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Introd

uction

The IMSL

Libraries

The IMSL Libraries consist of two separate but coordinated Libraries that allow
easy user access. These Libraries are organized as follows:

MATH/LIBRARY general applied mathematics and special functions
STAT/LIBRARY dtatistics

The IMSL MATH/LIBRARY User’'s Manulbs two parts;: MATH/LIBRARY and
MATH/LIBRARY Specia Functions.

Most of the routines are available in both single and double precision versions.
The same user interface is found on the many hardware versions that span the
range from persona computer to supercomputer. Note that some IMSL routines
are not distributed for FORTRAN compiler environments that do not support
double precision complex data. The names of the IMSL routines that return or
accept the type double complex begin with the Ié&&rand, occasionally,BC.”

Getting Started

The IMSL MATH/LIBRARY is a collection of FORTRAN routines and

functions useful in research and mathematical analysis. Each routine is designed
and documented to be used in research activities as well as by technical
specialists.

To use any of these routines, you must write a program in FORTRAN (or
possibly some othermguage) to call the MATH/LIBRARY routine. Each

routine conforms to established conventions in programming and documentation.
We give first priority in development to efficient algorithms, clear

documentation, and accurate results. The uniform design of the routines makes it
easy to use more than one routine in a given application. Also, you will find that
the design consistency enables you to apply your experience with one
MATH/LIBRARY routine to all other IMSL ratines that you use.

IMSL MATH/LIBRARY
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Finding the Right Routine

lauds The MATH/LIBRARY is organized into chapters; each chapter contains
routines with similar computational or analytical capabilities. To locate the right
routine for agiven problem, you may use either the table of contents located in
each chapter introduction, or the alphabetical list of routines. The GAMS index
uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner, and J.L.
Springmann 1990, Guide to Available Mathematical Software, National Institute
of Standards and Technology NISTIR 90-4237). Use the GAMS index to locate
which MATH/LIBRARY routines pertain to a particular topic or problem.

Often the quickest way to use the MATH/LIBRARY isto find an example similar
to your problem and then to mimic the example. Each routine document has at
least one example demonstrating its application. The example for a routine may
be created simply for illustration, it may be from atextbook (with reference to the
source), or it may be from the mathematical literature.

Organization of the Documentation

This manual contains a concise description of each routine, with at least one
demonstrated example of each routine, including sample input and results. Y ou
will find all information pertaining to the MATH/LIBRARY in this manual.
Moreover, al information pertaining to a particular routine isin one place within
achapter.

Each chapter begins with an introduction followed by atable of contents that lists
the routines included in the chapter. Documentation of the routines consists of the
following information;

e IMSL Routine Name
e Purpose: astatement of the purpose of the routine

»  Usage: the form for referencing the subprogram with arguments listed. There are
two usage forms:
—CALL sub(ar gunent - I i st) for subroutines
—fun(argument - 1 i st) for functions

e Arguments: a description of the arguments in the order of their occurrence. Input
arguments usually occur first, followed by input/output arguments, with output
arguments described last. For functions, the function symbolic name is described
after the argument descriptions.

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through
this argument; cannot be a constant or an expression.

Input or Output Select appropriate option to define the argument as either input
or output. See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The
routine returns output through this argument.

iv ¢ Introduction IMSL MATH/LIBRARY



Remarks: details pertaining to code usage and workspace allocation

Algorithm:; a description of the algorithm and references to detailed information.
In many cases, other IMSL routines with similar or complementary functions are
noted.

Programming notes: an optional section that contains programming details not
covered elsewhere

Example: at least one application of this routine showing input and required
dimension and type statements

Output: results from the example(s)
References:. periodicals and books with details of agorithm devel opment

Naming Conventions

The names of the routines are mnemonic and unique. Most routines are available

in both a single precision and a double precision version, with names of the two
versions sharing a common root. The name of the double precision version begins

with a “D.” The single precision version is generally just the mnemonic root, but
sometimes a lettelS” or “A” is used as a prefix. For example, the following pairs
are names of routines in the two different precisi@RUL/DGQRUL (the root is
“GQRUL ,” for “Gauss quadrature rule"RECCF/DRECCF (the root is RECCF,” for
“recurrence coefficient”), an8ADD/DADD (the root is ADD"). The names of the

IMSL routines that return or accept the type double complex begin with the letter
“Z" or, occasionally, bC.”

