137) in
advance.

 INTEGER I, INC, LDA, NDATA, NFUN
 REAL A(200,2), DELX, PI, RANGE(4), X(200)
 CHARACTER SYMBOL*2
 INTRINSIC COS, SIN
 EXTERNAL CONST, PGOPT, PLOTP
C
 DATA SYMBOL/’SC’/
 DATA RANGE/-3.5, 3.5, -1.2, 1.2/
C
 PI = 3.14159
 NDATA = 200
 NFUN = 2
 LDA = 200
 INC = 1
 DELX = 2.*PI/199.
 DO 10 I= 1, 200
 X(I) = -PI + FLOAT(I-1) * DELX
 A(I,1) = SIN(X(I))
 A(I,2) = COS(X(I))
 10 CONTINUE
C Set page width and length
 CALL PGOPT (-1, 78)
 CALL PGOPT (-2, 40)
 CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL,
 & ’X AXIS’, ’Y AXIS’, ’ C = COS, S = SIN’)
C
 END

IMSL MATH/LIBRARY Chapter 10: Utilities • 1183

Output
 C = COS, S = SIN

 1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::
 . I .
 . I .
 . CCCCCCC SSSSSSSS .
 . CC I CC SS SS .
 0.8 + C I C SS SS +
 . C I MS SS .
 . C I SSC SS .
 . CC I SS CC SS .
 . CC I S CC S .
 0.4 + C I S C S +
 . C I SS C SS .
 Y . CC I S CC S .
 . C IS C S .
 A . C SS C SS .
 X 0.0 +--S-----------CC-----------S-----------CC-----------S--+
 I . SS CC SS CC .
 S . S C SI C .
 . S CC S I CC .
 . SS C SS I C .
 -0.4 + S C S I C +
 . S CC S I CC .
 . SS CC SS I CC .
 . SSC SS I C .
 . MS SS I C .
 -0.8 + C SS SS I C +
 . CC SS SS I CC .
 . CCCC SSSSSSSS I CCCC .
 . C I C .
 . I .
 -1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::
 -3 -1 1 3

 X AXIS

PRIME
Decompose an integer into its prime factors.

Usage
CALL PRIME (N, NPF, IPF, IEXP, IPW)

Arguments

N — Integer to be decomposed. (Input)

NPF — Number of different prime factors of ABS(N). (Output)
If N is equal to −1, 0, or 1, NPF is set to 0.

1184 • Chapter 10: Utilities IMSL MATH/LIBRARY

IPF — Integer vector of length 13. (Output)
IPF(I) contains the prime factors of the absolute value of N, for I = 1, …, NPF.
The remaining 13 − NPF locations are not used.

IEXP — Integer vector of length 13. (Output)
IEXP(I) is the exponent of IPF(I), for I = 1, …, NPF. The remaining 13 − NPF
locations are not used.

IPW — Integer vector of length 13. (Output)
IPW(I) contains the quantity IPF(I)**IEXP(I), for I = 1, …, NPF. The
remaining 13 − NPF locations are not used.

Comments

The output from PRIME should be interpreted in the following way: ABS(N) =
IPF(1)**IEXP(1) * …. * IPF(NPF)**IEXP(NPF).

Algorithm

Routine PRIME decomposes an integer into its prime factors. The number to be
factored, N, may not have more than 13 distinct factors. The smallest number with

more than 13 factors is about 1.3 × 1016. Most computers do not allow integers of
this size.

The routine PRIME is based on a routine by Brenner (1973).

Example

This example factors the integer 144 = 2432.
 INTEGER N
 PARAMETER (N=144)
C
 INTEGER IEXP(13), IPF(13), IPW(13), NOUT, NPF
 EXTERNAL PRIME, UMACH
C Get prime factors of 144
 CALL PRIME (N, NPF, IPF, IEXP, IPW)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print results
 WRITE (NOUT,99999) N, IPF(1), IPF(2), IEXP(1), IEXP(2), IPW(1),
 & IPW(2), NPF
C
99999 FORMAT (’ The prime factors for’, I5, ’ are: ’, /, 10X, 2I6, //
 & , ’ IEXP =’, 2I6, /, ’ IPW =’, 2I6, /, ’ NPF =’, I6,
 & /)
 END

IMSL MATH/LIBRARY Chapter 10: Utilities • 1185

Output
The prime factors for 144 are:
2 3

IEXP = 4 2
IPW = 16 9
NPF = 2

CONST/DCONST (Single/Double precision)
Return the value of various mathematical and physical constants.

Usage
CONST(NAME)

Arguments

NAME — Character string containing the name of the desired constant. (Input)
See Comment 3 for a list of valid constants.

CONST — Value of the constant. (Output)

Comments

1. The case of the character string in NAME does not matter. The names
“PI”, “ Pi”, “ pI”, and “pi” are equivalent.

2. The units of the physical constants are in SI units (meter kilogram-
second).

3. The names allowed are as follows:

Name Description Value Ref.

AMU Atomic mass unit 1.6605402E − 27 kg [1]

ATM Standard atm pressure 1.01325E + 5N/m2E [2]

AU Astronomical unit 1.496E + 11m []

Avogadro Avogadro's number 6.0221367E + 231/mole [1]

Boltzman Boltzman's constant 1.380658E − 23J/K [1]

C Speed of light 2.997924580E + 8m/sE [1]

Catalan Catalan's constant 0.915965 … E [3]

E Base of natural logs 2.718…E [3]

ElectronCharge Electron change 1.60217733E −19C [1]

1186 • Chapter 10: Utilities IMSL MATH/LIBRARY

Name Description Value Ref.

ElectronMass Electron mass 9.1093897E − 31 kg [1]

ElectronVolt Electron volt 1.60217733E − 19J [1]

Euler Euler’s constant gamma 0.577 … E [3]

Faraday Faraday constant 9.6485309E + 4C/mole [1]

FineStructure fine structure 7.29735308E − 3 [1]

Gamma Euler’s constant 0.577 … E [3]

Gas Gas constant 8.314510J/mole/k [1]

Gravity Gravitational constant 6.67259E − 11N * m2/kg2 [1]

Hbar Planck constant / 2 pi 1.05457266E − 34J * s [1]

PerfectGasVolume Std vol ideal gas 2.241383E − 2m3/mole [*]

Pi Pi 3.141 … E [3]

Planck Planck’s constant h 6.6260755E − 34J * s [1]

ProtonMass Proton mass 1.6726231E − 27 kg [1]

Rydberg Rydberg’s constant 1.0973731534E + 7/m [1]

SpeedLight Speed of light 2.997924580E + 8m/s E [1]

StandardGravity Standard g 9.80665m/s2E [2]

StandardPressure Standard atm pressure 1.01325E + 5N/m2E [2]

StefanBoltzmann Stefan-Boltzman 5.67051E − 8W/K4/m2 [1]

WaterTriple Triple point of water 2.7316E + 2K E [2]

Algorithm

Routine CONST returns the value of various mathematical and physical quantities.
For all of the physical values, the Systeme International d’Unites (SI) are used.

The reference for constants are indicated by the code in [] Comment above.

[1] Cohen and Taylor (1986)

[2] Liepman (1964)

[3] Precomputed mathematical constants

The constants marked with an E before the [] are exact (to machine precision).

To change the units of the values returned by CONST, see CUNIT, page 1187.

Example

In this example, Euler’s constant γ is obtained and printed. Euler’s constant is
defined to be

IMSL MATH/LIBRARY Chapter 10: Utilities • 1187

γ = −
�
!

"
$##→∞ =

−

∑lim ln
n k

n

k
n

1

1

1

 INTEGER NOUT
 REAL CONST, GAMMA
 EXTERNAL CONST, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Get gamma
 GAMMA = CONST(’GAMMA’)
C Print gamma
 WRITE (NOUT,*) ’GAMMA = ’, GAMMA
 END

Output
GAMMA = 0.577216

For another example, see CUNIT, page 1187.

CUNIT/DCUNIT (Single/Double precision)
Convert X in units XUNITS to Y in units YUNITS.

Usage
CALL CUNIT (X, XUNITS, Y, YUNITS)

Arguments

X — Value to be converted. (Input)

XUNITS — Character string containing the name of the units for X. (Input)
See Comments for a description of units allowed.

Y — Value in YUNITS corresponding to X in XUNITS. (Output)

YUNITS — Character string containing the name of the units for Y. (Input)
See Comments for a description of units allowed.

Comments

1. Strings XUNITS and YUNITS have the form U1 * U2 * … * UP/V1 … VQ,
where UL and VL are the names of basic units or are the names of basic
units raised to a power. Examples are, “METER * KILOGRAM/SECOND”,

“M * KG/S”, “ METER”, or “M/KG2”.

2. The case of the character string in XUNITS and YUNITS does not matter.
The names “METER”, “ Meter” and “meter” are equivalent.

3. If XUNITS is “SI”, then X is assumed to be in the standard international
units corresponding to YUNITS. Similarly, if YUNITS is “SI”, then Y is

1188 • Chapter 10: Utilities IMSL MATH/LIBRARY

assumed to be in the standard international units corresponding to
XUNITS.

4. The basic unit names allowed are as follows:

Units of time
day, hour = hr, min = minute, s = sec = second, year

Units of frequency
Hertz = Hz

Units of mass
AMU, g = gram, lb = pound, ounce = oz, slug

Units of distance
Angstrom, AU, feet = foot = ft, in = inch, m = meter = metre,
micron, mile, mill, parsec, yard

Units of area
acre

Units of volume
l = liter = litre

Units of force
dyne, N = Newton, poundal

Units of energy
BTU(thermochemical), Erg, J = Joule

Units of work
W = watt

Units of pressure
ATM = atomosphere, bar, Pascal

Units of temperature
degC = Celsius, degF = Fahrenheit, degK = Kelvin

Units of viscosity
poise, stoke

Units of charge
Abcoulomb, C = Coulomb, statcoulomb

Units of current
A = ampere, abampere, statampere,

Units of voltage
Abvolt, V = volt

Units of magnetic induction
T = Tesla, Wb = Weber

Other units
1, farad, mole, Gauss, Henry, Maxwell, Ohm

IMSL MATH/LIBRARY Chapter 10: Utilities • 1189

The following metric prefixes may be used with the above units. Note
that the one or two letter prefixes may only be used with one letter unit
abbreviations.

A atto 1.E − 18

F femto 1.E − 15

P pico 1.E − 12

N nano 1.E − 9

U micro 1.E − 6

M milli 1.E − 3

C centi 1.E − 2

D deci 1.E − 1

DK deca 1.E + 2

K kilo 1.E + 3

myria 1.E + 4 (no single letter prefix; M means milli

mega 1.E + 6 (no single letter prefix; M means milli

G giga 1.E + 9

T tera 1.E + 12

5. Informational error
Type Code
 3 8 A conversion of units of mass to units of force was

required for consistency.

Algorithm

Routine CUNIT converts a value expressed in one set of units to a value expressed
in another set of units.

The input and output units are checked for consistency unless the input unit is
“SI”. SI means the Systeme International d’Unites. This is the meter−kilogram−
second form of the metric system. If the input units are “SI”, then the input is
assumed to be expressed in the SI units consistent with the output units.

Example

The routine CONST is used to obtain the speed on light, c, in SI units. CUNIT is
then used to convert c to mile/second and to parsec/year. An example involving

substitution of force for mass is required in conversion of Newtons/Meter2 to
Pound/Inch2.

C INTEGER NOUT
 REAL CMH, CMS, CONST, CPY
 EXTERNAL CONST, CUNIT, UMACH
C Get output unit number
 CALL UMACH (2, NOUT)
C Get speed of light in SI (m/s)
 CMS = CONST(’SpeedLight’)

1190 • Chapter 10: Utilities IMSL MATH/LIBRARY

 WRITE (NOUT,*) ’Speed of Light = ’, CMS, ’ meter/second’
C Get speed of light in mile/second
 CALL CUNIT (CMS, ’SI’, CMH, ’Mile/Second’)
 WRITE (NOUT,*) ’Speed of Light = ’, CMH, ’ mile/second’
C Get speed of light in parsec/year
 CALL CUNIT (CMS, ’SI’, CPY, ’Parsec/Year’)
 WRITE (NOUT,*) ’Speed of Light = ’, CPY, ’ Parsec/Year’
C Convert Newton/Meter**2 to
C Pound/Inch**2.
 CALL CUNIT(1.E0, ’Newton/Meter**2’, CPSI,
 & ’Pound/Inch**2’)
 WRITE(NOUT,*)’ Atmospheres, in Pound/Inch**2 = ’,CPSI
 END

Output
Speed of Light = 2.99792E+08 meter/second
Speed of Light = 186282. mile/second
Speed of Light = 0.306387 Parsec/Year

*** WARNING ERROR 8 from CUNIT. A conversion of units of mass to units of
*** force was required for consistency.
Atmospheres, in Pound/Inch**2 = 1.45038E-04

HYPOT/DHYPOT (Single/Double precision)
Compute SQRT(A** 2 + B** 2) without underflow or overflow.

Usage
HYPOT(A, B)

Arguments

A — First parameter. (Input)

B — Second parameter. (Input)

HYPOT — SQRT(A**2 + B**2). (Output)

Algorithm

Routine HYPOT is based on the routine PYTHAG, used in EISPACK 3. This is an
update of the work documented in Garbow et al. (1972).

Example

Compute

c a b= +2 2

where a = 1020 and b = 2 × 1020 without overflow.

C Declare variables
 INTEGER NOUT
 REAL A, B, C, HYPOT

IMSL MATH/LIBRARY Chapter 10: Utilities • 1191

 EXTERNAL HYPOT, UMACH
C
 A = 1.0E+20
 B = 2.0E+20
 C = HYPOT(A,B)
C Get output unit number
 CALL UMACH (2, NOUT)
C Print the results
 WRITE (NOUT,’(A,1PE10.4)’) ’ C = ’, C
 END

Output
C = 2.2361E+20

IMSL MATH/LIBRARY Reference Material • 1193

Reference Material

Contents
User Errors...1193
Automatic Workspace Allocation ...1199
Machine-Dependent Constants ...1201
Matrix Storage Modes..1206
Reserved Names ...1216
Deprecated and Renamed Routines..1217

User Errors
IMSL routines attempt to detect user errors and handle them in a way that
provides as much information to the user as possible. To do this, we recognize
various levels of severity of errors, and we also consider the extent of the error in
the context of the purpose of the routine; a trivial error in one situation may be
serious in another. IMSL routines attempt to report as many errors as they can
reasonably detect. Multiple errors present a difficult problem in error detection
because input is interpreted in an uncertain context after the first error is detected.

What Determines Error Severity

In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible
to compute an answer accurately. In this case, the assessed degree of accuracy
determines the severity of the error. In cases where the routine computes several
output quantities, if some are not computable but most are, an error condition
exists. The severity depends on an assessment of the overall impact of the error.

Terminal errors

If the user’s input is regarded as meaningless, such as N = −1 when “N” is the
number of equations, the routine prints a message giving the value of the
erroneous input argument(s) and the reason for the erroneous input. The routine
will then cause the user’s program to stop. An error in which the user’s input is

1194 • Reference Material IMSL MATH/LIBRARY

meaningless is the most severe error and is called a terminal error. Multiple
terminal error messages may be printed from a single routine.

Informational errors

In many cases, the best way to respond to an error condition is simply to correct
the input and rerun the program. In other cases, the user may want to take actions
in the program itself based on errors that occur. An error that may be used as the
basis for corrective action within the program is called an informational error. If
an informational error occurs, a user-retrievable code is set. A routine can return
at most one informational error for a single reference to the routine. The codes for
the informational error codes are printed in the error messages.

Other errors

In addition to informational errors, IMSL routines issue error messages for which
no user- retrievable code is set. Multiple error messages for this kind of error may
be printed. These errors, which generally are not described in the documentation,
include terminal errors as well as less serious errors. Corrective action within the
calling program is not possible for these errors.

Kinds of Errors and Default Actions

Five levels of severity of errors are defined in the MATH/LIBRARY. Each level
has an associated PRINT attribute and a STOP attribute. These attributes have
default settings (YES or NO), but they may also be set by the user. The purpose
of having multiple error severity levels is to provide independent control of
actions to be taken for errors of different severity. Upon return from an IMSL
routine, exactly one error state exists. (A code 0 “error” is no informational
error.) Even if more than one informational error occurs, only one message is
printed (if the PRINT attribute is YES). Multiple errors for which no corrective
action within the calling program is reasonable or necessary result in the printing
of multiple messages (if the PRINT attribute for their severity level is YES).
Errors of any of the severity levels except level 5 may be informational errors.

Level 1: Note. A note is issued to indicate the possibility of a trivial error or
simply to provide information about the computations. Default
attributes: PRINT=NO, STOP=NO

Level 2: Alert. An alert indicates that the user should be advised about events
occurring in the software. Default attributes: PRINT=NO, STOP=NO

Level 3: Warning. A warning indicates the existence of a condition that may
require corrective action by the user or calling routine. A warning error
may be issued because the results are accurate to only a few decimal
places, because some of the output may be erroneous but most of the
output is correct, or because some assumptions underlying the analysis

IMSL MATH/LIBRARY Reference Material • 1195

technique are violated. Often no corrective action is necessary and the
condition can be ignored. Default attributes: PRINT=YES, STOP=NO

Level 4: Fatal.A fatal error indicates the existence of a condition that may be
serious. In most cases, the user or calling routine must take corrective
action to recover. Default attributes: PRINT=YES, STOP=YES

Level 5: Terminal.A terminal error is serious. It usually is the result of an
incorrect specification, such as specifying a negative number as the
number of equations. These errors may also be caused by various
programming errors impossible to diagnose correctly in FORTRAN. The
resulting error message may be perplexing to the user. In such cases, the
user is advised to compare carefully the actual arguments passed to the
routine with the dummy argument descriptions given in the
documentation. Special attention should be given to checking argument
order and data types.

A terminal error is not an informational error because corrective action
within the program is generally not reasonable. In normal usage,
execution is terminated immediately when a terminal error occurs.
Messages relating to more than one terminal error are printed if they
occur. Default attributes: PRINT=YES, STOP=YES

The user can set PRINT and STOP attributes by calling ERSET as described in
“Routines for Error Handling.”

Errors in Lower-Level Routines

It is possible that a user’s program may call an IMSL routine that in turn calls a
nested sequence of lower-level IMSL routines. If an error occurs at a lower level
in such a nest of routines and if the lower-level routine cannot pass the
information up to the original user-called routine, then a traceback of the routines
is produced. The only common situation in which this can occur is when an IMSL
routine calls a user-supplied routine that in turn calls another IMSL routine.

Routines for Error Handling

There are three ways in which the user may interact with the IMSL error handling
system: (1) to change the default actions, (2) to retrieve the integer code of an
informational error so as to take corrective action, and (3) to determine the
severity level of an error. The routines to use are ERSET, IERCD, and N1RTY,
respectively.

1196 • Reference Material IMSL MATH/LIBRARY

ERSET
Change the default printing or stopping actions when errors of a particular error
severity level occur.

Usage
CALL ERSET (IERSVR, IPACT, ISACT)

Arguments

IERSVR — Error severity level indicator. (Input)
If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are set
for errors of the specified severity level.

IPACT — Printing action. (Input)

IPACT Action
−1 Do not change current setting(s).
0 Do not print.
1 Print.
2 Restore the default setting(s).

ISACT — Stopping action. (Input)

ISACT Action
−1 Do not change current setting(s).
0 Do not stop.
1 Stop.
2 Restore the default setting(s).

IERCD and N1RTY
The last two routines for interacting with the error handling system, IERCD and
N1RTY, are INTEGER functions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no
arguments, it may be used in the following way:

ICODE = IERCD()

The function retrieves the code set by the most recently called IMSL routine.

N1RTY retrieves the error type set by the most recently called IMSL routine. It is
used in the following way:

ITYPE = N1RTY(1)

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5,
respectively. ITYPE = 3 and ITYPE = 6 are both warning errors, error severity
level 3. While ITYPE = 3 errors are informational errors (IERCD() ≠ 0), ITYPE =
6 errors are not informational errors (IERCD() = 0).

IMSL MATH/LIBRARY Reference Material • 1197

For software developers requiring additional interaction with the IMSL error
handling system, see Aird and Howell (1991).

Examples

Changes to default actions

Some possible changes to the default actions are illustrated below. The default
actions remain in effect for the kinds of errors not included in the call to ERSET.

To turn off printing of warning error messages:
CALL ERSET (3, 0, −1)

To stop if warning errors occur:
CALL ERSET (3, −1, 1)

To print all error messages:
CALL ERSET (0, 1, −1)

To restore all default settings:
CALL ERSET (0, 2, 2)

Use of informational error to determine program action

In the program segment below, the Cholesky factorization of a matrix is to be
performed. If it is determined that the matrix is not nonnegative definite (and
often this is not immediately obvious), the program is to take a different branch.

 .
 .
 .
 CALL LFTDS (N, A, LDA, FAC, LDFAC)
 IF (IERCD() .EQ. 2) THEN
C Handle matrix that is not nonnegative definite
 .
 .
 .
 END IF

Examples of errors

The program below illustrates each of the different types of errors detected by the
MATH/LIBRARY routines.

The error messages refer to the argument names that are used in the
documentation for the routine, rather than the user’s name of the variable used for
the argument. In the message generated by IMSL routine LINRG in this example,
reference is made to N, whereas in the program a literal was used for this
argument.

 INTEGER N
 PARAMETER (N=2)
C
 REAL A(N,N), AINV(N,N), B(N), X(N)
 EXTERNAL ERSET, LINRG, LSARG

1198 • Reference Material IMSL MATH/LIBRARY

C
 DATA A/2.0, -3.0, 2.0, -3.0/
 DATA B/1.0, 2.0/
C Turn on printing and turn off
C stopping for all error types.
 CALL ERSET (0, 1, 0)
C Generate level 4 informational error.
 CALL LSARG (2, A, 2, B, 1, X)
C Generate level 5 terminal error.
 CALL LINRG (-1, A, 2, AINV, 2)
 END

Output
*** FATAL ERROR 2 from LSARG. The input matrix is singular. Some of
*** the diagonal elements of the upper triangular matrix U of the
*** LU factorization are close to zero.

*** TERMINAL ERROR 1 from LINRG. The order of the matrix must be positive
*** while N = −1 is given.

Example of traceback

The next program illustrates a situation in which a traceback is produced. The
program uses the IMSL quadrature routines QDAG and QDAGS to evaluate the
double integral

x y dx dy g y dy+ = III 1 6 1 6
0

1

0

1

0

1

where

g y x y dx f x dx f x x y1 6 1 6 1 6 1 6= + = = +I I0

1

0

1
, with

Since both QDAG and QDAGS need 2500 numeric storage units of workspace, and
since the workspace allocator uses some space to keep track of the allocations,
6000 numeric storage units of space are explicitly allocated for workspace.
Although the traceback shows an error code associated with a terminal error, this
code has no meaning to the user; the printed message contains all relevant
information. It is not assumed that the user would take corrective action based on
knowledge of the code.

C Specifications for local variables
 REAL A, B, ERRABS, ERREST, ERRREL, G, RESULT
 EXTERNAL G, QDAGS
C Set quadrature parameters
 A = 0.0
 B = 1.0
 ERRABS = 0.0
 ERRREL = 0.001
C Do the outer integral
 CALL QDAGS (G, A, B, ERRABS, ERRREL, RESULT, ERREST)
C
 WRITE (*,*) RESULT, ERREST
 END
C

IMSL MATH/LIBRARY Reference Material • 1199

 REAL FUNCTION G (ARGY)
 REAL ARGY
C
 INTEGER IRULE
 REAL C, D, ERRABS, ERREST, ERRREL, F, Y
 COMMON /COMY/ Y
 EXTERNAL F, QDAG
C
 Y = ARGY
 C = 0.0
 D = 1.0
 ERRABS = 0.0
 ERRREL = -0.001
 IRULE = 1
C
 CALL QDAG (F, C, D, ERRABS, ERRREL, IRULE, G, ERREST)
 RETURN
 END
C
 REAL FUNCTION F (X)
 REAL X
C
 REAL Y
 COMMON /COMY/ Y
C
 F = X + Y
 RETURN
 END

Output
*** TERMINAL ERROR 4 from Q2AG. The relative error desired ERRREL =
*** -1.000000E-03. It must be at least zero.
Here is a traceback of subprogram calls in reverse order:
Routine name Error type Error code
------------ ---------- ----------
Q2AG 5 4 (Called internally)
QDAG 0 0
Q2AGS 0 0 (Called internally)
QDAGS 0 0
USER 0 0

Automatic Workspace Allocation
FORTRAN subroutines that work with arrays as input and output often require
extra arrays for use as workspace while doing computations or moving around
data. IMSL routines generally do not require the user explicitly to allocate such
arrays for use as workspace. On most systems the workspace allocation is handled
transparently. The only limitation is the actual amount of memory available on the
system.