Except when expressly stated otherwise, the names of the variables in the
argument lists follow the FORTRAN default type for integer and floating point.
In other words, a variable whose name begins with one of the lettatsdugh

“N" is of typel NTECGER, and otherwise is of typREAL or DOUBLE PRECI S| ON,
depending on the precision of the routine.

An array with more than one dimension that is used as a FORTRAN argument
can have an assumed-size declarator for the last dimension only. In the
MATH/LIBRARY routines, this information is passed by a variable with the
prefix “LD’ and with the array name as the root. For example, the argum&nt
contains the leading dimension of arfay

Where appropriate, the same variable name is used consistently throughout a
chapter in the MATH/LIBRARY. For example, in the routines for random
number generatiolR denotes the number of random numbers to be generated,
andR or | Rdenotes the array that stores the numbers.

When writing programs accessing the MATH/LIBRARY, the user should choose
FORTRAN names that do not conflict with names of IMSL subroutines,
functions, or named common blocks. The careful user can avoid any conflicts
with IMSL names if, in choosing names, the following rules are observed:

Do not choose a name that appears in the Alphabetical Summary of Routines, at
the end of théJser’'s Manual

IMSL MATH/LIBRARY
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Do not choose a name consisting of more than three characters with anumeral in
the second or third position.

For further details, see the section on “Reserved Names” in the Reference
Material.

Programming Conventions

In general, the IMSL MATH/LIBRARY codes are written so that computations

are not affected by underflow, provided the system (hardware or software) places
a zero value in the register. In this case, system error messages indicating
underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system
error messages indicating overflow should be examined for programming errors
such as incorrect input data, mismatch of argument types, or improper
dimensioning.

In many cases, the documentation for a routine points out common pitfalls that
can lead to failure of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat
them accordingly. This error-handling capability provides automatic protection
for the user without requiring the user to make any specific provisions for the
treatment of error conditions. See the section on “User Errors” in the Reference
Material for further details.

Error Handling

The routines in the IMSL MATH/LIBRARY attempt to detect and report errors

and invalid input. Errors are classified and are assigned a code number. By
default, errors of moderate or worse severity result in messages being
automatically printed by the routine. Moreover, errors of worse severity cause
program execution to stop. The severity level as well as the general nature of the
error is designated by an “error type” with numbers from 0 to 5. An error type 0 is
no error; types 1 through 5 are progressively more severe. In most cases, you
need not be concerned with our method of handling errors. For those interested, a
complete description of the error-handling system is given in the Reference
Material, which also describes how you can change the default actions and access
the error code numbers.

Work Arrays

A few routines in the IMSL MATH/LIBRARY require work arrays. On most
systems, the workspace allocation is handled transparently, but on some systems,
workspace is obtained from a large array @OBMON block. On these systems,

when you have a very large problem, the default workspace may be too small.
The routine will print a message telling you the statements to insert in your

vi ¢ Introduction
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program in order to provide the needed space (using the common block WORKSP

for integer or real numbers or the common block WKSPCH for characters). The
routine will then automatically halt execution. See “Automatic Workspace
Allocation” in the Reference Material for details on common block names and
default sizes.

For each routine that obtains workspace from the common area, a second routine
is available that allows you to provide the workspace explicitly. For example, the
routine LSLRG page 11 uses workspace and automatically allocates the

required amount, if available. The routin®2LRG does the same aSLRG but has

a work array in its argument list, which the user must declare to be of appropriate
size. The “Automatic Workspace Allocation” section in the Reference Material
contains further details on this subject.

Printing Results

Most of the routines in the IMSL MATH/LIBRARY (except the line printer
routines and special utility routines) do not print any of the results. The output is
returned in FORTRAN variables, and you can print these yourself. See Chapter
10, “Utilities,” for detailed descriptions of these routines.

A commonly used routine in the examples is the IMSL rowivwecH, which

(page 1173), retrieves the FORTRAN device unit number for printing the results.
Because this routine obtains device unit numbers, it can be used to redirect the
input or output. The section on “Machine-Dependent Constants” in the Reference
Material contains a description of the routlACH.

IMSL MATH/LIBRARY
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Chapter 1: Linear Systems

Routines

1.1.

111

1.1.2

1.13

1.14

Solution of Linear Systems, Matrix Inversion, and Determinant
Evaluation

Real General Matrices

High accuracy linear system solution ...........ccccooeccivieenenennn. LSARG
Solve alinear SYStem .......ccooeveieieie i LSLRG
Factor and compute condition number ..............cccceeeeeenn. LFCRG
FACION ....uiiiiiiieii LFTRG
Solve after factoring .......ccvvveviiiieiii e LFSRG
High accuracy linear system solution after factoring............. LFIRG
Compute determinant after factoring ..........ccccccovvvvvvenninnnn, LFDRG
INVEIT .o LINRG
Complex General Matrices

High accuracy linear system solution.............ccccceevviieennnne LSACG
Solve a linear SyStem ........oooeveiiiiii i, LSLCG
Factor and compute condition NUMDbEr ..........cccccevviiieennnnn. LFCCG
FFACTON ...ttt LFTCG
Solve a linear system after factoring...........ccccovevvveeiiiiieennns LFSCG
High accuracy linear system solution after factoring............. LFICG
Compute determinant after factoring ..........ccccooeveeiiieeens LFDCG
1017 o PP PP PP PPPPPPPPPRPPPPPPPRt LINCG
Real Triangular Matrices

Solve a linear SYSteM ........cviiiieiiiiiiee e LSLRT
Compute condition NUMDBEr .......ccooiiiiiiiiiiieeeecec e LFCRT
Compute determinant after factoring ..........ccccovevveeiiiiieeens LFDRT
1017 o TP P TP U PP UPPPTPPPPPTPPPPPIRt LINRT
Complex Triangular Matrices

Solve a linear SYSteM ........eviiiiiiiieiiiee et LSLCT
Compute condition NUMDEr..........ccccoeiiiiiiiiiii e LFCCT
Compute determinant after factoring ..........ccccoocveeiviienens LFDCT
1017 o TP PPPPPPPRPPPPPPIRE LINCT

10
11
15
18
20
22
24
26

27
30
32
35
37
39
42
43

45
46
48
49

50
52
54
55
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115

1.1.6

1.1.7

1.1.8

1.1.9

1.1.10

Real Positive Definite Matrices

High accuracy linear system solution ...............eevvvvvvvvvvivnnnns LSADS
Solve a linear SYStEM.........coviiiiiiiiiiieiie e LSLDS
Factor and compute condition nUMber..........cccccevvvvvvvvvvnnnnns LFCDS
FaACION .. e LFTDS
Solve a linear system after factoring ................cooeeeeee LFSDS
High accuracy linear system solution after factoring ............. LFIDS
Compute determinant after factoring.................ooeee LFDDS
INVEIT. e e LINDS
Real Symmetric Matrices

High accuracy linear system solution ................cevvvvvvvvvivnnnns LSASF
Solve a linear SYStEM.......coiiieiiiiiiiie e LSLSF
Factor and compute condition nUMber..........cccccevvvvvvvvvvvnnnns LFCSF
FaACION .. LFTSF
Solve a linear system after factoring ..................oooe LFSSF
High accuracy linear system solution after factoring .............. LFISF
Compute determinant after factoring...........ccccccceeeiviiiiinnnen. LFDSF
Complex Hermitian Positive Definite Matrices

High accuracy linear system solution ............cccccoevvveiiienen. LSADH
Solve alinear SYStemM........ccuuiiiiiiieii e LSLDH
Factor and compute condition number...........cccccccvvveeennnns LFCDH
FaCION oo LFTDH
Solve a linear system after factoring ........cccccceevvvecvvvvennnenenn. LFSDH
High accuracy linear system solution after factoring............. LFIDH
Compute determinant after factoring.........ccccccceeveeevvvvnnnnnn. LFDDH
Complex Hermitian Matrices

High accuracy linear system solution .............ccccccceeeeeeninnns LSAHF
Solve a linear SYSIEM........uvuviieeiiiciiiiii e LSLHF
Factor and compute condition number.............ccccccceeeiiiis LFCHF
FaCION i LFTHF
Solve a linear system after factoring .........ccccocvvveeiiiiieennnnn LFSHF
High accuracy linear system solution after factoring.............. LFIHF
Compute determinant after factoring..........ccoccceveviiiiieenninn LFDHF
Real Band Matrices in Band Storage