On some systems the workspace is allocated out of a stack that is passed as a
FORTRAN array in a named common block WORKSP. A very similar use of a
workspace stack is described by Fox et al. (1978, pages 116−121). (For

1200 • Reference Material IMSL MATH/LIBRARY

compatiblity with older versions of the IMSL Libraries, space is allocated from
the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For
example, the IMSL routine LSARG (in Chapter 1, “Linear Systems”), which solves
systems of linear equations, needs arrays for workspace. LSARG allocates arrays
from the common area, and passes them to the lower-level routine L2ARG which
does the computations. In the “Comments” section of the documentation for
LSARG, the amount of workspace is noted and the call to L2ARG is described. This
scheme for using lower-level routines is followed throughout the IMSL Libraries.
The names of these routines have a “2” in the second position (or in the third
position in double precision routines having a “D” prefix). The user can provide
workspace explicitly and call directly the “2-level” routine, which is documented
along with the main routine. In a very few cases, the 2-level routine allows
additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace
generally deallocates that space so that it becomes available for use in other
routines.

Changing the Amount of Space Allocated

This section is relevant only to those systems on which the transparent workspace
allocator is not available.

By default, the total amount of space allocated in the common area for storage of
numeric data is 5000 numeric storage units. (A numeric storage unit is the amount
of space required to store an integer or a real number. By comparison, a double
precision unit is twice this amount. Therefore the total amount of space allocated
in the common area for storage of numeric data is 2500 double precision units.)
This space is allocated as needed for INTEGER, REAL, or other numeric data. For
larger problems in which the default amount of workspace is insufficient, the user
can change the allocation by supplying the FORTRAN statements to define the
array in the named common block and by informing the IMSL workspace
allocation system of the new size of the common array. To request 7000 units, the
statements are
 COMMON /WORKSP/ RWKSP
 REAL RWKSP(7000)
 CALL IWKIN(7000)

If an IMSL routine attempts to allocate workspace in excess of the amount
available in the common stack, the routine issues a fatal error message that
indicates how much space is needed and prints statements like those above to
guide the user in allocating the necessary amount. The program below uses IMSL
routine PERMA (page 1138) to permute rows or columns of a matrix. This routine
requires workspace equal to the number of columns, which in this example is too
large. (Note that the work vector RWKSP must also provide extra space for
bookkeeping.)

C Specifications for local variables

IMSL MATH/LIBRARY Reference Material • 1201

 INTEGER NRA, NCA, LDA, IPERMU(6000), IPATH
 REAL A(2,6000)
C Specifications for subroutines
 EXTERNAL PERMA
C
 NRA = 2
 NCA = 6000
 LDA = 2
C Initialize permutation index
 DO 10 I = 1, NCA
 IPERMU(I) = NCA + 1 - I
 10 CONTINUE
 IPATH = 2
 CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, A, LDA)
 END

Output
*** TERMINAL ERROR 10 from PERMA. Insufficient workspace for current
*** allocation(s). Correct by calling IWKIN from main program with
*** the three following statements: (REGARDLESS OF PRECISION)
*** COMMON /WORKSP/ RWKSP
*** REAL RWKSP(6018)
*** CALL IWKIN(6018)

*** TERMINAL ERROR 10 from PERMA. Workspace allocation was based on NCA =
*** 6000.

In most cases, the amount of workspace is dependent on the parameters of the
problem so the amount needed is known exactly. In a few cases, however, the
amount of workspace is dependent on the data (for example, if it is necessary to
count all of the unique values in a vector), so the IMSL routine cannot tell in
advance exactly how much workspace is needed. In such cases the error message
printed is an estimate of the amount of space required.

Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate
named common block WKSPCH is provided for character workspace. In most
respects this stack is managed in the same way as the numeric stack. The default
size of the character workspace is 2000 character units. (A character unit is the
amount of space required to store one character.) The routine analogous to IWKIN
used to change the default allocation is IWKCIN.

Machine-Dependent Constants
The function subprograms in this section return machine-dependent information
and can be used to enhance portability of programs between different computers.
The routines IMACH, AMACH and DMACH describe the computer’s arithmetic. The
routine UMACH describes the input, ouput, and error output unit numbers.
INTEGER FUNCTION IMACH(I)

1202 • Reference Material IMSL MATH/LIBRARY

IMACH retrieves machine integer constants that define the arithmetic used by the
computer.
IMACH(1) = Number of bits per integer storage unit.
IMACH(2) = Number of characters per integer storage unit:

Integers are represented in M-digit, base A form as

σ x Akk

M k

=∑ 0

where σ is the sign and 0 ≤ xN < A, k = 0, …, M.

Then,
IMACH(3) = A, the base.
IMACH(4) = M, the number of base-A digits.

IMACH(5) = A0 − 1, the largest integer.

The machine model assumes that floating-point numbers are represented in
normalized N-digit, base B form as

σB x BE
kk

N k

=
−∑ 1

where σ is the sign, 0 < x1 < B, 0 ≤ xN < B, k = 2, …, N and E$ ≤ E ≤ E".
Then,

IMACH

IMACH

IMACH

(6) = , the base.

(7) = , the number of base - digits in single precision.

(8) = , the smallest single precision exponent.

B

N B

E

s

smin

IMACH

IMACH

IMACH

IMACH

(9) = , the largest single precision exponent.

(10) = , the number of base - digits in double precision.

(11) = , the smallest double precision exponent.

(12) = , the number of base - digits in double precision

E

N B

E

E B

s

d

d

d

max

min

max

REAL FUNCTION AMACH(I)

The function subprogram AMACH retrieves real machine constants that define the
computer’s real or single-precision arithmetic. Such floating-point numbers are
represented in normalized NV-digit, base B form as

σB x BE
kk

N ks

=
−∑ 1

where σ is the sign, 0 < x1 < B, 0 ≤ xN < B, k = 2, …, NV and

E E E
s smin max≤ ≤

Note that = (6), = (7),

= (8), and = (9).

B N

E E

s

s s

IMACH IMACH

IMACH IMACHmin max

IMSL MATH/LIBRARY Reference Material • 1203

The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN
(not a number) as the result of various invalid or ambiguous operations, such as
0/0. The intent is that AMACH(6) return a quiet NaN. If the machine does not
support a quiet NaN, a special value near AMACH(2) is returned for AMACH(6).
On computers that do not have a special representation for infinity, AMACH(7)
returns the same value as AMACH(2).

AMACH is defined by the following table:

AMACH

AMACH

AMACH

AMACH

() ,

,

,

,

min

max

1

1

1

1

=

−

−

−

−

−

B

B B

B

B

E

E N

N

N

s

s s

s

s

the smalle st normali zed positive number.

(2) = the largest number.

(3) = the smallest relative spacing.

(4) = the largest relative spacing.

e j

AMACH

AMACH
AMACH
AMACH

(5) = log

NaN (quiet not a num ber).
(7) = positive machine inf inity.
(8) = negative machine in finity.

10 Bb g.
()6 =

DOUBLE PRECISION FUNCTION DMACH(I)

The function subprogram DMACH retrieves real machine constants that define the
computer’s double precision arithmetic. Such double-precision floating-point
numbers are represented in normalized Nd-digit, base B form as

σB x BE
kk

N kd

=
−∑ 1

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, … , Nd and

E E E
d dmin max≤ ≤

Note that = (6), = (10),

= (11), and = (12).

B N

E E
d

d d

IMACH IMACH

IMACH IMACHmin max

The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN
(not a number) as the result of various invalid or ambiguous operations, such as
0/0. The intent is that DMACH(6) return a quiet NaN. If the machine does not
support a quiet NaN, a special value near DMACH(2) is returned for DMACH(6).
On computers that do not have a special representation for infinity, DMACH(7)
returns the same value as DMACH(2).

DMACH is defined by the following table:

1204 • Reference Material IMSL MATH/LIBRARY

DMACH

DMACH

DMACH

DMACH

()

,

,

,

min

max

1

1

1

1

=

−

−

−

−

−

B

B B

B

B

E

E N

N

N

d

d d

d

d

the smallest normali zed positive number.

(2) = the largest number.

(3) = the smallest relative spacing.

(4) = the largest relative spacing.

e j

DMACH

DMACH
DMACH
DMACH

(5) = log

NaN (quiet not a num ber).
(7) = positive machine in finity.
(8) = negative machine in finity.

10 Bb g
()6 =

LOGICAL FUNCTION IFNAN(X), DIFNAN(DX)

The logical function IFNAN checks if the REAL argument X is NaN (not a
number). Similarly, DIFNAN checks if the DOUBLE PRECISION argument DX is
NaN.

The functions IFNAN and DIFNAN are provided to facilitate the transfer of
programs across computer systems. This is because the check for NaN can be
tricky and not portable across computer systems that do not adhere to the IEEE
standard. For example, on computers that support the IEEE standard for binary
arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself.
Thus, the check is performed as
IFNAN = X .NE. X

On other computers that do not use IEEE floating-point format, the check can be
performed in single precision as
IFNAN = X .EQ. AMACH(6)

The function IFNAN or DIFNAN is equivalent to the specification of the function
Isnan listed in the Appendix, (IEEE 1985). The following example illustrates
the use of IFNAN. If X is NaN, a message is printed instead of X. (Routine
UMACH, which is described in the following section, is used to retrieve the output
unit number for printing the message.)

 INTEGER NOUT
 REAL AMACH, X
 LOGICAL IFNAN
 EXTERNAL AMACH, IFNAN, UMACH
C
 CALL UMACH (2, NOUT)
C
 X = AMACH(6)
 IF (IFNAN(X)) THEN
 WRITE (NOUT,*) ’ X is NaN (not a number).’
 ELSE
 WRITE (NOUT,*) ’ X = ’, X
 END IF
C
 END

IMSL MATH/LIBRARY Reference Material • 1205

Output
X is NaN (not a number).

SUBROUTINE UMACH(N, NUNIT)

Routine UMACH sets or retrieves the input, output, or error output device unit
numbers. UMACH is set automatically so that the default FORTRAN unit numbers
for standard input, standard output, and standard error are used. These unit
numbers can be changed by inserting a call to UMACH at the beginning of the main
program that calls MATH/LIBRARY routines. If these unit numbers are changed
from the standard values, the user should insert an appropriate OPEN statement in
the calling program. The calling sequence for UMACH is

CALL UMACH (N, NUNIT)

where NUNIT is the input, output, or error output unit number that is either
retrieved or set, depending on which value of N is selected.

The arguments are summarized by the following table:

N Effect

1 Retrieves input unit number in NUNIT.

2 Retrieves output unit number in NUNIT.

3 Retrieves error output unit number in NUNIT.

−1 Sets the input unit number to NUNIT.

−2 Sets the output unit number to NUNIT.

−3 Sets the error output unit number to NUNIT.

If the value of N is negative, the input, output, or error output unit number is reset
to NUNIT. If the value of N is positive, the input, output, or error output unit
number is returned in NUNIT.

In the following example, a terminal error is issued from the MATH/LIBRARY
AMACH function since the argument is invalid. With a call to UMACH, the error
message will be written to a local file named “CHECKERR”.

 INTEGER N, AMACH
 REAL X
 EXTERNAL AMACH, UMACH
C Set Parameter
 N = 0
C
 CALL UMACH (-3, 9)
 OPEN (UNIT=9,FILE=’CHECKERR’)
 X = AMACH(N)
 END

The output from this example, written to “CHECKERR” is:
*** TERMINAL ERROR 5 from AMACH. The argument must be between 1 and 8
*** inclusive. N = 0

1206 • Reference Material IMSL MATH/LIBRARY

Matrix Storage Modes
In this section, the word matrix will be used to refer to a mathematical object, and
the word array will be used to refer to its representation as a FORTRAN data
structure.

General Mode

A general matrix is an N × N matrix A. It is stored in a FORTRAN array that is
declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as N. IMSL general matrix subprograms only refer to values ALM for i = 1, …,

N and j = 1, …, N. The data type of a general array can be one of REAL, DOUBLE
PRECISION, or COMPLEX. If your FORTRAN compiler allows, the nonstandard
data type DOUBLE COMPLEX can also be declared.

Rectangular Mode

A rectangular matrix is an M × N matrix A. It is stored in a FORTRAN array that
is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as M. IMSL rectangular matrix subprograms only refer to values ALM for i = 1,

…, M and j = 1, …, N. The data type of a rectangular array can be REAL, DOUBLE
PRECISION, or COMPLEX. If your FORTRAN compiler allows, you can declare
the nonstandard data type DOUBLE COMPLEX.

Symmetric Mode

A symmetric matrix is a square N × N matrix A, such that A7 = A. (A7 is the
transpose of A.) It is stored in a FORTRAN array that is declared by the
following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as N. IMSL symmetric matrix subprograms only refer to the upper or to the
lower half of A (i.e., to values ALM for i = 1, …, N and j = i, …, N, or ALM for j = 1,

…, N and i = j, …, N). The data type of a symmetric array can be one of REAL or
DOUBLE PRECISION. Use of the upper half of the array is denoted in the BLAS
that compute with symmetric matrices, page 1047, using the CHARACTER*1 flag
UPLO = ’U’ . Otherwise, UPLO = ’L’ denotes that the lower half of the array is
used.

IMSL MATH/LIBRARY Reference Material • 1207

Hermitian Mode

A Hermitian matrix is a square N × N matrix A, such that

A AT =
The matrix

A

is the complex conjugate of A and

 A AH T≡

is the conjugate transpose of A. For Hermitian matrices, A+ = A. The matrix is
stored in a FORTRAN array that is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as N. IMSL Hermitian matrix subprograms only refer to the upper or to the
lower half of A (i.e., to values ALM for i = 1, …, N and j = i, …, N., or ALM for j = 1,

…, N and i = j, …, N). Use of the upper half of the array is denoted in the BLAS
that compute with Hermitian matrices, page 1047, using the CHARACTER*1 flag
UPLO = ’U’ . Otherwise, UPLO = ’L’ denotes that the lower half of the array is
used. The data type of a Hermitian array can be COMPLEX or, if your FORTRAN
compiler allows, the nonstandard data type DOUBLE COMPLEX.

Triangular Mode

A triangular matrix is a square N × N matrix A such that values ALM�= 0 for i < j or
ALM = 0 for i > j. The first condition defines a lower triangular matrix while the
second condition defines an upper triangular matrix. A lower triangular matrix A
is stored in the lower triangular part of a FORTRAN array A. An upper triangular
matrix is stored in the upper triangular part of a FORTRAN array. Triangular
matrices are called unit triangular whenever AMM = 1, j = 1, …, N. For unit
triangular matrices, only the strictly lower or upper parts of the array are
referenced. This is denoted in the BLAS that compute with triangular matrices,
page 1047, using the CHARACTER*1 flag DIAG = ’U’ . Otherwise, DIAG = ’N’

denotes that the diagonal array terms should be used. For unit triangular matrices,
the diagonal terms are each used with the mathematical value 1. The array
diagonal term does not need to be 1.0 in this usage. Use of the upper half of the
array is denoted in the BLAS that compute with triangular matrices, page 1047,
using the CHARACTER*1 flag UPLO = ’U’ . Otherwise, UPLO = ’L’ denotes that
the lower half of the array is used. The data type of an array that contains a
triangular matrix can be one of REAL, DOUBLE PRECISION, or COMPLEX. If your
FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX can
also be declared.

1208 • Reference Material IMSL MATH/LIBRARY

Band Storage Mode

A band matrix is an M × N matrix A with all of its nonzero elements “close” to
the main diagonal. Specifically, values ALM = 0 if i − j > NLCA or j − i > NUCA. The
integers NLCA and NUCA are the lower and upper band widths. The integer m =
NLCA + NUCA + 1 is the total band width. The diagonals, other than the main
diagonal, are called codiagonals. While any M × N matrix is a band matrix, the
band matrix mode is most useful only when the number of nonzero codiagonals is
much less than m.

In the band storage mode, the NLCA lower codiagonals and NUCA upper
codiagonals are stored in the rows of a FORTRAN array of dimension m × N.
The elements are stored in the same column of the array as they are in the matrix.
The values ALM inside the band width are stored in array positions (i − j + NUCA +
1, j). This array is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as m. The data type of a band matrix array can be one of REAL, DOUBLE
PRECISION, COMPLEX or, if your FORTRAN compiler allows, the nonstandard
data type DOUBLE COMPLEX . Use of the CHARACTER*1 flag TRANS=’N’ in the
BLAS, page 1047, specifies that the matrix A is used. The flag value

TRANS=’T’ uses AT

while

TRANS=’C’ uses A T

For example, consider a real 5 × 5 band matrix with 1 lower and 2 upper
codiagonals, stored in the FORTRAN array declared by the following statements:
PARAMETER (N=5, NLCA=1, NUCA=2)
REAL A(NLCA+NUCA+1, N)

The matrix A has the form

A

A A A

A A A A

A A A A

A A A

A A

=

�

!

"

$

#######

11 12 13

21 22 23 24

32 33 34 35

43 44 45

54 55

0 0

0

0

0 0

0 0 0

As a FORTRAN array, it is

IMSL MATH/LIBRARY Reference Material • 1209

A

A A A

A A A A

A A A A A

A A A A

=

× ×

×

×

�

!

"

$

#####

13 24 35

12 23 34 45

11 22 33 44 55

21 32 43 54

The entries marked with an x in the above array are not referenced by the IMSL
band subprograms.

Band Symmetric Storage Mode

A band symmetric matrix is a band matrix that is also symmetric. The band
symmetric storage mode is similar to the band mode except only the lower or
upper codiagonals are stored.

In the band symmetric storage mode, the NCODA upper codiagonals are stored in
the rows of a FORTRAN array of dimension (NCODA + 1) × N. The elements are
stored in the same column of the array as they are in the matrix. Specifically,
values ALM, j ≤ i inside the band are stored in array positions

(i − j + NCODA + 1, j). This is the storage mode designated by using the
CHARACTER*1 flag UPLO = ’U’ in Level 2 BLAS that compute with band
symmetric matrices, page 1047. Alternatively, ALM, j ≤ i, inside the band, are

stored in array positions (i − j + 1, j). This is the storage mode designated by
using the CHARACTER*1 flag UPLO = ’L’ in these Level 2 BLAS, page 1047.
The array is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as NCODA + 1. The data type of a band symmetric array can be REAL or
DOUBLE PRECISION.

For example, consider a real 5 × 5 band matrix with 2 codiagonals. Its
FORTRAN declaration is
PARAMETER (N=5, NCODA=2)
REAL A(NCODA+1, N)

The matrix A has the form

A

A A A

A A A A

A A A A A

A A A A

A A A

=

�

!

"

$

#######

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

Since A is symmetric, the values ALM = AML. In the FORTRAN array, it is

1210 • Reference Material IMSL MATH/LIBRARY

A

A A A

A A A A

A A A A A

=

× ×

×

�

!

"

$

####

13 24 35

12 23 34 45

11 22 33 44 55

The entries marked with an × in the above array are not referenced by the IMSL
band symmetric subprograms.

An alternate storage mode for band symmetric matrices is designated using the
CHARACTER*1 flag UPLO = ’L’ in Level 2 BLAS that compute with band
symmetric matrices, page 1047. In that case, the example matrix is represented as

A

A A A A A

A A A A

A A A

= ×

× ×

�

!

"

$

####

11 22 33 44 55

12 23 34 45

13 24 35

Band Hermitian Storage Mode

A band Hermitian matrix is a band matrix that is also Hermitian. The band
Hermitian mode is a complex analogue of the band symmetric mode.

In the band Hermitian storage mode, the NCODA upper codiagonals are stored in
the rows of a FORTRAN array of dimension (NCODA + 1) × N. The elements are
stored in the same column of the array as they are in the matrix. In the Level 2
BLAS, page 1047, this is denoted by using the CHARACTER*1 flag UPLO =’U’ .
The array is declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as (NCODA + 1) . The data type of a band Hermitian array can be COMPLEX

or, if your FORTRAN compiler allows, the nonstandard data type DOUBLE

COMPLEX.

For example, consider a complex 5 × 5 band matrix with 2 codiagonals. Its
FORTRAN declaration is
PARAMETER (N=5, NCODA = 2)
COMPLEX A(NCODA + 1, N)

The matrix A has the form

A

A A A

A A A A

A A A A A

A A A A

A A A

=

�

!

"

$

#######

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

where the value

IMSL MATH/LIBRARY Reference Material • 1211

Aij

is the complex conjugate of ALM. This matrix represented as a FORTRAN array is

A

A A A

A A A A

A A A A A

=

× ×

×

�

!

"

$

####

13 24 35

12 23 34 45

11 22 33 44 55

The entries marked with an × in the above array are not referenced by the IMSL
band Hermitian subprograms.

An alternate storage mode for band Hermitian matrices is designated using the
CHARACTER*1 flag UPLO = ’L’ in Level 2 BLAS that compute with band
Hermitian matrices, page 1047. In that case, the example matrix is represented as

A

A A A A A

A A A A

A A A

= ×

× ×

�

!

"

$

####

11 22 33 44 55

12 23 34 45

13 24 35

Band Triangular Storage Mode

A band triangular matrix is a band matrix that is also triangular. In the band
triangular storage mode, the NCODA codiagonals are stored in the rows of a
FORTRAN array of dimension (NCODA + 1) × N. The elements are stored in the
same column of the array as they are in the matrix. For usage in the Level 2
BLAS, page 1047, the CHARACTER*1 flag DIAG has the same meaning as used in
section “Triangular Storage Mode”. The flag UPLO has the meaning analogous
with its usage in the section “Banded Symmetric Storage Mode”. This array is
declared by the following statement:

DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as (NCODA + 1).

For example, consider a 5 ×5 band upper triangular matrix with 2 codiagonals. Its
FORTRAN declaration is
PARAMETER (N = 5, NCODA = 2)
COMPLEX A(NCODA + 1, N)

The matrix A has the form

A

A A A

A A A

A A A

A A

A

=

�

!

"

$

#######

11 12 13

22 23 24

33 34 35

44 45

55

0 0

0 0

0 0

0 0 0

0 0 0 0

1212 • Reference Material IMSL MATH/LIBRARY

This matrix represented as a FORTRAN array is

A

A A A

A A A A

A A A A A

=

× ×

×

�

!

"

$

####

13 24 35

12 23 34 45

11 22 33 44 55

This corresponds to the CHARACTER*1 flags DIAG = ’N’ and UPLO = ’U’ . The

matrix A7 is represented as the FORTRAN array

A

A A A A A

A A A A

A A A

= ×

× ×

�

!

"

$

####

11 22 33 44 55

12 23 34 45

13 24 35

This corresponds to the CHARACTER*1 flags DIAG = ’N’ and UPLO = ’L’ . In
both examples, the entries indicated with an × are not referenced by IMSL
subprograms.

Codiagonal Band Symmetric Storage Mode

This is an alternate storage mode for band symmetric matrices. It is not used by
any of the BLAS, page 1047. Storing data in a form transposed from the Band
Symmetric Storage Mode maintains unit spacing between consecutive
referenced array elements. This data structure is used to get good performance in
the Cholesky decomposition algorithm that solves positive definite symmetric
systems of linear equations Ax = b. The data type can be REAL or DOUBLE

PRECISION. In the codiagonal band symmetric storage mode, the NCODA upper
codiagonals and right-hand-side are stored in columns of this FORTRAN array.
This array is declared by the following statement:

DIMENSION A(LDA, NCODA + 2)

The parameter LDA is the leading positive dimension of A. It must be at least as
large as N + NCODA.

Consider a real symmetric 5 × 5 matrix with 2 codiagonals

IMSL MATH/LIBRARY Reference Material • 1213

A

A A A

A A A A

A A A A A

A A A A

A A A

=

�

!

"

$

#######

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

and a right-hand-side vector

b

b

b

b

b

b

=

�

!

"

$

#######

1

2

3

4

5

A FORTRAN declaration for the array to hold this matrix and right-hand-side
vector is
PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
REAL A(LDA, NCODA + 2)

The matrix and right-hand-side entries are placed in the FORTRAN array A as
follows:

A

A b

A A b

A A A b

A A A b

A A A b

=

× × × ×

× × × ×

× ×

×

�

!

"

$

###########

11 1

22 12 2

33 23 13 3

44 34 24 4

55 45 35 5

Entries marked with an × do not need to be defined. Certain of the IMSL band
symmetric subprograms will initialize and use these values during the solution
process. When a solution is computed, the bL, i = 1, …, 5, are replaced by xL,
i = 1, …, 5.

The nonzero ALM, j ≥ i, are stored in array locations A(j + NCODA, (j − i) + 1) . The
right-hand-side entries bM are stored in locations A(j + NCODA, NCODA + 2). The
solution entries xM are returned in A(j + NCODA, NCODA + 2).

Codiagonal Band Hermitian Storage Mode

This is an alternate storage mode for band Hermitian matrices. It is not used by
any of the BLAS, page 1047. In the codiagonal band Hermitian storage mode,

1214 • Reference Material IMSL MATH/LIBRARY

the real and imaginary parts of the 2 * NCODA + 1 upper codiagonals and right-
hand-side are stored in columns of a FORTRAN array. Note that there is no
explicit use of the COMPLEX or the nonstandard data type DOUBLE COMPLEX data
type in this storage mode.

For Hermitian complex matrices,

A U V = + −1

where U and V are real matrices. They satisfy the conditions U = U7 and

V = −V7. The right-hand-side

b c d= + −1

where c and d are real vectors. The solution vector is denoted as

x u v= + −1

where u and v are real. The storage is declared with the following statement

DIMENSION A(LDA, 2*NCODA + 3)

The parameter LDA is the leading positive dimension of A. It must be at least as
large as N + NCODA.

The diagonal terms UMM are stored in array locations A (j + NCODA, 1). The
diagonal VMM are zero and are not stored. The nonzero ULM, j > i, are stored in

locations A(j + NCODA, 2 * (j − i)).

The nonzero VLM are stored in locations A(j + NCODA, 2*(j − i) + 1). The right side
vector b is stored with cM and dM in locations A(j + NCODA, 2*NCODA + 2) and A(j +
NCODA, 2*NCODA + 3) respectively. The real and imaginary parts of the solution,
uM�and vM, respectively overwrite cM and dM.

Consider a complex hermitian 5 × 5 matrix with 2 codiagonals

A

U U U

U U U U

U U U U U

U U U U

U U U

V V

V V V

V V V V

V V V

V V

=

�

!

"

$

#######

+ −

−

− −

− −

− −

�

!

"

$

#######

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

12 13

12 23 24

13 23 34 35

24 34 45

35 45

0 0

0

0

0 0

1

0 0 0

0 0

0

0 0

0 0 0

and a right-hand-side vector

b

c

c

c

c

c

d

d

d

d

d

=

�

!

"

$

#######

+ −

�

!

"

$

#######

1

2

3

4

5

1

2

3

4

5

1

IMSL MATH/LIBRARY Reference Material • 1215

A FORTRAN declaration for the array to hold this matrix and right-hand-side
vector is
PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
REAL A(LDA,2*NCODA + 3)

The matrix and right-hand-side entries are placed in the FORTRAN array A as
follows:

A

U c d

U U V c d

U U V U V c d

U U V U V c d

U U V U V c d

=

× × × × × × ×

× × × × × × ×

× × × ×

× ×

�

!

"

$

###########

11 1 1

22 12 12 2 2

33 23 23 13 13 3 3

44 34 34 24 24 4 4

55 45 45 35 35 5 5

Entries marked with an × do not need to be defined.

Sparse Matrix Storage Mode

The sparse linear algebraic equation solvers in Chapter 1 accept the input matrix
in sparse storage mode. This structure consists of INTEGER values N and NZ, the
matrix dimension and the total number of nonzero entries in the matrix. In
addition, there are two INTEGER arrays IROW(*) and JCOL(*) that contain unique
matrix row and column coordinates where values are given. There is also an array
A(*) of values. All other entries of the matrix are zero. Each of the arrays
IROW(*), JCOL(*), A(*) must be of size NZ. The correspondence between matrix
and array entries is given by

A A i ii iIROW JCOL NZ1 6 1 6 1 6, , , ,= = 1 K

The data type for A(*) can be one of REAL, DOUBLE PRECISION, or COMPLEX. If
your FORTRAN compiler allows, the nonstandard data type DOUBLE COMPLEX
can also be declared.

For example, consider a real 5 × 5 sparse matrix with 11 nonzero entries. The
matrix A has the form

A

A A A

A A

A A A

A

A A

=

�

!

"

$

#######

11 13 14

21 22

32 33 34

43

54 55

0 0

0 0 0

0 0

0 0 0 0

0 0 0

Declarations of arrays and definitions of the values for this sparse matrix are

1216 • Reference Material IMSL MATH/LIBRARY

 PARAMETER (NZ = 11, N = 5)
 DIMENSION IROW(NZ), JCOL(NZ), A(NZ)
 DATA IROW /1,1,1,2,2,3,3,3,4,5,5/
 DATA JCOL /1,3,4,1,2,2,3,4,3,4,5/

 DATA A /A11,A13,A14,A21,A22,A32,A33,A34,
 & A43,A54,A55/

Reserved Names
When writing programs accessing the MATH/LIBRARY, the user should choose
FORTRAN names that do not conflict with names of IMSL subroutines,
functions, or named common blocks, such as the workspace common block
WORKSP (see page 1199). The user needs to be aware of two types of name
conflicts that can arise. The first type of name conflict occurs when a name
(technically a symbolic name) is not uniquely defined within a program unit
(either a main program or a subprogram). For example, such a name conflict
exists when the name RCURV is used to refer both to a type REAL variable and to
the IMSL subroutine RCURV in a single program unit. Such errors are detected
during compilation and are easy to correct. The second type of name conflict,
which can be more serious, occurs when names of program units and named
common blocks are not unique. For example, such a name conflict would be
caused by the user defining a subroutine named WORKSP and also referencing an
MATH/LIBRARY subroutine that uses the named common block WORKSP.
Likewise, the user must not define a subprogram with the same name as a
subprogram in the MATH/LIBRARY, that is referenced directly by the user’s
program or is referenced indirectly by other MATH/LIBRARY subprograms.

The MATH/LIBRARY consists of many routines, some that are described in the
User’s Manual and others that are not intended to be called by the user and,
hence, that are not documented. If the choice of names were completely random
over the set of valid FORTRAN names, and if a program uses only a small subset
of the MATH/LIBRARY, the probability of name conflicts is very small. Since
names are usually chosen to be mnemonic, however, the user may wish to take
some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the
type of the routine. For example, the IMSL single precision subroutine for fitting
a polynomial by least squares has the name RCURV, which is the root name, and
the corresponding IMSL double precision routine has the name DRCURV.
Associated with these two routines are R2URV and DR2URV. RCURV and DRCURV
are listed in the Alphabetical Index of Routines, but R2URV and DR2URV are not.
The user of RCURV must consider both names RCURV and R2URV to be reserved;
likewise, the user of DRCURV must consider both names DRCURV and DR2URV to
be reserved. The names of all routines and named common blocks that are used
by the MATH/LIBRARY and that do not have a numeral in the second position
of the root name are listed in the Alphabetical Index of Routines. Some of the
routines in this Index (such as the “Level 2 BLAS”) are not intended to be called
by the user and so are not documented.

IMSL MATH/LIBRARY Reference Material • 1217

The careful user can avoid any conflicts with IMSL names if the following rules
are observed:

• Do not choose a name that appears in the Alphabetical Summary of
Routines in the User’s Manual.

• Do not choose a name of three or more characters with a numeral in the
second or third position.

These simplified rules include many combinations that are, in fact, allowable.
However, if the user selects names that conform to these rules, no conflict will be
encountered.

Deprecated and Renamed Routines
The routines in the following list are being deprecated in Version 2.0 of
MATH/LIBRARY. A deprecated routine is one that is no longer used by anything
in the library but is being included in the product for those users who may be
currently referencing it in their application. However, any future versions of
MATH/LIBRARY will not include these routines. If any of these routines are
being called within an application, it is recommended that you change your code
or retain the deprecated routine before replacing this library with the next version.
Most of these routines were called by users only when they needed to set up their
own workspace. Thus, the impact of these changes should be limited.
CZADD DE2LRH E2AHF E4CRG

CZINI DE2LSB E2BHF E4ESF

CZMUL DE3CRG E2BSB E5CRG

CZSTO DE3CRH E2BSF E7CRG

DE2AHF DE3LSF E2CCG G2CCG

DE2ASF DE4CRG E2CCH G2CRG

DE2BHF DE4ESF E2CHF G2LCG

DE2BSB DE5CRG E2CRG G2LRG

DE2BSF DE7CRG E2CRH G3CCG

DE2CCG DG2CCG E2CSB G4CCG

DE2CCH DG2CRG E2EHF G5CCG

DE2CHF DG2DF E2ESB G7CRG

DE2CRG DG2IND E2FHF SDADD

DE2CRH DG2LCG E2FSB SDINI

DE2CSB DG2LRG E2FSF SDMUL

DE2EHF DG3CCG E2LCG SDSTO

DE2ESB DG3DF E2LCH SHOUAP

DE2FHF DG4CCG E2LHF SHOUTR

DE2FSB DG5CCG E2LRG

DE2FSF DG7CRG E2LRH

1218 • Reference Material IMSL MATH/LIBRARY

DE2LCG DHOUAP E2LSB

DE2LCH DHOUTR E3CRG

DE2LHF DIVPBS E3CRH

DE2LRG E2ASF E3LSF

The following routines have been renamed due to naming conflicts with other
software manufacturers.

CTIME − replaced with CPSEC
DTIME − replaced with TIMDY
PAGE − replaced with PGOPT

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-1

Appendix A: GAMS Index

Description
This index lists routines in MATH/LIBRARY by a tree-structured classification
scheme known as GAMS Version 2.0 (Boisvert, Howe, Kahaner, and Springmann
(1990). Only the GAMS classes that contain MATH/LIBRARY routines are
included in the index. The page number for the documentation and the purpose of
the routine appear alongside the routine name.

The first level of the full classification scheme contains the following major
subject areas:

A. Arithmetic, Error Analysis
B. Number Theory
C. Elementary and Special Functions
D. Linear Algebra
E. Interpolation
F. Solution of Nonlinear Equations
G. Optimization
H. Differentiation and Integration
I. Differential and Integral Equations
J. Integral Transforms
K. Approximation
L. Statistics, Probability
M. Simulation, Stochastic Modeling
N. Data Handling
O. Symbolic Computation
P. Computational Geometry
Q. Graphics
R. Service Routines
S. Software Development Tools
Z. Other

There are seven levels in the classification scheme. Classes in the first level are
identified by a capital letter as is given above. Classes in the remaining levels are
identified by alternating letter-and-number combinations. A single letter (a-z) is
used with the odd-numbered levels. A number (1−26) is used within the
even-numbered levels.

A-2 • Appendix A: GAMS Index IMSL MATH/LIBRARY

IMSL MATH/LIBRARY
A ARITHMETIC, ERROR ANALYSIS

A3 Real

A3c Extended precision
DQADD Add a double-precision scalar to the accumulator in

extended precision.
DQINI Initialize an extended-precision accumulator with a double-

precision scalar.
DQMUL Multiply double-precision scalars in extended precision.
DQSTO Store a double-precision approximation to an extended-

precision scalar.

A4 Complex

A4c Extended precision
ZQADD Add a double complex scalar to the accumulator in

extended precision.
ZQINI Initialize an extended-precision complex accumulator to a

double complex scalar.
ZQMUL Multiply double complex scalars using extended precision.
ZQSTO Store a double complex approximation to an extended-

precision complex scalar.

A6 Change of representation

A6c Decomposition, construction
PRIME Decompose an integer into its prime factors.

B NUMBER THEORY
PRIME Decompose an integer into its prime factors.

C ELEMENTARY AND SPECIAL FUNCTIONS

C2 Powers, roots, reciprocals

HYPOT Compute a b2 2+ without underflow or overflow.

C19 Other special functions
CONST Return the value of various mathematical and physical

constants.
CUNIT Convert X in units XUNITS to Y in units YUNITS.

D LINEAR ALGEBRA

D1 Elementary vector and matrix operations

D1a Elementary vector operations

D1a1 Set to constant
CSET Set the components of a vector to a scalar, all complex.
ISET Set the components of a vector to a scalar, all integer.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-3

SSET Set the components of a vector to a scalar, all single
precision.

D1a2 Minimum and maximum components
ICAMAX Find the smallest index of the component of a complex

vector having maximum magnitude.
ICAMIN Find the smallest index of the component of a complex

vector having minimum magnitude.
IIMAX Find the smallest index of the maximum component of a

integer vector.
IIMIN Find the smallest index of the minimum of an integer

vector.
ISAMAX Find the smallest index of the component of a single-

precision vector having maximum absolute value.
ISAMIN Find the smallest index of the component of a single-

precision vector having minimum absolute value.
ISMAX Find the smallest index of the component of a single-

precision vector having maximum value.
ISMIN Find the smallest index of the component of a single-

precision vector having minimum value.

D1a3 Norm

D1a3a .. L1 (sum of magnitudes)
DISL1 Compute the 1-norm distance between two points.
SASUM Sum the absolute values of the components of a single-

precision vector.
SCASUM Sum the absolute values of the real part together with the

absolute values of the imaginary part of the components of
a complex vector.

D1a3b .. L2 (Euclidean norm)
DISL2 Compute the Euclidean (2-norm) distance between two

points.
SCNRM2 Compute the Euclidean norm of a complex vector.
SNRM2 Compute the Euclidean length or L2 norm of a single-

precision vector.

D1a3c .. L� (maximum magnitude)
DISLI Compute the infinity norm distance between two points.
ICAMAX Find the smallest index of the component of a complex

vector having maximum magnitude.
ISAMAX Find the smallest index of the component of a single-

precision vector having maximum absolute value.

D1a4 Dot product (inner product)

CDOTC Compute the complex conjugate dot product, x yT .

CDOTU Compute the complex dot product x7y.

A-4 • Appendix A: GAMS Index IMSL MATH/LIBRARY

CZCDOT Compute the sum of a complex scalar plus a complex

conjugate dot product, a x yT+ , using a double-precision
accumulator.

CZDOTA Compute the sum of a complex scalar, a complex dot
product and the double-complex accumulator, which is set

to the result ACC ← ACC + a + x7y.

CZDOTC Compute the complex conjugate dot product, x yT , using
a double-precision accumulator.

CZDOTI Compute the sum of a complex scalar plus a complex dot
product using a double-complex accumulator, which is set

to the result ACC ← a + x7y.

CZDOTU Compute the complex dot product x7y using a double-
precision accumulator.

CZUDOT Compute the sum of a complex scalar plus a complex dot

product, a + x7y, using a double-precision accumulator.

DSDOT Compute the single-precision dot product x7y using a
double precision accumulator.

SDDOTA Compute the sum of a single-precision scalar, a single-
precision dot product and the double-precision
accumulator, which is set to the result ACC ← ACC + a +

x7y.
SDDOTI Compute the sum of a single-precision scalar plus a

singleprecision dot product using a double-precision

accumulator, which is set to the result ACC ← a + x7y.

SDOT Compute the single-precision dot product x7y.
SDSDOT Compute the sum of a single-precision scalar and a single

precision dot product, a + x7y, using a double-precision
accumulator.

D1a5 Copy or exchange (swap)
CCOPY Copy a vector x to a vector y, both complex.
CSWAP Interchange vectors x and y, both complex.
ICOPY Copy a vector x to a vector y, both integer.
ISWAP Interchange vectors x and y, both integer.
SCOPY Copy a vector x to a vector y, both single precision.
SSWAP Interchange vectors x and y, both single precision.

D1a6 Multiplication by scalar
CSCAL Multiply a vector by a scalar, y ← ay, both complex.
CSSCAL Multiply a complex vector by a single-precision scalar,

y ← ay.
CSVCAL Multiply a complex vector by a single-precision scalar and

store the result in another complex vector, y ← ax.
CVCAL Multiply a vector by a scalar and store the result in another

vector, y ← ax, all complex.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-5

SSCAL Multiply a vector by a scalar, y ← ay, both single
precision.

SVCAL Multiply a vector by a scalar and store the result in another
vector, y ← ax, all single precision.

D1a7 Triad (ax + y for vectors x, y and scalar a)
CAXPY Compute the scalar times a vector plus a vector,

y ← ax + y, all complex.
SAXPY Compute the scalar times a vector plus a vector,

y ← ax + y, all single precision.

D1a8 Elementary rotation (Givens transformation) (search also class D1b10)
CSROT Apply a complex Givens plane rotation.
CSROTM Apply a complex modified Givens plane rotation.
SROT Apply a Givens plane rotation in single precision.
SROTM Apply a modified Givens plane rotation in single precision.

D1a10 .. Convolutions
RCONV Compute the convolution of two real vectors.
VCONC Compute the convolution of two complex vectors.
VCONR Compute the convolution of two real vectors.

D1a11 .. Other vector operations
CADD Add a scalar to each component of a vector, x ← x + a, all

complex.
CSUB Subtract each component of a vector from a scalar,

x ← a − x, all complex.
DISL1 Compute the 1-norm distance between two points.
DISL2 Compute the Euclidean (2-norm) distance between two

points.
DISLI Compute the infinity norm distance between two points.
IADD Add a scalar to each component of a vector, x ← x + a, all

integer.
ISUB Subtract each component of a vector from a scalar,

x ← a − x, all integer.
ISUM Sum the values of an integer vector.
SADD Add a scalar to each component of a vector, x ← x + a, all

single precision.
SHPROD Compute the Hadamard product of two single-precision

vectors.
SPRDCT Multiply the components of a single-precision vector.
SSUB Subtract each component of a vector from a scalar,

x ← a − x, all single precision.
SSUM Sum the values of a single-precision vector.
SXYZ Compute a single-precision xyz product.

D1b Elementary matrix operations

A-6 • Appendix A: GAMS Index IMSL MATH/LIBRARY

CGERC Compute the rank-one update of a complex general matrix:

A A xy T← + α .
CGERU Compute the rank-one update of a complex general matrix:

A A xyT← + α .
CHER Compute the rank-one update of an Hermitian matrix:

A A xx T← + α with x complex and α real.
CHER2 Compute a rank-two update of an Hermitian matrix:

A A xy yxT T← + +α α .
CHER2K Compute one of the Hermitian rank 2k operations:

C AB BA C C A B B A CT T T T← + + ← + +α α β α α β or
,
where C is an n by n Hermitian matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

CHERK Compute one of the Hermitian rank k operations:

C AA C C A A CT T← + ← +α β α β or ,
where C is an n by n Hermitian matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CSYR2K Compute one of the symmetric rank 2k operations:

C AB BA C C A B B A CT T T T← + + ← + +α α β α α β or
,
where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

CSYRK Compute one of the symmetric rank k operations:

C AA C C A A CT T← + ← +α β α β or ,
where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CTBSV Solve one of the complex triangular systems:

x A x x A x x A x
T T← ← ←− − −1 1 1

, ,3 8 3 8 or ,

where A is a triangular matrix in band storage mode.
CTRSM Solve one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

← ← ← ←

← ←

− − − −

− −

α α α α

α α

1 1 1 1

1 1

, , , ,

,

3 8 3 8
3 8 3 8 or

where A is a triangular matrix.
CTRSV Solve one of the complex triangular systems:

x A x x A x x A x
T T← ← ←− − −1 1 1

, ,3 8 3 8 or ,

where A is a triangular matrix.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-7

HRRRR Compute the Hadamard product of two real rectangular
matrices.

SGER Compute the rank-one update of a real general matrix:

A A xyT← + α .
SSYR Compute the rank-one update of a real symmetric matrix:

A A xxT← + α .
SSYR2 Compute the rank-two update of a real symmetric matrix:

A A xy yxT T← + +α α .
SSYR2K Compute one of the symmetric rank 2k operations:

C AB BA C C A B B A CT T T T← + + ← + +α α β α α β or
,
where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

SSYRK Compute one of the symmetric rank k operations:

C AA C C A A CT T← + ← +α β α β or ,
where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

STBSV Solve one of the triangular systems:

x A x x A x
T

← ←− −1 1 or 3 8 ,

where A is a triangular matrix in band storage mode.
STRSM Solve one of the matrix equations:

B A B B BA B A B B B A
T T

← ← ← ←− − − −α α α α1 1 1 1, , ,3 8 3 8or

where B is an m by n matrix and A is a triangular matrix.
STRSV Solve one of the triangular linear systems:

x A x x A x
T

← ←− −1 1 or 3 8 ,

where A is a triangular matrix.

D1b2 Norm
NR1CB Compute the 1-norm of a complex band matrix in band

storage mode.
NR1RB Compute the 1-norm of a real band matrix in band storage

mode.
NR1RR Compute the 1-norm of a real matrix.
NR2RR Compute the Frobenius norm of a real rectangular matrix.
NRIRR Compute the infinity norm of a real matrix.

D1b3 Transpose
TRNRR Transpose a rectangular matrix.

D1b4 Multiplication by vector

BLINF Compute the bilinear form x7Ay.

A-8 • Appendix A: GAMS Index IMSL MATH/LIBRARY

CGBMV Compute one of the matrix-vector operations:

y Ax y y A x y y A yT T← + ← + ← +α β α β α β, , or ,
where A is a matrix stored in band storage mode.

CGEMV Compute one of the matrix-vector operations:

y Ax y y A x y y A yT T← + ← + ← +α β α β α β, , or ,
CHBMV Compute the matrix-vector operation

y Ax y← +α β ,
where A is an Hermitian band matrix in band Hermitian
storage.

CHEMV Compute the matrix-vector operation
y Ax y← +α β ,
where A is an Hermitian matrix.

CTBMV Compute one of the matrix-vector operations:

x Ax x A x x A xT T← ← ←, , or ,
where A is a triangular matrix in band storage mode.

CTRMV Compute one of the matrix-vector operations:

x Ax x A x x A xT T← ← ←, , or ,
where A is a triangular matrix.

MUCBV Multiply a complex band matrix in band storage mode by a
complex vector.

MUCRV Multiply a complex rectangular matrix by a complex
vector.

MURBV Multiply a real band matrix in band storage mode by a real
vector.

MURRV Multiply a real rectangular matrix by a vector.
SGBMV Compute one of the matrix-vector operations:

y Ax y y A x yT← + ← +α β α β, or ,
where A is a matrix stored in band storage mode.

SGEMV Compute one of the matrix-vector operations:

y Ax y y A x yT← + ← +α β α β, or ,
SSBMV Compute the matrix-vector operation

y Ax y← +α β ,
where A is a symmetric matrix in band symmetric storage
mode.

SSYMV Compute the matrix-vector operation
y Ax y← +α β ,
where A is a symmetric matrix.

STBMV Compute one of the matrix-vector operations:

x Ax x A xT← ← or ,
where A is a triangular matrix in band storage mode.

STRMV Compute one of the matrix-vector operations:

x Ax x A xT← ← or ,
where A is a triangular matrix.

D1b5 Addition, subtraction

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-9

ACBCB Add two complex band matrices, both in band storage
mode.

ARBRB Add two band matrices, both in band storage mode.

D1b6 Multiplication
CGEMM Compute one of the matrix-matrix operations:

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

← + ← + ←

+ ← + ← +

← + ← +

← + ← +

α β α β α

β α β α β

α β α β

α β α β

, ,

, , ,

, ,

,

 or

 or
CHEMM Compute one of the matrix-matrix operations:

C AB C C BA C← + ←α β α β or + ,
where A is an Hermitian matrix and B and C are m by n
matrices.

CSYMM Compute one of the matrix-matrix operations:
C AB C C BA C← + ←α β α β or + ,
where A is a symmetric matrix and B and C are m by n
matrices.

CTRMM Compute one of the matrix-matrix operations:

B AB B A B B BA B BA

B A B B BA

T T

T T

← ← ← ←

← ←

α α α α

α α

, , , ,

,or
where B is an m by n matrix and A is a triangular matrix.

MCRCR Multiply two complex rectangular matrices, AB.
MRRRR Multiply two real rectangular matrices, AB.

MXTXF Compute the transpose product of a matrix, A7A.

MXTYF Multiply the transpose of matrix A by matrix B, A7B.

MXYTF Multiply a matrix A by the transpose of a matrix B, AB7.
SGEMM Compute one of the matrix-matrix operations:

C AB C C A B C C AB

C C A B C

T T

T T

← + ← + ←

+ ← +

α β α β α

β α β

, ,

, or
.

SSYMM Compute one of the matrix-matrix operations:
C AB C C BA C← + ←α β α β or + ,
where A is a symmetric matrix and B and C are m by n
matrices.

STRMM Compute one of the matrix-matrix operations:

B AB B A B B BA B BAT T← ← ← ←α α α α, , or ,
where B is an m by n matrix and A is a triangular matrix.

D1b7 Matrix polynomial
POLRG 1207 Evaluate a real general matrix polynomial.

D1b8 Copy

A-10 • Appendix A: GAMS Index IMSL MATH/LIBRARY

CCBCB Copy a complex band matrix stored in complex band
storage mode.

CCGCG Copy a complex general matrix.
CRBRB Copy a real band matrix stored in band storage mode.
CRGRG Copy a real general matrix.

D1b9 Storage mode conversion
CCBCG Convert a complex matrix in band storage mode to a

complex matrix in full storage mode.
CCGCB Convert a complex general matrix to a matrix in complex

band storage mode.
CHBCB Copy a complex Hermitian band matrix stored in band

Hermitian storage mode to a complex band matrix stored in
band storage mode.

CHFCG Extend a complex Hermitian matrix defined in its upper
triangle to its lower triangle.

CRBCB Convert a real matrix in band storage mode to a complex
matrix in band storage mode.

CRBRG Convert a real matrix in band storage mode to a real
general matrix.

CRGCG Copy a real general matrix to a complex general matrix.
CRGRB Convert a real general matrix to a matrix in band storage

mode.
CRRCR Copy a real rectangular matrix to a complex rectangular

matrix.
CSBRB Copy a real symmetric band matrix stored in band

symmetric storage mode to a real band matrix stored in
band storage mode.

CSFRG Extend a real symmetric matrix defined in its upper
triangle to its lower triangle.

D1b10 .. Elementary rotation (Givens transformation) (search also class D1a8)
SROTG Construct a Givens plane rotation in single precision.
SROTMG Construct a modified Givens plane rotation in single

precision.

D2 Solution of systems of linear equations (including inversion, LU and
related decompositions)

D2a Real nonsymmetric matrices
LSLTO Solve a real Toeplitz linear system.

D2a1 General
LFCRG Compute the LU factorization of a real general matrix and

estimate its L1 condition number.
LFIRG Use iterative refinement to improve the solution of a real

general system of linear equations.
LFSRG Solve a real general system of linear equations given the

LU factorization of the coefficient matrix.
LFTRG Compute the LU factorization of a real general matrix.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-11

LINRG Compute the inverse of a real general matrix.
LSARG Solve a real general system of linear equations with

iterative refinement.
LSLRG Solve a real general system of linear equations without

iterative refinement.

D2a2 Banded
LFCRB Compute the LU factorization of a real matrix in band

storage mode and estimate its L1 condition number.
LFIRB Use iterative refinement to improve the solution of a real

system of linear equations in band storage mode.
LFSRB Solve a real system of linear equations given the LU

factorization of the coefficient matrix in band storage
mode.

LFTRB Compute the LU factorization of a real matrix in band
storage mode.

LSARB Solve a real system of linear equations in band storage
mode with iterative refinement.

LSLRB Solve a real system of linear equations in band storage
mode without iterative refinement.

STBSV Solve one of the triangular systems:

x A x x A x
T

← ←− −1 1 or 3 8 ,

where A is a triangular matrix in band storage mode.

D2a2a .. Tridiagonal
LSLCR Compute the LDU factorization of a real tridiagonal matrix

A using a cyclic reduction algorithm.
LSLTR Solve a real tridiagonal system of linear equations.

D2a3 Triangular
LFCRT Estimate the condition number of a real triangular matrix.
LINRT Compute the inverse of a real triangular matrix.
LSLRT Solve a real triangular system of linear equations.
STRSM Solve one of the matrix equations:

B A B B BA B A B

B B A

T

T

← ← ←

←

− − −

−

α α α

α

1 1 1

1

, , ,3 8
3 8or

where B is an m by n matrix and A is a triangular matrix.
STRSV Solve one of the triangular linear systems:

x A x x A x
T

← ←− −1 1 or 3 8
where A is a triangular matrix.

D2a4 Sparse
LFSXG Solve a sparse system of linear equations given the LU

factorization of the coefficient matrix.

A-12 • Appendix A: GAMS Index IMSL MATH/LIBRARY

LFTXG Compute the LU factorization of a real general sparse
matrix.

LSLXG Solve a sparse system of linear algebraic equations by
Gaussian elimination.

GMRES Use restarted GMRES with reverse communication to
generate an approximate solution of Ax = b.

D2b Real symmetric matrices

D2b1 General

D2b1a. . Indefinite
LCHRG Compute the Cholesky decomposition of a symmetric

positive semidefinite matrix with optional column pivoting.

LFCSF Compute the U DU7 factorization of a real symmetric
matrix and estimate its L1 condition number.

LFISF Use iterative refinement to improve the solution of a real
symmetric system of linear equations.

LFSSF Solve a real symmetric system of linear equations given the

U DU7 factorization of the coefficient matrix.

LFTSF Compute the U DU7 factorization of a real symmetric
matrix.

LSASF Solve a real symmetric system of linear equations with
iterative refinement.

LSLSF Solve a real symmetric system of linear equations without
iterative refinement.

D2b1b. . Positive definite
LCHRG Compute the Cholesky decomposition of a symmetric

positive semidefinite matrix with optional column pivoting.

LFCDS Compute the R7 R Cholesky factorization of a real
symmetric positive definite matrix and estimate its
L1condition number.

LFIDS Use iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations.

LFSDS Solve a real symmetric positive definite system of linear

equations given the R7 R Choleksy factorization of the
coefficient matrix.

LFTDS Compute the R7 R Cholesky factorization of a real
symmetric positive definite matrix.

LINDS Compute the inverse of a real symmetric positive definite
matrix.

LSADS Solve a real symmetric positive definite system of linear
equations with iterative refinement.

LSLDS Solve a real symmetric positive definite system of linear
equations without iterative refinement.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-13

D2b2 Positive definite banded

LFCQS Compute the R7 R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode and estimate its L1 condition number.

LFDQS Compute the determinant of a real symmetric positive

definite matrix given the R7 R Cholesky factorization of
the band symmetric storage mode.

LFIQS Use iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations in
band symmetric storage mode.

LFSQS Solve a real symmetric positive definite system of linear
equations given the factorization of the coefficient matrix
in band symmetric storage mode.

LFTQS Compute the R7 R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode.

LSAQS Solve a real symmetric positive definite system of linear
equations in band symmetric storage mode with iterative
refinement.

LSLPB Compute the R7 DR Cholesky factorization of a real
symmetric positive definite matrix A in codiagonal band
symmetric storage mode. Solve a system Ax = b.

LSLQS Solve a real symmetric positive definite system of linear
equations in band symmetric storage mode without
iterative refinement.

D2b4 Sparse
JCGRC Solve a real symmetric definite linear system using the

Jacobi preconditioned conjugate gradient method with
reverse communication.

LFSXD Solve a real sparse symmetric positive definite system of
linear equations, given the Cholesky factorization of the
coefficient matrix.

LNFXD Compute the numerical Cholesky factorization of a sparse
symmetrical matrix A.

LSCXD Perform the symbolic Cholesky factorization for a sparse
symmetric matrix using a minimum degree ordering or a
userspecified ordering, and set up the data structure for the
numerical Cholesky factorization.

LSLXD Solve a sparse system of symmetric positive definite linear
algebraic equations by Gaussian elimination.

PCGRC Solve a real symmetric definite linear system using a
preconditioned conjugate gradient method with reverse
communication.

D2c. Complex non-Hermitian matrices
LSLCC Solve a complex circulant linear system.
LSLTC Solve a complex Toeplitz linear system.

A-14 • Appendix A: GAMS Index IMSL MATH/LIBRARY

D2c1 General
LFCCG Compute the LU factorization of a complex general matrix

and estimate its L1 condition number.
LFICG Use iterative refinement to improve the solution of a

complex general system of linear equations.
LFSCG Solve a complex general system of linear equations given

the LU factorization of the coefficient matrix.
LFTCG Compute the LU factorization of a complex general matrix.
LINCG Compute the inverse of a complex general matrix.
LSACG Solve a complex general system of linear equations with

iterative refinement.
LSLCG Solve a complex general system of linear equations without

iterative refinement.

D2c2 Banded
CTBSV Solve one of the complex triangular systems:

x A x x A x x A x
T T← ← ←− − −1 1 1

 , or 3 8 3 8, ,

where A is a triangular matrix in band storage mode.
LFCCB Compute the LU factorization of a complex matrix in band

storage mode and estimate its L1 condition number.
LFICB Use iterative refinement to improve the solution of a

complex system of linear equations in band storage mode.
LFSCB Solve a complex system of linear equations given the LU

factorization of the coefficient matrix in band storage
mode.

LFTCB Compute the LU factorization of a complex matrix in band
storage mode.

LSACB Solve a complex system of linear equations in band storage
mode with iterative refinement.

LSLCB Solve a complex system of linear equations in band storage
mode without iterative refinement.

D2c2a... Tridiagonal
LSLCQ Compute the LDU factorization of a complex tridiagonal

matrix A using a cyclic reduction algorithm.
LSLTQ Solve a complex tridiagonal system of linear equations.

D2c3 Triangular
CTRSM Solve one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

← ← ← ←

← ←

− − − −

− −

α α α α

α α

1 1 1 1

1 1

, , , ,

,

3 8 3 8
3 8 3 8or

where A is a traiangular matrix.
CTRSV Solve one of the complex triangular systems:

x A x x A x x A x
T T← ← ←− − −1 1 1

 , or 3 8 3 8,

where A is a triangular matrix.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-15

LFCCT Estimate the condition number of a complex triangular
matrix.

LINCT Compute the inverse of a complex triangular matrix.
LSLCT Solve a complex triangular system of linear equations.

D2c4 Sparse
LFSZG Solve a complex sparse system of linear equations given

the LU factorization of the coefficient matrix.
LFTZG Compute the LU factorization of a complex general sparse

matrix.
LSLZG Solve a complex sparse system of linear equations by

Gaussian elimination.

D2d. Complex Hermitian matrices

D2d1 General

D2d1a. . Indefinite

LFCHF Compute the U DU+ factorization of a complex Hermitian
matrix and estimate its L1 condition number.

LFDHF Compute the determinant of a complex Hermitian matrix

given the U DU+ factorization of the matrix.
LFIHF Use iterative refinement to improve the solution of a

complex Hermitian system of linear equations.
LFSHF Solve a complex Hermitian system of linear equations

given the U DU+ factorization of the coefficient matrix.

LFTHF Compute the U DU+ factorization of a complex Hermitian
matrix.

LSAHF Solve a complex Hermitian system of linear equations with
iterative refinement.

LSLHF Solve a complex Hermitian system of linear equations
without iterative refinement.

D2d1b. . Positive definite

LFCDH Compute the R+ R factorization of a complex Hermitian
positive definite matrix and estimate its L1 condition
number.

LFIDH Use iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations.

LFSDH Solve a complex Hermitian positive definite system of

linear equations given the R+ R factorization of the
coefficient matrix.

A-16 • Appendix A: GAMS Index IMSL MATH/LIBRARY

LFTDH Compute the R+ R factorization of a complex Hermitian
positive definite matrix.

LSADH Solve a Hermitian positive definite system of linear
equations with iterative refinement.

LSLDH Solve a complex Hermitian positive definite system of
linear equations without iterative refinement.

D2d2 Positive definite banded

LFCQH Compute the R+ R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode
and estimate its L1 condition number.

LFIQH Use iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations in band Hermitian storage mode.

LFSQH Solve a complex Hermitian positive definite system of
linear equations given the factorization of the coefficient
matrix in band Hermitian storage mode.

LFTQH Compute the R+ R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode.

LSAQH Solve a complex Hermitian positive definite system of
linear equations in band Hermitian storage mode with
iterative refinement.

LSLQB Compute the R+ DR Cholesky factorization of a complex
hermitian positive-definite matrix A in codiagonal band
hermitian storage mode. Solve a system Ax = b.

LSLQH Solve a complex Hermitian positive definite system of
linearequations in band Hermitian storage mode without
iterative refinement.

D2d4 Sparse
LFSZD Solve a complex sparse Hermitian positive definite system

of linear equations, given the Cholesky factorization of the
coefficient matrix.

LNFZD Compute the numerical Cholesky factorization of a sparse
Hermitian matrix A.

LSLZD Solve a complex sparse Hermitian positive definite system
of linear equations by Gaussian elimination.

D3 Determinants

D3a. Real nonsymmetric matrices

D3a1 General
LFDRG Compute the determinant of a real general matrix given the

LU factorization of the matrix.

D3a2 Banded
LFDRB Compute the determinant of a real matrix in band storage

mode given the LU factorization of the matrix.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-17

D3a3 Triangular
LFDRT Compute the determinant of a real triangular matrix.

D3b. Real symmetric matrices

D3b1 General

D3b1a. . Indefinite
LFDSF Compute the determinant of a real symmetric matrix given

the U DU7 factorization of the matrix.

D3b1b. . Positive definite
LFDDS Compute the determinant of a real symmetric positive

definite matrix given the R+ R Cholesky factorization of
the matrix.

D3c. Complex non-Hermitian matrices

D3c1 General
LFDCG Compute the determinant of a complex general matrix

given the LU factorization of the matrix.

D3c2 Banded
LFDCB Compute the determinant of a complex matrix given the

LU factorization of the matrix in band storage mode.

D3c3 Triangular
LFDCT Compute the determinant of a complex triangular matrix.

D3d. Complex Hermitian matrices

D3d1 General

D3d1b. . Positive definite
LFDDH Compute the determinant of a complex Hermitian positive

definite matrix given the R+ R Cholesky factorization of
the matrix.

D3d2 Positive definite banded
LFDQH Compute the determinant of a complex Hermitian positive

definite matrix given the R+ R Cholesky factorization in
band Hermitian storage mode.

D4 Eigenvalues, eigenvectors

D4a. Ordinary eigenvalue problems (Ax = λx)

D4a1 Real symmetric
EVASF Compute the largest or smallest eigenvalues of a real

symmetric matrix.
EVBSF Compute selected eigenvalues of a real symmetric matrix.
EVCSF Compute all of the eigenvalues and eigenvectors of a real

symmetric matrix.

A-18 • Appendix A: GAMS Index IMSL MATH/LIBRARY

EVESF Compute the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix.

EVFSF Compute selected eigenvalues and eigenvectors of a real
symmetric matrix.

EVLSF Compute all of the eigenvalues of a real symmetric matrix.

D4a2 Real nonsymmetric
EVCRG Compute all of the eigenvalues and eigenvectors of a real

matrix.
EVLRG Compute all of the eigenvalues of a real matrix.

D4a3 Complex Hermitian
EVAHF Compute the largest or smallest eigenvalues of a complex

Hermitian matrix.
EVBHF Compute the eigenvalues in a given range of a complex

Hermitian matrix.
EVCHF Compute all of the eigenvalues and eigenvectors of a

complex Hermitian matrix.
EVEHF Compute the largest or smallest eigenvalues and the

corresponding eigenvectors of a complex Hermitian
matrix.

EVFHF Compute the eigenvalues in a given range and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVLHF Compute all of the eigenvalues of a complex Hermitian
matrix.

D4a4 Complex non-Hermitian
EVCCG Compute all of the eigenvalues and eigenvectors of a

complex matrix.
EVLCG Compute all of the eigenvalues of a complex matrix.

D4a6 Banded
EVASB Compute the largest or smallest eigenvalues of a real

symmetric matrix in band symmetric storage mode.
EVBSB Compute the eigenvalues in a given interval of a real

symmetric matrix stored in band symmetric storage mode.
EVCSB Compute all of the eigenvalues and eigenvectors of a real

symmetric matrix in band symmetric storage mode.
EVESB Compute the largest or smallest eigenvalues and the

corresponding eigenvectors of a real symmetric matrix in
band symmetric storage mode.

EVFSB Compute the eigenvalues in a given interval and the
corresponding eigenvectors of a real symmetric matrix
stored in band symmetric storage mode.

EVLSB Compute all of the eigenvalues of a real symmetric matrix
in band symmetric storage mode.

D4b. Generalized eigenvalue problems (e.g., Ax = λBx)

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-19

D4b1 Real symmetric
GVCSP Compute all of the eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Az = λBz,
with B symmetric positive definite.

GVLSP Compute all of the eigenvalues of the generalized real
symmetric eigenvalue problem Az = λBz, with B symmetric
positive definite.

D4b2 Real general
GVCRG Compute all of the eigenvalues and eigenvectors of a

generalized real eigensystem Az = λBz.
GVLRG Compute all of the eigenvalues of a generalized real

eigensystem Az = λBz.

D4b4 Complex general
GVCCG Compute all of the eigenvalues and eigenvectors of a

generalized complex eigensystem Az = λBz.
GVLCG Compute all of the eigenvalues of a generalized complex

eigensystem Az = λBz.

D4c. Associated operations
EPICG Compute the performance index for a complex

eigensystem.
EPIHF Compute the performance index for a complex Hermitian

eigensystem.
EPIRG Compute the performance index for a real eigensystem.
EPISB Compute the performance index for a real symmetric

eigensystem in band symmetric storage mode.
EPISF Compute the performance index for a real symmetric

eigensystem.
GPICG Compute the performance index for a generalized complex

eigensystem Az = λBz.
GPIRG Compute the performance index for a generalized real

eigensystem Az = λBz.
GPISP Compute the performance index for a generalized real

symmetric eigensystem problem.

D4c2 Compute eigenvalues of matrix in compact form

D4c2b. . Hessenberg
EVCCH Compute all of the eigenvalues and eigenvectors of a

complex upper Hessenberg matrix.
EVCRH Compute all of the eigenvalues and eigenvectors of a real

upper Hessenberg matrix.
EVLCH Compute all of the eigenvalues of a complex upper

Hessenberg matrix.
EVLRH Compute all of the eigenvalues of a real upper Hessenberg

matrix.

D5 QR decomposition, Gram-Schmidt orthogonalization

A-20 • Appendix A: GAMS Index IMSL MATH/LIBRARY

LQERR Accumulate the orthogonal matrix Q from its factored form
given the QR factorization of a rectangular matrix A.

LQRRR Compute the QR decomposition, AP = QR, using
Householder transformations.

LQRSL Compute the coordinate transformation, projection, and
complete the solution of the least-squares problem Ax = b.

LSBRR Solve a linear least-squares problem with iterative
refinement.

LSQRR Solve a linear least-squares problem without iterative
refinement.

D6 Singular value decomposition
LSVCR Compute the singular value decomposition of a complex

matrix.
LSVRR Compute the singular value decomposition of a real matrix.

D7 Update matrix decompositions

D7b. Cholesky

LDNCH Downdate the R7R Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is removed.

LUPCH Update the R7R Cholesky factorization of a real symmetric
positive definite matrix after a rank-one matrix is added.

D7c. QR
LUPQR Compute an updated QR factorization after the rank-one

matrix αxy7 is added.

D9 Singular, overdetermined or underdetermined systems of linear
equations, generalized inverses

D9a. Unconstrained

D9a1 Least squares (L2) solution
LQRRR Compute the QR decomposition, AP = QR, using

Householder transformations.
LQRRV Compute the least-squares solution using Householder

transformations applied in blocked form.
LQRSL Compute the coordinate transformation, projection, and

complete the solution of the least-squares problem Ax = b.
LSBRR Solve a linear least-squares problem with iterative

refinement.
LSQRR Solve a linear least-squares problem without iterative

refinement.

D9b. Constrained

D9b1 Least squares (L2) solution

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-21

LCLSQ Solve a linear least-squares problem with linear
constraints.

D9c. Generalized inverses
LSGRR Compute the generalized inverse of a real matrix.

E INTERPOLATION

E1 Univariate data (curve fitting)

E1a....... Polynomial splines (piecewise polynomials)
BSINT Compute the spline interpolant, returning the B-spline

coefficients.
CSAKM Compute the Akima cubic spline interpolant.
CSCON Compute a cubic spline interpolant that is consistent with

the concavity of the data.
CSDEC Compute the cubic spline interpolant with specified

derivative endpoint conditions.
CSHER Compute the Hermite cubic spline interpolant.
CSIEZ Compute the cubic spline interpolant with the ‘not-a-knot’

condition and return values of the interpolant at specified
points.

CSINT Compute the cubic spline interpolant with the ‘not-a-knot’
condition.

CSPER Compute the cubic spline interpolant with periodic
boundary conditions.

QDVAL Evaluate a function defined on a set of points using
quadratic interpolation.

SPLEZ Compute the values of a spline that either interpolates or
fits user-supplied data.

E2 Multivariate data (surface fitting)

E2a....... Gridded
BS2IN Compute a two-dimensional tensor-product spline

interpolant, returning the tensor-product B-spline
coefficients.

BS3IN Compute a three-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

QD2DR Evaluate the derivative of a function defined on a
rectangular grid using quadratic interpolation.

QD2VL Evaluate a function defined on a rectangular grid using
quadratic interpolation.

QD3DR Evaluate the derivative of a function defined on a
rectangular three-dimensional grid using quadratic
interpolation.

QD3VL Evaluate a function defined on a rectangular three-
dimensional grid using quadratic interpolation.

E2b Scattered

A-22 • Appendix A: GAMS Index IMSL MATH/LIBRARY

SURF Compute a smooth bivariate interpolant to scattered data
that is locally a quintic polynomial in two variables.

E3......... Service routines for interpolation

E3a....... Evaluation of fitted functions, including quadrature

E3a1..... Function evaluation
BS1GD Evaluate the derivative of a spline on a grid, given its B-

spline representation.
BS2DR Evaluate the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline
representation.

BS2GD Evaluate the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS2VL Evaluate a two-dimensional tensor-product spline, given its
tensor-product B-spline representation.

BS3GD Evaluate the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3VL Evaluate a three-dimensional tensor-product spline, given
its tensor-product B-spline representation.

BSVAL Evaluate a spline, given its B-spline representation.
CSVAL Evaluate a cubic spline.
PPVAL Evaluate a piecewise polynomial.
QDDER Evaluate the derivative of a function defined on a set of

points using quadratic interpolation.

E3a2..... Derivative evaluation
BS1GD Evaluate the derivative of a spline on a grid, given its B-

spline representation.
BS2DR Evaluate the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline
representation.

BS2GD Evaluate the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3DR Evaluate the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS3GD Evaluate the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BSDER Evaluate the derivative of a spline, given its B-spline
representation.

CS1GD Evaluate the derivative of a cubic spline on a grid.
CSDER Evaluate the derivative of a cubic spline.
PP1GD Evaluate the derivative of a piecewise polynomial on a

grid.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-23

PPDER Evaluate the derivative of a piecewise polynomial.
QDDER Evaluate the derivative of a function defined on a set of

points using quadratic interpolation.

E3a3..... Quadrature
BS2IG Evaluate the integral of a tensor-product spline on a

rectangular domain, given its tensor-product B-spline
representation.

BS3IG Evaluate the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

BSITG Evaluate the integral of a spline, given its B-spline
representation.

CSITG Evaluate the integral of a cubic spline.

E3b Grid or knot generation
BSNAK Compute the ‘not-a-knot’ spline knot sequence.
BSOPK Compute the ‘optimal’ spline knot sequence.

E3c....... Manipulation of basis functions (e.g., evaluation, change of basis)
BSCPP Convert a spline in B-spline representation to piecewise

polynomial representation.

F........... SOLUTION OF NONLINEAR EQUATIONS

F1......... Single equation

F1a....... Polynomial

F1a1..... Real coefficients
ZPLRC Find the zeros of a polynomial with real coefficients using

Laguerre’s method.
ZPORC Find the zeros of a polynomial with real coefficients using

the Jenkins-Traub three-stage algorithm.

F1a2..... Complex coefficients
ZPOCC Find the zeros of a polynomial with complex coefficients

using the Jenkins-Traub three-stage algorithm.

F1b....... Nonpolynomial
ZANLY Find the zeros of a univariate complex function using

Müller’s method.
ZBREN Find a zero of a real function that changes sign in a given

interval.
ZREAL Find the real zeros of a real function using Müller’s

method.

F2......... System of equations
NEQBF Solve a system of nonlinear equations using factored secant

update with a finite-difference approximation to the
Jacobian.

NEQBJ Solve a system of nonlinear equations using factored secant
update with a user-supplied Jacobian.

A-24 • Appendix A: GAMS Index IMSL MATH/LIBRARY

NEQNF Solve a system of nonlinear equations using a modified
Powell hybrid algorithm and a finite-difference
approximation to the Jacobian.

NEQNJ Solve a system of nonlinear equations using a modified
Powell hybrid algorithm with a user-supplied Jacobian.

G OPTIMIZATION (search also classes K, L8)

G1 Unconstrained

G1a. Univariate

G1a1 Smooth function

G1a1a... User provides no derivatives
UVMIF Find the minimum point of a smooth function of a single

variable using only function evaluations.

G1a1b .. User provides first derivatives
UVMID Find the minimum point of a smooth function of a single

variable using both function evaluations and first derivative
evaluations.

G1a2 General function (no smoothness assumed)
UVMGS Find the minimum point of a nonsmooth function of a

single variable.

G1b Multivariate

G1b1 Smooth function

G1b1a. . User provides no derivatives
UMCGF Minimize a function of N variables using a conjugate

gradient algorithm and a finite-difference gradient.
UMINF Minimize a function of N variables using a quasi-New

method and a finite-difference gradient.
UNLSF Solve a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

G1b1b. . User provides first derivatives
UMCGG Minimize a function of N variables using a conjugate

gradient algorithm and a user-supplied gradient.
UMIDH Minimize a function of N variables using a modified

Newton method and a finite-difference Hessian.
UMING Minimize a function of N variables using a quasi-New

method and a user-supplied gradient.
UNLSJ Solve a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

G1b1c. . User provides first and second derivatives
UMIAH Minimize a function of N variables using a modified

Newton method and a user-supplied Hessian.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-25

G1b2 General function (no smoothness assumed)
UMPOL Minimize a function of N variables using a direct search

polytope algorithm.

G2 Constrained

G2a. Linear programming

G2a1 Dense matrix of constraints
DLPRS Solve a linear programming problem via the revised

simplex algorithm.

G2a2 Sparse matrix of constraints
SLPRS Solve a sparse linear programming problem via the revised

simplex algorithm.

G2e. Quadratic programming

G2e1 Positive definite Hessian (i.e., convex problem)
QPROG Solve a quadratic programming problem subject to linear

equality/inequality constraints.

G2h. General nonlinear programming

G2h1 Simple bounds

G2h1a. . Smooth function

G2h1a1 User provides no derivatives
BCLSF Solve a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

BCONF Minimize a function of N variables subject to bounds the
variables using a quasi-Newton method and a finite-
difference gradient.

G2h1a2 User provides first derivatives
BCLSJ Solve a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

BCODH Minimize a function of N variables subject to bounds the
variables using a modified Newton method and a finite-
difference Hessian.

BCONG Minimize a function of N variables subject to bounds the
variables using a quasi-Newton method and a user-supplied
gradient.

G2h1a3 User provides first and second derivatives
BCOAH Minimize a function of N variables subject to bounds the

variables using a modified Newton method and a user-
supplied Hessian.

A-26 • Appendix A: GAMS Index IMSL MATH/LIBRARY

G2h1b .. General function (no smoothness assumed)
BCPOL Minimize a function of N variables subject to bounds the

variables using a direct search complex algorithm.

G2h2 Linear equality or inequality constraints

G2h2a. . Smooth function

G2h2a1 User provides no derivatives
LCONF Minimize a general objective function subject to linear

equality/inequality constraints.

G2h2a2 User provides first derivatives
LCONG Minimize a general objective function subject to linear

equality/inequality constraints.

G2h3 Nonlinear constraints

G2h3b .. Equality and inequality constraints

G2h3b1 Smooth function and constraints

G2h3b1a. User provides no derivatives
NCONF Solve a general nonlinear programming problem using the

successive quadratic programming algorithm and a finite
difference gradient.

G2h3b1b User provides first derivatives of function and constraints
NCONG Solve a general nonlinear programming problem using the

successive quadratic programming algorithm and a user-
supplied gradient.

G4 Service routines

G4c Check user-supplied derivatives
CHGRD Check a user-supplied gradient of a function.
CHHES Check a user-supplied Hessian of an analytic function.
CHJAC Check a user-supplied Jacobian of a system of equations

with M functions in N unknowns.

G4d Find feasible point
GGUES Generate points in an N-dimensional space.

G4f....... Other
CDGRD Approximate the gradient using central differences.
FDGRD Approximate the gradient using forward differences.
FDHES Approximate the Hessian using forward differences and

function values.
FDJAC Approximate the Jacobian of M functions in N unknowns

using forward differences.
GDHES Approximate the Hessian using forward differences and a

user-supplied gradient.

H DIFFERENTIATION, INTEGRATION

H1 Numerical differentiation

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-27

DERIV Compute the first, second or third derivative of a user-
supplied function.

H2 Quadrature (numerical evaluation of definite integrals)

H2a. One-dimensional integrals

H2a1 Finite interval (general integrand)

H2a1a .. Integrand available via user-defined procedure

H2a1a1. Automatic (user need only specify required accuracy)
QDAG Integrate a function using a globally adaptive scheme based

on Gauss-Kronrod rules.
QDAGS Integrate a function (which may have endpoint

singularities).
QDNG Integrate a smooth function using a nonadaptive rule.

H2a2 Finite interval (specific or special type integrand including weight
functions, oscillating and singular integrands, principal value integrals,
splines, etc.)

H2a2a .. Integrand available via user-defined procedure

H2a2a1 Automatic (user need only specify required accuracy)
QDAGP Integrate a function with singularity points given.
QDAWC Integrate a function F(X)/(X − C) in the Cauchy principal

value sense.
QDAWO Integrate a function containing a sine or a cosine.
QDAWS Integrate a function with algebraic-logarithmic

singularities.

H2a2b .. Integrand available only on grid

H2a2b1 Automatic (user need only specify required accuracy)
BSITG Evaluate the integral of a spline, given its B-spline

representation.

H2a3 Semi-infinite interval (including e-[weight function)

H2a3a. . Integrand available via user-defined procedure

H2a3a1. Automatic (user need only specify required accuracy)
QDAGI Integrate a function over an infinite or semi-infinite

interval.
QDAWF Compute a Fourier integral.

H2b. Multidimensional integrals

H2b1 One or more hyper-rectangular regions (including iterated integrals)

H2b1a. . Integrand available via user-defined procedure

H2b1a1 Automatic (user need only specify required accuracy)
QAND Integrate a function on a hyper-rectangle.
TWODQ Compute a two-dimensional iterated integral.

A-28 • Appendix A: GAMS Index IMSL MATH/LIBRARY

H2b1b .. Integrand available only on grid

H2b1b2 Nonautomatic
BS2IG Evaluate the integral of a tensor-product spline on a

rectangular domain, given its tensor-product B-spline
representation.

BS3IG Evaluate the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

H2c. Service routines (compute weight and nodes for quadrature formulas)
FQRUL Compute a Fejér quadrature rule with various classical

weight functions.
GQRCF Compute a Gauss, Gauss-Radau or Gauss-Lobatto

quadrature rule given the recurrence coefficients for the
monic polynomials orthogonal with respect to the weight
function.

GQRUL Compute a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

RECCF Compute recurrence coefficients for various monic
polynomials.

RECQR Compute recurrence coefficients for monic polynomials
given a quadrature rule.

I............ DIFFERENTIAL AND INTEGRAL EQUATIONS

I1.......... Ordinary differential equations (ODE’s)

I1a. Initial value problems

I1a1...... General, nonstiff or mildly stiff

I1a1a. ... One-step methods (e.g., Runge-Kutta)
IVMRK Solve an initial-value problem y′ = f(t, y) for ordinary

differential equations using Runge-Kutta pairs of various
orders.

IVPRK Solve an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

I1a1b. ... Multistep methods (e.g., Adams predictor-corrector)
IVPAG Solve an initial-value problem for ordinary differential

equations using either Adams-Moulton’s or Gear’s BDF
method.

I1a2...... Stiff and mixed algebraic-differential equations
DASPG Solve a first order differential-algebraic system of

equations, g(t, y, y′) = 0, using Petzold−Gear BDF method.

I1b........ Multipoint boundary value problems

I1b2...... Nonlinear

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-29

BVPFD Solve a (parameterized) system of differential equations
with boundary conditions at two points, using a variable
order, variable step size finite-difference method with
deferred corrections.

BVPMS Solve a (parameterized) system of differential equations
with boundary conditions at two points, using a multiple-
shooting method.

I1b3...... Eigenvalue (e.g., Sturm-Liouville)
SLCNT Calculate the indices of eigenvalues of a Sturm-Liouville

problem with boundary conditions (at regular points) in a
specified subinterval of the real line, [α, β].

SLEIG Determine eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the form
with boundary conditions (at regular points).

I2.......... Partial differential equations

I2a........ Initial boundary value problems

I2a1...... Parabolic

I2a1a. ... One spatial dimension
MOLCH Solve a system of partial differential equations of the form

uW = f(x, t, u, u[, u[[) using the method of lines. The
solution is represented with cubic Hermite polynomials.

I2b........ Elliptic boundary value problems

I2b1...... Linear

I2b1a.... Second order

I2b1a1.. Poisson (Laplace) or Helmholtz equation

I2b1a1a Rectangular domain (or topologically rectangular in the coordinate
system)

FPS2H Solve Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based on
the HODIE finite-difference scheme on a uni mesh.

FPS3H Solve Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the
HODIE finite-difference scheme on a uniform mesh.

J INTEGRAL TRANSFORMS

J1 Trigonometric transforms including fast Fourier transforms

J1a........ One-dimensional

J1a1...... Real
FFTRB Compute the real periodic sequence from its Fourier

coefficients.
FFTRF Compute the Fourier coefficients of a real periodic

sequence.

A-30 • Appendix A: GAMS Index IMSL MATH/LIBRARY

FFTRI Compute parameters needed by FFTRF and FFTRB.

J1a2...... Complex
FFTCB Compute the complex periodic sequence from its Fourier

coefficients.
FFTCF Compute the Fourier coefficients of a complex periodic

sequence.
FFTCI Compute parameters needed by FFTCF and FFTCB.

J1a3...... Sine and cosine transforms
FCOSI Compute parameters needed by FCOST.
FCOST Compute the discrete Fourier cosine transformation of an

even sequence.
FSINI Compute parameters needed by FSINT.
FSINT Compute the discrete Fourier sine transformation of an odd

sequence.
QCOSB Compute a sequence from its cosine Fourier coefficients

with only odd wave numbers.
QCOSF Compute the coefficients of the cosine Fourier transform

with only odd wave numbers.
QCOSI Compute parameters needed by QCOSF and QCOSB.
QSINB Compute a sequence from its sine Fourier coefficients with

only odd wave numbers.
QSINF Compute the coefficients of the sine Fourier transform

with only odd wave numbers.
QSINI Compute parameters needed by QSINF and QSINB.

J1b Multidimensional
FFT2B Compute the inverse Fourier transform of a complex

periodic two-dimensional array.
FFT2D Compute Fourier coefficients of a complex periodic two-

dimensional array.
FFT3B Compute the inverse Fourier transform of a complex

periodic three-dimensional array.
FFT3F Compute Fourier coefficients of a complex periodic

threedimensional array.

J2 Convolutions
CCONV Compute the convolution of two complex vectors.
RCONV Compute the convolution of two real vectors.

J3 Laplace transforms
INLAP Compute the inverse Laplace transform of a complex

function.
SINLP Compute the inverse Laplace transform of a complex

function.

K APPROXIMATION (search also class L8)

K1 Least squares (L2) approximation

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-31

K1a. Linear least squares (search also classes D5, D6, D9)

K1a1 Unconstrained

K1a1a. . Univariate data (curve fitting)

K1a1a1 Polynomial splines (piecewise polynomials)
BSLSQ Compute the least-squares spline approximation, and return

the B-spline coefficients.
BSVLS Compute the variable knot B-spline least squares

approximation to given data.
CONFT Compute the least-squares constrained spline

approximation, returning the B-spline coefficients.

K1a1a2 Polynomials
RCURV Fit a polynomial curve using least squares.

K1a1a3 Other functions (e.g., trigonometric, user-specified)

FNLSQ Compute a least-squares approximation with user-supplied
basis functions.

K1a1b .. Multivariate data (surface fitting)
BSLS2 Compute a two-dimensional tensor-product spline

approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLS3 Compute a three-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

K1a2 Constrained

K1a2a .. Linear constraints
LCLSQ Solve a linear least-squares problem with linear

constraints.

K1b Nonlinear least squares

K1b1 Unconstrained

K1b1a .. Smooth functions

K1b1a1 User provides no derivatives
UNLSF Solve a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

K1b1a2 User provides first derivatives
UNLSJ Solve a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

K1b2 Constrained

K1b2a .. Linear constraints

A-32 • Appendix A: GAMS Index IMSL MATH/LIBRARY

BCLSF Solve a nonlinear least squares problem subject to bounds
on the variables using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

BCLSJ Solve a nonlinear least squares problem subject to bounds
on the variables using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

BCNLS Solve a nonlinear least-squares problem subject to bounds
on the variables and general linear constraints.

K2 Minimax (L�) approximation
RATCH Compute a rational weighted Chebyshev approximation to

a continuous function on an interval.

K5 Smoothing
CSSCV Compute a smooth cubic spline approximation to noisy

data using cross-validation to estimate the smoothing
parameter.

CSSED Smooth one-dimensional data by error detection.
CSSMH Compute a smooth cubic spline approximation to noisy

data.

K6 Service routines for approximation

K6a. Evaluation of fitted functions, including quadrature

K6a1 Function evaluation
BSVAL Evaluate a spline, given its B-spline representation.
CSVAL Evaluate a cubic spline.
PPVAL Evaluate a piecewise polynomial.

K6a2 Derivative evaluation
BSDER Evaluate the derivative of a spline, given its B-spline

representation.
CS1GD Evaluate the derivative of a cubic spline on a grid.
CSDER Evaluate the derivative of a cubic spline.
PP1GD Evaluate the derivative of a piecewise polynomial on a

grid.
PPDER Evaluate the derivative of a piecewise polynomial.

K6a3 Quadrature
CSITG Evaluate the integral of a cubic spline.
PPITG Evaluate the integral of a piecewise polynomial.

K6c. Manipulation of basis functions (e.g., evaluation, change of basis)
BSCPP Convert a spline in B-spline representation to piecewise

polynomial representation.

L........... STATISTICS, PROBABILITY

L1......... Data summarization

L1c....... Multi-dimensional data

L1c1..... Raw data

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-33

L1c1b... Covariance, correlation
CCORL Compute the correlation of two complex vectors.
RCORL Compute the correlation of two real vectors.

L3 Elementary statistical graphics (search also class Q)

L3e....... Multi-dimensional data

L3e3..... Scatter diagrams

L3e3a. .. Superimposed Y vs. X
PLOTP Print a plot of up to 10 sets of points.

L6 Random number generation

L6a....... Univariate

L6a21... Uniform (continuous, discrete), uniform order statistics
RNUN Generate pseudorandom numbers from a uniform (0, 1)

distribution.
RNUNF Generate a pseudorandom number from a uniform (0, 1)

distribution.

L6c....... Service routines (e.g., seed)
RNGET Retrieve the current value of the seed used in the IMSL

random number generators.
RNOPT Select the uniform (0, 1) multiplicative congruential

pseudorandom number generator.
RNSET Initialize a random seed for use in the IMSL random

number generators.

L8 Regression (search also classes D5, D6, D9, G, K)

L8a....... Simple linear (e.g., y = β0 + β1x + ε) (search also class L8h)

L8a1..... Ordinary least squares
FNLSQ Compute a least-squares approximation with user-supplied

basis functions.

L8a1a ... Parameter estimation

L8a1a1. Unweighted data
RLINE Fit a line to a set of data points using least squares.

L8b. Polynomial (e.g., y = β0 + β1x + β2x2 + ε) (search also class L8c)

L8b1 Ordinary least squares

L8b1b .. Parameter estimation

L8b1b2. Using orthogonal polynomials
RCURV Fit a polynomial curve using least squares.

L8c....... Multiple linear (e.g., y = β0 + β1x1 + … + βNxN + ε)

L8c1..... Ordinary least squares

A-34 • Appendix A: GAMS Index IMSL MATH/LIBRARY

L8c1b... Parameter estimation (search also class L8c1a)

L8c1b1. Using raw data
LSBRR Solve a linear least-squares problem with iterative

refinement.
LSQRR Solve a linear least-squares problem without iterative

refinement.

N DATA HANDLING

N1 Input, output
PGOPT Set or retrieve page width and length for printing.
WRCRL Print a complex rectangular matrix with a given format and

labels.
WRCRN Print a complex rectangular matrix with integer row and

column labels.
WRIRL Print an integer rectangular matrix with a given format and

labels.
WRIRN Print an integer rectangular matrix with integer row and

column labels.
WROPT Set or retrieve an option for printing a matrix.
WRRRL Print a real rectangular matrix with a given format and

labels.
WRRRN Print a real rectangular matrix with integer row and column

labels.

N3 Character manipulation
ACHAR Return a character given its ASCII value.
CVTSI Convert a character string containing an integer number

into the corresponding integer form.
IACHAR Return the integer ASCII value of a character argument.
ICASE Return the ASCII value of a character converted to

uppercase.
IICSR Compare two character strings using the ASCII collating

sequence but without regard to case.
IIDEX Determine the position in a string at which a given

character sequence begins without regard to case.

N4 Storage management (e.g., stacks, heaps, trees)
IWKCIN Initialize bookkeeping locations describing the character

workspace stack.
IWKIN Initialize bookkeeping locations describing the workspace

stack.

N5 Searching

N5b Insertion position
ISRCH Search a sorted integer vector for a given integer and return

its index.
SRCH Search a sorted vector for a given scalar and return its

index.

IMSL MATH/LIBRARY Appendix A: GAMS Index • A-35

SSRCH Search a character vector, sorted in ascending ASCII order,
for a given string and return its index.

N5c On a key
IIDEX Determine the position in a string at which a given

character sequence begins without regard to case.
ISRCH Search a sorted integer vector for a given integer and return

its index.
SRCH Search a sorted vector for a given scalar and return its

index.
SSRCH Search a character vector, sorted in ascending ASCII order,

for a given string and return its index.

N6 Sorting

N6a Internal

N6a1 Passive (i.e., construct pointer array, rank)

N6a1a .. Integer
SVIBP Sort an integer array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVIGP Sort an integer array by algebraically increasing value and

return the permutation that rearranges the array.

N6a1b .. Real
SVRBP Sort a real array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVRGP Sort a real array by algebraically increasing value and

return the permutation that rearranges the array.

N6a2 Active

N6a2a .. Integer
SVIBN Sort an integer array by nondecreasing absolute value.
SVIBP Sort an integer array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVIGN Sort an integer array by algebraically increasing value.
SVIGP Sort an integer array by algebraically increasing value and

return the permutation that rearranges the array.

N6a2b .. Real
SVRBN Sort a real array by nondecreasing absolute value.
SVRBP Sort a real array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVRGN Sort a real array by algebraically increasing value.
SVRGP Sort a real array by algebraically increasing value and

return the permutation that rearranges the array.

N8 Permuting
PERMA Permute the rows or columns of a matrix.
PERMU Rearrange the elements of an array as specified by a

permutation.

A-36 • Appendix A: GAMS Index IMSL MATH/LIBRARY

Q GRAPHICS (search also classes L3)
PLOTP Print a plot of up to 10 sets of points.

R SERVICE ROUTINES
IDYWK Compute the day of the week for a given date.
IUMAG Set or retrieve MATH/LIBRARY integer options.
NDAYS Compute the number of days from January 1, 1900, to the

given date.
NDYIN Give the date corresponding to the number of days since

January 1, 1900.
SUMAG Set or retrieve MATH/LIBRARY single-precision options.
TDATE Get today’s date.
TIMDY Get time of day.
VERML Obtain IMSL MATH/LIBRARY-related version, system

and license numbers.

R1 Machine-dependent constants
AMACH Retrieve single-precision machine constants.
IFNAN Check if a value is NaN (not a number).
IMACH Retrieve integer machine constants.
UMACH Set or retrieve input or output device unit numbers.

R3 Error handling

R3b Set unit number for error messages
UMACH Set or retrieve input or output device unit numbers.

R3c....... Other utilities
ERSET Set error handler default print and stop actions.
IERCD Retrieve the code for an informational error.
N1RTY Retrieve an error type for the most recently called IMSL

routine.

S........... SOFTWARE DEVELOPMENT TOOLS

S3......... Dynamic program analysis tools
CPSEC Return CPU time used in seconds.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-1

Appendix B: Alphabetical
Summary of Routines

IMSL MATH/LIBRARY
ACBCB 1096 Add two complex band matrices, both in band storage mode.

ACHAR 1155 Return a character given its ASCII value.

AMACH 1201 Retrieve single-precision machine constants.

ARBRB 1095 Add two band matrices, both in band storage mode.

BCLSF 952 Solve a nonlinear least squares problem subject to bounds on
the variables using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

BCLSJ 958 Solve a nonlinear least squares problem subject to bounds on
the variables using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

BCNLS 964 Solve a nonlinear least-squares problem subject to bounds on
the variables and general linear constraints.

BCOAH 942 Minimize a function of N variables subject to bounds the
variables using a modified Newton method and a user-
supplied Hessian.

BCODH 936 Minimize a function of N variables subject to bounds the
variables using a modified Newton method and a finite-
difference Hessian.

BCONF 923 Minimize a function of N variables subject to bounds the
variables using a quasi-Newton method and a finite-
difference gradient.

BCONG 930 Minimize a function of N variables subject to bounds the
variables using a quasi-Newton method and a user-supplied
gradient.

B-2 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

BCPOL 948 Minimize a function of N variables subject to bounds the
variables using a direct search complex algorithm.

BLINF 1086 Compute the bilinear form x7Ay.

BS1GD 473 Evaluate the derivative of a spline on a grid, given its B-
spline representation.

BS2DR 480 Evaluate the derivative of a two-dimensional tensor-product
spline, given its tensor-product B-spline representation.

BS2GD 483 Evaluate the derivative of a two-dimensional tensor-product
spline, given its tensor-product B-spline representation on a
grid.

BS2IG 487 Evaluate the integral of a tensor-product spline on a
rectangular domain, given its tensor-product B-spline
representation.

BS2IN 459 Compute a two-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

BS2VL 479 Evaluate a two-dimensional tensor-product spline, given its
tensor-product B-spline representation.

BS3DR 491 Evaluate the derivative of a three-dimensional tensor-product
spline, given its tensor-product B-spline representation.

BS3GD 495 Evaluate the derivative of a three-dimensional tensor-product
spline, given its tensor-product B-spline representation on a
grid.

BS3IG 500 Evaluate the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

BS3IN 464 Compute a three-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

BS3VL 490 Evaluate a three-dimensional tensor-product spline, given its
tensor-product B-spline representation.

BSCPP 504 Convert a spline in B-spline representation to piecewise
polynomial representation.

BSDER 471 Evaluate the derivative of a spline, given its B-spline
representation.

BSINT 450 Compute the spline interpolant, returning the B-spline
coefficients.

BSITG 476 Evaluate the integral of a spline, given its B-spline
representation.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-3

BSLS2 561 Compute a two-dimensional tensor-product spline
approximant using least squares, returning the tensor-product
B-spline coefficients.

BSLS3 566 Compute a three-dimensional tensor-product spline
approximant using least squares, returning the tensor-product
B-spline coefficients.

BSLSQ 543 Compute the least-squares spline approximation, and return
the B-spline coefficients.

BSNAK 454 Compute the ‘not-a-knot’ spline knot sequence.

BSOPK 457 Compute the ‘optimal’ spline knot sequence.

BSVAL 469 Evaluate a spline, given its B-spline representation.

BSVLS 547 Compute the variable knot B-spline least squares
approximation to given data.

BVPFD 678 Solve a (parameterized) system of differential equations with
boundary conditions at two points, using a variable order,
variable step size finite-difference method with deferred
corrections.

BVPMS 689 Solve a (parameterized) system of differential equations with
boundary conditions at two points, using a multiple-shooting
method.

CADD 1038 Add a scalar to each component of a vector, x ← x + a, all
complex.

CAXPY 1038 Compute the scalar times a vector plus a vector, y ← ax + y,
all complex.

CCBCB 1060 Copy a complex band matrix stored in complex band storage
mode.

CCBCG 1065 Convert a complex matrix in band storage mode to a
complex matrix in full storage mode.

CCGCB 1064 Convert a complex general matrix to a matrix in complex
band storage mode.

CCGCG 1058 Copy a complex general matrix.

CCONV 814 Compute the convolution of two complex vectors.

CCOPY 1037 Copy a vector x to a vector y, both complex.

CCORL 823 Compute the correlation of two complex vectors.

CDGRD 1007 Approximate the gradient using central differences.

CDOTC 1039 Compute the complex conjugate dot product, x yT .

CDOTU 1039 Compute the complex dot product x7y.

B-4 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CGBMV 1049 Compute one of the matrix-vector operations:

y Ax y y A x y y A yT T← + ← + ← +α β α β α β, , or ,
where A is a matrix stored in band storage mode.

CGEMM 1053 Compute one of the matrix-matrix operations:

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

← + ← + ←

+ ← + ← +

← + ← +

← + ← +

α β α β α

β α β α β

α β α β

α β α β

, ,

, , ,

, ,

,

 or

 or

CGEMV 1049 Compute one of the matrix-vector operations:

y Ax y y A x y y A yT T← + ← + ← +α β α β α β, , or ,

CGERC 1052 Compute the rank-one update of a complex general matrix:

A A xy T← + α .

CGERU 1052 Compute the rank-one update of a complex general matrix:

A A xyT← + α .

CHBCB 1074 Copy a complex Hermitian band matrix stored in band
Hermitian storage mode to a complex band matrix stored in
band storage mode.

CHBMV 1050 Compute the matrix-vector operation
y Ax y← +α β ,
where A is an Hermitian band matrix in band Hermitian
storage.

CHEMM 1054 Compute one of the matrix-matrix operations:
C AB C C BA C← + ←α β α β or + ,
where A is an Hermitian matrix and B and C are m by n
matrices.

CHEMV 1050 Compute the matrix-vector operation
y Ax y← +α β ,
where A is an Hermitian matrix.

CHER 1052 Compute the rank-one update of an Hermitian matrix:

A A xx T← + α with x complex and α real.

CHER2 1052 Compute a rank-two update of an Hermitian matrix:

A A xy yxT T← + +α α .

CHER2K 1055 Compute one of the Hermitian rank 2k operations:

C AB BA C C A B B A CT T T T← + + ← + +α α β α α β or ,
where C is an n by n Hermitian matrix and A and B are n by k
matrices in the first case and k by n matrices in the second case.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-5

CHERK 1054 Compute one of the Hermitian rank k operations:

C AA C C A A CT T← + ← +α β α β or ,
where C is an n by n Hermitian matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CHFCG 1071 Extend a complex Hermitian matrix defined in its upper
triangle to its lower triangle.

CHGRD 1018 Check a user-supplied gradient of a function.

CHHES 1021 Check a user-supplied Hessian of an analytic function.

CHJAC 1024 Check a user-supplied Jacobian of a system of equations
with M functions in N unknowns.

CONFT 551 Compute the least-squares constrained spline approximation,
returning the B-spline coefficients.

CONST 1185 Return the value of various mathematical and physical
constants.

CPSEC 1161 Return CPU time used in seconds.

CRBCB 1069 Convert a real matrix in band storage mode to a complex
matrix in band storage mode.

CRBRB 1059 Copy a real band matrix stored in band storage mode.

CRBRG 1063 Convert a real matrix in band storage mode to a real general
matrix.

CRGCG 1067 Copy a real general matrix to a complex general matrix.

CRGRB 1062 Convert a real general matrix to a matrix in band storage
mode.

CRGRG 1057 Copy a real general matrix.

CRRCR 1068 Copy a real rectangular matrix to a complex rectangular
matrix.

CS1GD 443 Evaluate the derivative of a cubic spline on a grid.

CSAKM 432 Compute the Akima cubic spline interpolant.

CSBRB 1073 Copy a real symmetric band matrix stored in band symmetric
storage mode to a real band matrix stored in band storage
mode.

CSCAL 1037 Multiply a vector by a scalar, y ← ay, both complex.

CSCON 434 Compute a cubic spline interpolant that is consistent with the
concavity of the data.

CSDEC 425 Compute the cubic spline interpolant with specified
derivative endpoint conditions.

B-6 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CSDER 441 Evaluate the derivative of a cubic spline.

CSET 1037 Set the components of a vector to a scalar, all complex.

CSFRG 1070 Extend a real symmetric matrix defined in its upper triangle
to its lower triangle.

CSHER 429 Compute the Hermite cubic spline interpolant.

CSIEZ 420 Compute the cubic spline interpolant with the ‘not-a-knot’
condition and return values of the interpolant at specified
points.

CSINT 423 Compute the cubic spline interpolant with the ‘not-a-knot’
condition.

CSITG 445 Evaluate the integral of a cubic spline.

CSPER 438 Compute the cubic spline interpolant with periodic boundary
conditions.

CSROT 1044 Apply a complex Givens plane rotation.

CSROTM 1045 Apply a complex modified Givens plane rotation.

CSSCAL 1137 Multiply a complex vector by a single-precision scalar, y ←
ay.

CSSCV 578 Compute a smooth cubic spline approximation to noisy data
using cross-validation to estimate the smoothing parameter.

CSSED 572 Smooth one-dimensional data by error detection.

CSSMH 575 Compute a smooth cubic spline approximation to noisy data.

CSUB 1038 Subtract each component of a vector from a scalar, x ← a −
x, all complex.

CSVAL 440 Evaluate a cubic spline.

CSVCAL 1038 Multiply a complex vector by a single-precision scalar and
store the result in another complex vector, y ← ax.

CSWAP 1038 Interchange vectors x and y, both complex.

CSYMM 1053 Compute one of the matrix-matrix operations:
C AB C C BA C← + ←α β α β or + ,
where A is a symmetric matrix and B and C are m by n
matrices.

CSYR2K 1055 Compute one of the symmetric rank 2k operations:

C AB BA C C A B B A CT T T T← + + ← + +α α β α α β or ,
where C is an n by n symmetric matrix and A and B are n by k
matrices in the first case and k by n matrices in the second case.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-7

CSYRK 1054 Compute one of the symmetric rank k operations:

C AA C C A A CT T← + ← +α β α β or ,
where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CTBMV 1051 Compute one of the matrix-vector operations:

x Ax x A x x A xT T← ← ←, , or ,
where A is a triangular matrix in band storage mode.

CTBSV 1051 Solve one of the complex triangular systems:

x A x x A x x A x
T T← ← ←− − −1 1 1

 , or 3 8 3 8, ,

where A is a triangular matrix in band storage mode.

CTRMM 1055 Compute one of the matrix-matrix operations:

B AB B A B B BA B BA

B A B B BA

T T

T T

← ← ← ←

← ←

α α α α

α α

, , , ,

,or
where B is an m by n matrix and A is a triangular matrix.

CTRMV 1050 Compute one of the matrix-vector operations:

x Ax x A x x A xT T← ← ←, , or ,
where A is a triangular matrix.

CTRSM 1055 Solve one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

← ← ← ←

← ←

− − − −

− −

α α α α

α α

1 1 1 1

1 1

, , , ,

,

3 8 3 8
3 8 3 8or

where A is a traiangular matrix.

CTRSV 1051 Solve one of the complex triangular systems:

x A x x A x x A x
T T← ← ←− − −1 1 1

, ,3 8 3 8 or ,

where A is a triangular matrix.

CUNIT 1187 Convert X in units XUNITS to Y in units YUNITS.

CVCAL 1038 Multiply a vector by a scalar and store the result in another
vector, y ← ax, all complex.

CVTSI 1160 Convert a character string containing an integer number into
the corresponding integer form.

CZCDOT 1039 Compute the sum of a complex scalar plus a complex

conjugate dot product, a x yT+ , using a double-precision
accumulator.

B-8 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CZDOTA 1040 Compute the sum of a complex scalar, a complex dot product
and the double-complex accumulator, which is set to the

result ACC ← ACC + a + x7y.

CZDOTC 1039 Compute the complex conjugate dot product, x yT , using a
double-precision accumulator.

CZDOTI 1040 Compute the sum of a complex scalar plus a complex dot
product using a double-complex accumulator, which is set to

the result ACC ← a + x7y.

CZDOTU 1039 Compute the complex dot product x7y using a double-
precision accumulator.

CZUDOT 1039 Compute the sum of a complex scalar plus a complex dot

product, a + x7y, using a double-precision accumulator.

DASPG 696 Solve a first order differential-algebraic system of equations,
g(t, y, y′) = 0, using Petzold−Gear BDF method.

DERIV 636 Compute the first, second or third derivative of a user-
supplied function.

DISL1 1105 Compute the 1-norm distance between two points.

DISL2 1104 Compute the Euclidean (2-norm) distance between two
points.

DISLI 1106 Compute the infinity norm distance between two points.

DLPRS 973 Solve a linear programming problem via the revised simplex
algorithm.

DQADD 1112 Add a double-precision scalar to the accumulator in extended
precision.

DQINI 1111 Initialize an extended-precision accumulator with a double-
precision scalar.

DQMUL 1112 Multiply double-precision scalars in extended precision.

DQSTO 1111 Store a double-precision approximation to an extended-
precision scalar.

DSDOT 1039 Compute the single-precision dot product x7y using a double
precision accumulator.

DUMAG 1178 This routine handles MATH/LIBRARY and
STAT/LIBRARY type DOUBLE PRECISION options.

EPICG 336 Compute the performance index for a complex eigensystem.

EPIHF 382 Compute the performance index for a complex Hermitian
eigensystem.

EPIRG 330 Compute the performance index for a real eigensystem.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-9

EPISB 366 Compute the performance index for a real symmetric
eigensystem in band symmetric storage mode.

EPISF 350 Compute the performance index for a real symmetric
eigensystem.

ERSET 1196 Set error handler default print and stop actions.

EVAHF 372 Compute the largest or smallest eigenvalues of a complex
Hermitian matrix.

EVASB 356 Compute the largest or smallest eigenvalues of a real
symmetric matrix in band symmetric storage mode.

EVASF 341 Compute the largest or smallest eigenvalues of a real
symmetric matrix.

EVBHF 376 Compute the eigenvalues in a given range of a complex
Hermitian matrix.

EVBSB 361 Compute the eigenvalues in a given interval of a real
symmetric matrix stored in band symmetric storage mode.

EVBSF 345 Compute selected eigenvalues of a real symmetric matrix.

EVCCG 330 Compute all of the eigenvalues and eigenvectors of a
complex matrix.

EVCCH 388 Compute all of the eigenvalues and eigenvectors of a
complex upper Hessenberg matrix.

EVCHF 369 Compute all of the eigenvalues and eigenvectors of a
complex Hermitian matrix.

EVCRG 327 Compute all of the eigenvalues and eigenvectors of a real
matrix.

EVCRH 385 Compute all of the eigenvalues and eigenvectors of a real
upper Hessenberg matrix.

EVCSB 353 Compute all of the eigenvalues and eigenvectors of a real
symmetric matrix in band symmetric storage mode.

EVCSF 339 Compute all of the eigenvalues and eigenvectors of a real
symmetric matrix.

EVEHF 374 Compute the largest or smallest eigenvalues and the
corresponding eigenvectors of a complex Hermitian matrix.

EVESB 358 Compute the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix in
band symmetric storage mode.

EVESF 343 Compute the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix.

B-10 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

EVFHF 379 Compute the eigenvalues in a given range and the
corresponding eigenvectors of a complex Hermitian matrix.

EVFSB 363 Compute the eigenvalues in a given interval and the
corresponding eigenvectors of a real symmetric matrix stored
in band symmetric storage mode.

EVFSF 347 Compute selected eigenvalues and eigenvectors of a real
symmetric matrix.

EVLCG 331 Compute all of the eigenvalues of a complex matrix.

EVLCH 387 Compute all of the eigenvalues of a complex upper
Hessenberg matrix.

EVLHF 367 Compute all of the eigenvalues of a complex Hermitian
matrix.

EVLRG 325 Compute all of the eigenvalues of a real matrix.

EVLRH 383 Compute all of the eigenvalues of a real upper Hessenberg
matrix.

EVLSB 351 Compute all of the eigenvalues of a real symmetric matrix in
band symmetric storage mode.

EVLSF 337 Compute all of the eigenvalues of a real symmetric matrix.

FCOSI 784 Compute parameters needed by FCOST.

FCOST 782 Compute the discrete Fourier cosine transformation of an
even sequence.

FDGRD 1009 Approximate the gradient using forward differences.

FDHES 1011 Approximate the Hessian using forward differences and
function values.

FDJAC 1015 Approximate the Jacobian of M functions in N unknowns
using forward differences.

FFT2B 800 Compute the inverse Fourier transform of a complex
periodic two-dimensional array.

FFT2D 797 Compute Fourier coefficients of a complex periodic two-
dimensional array.

FFT3B 806 Compute the inverse Fourier transform of a complex
periodic three-dimensional array.

FFT3F 803 Compute Fourier coefficients of a complex periodic
threedimensional array.

FFTCB 774 Compute the complex periodic sequence from its Fourier
coefficients.

FFTCF 772 Compute the Fourier coefficients of a complex periodic
sequence.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-11

FFTCI 777 Compute parameters needed by FFTCF and FFTCB.

FFTRB 768 Compute the real periodic sequence from its Fourier
coefficients.

FFTRF 765 Compute the Fourier coefficients of a real periodic sequence.

FFTRI 770 Compute parameters needed by FFTRF and FFTRB.

FNLSQ 539 Compute a least-squares approximation with user-supplied
basis functions.

FPS2H 734 Solve Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based on
the HODIE finite-difference scheme on a uni mesh.

FPS3H 739 Solve Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the
HODIE finite-difference scheme on a uniform mesh.

FQRUL 632 Compute a Fejér quadrature rule with various classical
weight functions.

FSINI 781 Compute parameters needed by FSINT.

FSINT 779 Compute the discrete Fourier sine transformation of an odd
sequence.

GDHES 1013 Approximate the Hessian using forward differences and a
user-supplied gradient.

GGUES 1027 Generate points in an N-dimensional space.

GMRES 262 Use restarted GMRES with reverse communication to generate
an approximate solution of Ax = b.

GPICG 403 Compute the performance index for a generalized complex
eigensystem Az = λBz.

GPIRG 396 Compute the performance index for a generalized real
eigensystem Az = λBz.

GPISP 409 Compute the performance index for a generalized real
symmetric eigensystem problem.

GQRCF 625 Compute a Gauss, Gauss-Radau or Gauss-Lobatto
quadrature rule given the recurrence coefficients for the
monic polynomials orthogonal with respect to the weight
function.

GQRUL 621 Compute a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

GVCCG 400 Compute all of the eigenvalues and eigenvectors of a
generalized complex eigensystem Az = λBz.

B-12 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

GVCRG 393 Compute all of the eigenvalues and eigenvectors of a
generalized real eigensystem Az = λBz.

GVCSP 407 Compute all of the eigenvalues and eigenvectors of the
generalized real symmetric eigenvalue problem Az = λBz,
with B symmetric positive definite.

GVLCG 398 Compute all of the eigenvalues of a generalized complex
eigensystem Az = λBz.

GVLRG 391 Compute all of the eigenvalues of a generalized real
eigensystem Az = λBz.

GVLSP 405 Compute all of the eigenvalues of the generalized real
symmetric eigenvalue problem Az = λBz, with B symmetric
positive definite.

HRRRR 1084 Compute the Hadamard product of two real rectangular
matrices.

HYPOT 1190 Compute a b2 2+ without underflow or overflow.

IACHAR 1156 Return the integer ASCII value of a character argument.

IADD 1038 Add a scalar to each component of a vector, x ← x + a, all
integer.

ICAMAX 1042 Find the smallest index of the component of a complex
vector having maximum magnitude.

ICAMIN 1042 Find the smallest index of the component of a complex
vector having minimum magnitude.

ICASE 1157 Return the ASCII value of a character converted to
uppercase.

ICOPY 1037 Copy a vector x to a vector y, both integer.

IDYWK 1165 Compute the day of the week for a given date.

IERCD 1196 Retrieve the code for an informational error.

IFNAN 1204 Check if a value is NaN (not a number).

IICSR 1157 Compare two character strings using the ASCII collating
sequence but without regard to case.

IIDEX 1159 Determine the position in a string at which a given character
sequence begins without regard to case.

IIMAX 1042 Find the smallest index of the maximum component of a
integer vector.

IIMIN 1042 Find the smallest index of the minimum of an integer vector.

IMACH 1201 Retrieve integer machine constants.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-13

INLAP 827 Compute the inverse Laplace transform of a complex
function.

ISAMAX 1042 Find the smallest index of the component of a single-
precision vector having maximum absolute value.

ISAMIN 1042 Find the smallest index of the component of a single-
precision vector having minimum absolute value.

ISET 1037 Set the components of a vector to a scalar, all integer.

ISMAX 1042 Find the smallest index of the component of a single-
precision vector having maximum value.

ISMIN 1042 Find the smallest index of the component of a single-
precision vector having minimum value.

ISRCH 1152 Search a sorted integer vector for a given integer and return
its index.

ISUB 1038 Subtract each component of a vector from a scalar, x ← a −
x, all integer.

ISUM 1041 Sum the values of an integer vector.

ISWAP 1038 Interchange vectors x and y, both integer.

IUMAG 1173 Set or retrieve MATH/LIBRARY integer options.

IVMRK 652 Solve an initial-value problem y′ = f(t, y) for ordinary
differential equations using Runge-Kutta pairs of various
orders.

IVPAG 646 Solve an initial-value problem for ordinary differential
equations using either Adams-Moulton’s or Gear’s BDF
method.

IVPRK 645 Solve an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

IWKCIN 1201 Initialize bookkeeping locations describing the character
workspace stack.

IWKIN 1200 Initialize bookkeeping locations describing the workspace
stack.

JCGRC 259 Solve a real symmetric definite linear system using the
Jacobi preconditioned conjugate gradient method with
reverse communication.

LCHRG 299 Compute the Cholesky decomposition of a symmetric
positive semidefinite matrix with optional column pivoting.

LCLSQ 282 Solve a linear least-squares problem with linear constraints.

B-14 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LCONF 984 Minimize a general objective function subject to linear
equality/inequality constraints.

LCONG 990 Minimize a general objective function subject to linear
equality/inequality constraints.

LDNCH 304 Downdate the R7R Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix is
removed.

LFCCB 164 Compute the LU factorization of a complex matrix in band
storage mode and estimate its L1 condition number.

LFCCG 32 Compute the LU factorization of a complex general matrix
and estimate its L1 condition number.

LFCCT 52 Estimate the condition number of a complex triangular
matrix.

LFCDH 92 Compute the R+ R factorization of a complex Hermitian
positive definite matrix and estimate its L1 condition number.

LFCDS 61 Compute the R7 R Cholesky factorization of a real
symmetric positive definite matrix and estimate its
L1condition number.

LFCHF 108 Compute the U DU+ factorization of a complex Hermitian
matrix and estimate its L1 condition number.

LFCQH 184 Compute the R+ R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode and
estimate its L1 condition number.

LFCQS 145 Compute the R7 R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric storage
mode and estimate its L1 condition number.

LFCRB 127 Compute the LU factorization of a real matrix in band
storage mode and estimate its L1 condition number.

LFCRG 15 Compute the LU factorization of a real general matrix and
estimate its L1 condition number.

LFCRT 46 Estimate the condition number of a real triangular matrix.

LFCSF 77 Compute the U DU7 factorization of a real symmetric matrix
and estimate its L1 condition number.

LFDCB 175 Compute the determinant of a complex matrix given the LU
factorization of the matrix in band storage mode.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-15

LFDCG 42 Compute the determinant of a complex general matrix given
the LU factorization of the matrix.

LFDCT 54 Compute the determinant of a complex triangular matrix.

LFDDH 101 Compute the determinant of a complex Hermitian positive

definite matrix given the R+ R Cholesky factorization of the
matrix.

LFDDS 69 Compute the determinant of a real symmetric positive

definite matrix given the R+ R Cholesky factorization of the
matrix.

LFDHF 117 Compute the determinant of a complex Hermitian matrix

given the U DU+ factorization of the matrix.

LFDQH 193 Compute the determinant of a complex Hermitian positive

definite matrix given the R+ R Cholesky factorization in
band Hermitian storage mode.

LFDQS 153 Compute the determinant of a real symmetric positive

definite matrix given the R7 R Cholesky factorization of the
band symmetric storage mode.

LFDRB 136 Compute the determinant of a real matrix in band storage
mode given the LU factorization of the matrix.

LFDRG 24 Compute the determinant of a real general matrix given the
LU factorization of the matrix.

LFDRT 48 Compute the determinant of a real triangular matrix.

LFDSF 85 Compute the determinant of a real symmetric matrix given

the U DU7 factorization of the matrix.

LFICB 172 Use iterative refinement to improve the solution of a
complex system of linear equations in band storage mode.

LFICG 39 Use iterative refinement to improve the solution of a
complex general system of linear equations.

LFIDH 99 Use iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations.

LFIDS 67 Use iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations.

LFIHF 114 Use iterative refinement to improve the solution of a
complex Hermitian system of linear equations.

LFIQH 191 Use iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations in band Hermitian storage mode.

B-16 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LFIQS 151 Use iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations in
band symmetric storage mode.

LFIRB 134 Use iterative refinement to improve the solution of a real
system of linear equations in band storage mode.

LFIRG 22 Use iterative refinement to improve the solution of a real
general system of linear equations.

LFISF 83 Use iterative refinement to improve the solution of a real
symmetric system of linear equations.

LFSCB 170 Solve a complex system of linear equations given the LU
factorization of the coefficient matrix in band storage mode.

LFSCG 37 Solve a complex general system of linear equations given the
LU factorization of the coefficient matrix.

LFSDH 97 Solve a complex Hermitian positive definite system of linear

equations given the R+ R factorization of the coefficient
matrix.

LFSDS 65 Solve a real symmetric positive definite system of linear

equations given the R7 R Choleksy factorization of the
coefficient matrix.

LFSHF 112 Solve a complex Hermitian system of linear equations given

the U DU+ factorization of the coefficient matrix.

LFSQH 189 Solve a complex Hermitian positive definite system of linear
equations given the factorization of the coefficient matrix in
band Hermitian storage mode.

LFSQS 149 Solve a real symmetric positive definite system of linear
equations given the factorization of the coefficient matrix in
band symmetric storage mode.

LFSRB 132 Solve a real system of linear equations given the LU
factorization of the coefficient matrix in band storage mode.

LFSRG 20 Solve a real general system of linear equations given the LU
factorization of the coefficient matrix.

LFSSF 81 Solve a real symmetric system of linear equations given the

U DU7 factorization of the coefficient matrix.

LFSXD 232 Solve a real sparse symmetric positive definite system of
linear equations, given the Cholesky factorization of the
coefficient matrix.

LFSXG 204 Solve a sparse system of linear equations given the LU
factorization of the coefficient matrix.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-17

LFSZD 244 Solve a complex sparse Hermitian positive definite system of
linear equations, given the Cholesky factorization of the
coefficient matrix.

LFSZG 217 Solve a complex sparse system of linear equations given the
LU factorization of the coefficient matrix.

LFTCB 167 Compute the LU factorization of a complex matrix in band
storage mode.

LFTCG 35 Compute the LU factorization of a complex general matrix.

LFTDH 95 Compute the R+ R factorization of a complex Hermitian
positive definite matrix.

LFTDS 64 Compute the R7 R Cholesky factorization of a real
symmetric positive definite matrix.

LFTHF 110 Compute the U DU+ factorization of a complex Hermitian
matrix.

LFTQH 187 Compute the R+ R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode.

LFTQS 148 Compute the R7 R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric storage
mode.

LFTRB 130 Compute the LU factorization of a real matrix in band
storage mode.

LFTRG 18 Compute the LU factorization of a real general matrix.

LFTSF 80 Compute the U DU7 factorization of a real symmetric
matrix.

LFTXG 199 Compute the LU factorization of a real general sparse matrix.

LFTZG 212 Compute the LU factorization of a complex general sparse
matrix.

LINCG 43 Compute the inverse of a complex general matrix.

LINCT 55 Compute the inverse of a complex triangular matrix.

LINDS 71 Compute the inverse of a real symmetric positive definite
matrix.

LINRG 26 Compute the inverse of a real general matrix.

LINRT 49 Compute the inverse of a real triangular matrix.

LNFXD 228 Compute the numerical Cholesky factorization of a sparse
symmetrical matrix A.

B-18 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LNFZD 240 Compute the numerical Cholesky factorization of a sparse
Hermitian matrix A.

LQERR 289 Accumulate the orthogonal matrix Q from its factored form
given the QR factorization of a rectangular matrix A.

LQRRR 286 Compute the QR decomposition, AP = QR, using
Householder transformations.

LQRRV 275 Compute the least-squares solution using Householder
transformations applied in blocked form.

LQRSL 292 Compute the coordinate transformation, projection, and
complete the solution of the least-squares problem Ax = b.

LSACB 159 Solve a complex system of linear equations in band storage
mode with iterative refinement.

LSACG 27 Solve a complex general system of linear equations with
iterative refinement.

LSADH 87 Solve a Hermitian positive definite system of linear
equations with iterative refinement.

LSADS 56 Solve a real symmetric positive definite system of linear
equations with iterative refinement.

LSAHF 103 Solve a complex Hermitian system of linear equations with
iterative refinement.

LSAQH 176 Solve a complex Hermitian positive definite system of linear
equations in band Hermitian storage mode with iterative
refinement.

LSAQS 138 Solve a real symmetric positive definite system of linear
equations in band symmetric storage mode with iterative
refinement.

LSARB 122 Solve a real system of linear equations in band storage mode
with iterative refinement.

LSARG 10 Solve a real general system of linear equations with iterative
refinement.

LSASF 72 Solve a real symmetric system of linear equations with
iterative refinement.

LSBRR 279 Solve a linear least-squares problem with iterative
refinement.

LSCXD 224 Perform the symbolic Cholesky factorization for a sparse
symmetric matrix using a minimum degree ordering or a
userspecified ordering, and set up the data structure for the
numerical Cholesky factorization.

LSGRR 315 Compute the generalized inverse of a real matrix.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-19

LSLCB 162 Solve a complex system of linear equations in band storage
mode without iterative refinement.

LSLCC 251 Solve a complex circulant linear system.

LSLCG 30 Solve a complex general system of linear equations without
iterative refinement.

LSLCQ 156 Compute the LDU factorization of a complex tridiagonal
matrix A using a cyclic reduction algorithm.

LSLCR 120 Compute the LDU factorization of a real tridiagonal matrix A
using a cyclic reduction algorithm.

LSLCT 50 Solve a complex triangular system of linear equations.

LSLDH 89 Solve a complex Hermitian positive definite system of linear
equations without iterative refinement.

LSLDS 59 Solve a real symmetric positive definite system of linear
equations without iterative refinement.

LSLHF 105 Solve a complex Hermitian system of linear equations
without iterative refinement.

LSLPB 143 Compute the R7 DR Cholesky factorization of a real
symmetric positive definite matrix A in codiagonal band
symmetric storage mode. Solve a system Ax = b.

LSLQB 182 Compute the R+ DR Cholesky factorization of a complex
hermitian positive-definite matrix A in codiagonal band
hermitian storage mode. Solve a system Ax = b.

LSLQH 179 Solve a complex Hermitian positive definite system of
linearequations in band Hermitian storage mode without
iterative refinement.

LSLQS 140 Solve a real symmetric positive definite system of linear
equations in band symmetric storage mode without iterative
refinement.

LSLRB 124 Solve a real system of linear equations in band storage mode
without iterative refinement.

LSLRG 12 Solve a real general system of linear equations without
iterative refinement.

LSLRT 45 Solve a real triangular system of linear equations.

LSLSF 75 Solve a real symmetric system of linear equations without
iterative refinement.

LSLTC 249 Solve a complex Toeplitz linear system.

LSLTO 248 Solve a real Toeplitz linear system.

LSLTQ 155 Solve a complex tridiagonal system of linear equations.

B-20 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LSLTR 118 Solve a real tridiagonal system of linear equations.

LSLXD 220 Solve a sparse system of symmetric positive definite linear
algebraic equations by Gaussian elimination.

LSLXG 195 Solve a sparse system of linear algebraic equations by
Gaussian elimination.

LSLZD 236 Solve a complex sparse Hermitian positive definite system of
linear equations by Gaussian elimination.

LSLZG 207 Solve a complex sparse system of linear equations by
Gaussian elimination.

LSQRR 272 Solve a linear least-squares problem without iterative
refinement.

LSVCR 311 Compute the singular value decomposition of a complex
matrix.

LSVRR 307 Compute the singular value decomposition of a real matrix.

LUPCH 301 Update the R7R Cholesky factorization of a real symmetric
positive definite matrix after a rank-one matrix is added.

LUPQR 295 Compute an updated QR factorization after the rank-one

matrix αxy7 is added.

MCRCR 1083 Multiply two complex rectangular matrices, AB.

MOLCH 717 Solve a system of partial differential equations of the form uW
= f(x, t, u, u[, u[[) using the method of lines. The solution is
represented with cubic Hermite polynomials.

MRRRR 1081 Multiply two real rectangular matrices, AB.

MUCBV 1093 Multiply a complex band matrix in band storage mode by a
complex vector.

MUCRV 1092 Multiply a complex rectangular matrix by a complex vector.

MURBV 1090 Multiply a real band matrix in band storage mode by a real
vector.

MURRV 1089 Multiply a real rectangular matrix by a vector.

MXTXF 1077 Compute the transpose product of a matrix, A7A.

MXTYF 1078 Multiply the transpose of matrix A by matrix B, A7B.

MXYTF 1079 Multiply a matrx A by the transpose of a matrix B, AB7.

N1RTY 1196 Retrieve an error type for the most recently called IMSL
routine.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-21

NCONF 996 Solve a general nonlinear programming problem using the
successive quadratic programming algorithm and a finite
difference gradient.

NCONG 1003 Solve a general nonlinear programming problem using the
successive quadratic programming algorithm and a user-
supplied gradient.

NDAYS 1163 Compute the number of days from January 1, 1900, to the
given date.

NDYIN 1164 Give the date corresponding to the number of days since
January 1, 1900.

NEQBF 854 Solve a system of nonlinear equations using factored secant
update with a finite-difference approximation to the
Jacobian.

NEQBJ 860 Solve a system of nonlinear equations using factored secant
update with a user-supplied Jacobian.

NEQNF 848 Solve a system of nonlinear equations using a modified
Powell hybrid algorithm and a finite-difference
approximation to the Jacobian.

NEQNJ 851 Solve a system of nonlinear equations using a modified
Powell hybrid algorithm with a user-supplied Jacobian.

NR1CB 1103 Compute the 1-norm of a complex band matrix in band
storage mode.

NR1RB 1102 Compute the 1-norm of a real band matrix in band storage
mode.

NR1RR 1099 Compute the 1-norm of a real matrix.

NR2RR 1100 Compute the Frobenius norm of a real rectangular matrix.

NRIRR 1098 Compute the infinity norm of a real matrix.

PCGRC 253 Solve a real symmetric definite linear system using a
preconditioned conjugate gradient method with reverse
communication.

PERMA 1139 Permute the rows or columns of a matrix.

PERMU 1138 Rearrange the elements of an array as specified by a
permutation.

PGOPT 1137 Set or retrieve page width and length for printing.

PLOTP 1181 Print a plot of up to 10 sets of points.

POLRG 1087 Evaluate a real general matrix polynomial.

PP1GD 510 Evaluate the derivative of a piecewise polynomial on a grid.

PPDER 507 Evaluate the derivative of a piecewise polynomial.

B-22 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

PPITG 512 Evaluate the integral of a piecewise polynomial.

PPVAL 505 Evaluate a piecewise polynomial.

PRIME 1183 Decompose an integer into its prime factors.

QAND 619 Integrate a function on a hyper-rectangle.

QCOSB 793 Compute a sequence from its cosine Fourier coefficients with
only odd wave numbers.

QCOSF 791 Compute the coefficients of the cosine Fourier transform
with only odd wave numbers.

QCOSI 795 Compute parameters needed by QCOSF and QCOSB.

QD2DR 520 Evaluate the derivative of a function defined on a rectangular
grid using quadratic interpolation.

QD2VL 518 Evaluate a function defined on a rectangular grid using
quadratic interpolation.

QD3DR 525 Evaluate the derivative of a function defined on a rectangular
three-dimensional grid using quadratic interpolation.

QD3VL 523 Evaluate a function defined on a rectangular three-
dimensional grid using quadratic interpolation.

QDAG 591 Integrate a function using a globally adaptive scheme based
on Gauss-Kronrod rules.

QDAGI 598 Integrate a function over an infinite or semi-infinite interval.

QDAGP 594 Integrate a function with singularity points given.

QDAGS 589 Integrate a function (which may have endpoint singularities).

QDAWC 610 Integrate a function F(X)/(X − C) in the Cauchy principal
value sense.

QDAWF 604 Compute a Fourier integral.

QDAWO 601 Integrate a function containing a sine or a cosine.

QDAWS 607 Integrate a function with algebraic-logarithmic singularities.

QDDER 516 Evaluate the derivative of a function defined on a set of
points using quadratic interpolation.

QDNG 613 Integrate a smooth function using a nonadaptive rule.

QDVAL 514 Evaluate a function defined on a set of points using quadratic
interpolation.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-23

QPROG 982 Solve a quadratic programming problem subject to linear
equality/inequality constraints.

QSINB 788 Compute a sequence from its sine Fourier coefficients with
only odd wave numbers.

QSINF 786 Compute the coefficients of the sine Fourier transform with
only odd wave numbers.

QSINI 790 Compute parameters needed by QSINF and QSINB.

RATCH 581 Compute a rational weighted Chebyshev approximation to a
continuous function on an interval.

RCONV 810 Compute the convolution of two real vectors.

RCORL 818 Compute the correlation of two real vectors.

RCURV 535 Fit a polynomial curve using least squares.

RECCF 628 Compute recurrence coefficients for various monic
polynomials.

RECQR 630 Compute recurrence coefficients for monic polynomials
given a quadrature rule.

RLINE 532 Fit a line to a set of data points using least squares.

RNGET 1167 Retrieve the current value of the seed used in the IMSL
random number generators.

RNOPT 1169 Select the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

RNSET 1168 Initialize a random seed for use in the IMSL random number
generators.

RNUN 1171 Generate pseudorandom numbers from a uniform (0, 1)
distribution.

RNUNF 1170 Generate a pseudorandom number from a uniform (0, 1)
distribution.

SADD 1038 Add a scalar to each component of a vector, x ← x + a, all
single precision.

SASUM 1041 Sum the absolute values of the components of a single-
precision vector.

SAXPY 1038 Compute the scalar times a vector plus a vector, y ← ax + y,
all single precision.

SCASUM 1041 Sum the absolute values of the real part together with the
absolute values of the imaginary part of the components of a
complex vector.

SCNRM2 1041 Compute the Euclidean norm of a complex vector.

B-24 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

SCOPY 1037 Copy a vector x to a vector y, both single precision.

SDDOTA 1040 Compute the sum of a single-precision scalar, a single-
precision dot product and the double-precision accumulator,

which is set to the result ACC ← ACC + a + x7y.

SDDOTI 1040 Compute the sum of a single-precision scalar plus a
singleprecision dot product using a double-precision

accumulator, which is set to the result ACC ← a + x7y.

SDOT 1039 Compute the single-precision dot product x7y.

SDSDOT 1039 Compute the sum of a single-precision scalar and a single

precision dot product, a + x7y, using a double-precision
accumulator.

SGBMV 1049 Compute one of the matrix-vector operations:

y Ax y y A x yT← + ← +α β α β, or ,
where A is a matrix stored in band storage mode.

SGEMM 1053 Compute one of the matrix-matrix operations:

C AB C C A B C C AB

C C A B C

T T

T T

← + ← + ←

+ ← +

α β α β α

β α β

, ,

, or
.

SGEMV 1049 Compute one of the matrix-vector operations:

y Ax y y A x yT← + ← +α β α β, or ,

SGER 1052 Compute the rank-one update of a real general matrix:

A A xyT← + α .

SHPROD 1040 Compute the Hadamard product of two single-precision
vectors.

SINLP 830 Compute the inverse Laplace transform of a complex
function.

SLCNT 757 Calculate the indices of eigenvalues of a Sturm-Liouville
problem with boundary conditions (at regular points) in a
specified subinterval of the real line, [α, β].

SLEIG 745 Determine eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the form
with boundary conditions (at regular points).

SLPRS 976 Solve a sparse linear programming problem via the revised
simplex algorithm.

SNRM2 1041 Compute the Euclidean length or L2 norm of a single-
precision vector.

SPLEZ 447 Compute the values of a spline that either interpolates or fits
user-supplied data.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-25

SPRDCT 1041 Multiply the components of a single-precision vector.

SRCH 1150 Search a sorted vector for a given scalar and return its index.

SROT 1043 Apply a Givens plane rotation in single precision.

SROTG 1045 Construct a Givens plane rotation in single precision.

SROTM 1044 Apply a modified Givens plane rotation in single precision.

SROTMG 1050 Construct a modified Givens plane rotation in single
precision.

SSBMV 1037 Compute the matrix-vector operation
y Ax y← +α β ,
where A is a symmetric matrix in band symmetric storage
mode.

SSCAL 1037 Multiply a vector by a scalar, y ← ay, both single precision.

SSET 1037 Set the components of a vector to a scalar, all single
precision.

SSRCH 1153 Search a character vector, sorted in ascending ASCII order,
for a given string and return its index.

SSUB 1038 Subtract each component of a vector from a scalar, x ← a −
x, all single precision.

SSUM 1041 Sum the values of a single-precision vector.

SSWAP 1038 Interchange vectors x and y, both single precision.

SSYMM 1053 Compute one of the matrix-matrix operations:
C AB C C BA C← + ←α β α β or + ,
where A is a symmetric matrix and B and C are m by n
matrices.

SSYMV 1050 Compute the matrix-vector operation
y Ax y← +α β ,
where A is a symmetric matrix.

SSYR 1053 Compute the rank-one update of a real symmetric matrix:

A A xxT← + α .

SSYR2 1053 Compute the rank-two update of a real symmetric matrix:

A A xy yxT T← + +α α .

SSYR2K 1054 Compute one of the symmetric rank 2k operations:

C AB BA C C A B B A CT T T T← + + ← + +α α β α α β or ,
where C is an n by n symmetric matrix and A and B are n by k
matrices in the first case and k by n matrices in the second case.

SSYRK 1054 Compute one of the symmetric rank k operations:

C AA C C A A CT T← + ← +α β α β or ,

B-26 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

STBMV 1051 Compute one of the matrix-vector operations:

x Ax x A xT← ← or ,
where A is a triangular matrix in band storage mode.

STBSV 1051 Solve one of the triangular systems:

x A x x A x
T

← ←− −1 1 or 3 8 ,

where A is a triangular matrix in band storage mode.

STRMM 1055 Compute one of the matrix-matrix operations:

B AB B A B B BA B BAT T← ← ← ←α α α α, , or ,
where B is an m by n matrix and A is a triangular matrix.

STRMV 1050 Compute one of the matrix-vector operations:

x Ax x A xT← ← or ,
where A is a triangular matrix.

STRSM 1055 Solve one of the matrix equations:

B A B B BA B A B

B B A

T

T

← ← ←

←

− − −

−

α α α

α

1 1 1

1

, , ,3 8
3 8or

where B is an m by n matrix and A is a triangular matrix.

STRSV 1051 Solve one of the triangular linear systems:

x A x x A x
T

← ←− −1 1 or 3 8
where A is a triangular matrix.

SUMAG 1175 Set or retrieve MATH/LIBRARY single-precision options.

SURF 529 Compute a smooth bivariate interpolant to scattered data that
is locally a quintic polynomial in two variables.

SVCAL 1038 Multiply a vector by a scalar and store the result in another
vector, y ← ax, all single precision.

SVIBN 1148 Sort an integer array by nondecreasing absolute value.

SVIBP 1149 Sort an integer array by nondecreasing absolute value and
return the permutation that rearranges the array.

SVIGN 1143 Sort an integer array by algebraically increasing value.

SVIGP 1144 Sort an integer array by algebraically increasing value and
return the permutation that rearranges the array.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines • B-27

SVRBN 1145 Sort a real array by nondecreasing absolute value.

SVRBP 1146 Sort a real array by nondecreasing absolute value and return
the permutation that rearranges the array.

SVRGN 1141 Sort a real array by algebraically increasing value.

SVRGP 1142 Sort a real array by algebraically increasing value and return
the permutation that rearranges the array.

SXYZ 1140 Compute a single-precision xyz product.

TDATE 1162 Get today’s date.

TIMDY 1161 Get time of day.

TRNRR 1075 Transpose a rectangular matrix.

TWODQ 615 Compute a two-dimensional iterated integral.

UMACH 1201 Set or retrieve input or output device unit numbers.

UMCGF 902 Minimize a function of N variables using a conjugate
gradient algorithm and a finite-difference gradient.

UMCGG 905 Minimize a function of N variables using a conjugate
gradient algorithm and a user-supplied gradient.

UMIAH 896 Minimize a function of N variables using a modified Newton
method and a user-supplied Hessian.

UMIDH 891 Minimize a function of N variables using a modified Newton
method and a finite-difference Hessian.

UMINF 881 Minimize a function of N variables using a quasi-New
method and a finite-difference gradient.

UMING 886 Minimize a function of N variables using a quasi-New
method and a user-supplied gradient.

UMPOL 909 Minimize a function of N variables using a direct search
polytope algorithm.

UNLSF 912 Solve a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

UNLSJ 918 Solve a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

UVMGS 878 Find the minimum point of a nonsmooth function of a single
variable.

UVMID 875 Find the minimum point of a smooth function of a single
variable using both function evaluations and first derivative
evaluations.

B-28 • Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

UVMIF 872 Find the minimum point of a smooth function of a single
variable using only function evaluations.

VCONC 1109 Compute the convolution of two complex vectors.

VCONR 1107 Compute the convolution of two real vectors.

VERML 1166 Obtain IMSL MATH/LIBRARY-related version, system and
license numbers.

WRCRL 1127 Print a complex rectangular matrix with a given format and
labels.

WRCRN 1125 Print a complex rectangular matrix with integer row and
column labels.

WRIRL 1123 Print an integer rectangular matrix with a given format and
labels.

WRIRN 1121 Print an integer rectangular matrix with integer row and
column labels.

WROPT 1130 Set or retrieve an option for printing a matrix.

WRRRL 1118 Print a real rectangular matrix with a given format and
labels.

WRRRN 1116 Print a real rectangular matrix with integer row and column
labels.

ZANLY 841 Find the zeros of a univariate complex function using
Müller’s method.

ZBREN 843 Find a zero of a real function that changes sign in a given
interval.

ZPLRC 836 Find the zeros of a polynomial with real coefficients using
Laguerre’s method.

ZPOCC 839 Find the zeros of a polynomial with complex coefficients
using the Jenkins-Traub three-stage algorithm.

ZPORC 838 Find the zeros of a polynomial with real coefficients using
the Jenkins-Traub three-stage algorithm.

ZQADD 1112 Add a double complex scalar to the accumulator in extended
precision.

ZQINI 1112 Initialize an extended-precision complex accumulator to a
double complex scalar.

ZQMUL 1112 Multiply double complex scalars using extended precision.

ZQSTO 1112 Store a double complex approximation to an extended-
precision complex scalar.

ZREAL 846 Find the real zeros of a real function using Müller’s
method.

IMSL MATH/LIBRARY Appendix C: References • C-1

Appendix C: References

Aird and Howell

Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103,
IMSL, Houston.

Aird and Rice

Aird, T.J., and J.R. Rice (1977), Systematic search in high dimensional sets,
SIAM Journal on Numerical Analysis, 14, 296−312.

Akima

Akima, H. (1970), A new method of interpolation and smooth curve fitting based
on local procedures, Journal of the ACM, 17, 589−602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting
for irregularly distributed data points, ACM Transactions on Mathematical
Software, 4, 148−159.

Arushanian et al.

Arushanian, O.B., M.K. Samarin, V.V. Voevodin, E.E. Tyrtyshikov, B.S.
Garbow, J.M. Boyle, W.R. Cowell, and K.W. Dritz (1983), The TOEPLITZ
Package Users’ Guide, Argonne National Laboratory, Argonne, Illinois.

Ashcraft

Ashcraft, C. (1987), A vector implementation of the multifrontal method for large
sparse, symmetric positive definite linear systems, Technical Report ETA-TR-51,
Engineering Technology Applications Division, Boeing Computer Services,
Seattle, Washington.

Ashcraft et al.

Ashcraft, C., R.Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in
sparse matrix methods for large linear systems on vector supercomputers. Intern.
J. Supercomputer Applic., 1(4), 10−29.

C-2 • Appendix C: References IMSL MATH/LIBRARY

Atkinson

Atkinson, Ken (1978), An Introduction to Numerical Analysis , John Wiley &
Sons, New York.

Atchison and Hanson

Atchison, M.A., and R.J. Hanson (1991), An Options Manager for the IMSL
Fortran 77 Libraries, Technical Report 9101, IMSL, Houston.

Bischof et al.

Bischof, C., J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
D. Sorensen (1988), LAPACK Working Note #5: Provisional Contents, Argonne
National Laboratory Report ANL-88-38, Mathematics and Computer Science.

Bjorck

Bjorck, Ake (1967), Iterative refinement of linear least squares solutions I, BIT,
7, 322−337.

Bjorck, Ake (1968), Iterative refinement of linear least squares solutions II, BIT,
8, 8−30.

Boisvert (1984)

Boisvert, Ronald (1984), A fourth order accurate fast direct method for the
Helmholtz equation, Elliptic Problem Solvers II, (edited by G. Birkhoff and A.
Schoenstadt), Academic Press, Orlando, Florida, 35−44.

Boisvert, Howe, and Kahaner

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A
framework for the management of scientific software, ACM Transactions on
Mathematical Software, 11, 313−355.

Boisvert, Howe, Kahaner, and Springmann

Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L.
Springmann (1990), Guide to Available Mathematical Software , NISTIR 90-
4237, National Institute of Standards and Technology, Gaithersburg, Maryland.

Brankin et al.

Brankin, R.W., I. Gladwell, and L.F. Shampine, RKSUITE: a Suite of Runge-
Kutta Codes for the Initial Value Problem for ODEs, Softreport 91-1,
Mathematics Department, Southern Methodist University, Dallas, Texas, 1991.

IMSL MATH/LIBRARY Appendix C: References • C-3

Brenan, Campbell, and Petzold

Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations , Elseview Science Publ. Co.

Brenner

Brenner, N. (1973), Algorithm 467: Matrix transposition in place [F1],
Communication of ACM, 16, 692−694.

Brent

Brent, R.P. (1971), An algorithm with guaranteed convergence for finding a zero
of a function, The Computer Journal, 14, 422−425.

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Brigham

Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood
Cliffs, New Jersey.

Cheney

Cheney, E.W. (1966), Introduction to Approximation Theory , McGraw-Hill, New
York.

Cline et al.

Cline, A.K., C.B. Moler, G.W. Stewart, and J.H. Wilkinson (1979), An estimate
for the condition number of a matrix, SIAM Journal of Numerical Analysis, 16,
368−375.

Cody, Fraser, and Hart

Cody, W.J., W. Fraser, and J.F. Hart (1968), Rational Chebyshev approximation
using linear equations, Numerische Mathematik, 12, 242−251.

Cohen and Taylor

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the
Fundamental Physical Constants, Codata Bulletin, Pergamon Press, New York.

Cooley and Tukey

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation
of complex Fourier series, Mathematics of Computation, 19, 297−301.

C-4 • Appendix C: References IMSL MATH/LIBRARY

Courant and Hilbert

Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II ,
John Wiley & Sons, New York, NY.

Craven and Wahba

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline
functions, Numerische Mathematik, 31, 377−403.

Crowe et al.

Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990),
A direct sparse linear equation solver using linked list storage , IMSL Technical
Report 9006, IMSL, Houston.

Crump

Crump, Kenny S. (1976), Numerical inversion of Laplace transforms using a
Fourier series approximation, Journal of the Association for Computing
Machinery, 23, 89−96.

Davis and Rabinowitz

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical
Integration, Academic Press, Orlando, Florida.

de Boor

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

de Hoog, Knight, and Stokes

de Hoog, F.R., J.H. Knight, and A.N. Stokes (1982), An improved method for
numerical inversion of Laplace transforms. SIAM Journal on Scientific and
Statistical Computing, 3, 357−366.

Dennis and Schnabel

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations , Prentice-Hall, Englewood
Cliffs, New Jersey.

Dongarra et al.

Dongarra, J.J., and C.B. Moler, (1977) EISPACK − A package for solving
matrix eigenvalue problems, Argonne National Laboratory, Argonne, Illinois.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK
Users’ Guide, SIAM, Philadelphia.

IMSL MATH/LIBRARY Appendix C: References • C-5

Dongarra, J.J., J. DuCroz, S. Hammarling, R. J. Hanson (1988), An Extended Set
of Fortran basic linear algebra subprograms, ACM Transactions on Mathematical
Software, 14 , 1−17.

Dongarra, J.J., J. DuCroz, S. Hammarling, I. Duff (1990), A set of level 3 basic
linear algebra subprograms, ACM Transactions on Mathematical Software, 16 ,
1−17.

Draper and Smith

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, second edition,
John Wiley & Sons, New York.

Du Croz et al.

Du Croz, Jeremy, P. Mayes, G. and Radicati (1990), Factorization of band
matrices using Level-3 BLAS, Proceedings of CONPAR 90 VAPP IV, Lecture
Notes in Computer Science, Springer, Berlin, 222.

Duff and Reid

Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse
symmetric linear equations. ACM Transactions on Mathematical Software, 9,
302−325.

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of
linear equations. SIAM Journal on Scientific and Statistical Computing , 5, 633−
641.

Duff et al.

Duff, I.S., A.M. Erisman, and J.K. Reid (1986), Direct Methods for Sparse
Matrices, Clarendon Press, Oxford.

Enright and Pryce

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing
initial value methods, ACM Transactions on Mathematical Software, 13, 1−22.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting
data with a digital computer, SIAM Journal on Applied Mathematics , 5, 74−88.

Fox, Hall, and Schryer

Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical
subroutine library, ACM Transactions on Mathematical Software, 4, 104−126.

C-6 • Appendix C: References IMSL MATH/LIBRARY

Garbow

Garbow, B.S. (1978) CALGO Algorithm 535: The QZ algorithm to solve the
generalized eigenvalue problem for complex matrices, ACM Transactions on
Mathematical Software, 4, 404−410.

Garbow et al.

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1972), Matrix
eigensystem Routines: EISPACK Guide Extension , Springer-Verlag, New York.

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1977), Matrix
Eigensystem Routines−EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an
implementation of Weeks’ method for the inverse Laplace transform problem,
ACM Transactions of Mathematical Software, 14, 163−170.

Gautschi

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas,
Mathematics of Computation, 22, 251−270.

Gautschi and Milovanofic

Gautschi, Walter, and Gradimir V. Milovanofic (1985), Gaussian quadrature
involving Einstein and Fermi functions with an application to summation of
series, Mathematics of Computation, 44, 177−190.

Gay

Gay, David M. (1981), Computing optimal locally constrained steps, SIAM
Journal on Scientific and Statistical Computing , 2, 186−197.

Gay, David M. (1983), Algorithm 611: Subroutine for unconstrained
minimization using a model/trust-region approach, ACM Transactions on
Mathematical Software, 9, 503− 524.

Gear

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Gear and Petzold

Gear, C.W., and Linda R. Petzold (1984), ODE methods for the solutions of
differential/algebraic equations, SIAM Journal Numerical Analysis, 21, #4, 716.

George and Liu

George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive-
definite Systems, Prentice-Hall, Englewood Cliffs, New Jersey.

IMSL MATH/LIBRARY Appendix C: References • C-7

Gill et al.

Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the
variables, NPL Report NAC 72, National Physical Laboratory, England.

Gill, Philip E., Walter Murray, and Margaret Wright (1981), Practical
Optimization, Academic Press, New York.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building
and practical aspects of nonlinear programming, in Computational Mathematical
Programming, (edited by K. Schittkowski), NATO ASI Series, 15, Springer-
Verlag, Berlin, Germany.

Goldfarb and Idnani

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving
strictly convex quadratic programs, Mathematical Programming, 27, 1−33.

Golub

Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review,
15, 318−334.

Golub and Van Loan

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns
Hopkins University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1989), Matrix Computations, 2d ed.,
Johns Hopkins University Press, Baltimore, Maryland.

Golub and Welsch

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules,
Mathematics of Computation, 23, 221−230.

Gregory and Karney

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing
Computational Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin and Redish

Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient
algorithm for sorting with minimal storage, Communications of the ACM, 13, 54.

C-8 • Appendix C: References IMSL MATH/LIBRARY

Grosse

Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its
Applications, 34, 29−41.

Guerra and Tapia

Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and
data smoothing, MRC Technical Summary Report 1452, Mathematics Research
Center, University of Wisconsin, Madison.

Hageman and Young

Hageman, Louis A., and David M.Young (1981), Applied Iterative Methods,
Academic Press, New York.

Hanson

Hanson, Richard J. (1986), Least squares with bounds and linear constraints,
SIAM Journal Sci. Stat. Computing, 7, #3.

Hanson, Richard.J. (1990), A cyclic reduction solver for the IMSL Mathematics
Library, IMSL Technical Report 9002, IMSL, Houston.

Hanson et al.

Hanson, Richard J., R. Lehoucq, J. Stolle, and A. Belmonte (1990), Improved
performance of certain matrix eigenvalue computations for the IMSL/MATH
Library, IMSL Technical Report 9007, IMSL, Houston.

Hartman

Hartman, Philip (1964) Ordinary Differential Equations, John Wiley and Sons,
New York, NY.

Hausman

Hausman, Jr., R.F. (1971), Function Optimization on a Line Segment by Golden
Section, Lawrence Radiation Laboratory, University of California, Livermore.

Hindmarsh

Hindmarsh, A.C. (1974), GEAR: Ordinary differential equation system solver ,
Lawrence Livermore Laboratory Report UCID−30001, Revision 3.

Hull et al.

Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for DVERK −
A subroutine for solving non-stiff ODEs, Department of Computer Science
Technical Report 100, University of Toronto.

IMSL MATH/LIBRARY Appendix C: References • C-9

IEEE

ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point
Arithmetic, The IEEE, Inc., New York.

IMSL (1991)

IMSL (1991), IMSL STAT/LIBRARY User’s Manual, Version 2.0, IMSL,
Houston.

Irvine et al.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained
interpolation and smoothing, Constructive Approximation, 2, 129−151.

Jenkins

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM
Transactions on Mathematical Software, 1, 178−189.

Jenkins and Traub

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real
polynomials using quadratic iteration, SIAM Journal on Numerical Analysis, 7,
545−566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for
polynomial zeros and its relation to generalized Rayleigh iteration, Numerische
Mathematik, 14, 252−263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial,
Communications of the ACM, 15, 97−99.

Kennedy and Gentle

Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing,
Marcel Dekker, New York.

Kershaw

Kershaw, D. (1982), Solution of tridiagonal linear systems and vectorization of
the ICCG algorithm on the Cray-1, Parallel Computations, Academic Press, Inc.,
85-99.

Knuth

Knuth, Donald E. (1973), The Art of Computer Programming, Volume 3: Sorting
and Searching, Addison-Wesley Publishing Company, Reading, Mass.

C-10 • Appendix C: References IMSL MATH/LIBRARY

Lawson et al.

Lawson, C.L., R.J. Hanson, D.R. Kincaid, and F.T. Krogh (1979), Basic linear
algebra subprograms for Fortran usage, ACM Transactions on Mathematical
Software, 5, 308− 323.

Leavenworth

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function,
Communications of the ACM, 3, 602.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least
squares, Quarterly of Applied Mathematics, 2, 164−168.

Lewis et al.

Lewis, P.A. W., A.S. Goodman, and J.M. Miller (1969), A pseudo-random
number generator for the System/360, IBM Systems Journal, 8, 136−146.

Liepman

Liepman, David S. (1964), Mathematical constants, in Handbook of
Mathematical Functions, Dover Publications, New York.

Liu

Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal
method for sparse factorization. ACM Transactions on Mathematical Software,
12, 249−264.

Liu, J.W.H. (1987), A collection of routines for an implementation of the
multifrontal method, Technical Report CS-87-10, Department of Computer
Science, York University, North York, Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky
factorization. ACM Transactions on Mathematical Software, 15, 310−325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory
and practice, Technical Report CS-90-04, Department of Computer Science,
York University, North York, Ontario, Canada.

Liu and Ashcraft

Liu, J., and C. Ashcraft (1987), A vector implementation of the multifrontal
method for large sparse, symmetric positive definite linear systems , Technical
Report ETA-TR-51, Engineering Technology Applications Division, Boeing
Computer Services, Seattle, Washington.

IMSL MATH/LIBRARY Appendix C: References • C-11

Lyness and Giunta

Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for
numerical inversion of the Laplace transform, Mathmetics of Computation, 47,
313−322.

Madsen and Sincovec

Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General
collocation software for partial differential equations, ACM Transactions on
Mathematical Software, 5, #3, 326-351.

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics , 11, 431−441.

Martin and Wilkinson

Martin, R.S., and J.W. Wilkinson (1968), Reduction of the symmetric
eigenproblem Ax = λBx and related problems to standard form, Numerische
Mathematik, 11, 99−119.

Micchelli et al.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of
smooth functions, Numerische Mathematik, 26, 279−285

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985),
Constrained LS approximation, Constructive Approximation, 1, 93−102.

Moler and Stewart

Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix
eigenvalue problems, SIAM Journal on Numerical Analysis, 10, 241−256.

More et al.

More, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User guide for
MINPACK-1, Argonne National Labs Report ANL-80-74, Argonne, Illinois.

Muller

Muller, D.E. (1956), A method for solving algebraic equations using an automatic
computer, Mathematical Tables and Aids to Computation , 10, 208−215.

C-12 • Appendix C: References IMSL MATH/LIBRARY

Murtagh

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and
Practice, McGraw-Hill, New York.

Murty

Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

Nelder and Mead

Nelder, J.A., and R. Mead (1965), A simplex method for function minimization,
Computer Journal 7, 308−313.

Neter and Wasserman

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models,
Richard D. Irwin, Homewood, Ill.

Park and Miller

Park, Stephen K., and Keith W. Miller (1988), Random number generators: good
ones are hard to find, Communications of the ACM, 31, 1192−1201.

Parlett

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice−Hall, Inc.,
Englewood Cliffs, New Jersey.

Pereyra

Pereyra, Victor (1978), PASVA3: An adaptive finite-difference FORTRAN
program for first order nonlinear boundary value problems, in Lecture Notes in
Computer Science, 76, Springer-Verlag, Berlin, 67−88.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 13, 624.

Petzold

Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system
solver, Proceedings of the IMACS World Congress, Montreal, Canada.

Piessens et al.

Piessens, R., E. deDoncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner (1983),
QUADPACK, Springer-Verlag, New York.

IMSL MATH/LIBRARY Appendix C: References • C-13

Powell

Powell, M.J.D. (1977), Restart procedures for the conjugate gradient method,
Mathematical Programming, 12, 241−254.

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization
calculations, in Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in
Mathematics, (edited by G.A. Watson), 630, Springer-Verlag, Berlin, Germany,
144−157.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic
programming, DAMTP Report NA17, Cambridge, England.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and
Idnani, Mathematical Programming Study , 25, 46-61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimization
calculations, DAMTP Report NA17, University of Cambridge, England.

Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly constrained
optimization calculations, DAMTP Report NA2, University of Cambridge,
England.

Pruess and Fulton

Pruess, S. and C.T. Fulton (1993), Mathematical Software for Sturm-Liouville
Problems, ACM Transactions on Mathematical Software, 17, 3, 360−376.

Reinsch

Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische
Mathematik, 10, 177−183.

Rice

Rice, J.R. (1983), Numerical Methods, Software, and Analysis , McGraw-Hill,
New York.

Saad and Schultz

Saad, Y., and M.H. Schultz (1986), GMRES: a generalized minimal residual
residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat.
Comput., 7, 856−869.

Schittkowski

Schittkowski, K. (1980), Nonlinear programming codes, Lecture Notes in
Economics and Mathematical Systems, 183, Springer-Verlag, Berlin, Germany.

Schittkowski, K. (1983), On the convergence of a sequential quadratic
programming method with an augmented Lagrangian line search function,

C-14 • Appendix C: References IMSL MATH/LIBRARY

Mathematik Operationsforschung und Statistik, Serie Optimization, 14, 197−216.

Schittkowski, K. (1986), NLPQL: A FORTRAN subroutine solving constrained
nonlinear programming problems, (edited by Clyde L. Monma), Annals of
Operations Research, 5, 485−500.

Schittkowski, K. (1987), More test examples for nonlinear programming codes ,
SpringerVerlag, Berlin, 74.

Schnabel

Schnabel, Robert B. (1985), Finite Difference Derivatives − Theory and Practice,
Report, National Bureau of Standards, Boulder, Colorado.

Schreiber and Van Loan

Schreiber, R., and C. Van Loan (1989), A Storage−Efficient WY Representation
for Products of Householder Transformations, SIAM J. Sci. Stat. Comp., Vol. 10,
No. 1, pp. 53-57, January (1989).

Scott et al.

Scott, M.R., L.F. Shampine, and G.M. Wing (1969), Invariant Embedding and
the Calculation of Eigenvalues for Sturm-Liouville Systems, Computing, 4, 10−
23.

Sewell

Sewell, Granville (1982), IMSL software for differential equations in one space
variable, IMSL Technical Report 8202, IMSL, Houston.

Shampine

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications
of the ACM, 18, 179−180.

Shampine and Gear

Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff ordinary
differential equations, SIAM Review, 21, 1−17.

Sincovec and Madsen

Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial
differential equations, ACM Transactions on Mathematical Software, 1, #3, 232-
260.

IMSL MATH/LIBRARY Appendix C: References • C-15

Singleton

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with
minimal storage, Communications of the ACM, 12, 185−187.

Smith

Smith, B.T. (1967), ZERPOL, A Zero Finding Algorithm for Polynomials Using
Laguerre’s Method, Department of Computer Science, University of Toronto.

Smith et al.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and
C.B. Moler (1976), Matrix Eigensystem Routines − EISPACK Guide, Springer-
Verlag, New York.

Spang

Spang, III, H.A. (1962), A review of minimization techniques for non-linear
functions, SIAM Review, 4, 357−359.

Stewart

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press,
New York.

Stewart, G.W. (1976), The economical storage of plane rotations, Numerische
Mathematik, 25, 137−139.

Stoer

Stoer, J. (1985), Principles of sequential quadratic programming methods for
solving nonlinear programs, in Computational Mathematical Programming,
(edited by K. Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin,
Germany.

Stroud and Secrest

Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae,
Prentice-Hall, Englewood Cliffs, New Jersey.

Titchmarsh

Titchmarsh, E. Eigenfunction Expansions Associated with Second Order
Differential Equations, Part I, 2d Ed., Oxford University Press, London, 1962.

Trench

Trench, W.F. (1964), An algorithm for the inversion of finite Toeplitz matrices,
Journal of the Society for Industrial and Applied Mathematics, 12, 515−522.

C-16 • Appendix C: References IMSL MATH/LIBRARY

Walker

Walker, H.F. (1988), Implementation of the GMRES method using Householder
transformations, SIAM J. Sci. Stat. Comput., 9, 152−163.

Washizu

Washizu, K. (1968), Variational Methods in Elasticity and Plasticity , Pergamon
Press, New York.

Watkins and Elsner

Watkins, D.S., and L. Elsner (1990), Convergence of algorithms of
decomposition type for the eigenvalue problem, Linear Algebra and Applications
(to appear).

Weeks

Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre
functions, J. ACM, 13, 419−429.

Wilkinson

Wilkinson, J.H. (1965),The Algebraic Eigenvalue Problem, Oxford University

IMSL MATH/LIBRARY Index • i

Index

1

1-norm 1102, 1103, 1105

A

Adams-Moulton’s method 662
Akima interpolant 432
algebraic-logarithmic singularities

607
array permutation 1139
ASCII collating sequence 1157
ASCII values 1155, 1156

B

B-spline coefficients 450, 545, 553
B-spline representation 471, 473,

476, 479, 500, 504
B-splines 413
band Hermitian storage mode 179,

181, 187, 189, 191, 193, 1210
band storage mode 124, 127, 130,

132, 134, 136, 138, 162, 164,
167, 170, 172, 175, 1060, 1062,
1063, 1064, 1065,, 1073, 1093,
1095, 1099, 1102, 1103, 1208

band symmetric storage mode 140,
143, 147, 148, 149, 151, 153,
351, 353, 356, 358, 361, 363,
366, 1074, 1209

band triangular storage mode 1211
Basic Linear Algebra Subprograms

1034
basis functions 541
bilinear form 1086
BLAS 1034, 1035, 1047, 1048, 1049

Level 1 1034, 1035

Level 2 1047, 1048
Level 3 1047, 1048, 1049

boundary conditions 678
Broyden’s update 854, 860

C

Cauchy principal value 586, 610
central differences 1007
character arguments 1156
character sequence 1159
character string 1160
character workspace 1202
Chebyshev approximation 418, 583
Cholesky decomposition 307
Cholesky factorization 61, 64, 65,

69, 101, 145, 148, 153, 193,
228, 232, 240, 244, 304

circulant linear system 251
circulant matrices 8
classical weight functions 621, 632
codiagonal band Hermitian storage

mode 1213
codiagonal band hermitian storage

mode 182
codiagonal band symmetric storage

mode 143, 1212
coefficient matrix 20, 37, 65, 81, 97,

112, 132, 149, 170, 191, 207,
217, 232, 244

coefficients 786, 791
column pivoting 299
complex coefficients 839
complex function 827, 830
complex periodic sequence 772, 774
complex sparse Hermitian positive

definite system 236, 244
complex sparse system 207, 217
complex triangular matrix 55, 54
complex triangular system 50
complex tridiagonal system 155
complex vectors 814, 823
condition number 46, 52
conjugate gradient algorithm 902,

905
conjugate gradient method 253, 259
continuous Fourier transform 763
continuous function 581
convolution 810, 814, 1109
coordinate transformation 292
correlation 818, 823
cosine 601
cosine Fourier coefficients 793
cosine Fourier transform 791

ii • Index IMSL MATH/LIBRARY

CPU time 1162
crossvalidation 578
cubic spline 440, 441, 443, 445
cubic spline approximation 575, 578
cubic spline interpolant 420, 423,

425, 429, 432, 434, 438
cubic splines 415
cyclic reduction algorithm 120, 156

D

data points 532
date 1162, 1163, 1164, 1165
degree of accuracy 1193
deprecated routines 1217
determinants 7, 24, 42, 48, 54, 69,

87, 101, 117, 136, 153, 175, 193
differential algebraic equations 643
differential equations 641, 678
direct search complex algorithm 948
direct search polytope algorithm 909
discrete Fourier cosine

transformation 782
discrete Fourier sine transformation

779
discrete Fourier transform 763
dot product 1039, 1040
double precision iii, 1111
DOUBLE PRECISION options 1178
DOUBLE PRECISION types v

E

eigensystem
complex 336, 398, 400, 403

Hermitian 382
real 330, 350, 391, 393, 396

symmetric 366, 409
eigenvalues 325, 327, 331, 333, 337,

339, 341, 343, 345, 347, 351,
353, 356, 358, 361, 363, 367,
369, 372, 374, 376, 379, 383,
385, 387, 388, 391, 393, 398,
400, 405, 407

eigenvectors 327, 333, 339, 343,
347, 353, 358, 363, 369, 374,
379, 385, 388, 393, 400, 407

endpoint singularities 589
error detection 572
error handling vi, 1195
errors 1193, 1194, 1195, 1196

alert 1194
detection 1193
fatal 1195

informational 1194
multiple 1193
note 1194
severity 1193
terminal 1194, 1195
warning 1195

Euclidean (2-norm) distance 1104
even sequence 782
extended precision arithmetic 1111

F

factored secant update 854, 860
Fast Fourier Transforms 762
Fejer quadrature rule 633
finite difference gradient 996
finite-difference approximation 848,

854
finite-difference gradient 881, 902,

923
finite-difference Hessian 891
finite-difference Jacobian 912
first derivative 636
first derivative evaluations 875
first order differential 696
forward differences 1009, 1011,

1013, 1015
Fourier coefficients 765, 768, 772,

774, 797, 803
Fourier integral 604
Fourier transform 800, 806
Frobenius norm 1100
full storage mode 1065

G

Gauss quadrature 587
Gauss quadrature rule 621, 625
Gauss-Kronrod rules 591
Gauss-Lobatto quadrature rule 621,

625
Gauss-Radau quadrature rule 621,

625
Gaussian elimination 195, 207, 220,

236
Gear’s BDF method 662
Givens plane rotation 1043
Givens transformations 1044, 1045,

1046
globally adaptive scheme 591
gradient 1007, 1009, 1013, 1018

IMSL MATH/LIBRARY Index • iii

H

Hadamard product 1041, 1084
Helmholtz’s equation 734
Helmholtz's equation 739
Hermite interpolant 429
Hermite polynomials 717
Hermitian positive definite system

87, 89, 92, 97, 101, 179, 182,
191, 193

Hermitian system 103, 105, 112, 114
Hessian 896, 936, 942, 1011, 1013,

1021
Householder transformations 275,

286
hyper-rectangle 619

I

infinite interval 598
infinity norm 1098
infinity norm distance 1106
informational errors 1194
initial-value problem 645, 652, 662
integer options 1173
INTEGER types v
integrals 445
integration 589, 591, 594, 598, 601,

607, 610, 613, 619
interpolation 419

cubic spline 420, 423
quadratic 417
scattered data 417

iterated integral 615
iterative refinement 7, 10, 22, 27, 39,

56, 67, 72, 83, 87, 99, 103, 114,
116, 122, 134, 138, 151, 159,
172, 176, 191, 279

J

Jacobian 836, 848, 851, 854, 860,
918, 952, 958, 1015, 1024

Jenkins-Traub three-stage algorithm
838, 839

L

Laguerre’s method 836
Laplace transform 827, 830
LDU factorization 156
least squares 417, 532, 535, 551
least-squares approximation 543,

547

least-squares problem 292
least-squares solution 275
Level 1 BLAS 1034, 1035
Level 2 BLAS 1047, 1048
Level 3 BLAS 1047, 1048, 1049
Levenberg-Marquardt algorithm 868,

912, 918, 952, 958
linear algebraic equations 195, 220
linear constraints 282
linear equality/inequality constraints

984, 990
linear equations

solving 10, 12, 20, 22, 27, 30, 37,
39, 45, 50, 56, 59, 65, 67, 75,
83, 87, 89, 97, 99, 103, 112,
114, 118, 122, 132, 138, 149,
151, 155, 159, 162, 170, 172,
176, 179, 189, 191, 195, 204,
207, 217, 232, 236, 244, 253

linear least-squares problem 275,
282,

linear programming problem 973,
976

LU factorization 15, 18, 20, 24, 32,
35, 37, 42, 127, 130, 136, 167,
170, 175, 199, 204, 212, 217,

M

machine-dependent constants 1201
mathematical constants 1185
matrices 1058, 1059, 1060, 1062,

1063, 1064, 1065, 1067, 1068,
1069, 1070, 1071, 1073, 1074,
1075, 1077, 1081, 1083, 1085,
1092, 1093, 1095, 1099, 1102,
1103, 1116, 1118, 1121, 1123,
1125, 1127, 1130

complex 167, 170, 176, 311, 331,
333, 1067, 1071

band 5, 1062, 1093, 1102, 1103
general 5, 32, 42, 43, 1058,

1063, 1067
general sparse 212
Hermitian 5, 94, 96, 103, 108,

112, 117, 184, 187, 189,
193, 367, 369, 372, 374,
376, 379, 1071, 1074

rectangular 1068, 1075, 1081,
1083, 1084, 1092, 1125,
1127

sparse 5
triangular 52, 54
tridiagonal 5, 156

iv • Index IMSL MATH/LIBRARY

upper Hessenberg 383, 388
copying 1059, 1060, 1067, 1068,

1073, 1074
general 1206
Hermitian 1207
multiplying 1078, 1079, 1081,

1083, 1090, 1092, 1093
permutation 1139
printing 1116, 1118, 1121, 1123,

1125, 1127, 1130
real 127, 130, 132, 136, 325, 327,

1063, 1069
band 5, 1060, 1090, 1102
general 5, 15, 18, 24, 26, 1058,

1062, 1067
general sparse 199
rectangular 1075, 1075, 1081,

1083, 1089, 1100, 1116,
1118

sparse 5
symmetric 5, 61, 64, 69, 71, 77,

80, 85, 145, 147, 150, 156,
304, 337, 339, 341, 343,
345, 347, 351, 353, 356,
358, 361, 363, 1070, 1073

triangular 46, 48, 49
tridiagonal 5, 120
upper Hessenberg 383, 385

rectangular 1075, 1206
sparse

Hermitian 240
symmetric 224
symmetrical 228

symmetric 301, 1206
transposing 1075, 1077, 1079
triangular 1207

matrix
inversion 7
types 5

matrix permutation 1139
matrix storage modes 1206
matrix-matrix multiply 1053, 1055,
matrix-matrix solve 1055
matrix-vector multiply 1049, 1050,

1051
matrix/vector operations 1056
method of lines 717
minimization 868, 869, 870, 872,

875, 878, 881, 886, 891, 896,
902, 905, 909, 923, 930, 936,
942, 948, 952, 984, 990

minimum degree ordering 224
minimum point 872, 875, 878

modified Powell hybrid algorithm
848, 851

monic polynomials 628, 630
Muller’s method 836, 841
multiple right sides 6
multivariate functions 868
multivariate quadrature 587

N

naming conventions v
Newton algorithm 868
Newton method 891, 896, 936, 942
noisy data 575, 5780
nonadaptive rule 613
nonlinear equations 848, 851, 854,

860
nonlinear least-squares problem 868,

912, 918, 952, 958, 964
nonlinear programming problem

997, 1003
not-a-knot condition 420, 423
numerical differentiation 588

O

odd sequence 779
odd wave numbers 786, 788, 791,

793
ordinary differential equations 641,

642, 645, 652, 662
orthogonal matrix 289
overflow vi

P

page length 1137
page width 1137
parameters 770, 777, 781, 784, 790,

795
partial differential equations 642,

643, 717
performance index 330, 336, 350,

366, 382, 396, 403, 409
periodic boundary conditions 438
Petzold 696
physical constants 1185
piecewise polynomial 413, 505, 507,

510, 512
plane rotation 1043
plots 1181
Poisson solver 734, 739
Poisson's equation 735, 740
polynomial 1087

IMSL MATH/LIBRARY Index • v

polynomial curve 535
prime factors 1183
printing 1137, 1181, 1194
printing results vii
programming conventions vi
pseudorandom number generators

1170
pseudorandom numbers 1170, 1171

Q

QR decomposition 8, 286
QR factorization 289, 295
quadratic interpolation 514, 516,

518, 520, 523, 525
quadratic polynomial interpolation

417
quadratic programming algorithm

996, 1003
quadrature formulas 587
quadrature rule 630
quadruple precision 1111
quasi-Newton method 881, 886, 923,

930
quintic polynomial 531

R

random number generators 1167,
1168

rank-2k update 1054, 1055
rank-k update 1054
rank-one matrix 301
rank-one matrix update 1053
rank-two matrix update 1053
rational weighted Chebyshev

approximation 581
real periodic sequence 765, 768
real sparse symmetric positive

definite system 232
real symmetric definite linear system

253, 259
real symmetric positive definite

system 56, 59, 65, 67, 149, 151
real symmetric system 72, 75, 81, 83
real triangular system 45
real tridiagonal system 118
REAL types v
real vectors 810, 818
rectangular domain 487
rectangular grid 519, 520, 523, 525
recurrence coefficients 625, 628, 630
reserved names 1216

reverse communication 262
Runge-Kutta-order method 652
Runge-Kutta-Verner fifth-order

method 645
Runge-Kutta-Verner sixth-order

method 645

S

scattered data 531
scattered data interpolation 417
search 1150, 1152, 1153
second derivative 636
semi-infinite interval 598
sequence 788, 793
serial number 1166
simplex algorithm 973, 976
sine 601
sine Fourier coefficients 788
sine Fourier transform 786
single precision iii
SINGLE PRECISION options 1175
singular value decomposition 311
singularity 7
singularity points 594
smooth bivariate interpolant 529
smoothing 572
smoothing spline routines 417
solving linear equations 4
sorting 1142, 1143, 1144, 1145,

1146, 1148, 1149, 1150, 1152,
sparse linear programming 976
sparse matrix storage mode 1215
sparse system 195, 207

vi • Index IMSL MATH/LIBRARY

spline approximation 543, 551
spline interpolant 451, 459
spline knot sequence 454, 457
splines 418, 447, 469, 471, 473, 476

cubic 415
tensor product 416

Sturm-Liouville problem 745, 757
symmetric Markowitz strategy 210

T

tensor product splines 416
tensor-product B-spline coefficients

459, 464, 561, 566
tensor-product B-spline

representation 479, 480, 483,
487, 490, 491, 495, 500

tensor-product spline 479, 480, 484,
488, 491, 492, 496, 501

tensor-product spline approximant
561, 566

tensor-product spline interpolant 464
terminal errors 1193
third derivative 636
time 1161
Toeplitz linear system 248, 249
Toeplitz matrices 8
traceback 1198
triple inner product 1040

U

unconstrained minimization 868
underflow vi
uniform (0, 1) distribution 1170,

1171
uniform mesh 740
univariate functions 868
univariate quadrature 586
user errors 1193
user interface iii
user-supplied function 636
user-supplied gradient 905, 930,

1003

V

variable knot B-spline 547
variable order 678
vectors 1037, 1038, 1041, 1050,

1090, 1092, 1093, 1107, 1109

complex 1109
real 1107

version 1166

W

work arrays vi
workspace allocation 1199, 1200

Z

zero of a real function 843
zeros of a polynomial 836, 838, 839
zeros of a univariate complex

function 841
zeros of the polynomial 835

IMSL MATH/LIBRARY Product Support • vii

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of
the IMSL Libraries. Visual Numerics can consult on the following topics:

• Clarity of documentation

• Possible Visual Numerics-related programming problems

• Choice of IMSL Libraries functions or procedures for a particular problem

• Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by
emailing:

• for PC support, pcsupport@houston.vni.com.

• for non-PC support, support@houston.vni.com.

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur; contact your local E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics.

1. Include your serial (or license) number

2. Include the product name and version number: IMSL Numerical Libraries
Version 3.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description
of the problem.

	Math/Library Volumes 1& 2
	Quick Tips on How to Use this Online Manual
	Copyright
	Revision History
	Contents
	Introduction
	Chapter 1: Linear Systems
	Chapter 2: Eigensystem Analysis
	Chapter 3: Interpolation and Approximation
	Chapter 4: Integration and Differentiation
	Chapter 5: Differential Equations
	Chapter 6: Transforms
	Chapter 7: Nonlinear Equations
	Chapter 8: Optimization
	Chapter 9: Basic Matrix/Vector Operations
	Chapter 10: Utilities
	Reference Material
	Appendix A: GAMS Index
	Appendix B: Alphabetical Summary of Routines
	Appendix C: References
	Index
	Product Support