Solve a tridiagonal SYSteM........ccceeviiiiiiiiiie e LSLTR
Solve a tridiagonal system: Cyclic Reduction....................... LSLCR
High accuracy linear system solution ...............cevvvvvvvvvvevnnnns LSARB
Solve a linear SYSteM........cocuiiiiiiiiie e LSLRB
Factor and compute condition nUMbEr..........ccccevvvvvvvvvvevennns LFCRB
FACTON .. LFTRB
Solve a linear system after factoring ................cooeeeeee LFSRB
High accuracy linear system solution after factoring ............. LFIRB
Compute determinant after factoring..........ccceeeeeeveeiiieiieenennn, LFDRB
Real Band Symmetric Positive Definite Matrices in Band Storage
High accuracy linear system solution ............cccccovvveieiiinnnn. LSAQS
Solve a linear SYSeM.........uuvuririirieieiiieieieieieierereeerersrneerereran. LSLQS
Solve a linear SYStEM........oiiiiiiiiiiiie e LSLPB

56
59
61
63
65
67
69
71

72
75
77
80
81
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85
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89
92
95
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99
101
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105
108
110
112
114
117
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124
127
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136

138
140
143
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1.1.11

1.1.12

1.1.13

1.1.14

1.1.15

1.1.16

1.1.17

1.1.18

Factor and compute condition number ..............ccccvieeeeeenn. LFCQS

FACTOr et LFTQS
Solve a linear system after factoring...........ccccovevvveeiiiiieeens LFSQS
High accuracy linear system solution after factoring............. LFIQS
Compute determinant after factoring ..........ccccovcvveeiiiineeens LFDQS
Complex Band Matrices in Band Storage

Solve a tridiagonal system ..........ccccceeiiii LSLTQ
Solve a tridiagonal system: Cyclic Reduction ...................... LSLCQ
High accuracy linear system Solution...........ccccceeevieieeeieenennn. LSACB
Solve a linear SYSteM .........cii i LSLCB
Factor and compute condition NUMDBEr ..........ccccevviiiiiiiieeeennn. LFCCB
FACTON e LFTCB
Solve a linear system after factoring..........cccccevvvvvvvvvviiiinnnns LFSCB
High accuracy linear system solution after factoring.............. LFICB
Compute determinant after factoring .................c.cc LFDCB
Complex Band Positive Definite Matrices in Band Storage

High accuracy linear system solution.............ccccceeviiveennnnn. LSAQH
Solve alinear SyStem ..o, LSLQH
Solve a linear SYSteM .....c..uviiiiiiiie e LSLOB
Factor and compute condition NUMDBEr .........cccceeviiiiiiiieiennn. LFCQH
FACTON et LFTQH
Solve a linear system after factoring...........cccceevvvvvvvvviiiinnnns LFSQH
High accuracy linear system solution after factoring............. LFIQH
Compute determinant after factoring ...........cccccceeeiiiiiinnen. LFDQH
Real Sparse Linear Equation Solvers

Solve a sparse linear SYStem ........cccccveviiiieeeiiiiieeiiiee e LSLXG
FBCTON ...ttt LFTXG
Solve a linear system after factoring..........ccccevveeeeiiiiinnnnen, LFSXG
Complex Sparse Linear Equation Solvers

Solve a sparse linear SYStem .........coooviiiiiiiiiiieeeiiiiiieeeeeee LSLZG
FACTON et LFTZG
Solve a linear system after factoring.............cccccveeeeennnns LFSZG
Real Sparse Symmetric Positive Definite Linear Equation Solvers
Solve a sparse linear SYStemM .......ccccceeeeieiiiiieeeicieeeeeeenes LSLXD
SymboliC FACtOr ........uviiiiiieiiii e LSCXD
ComPULE FACION ... LNFXD
Solve a linear system after factoring.........ccccccceveeeeiiiiiinnen. LFSXD
Complex Sparse Hermitian Positive Definite Linear Equation Solvers
Solve a sparse linear SYSteM ............uuvvurerermimrniniiinineeineninnnens LSLZD
CompPUte FACION ... LNFzD
Solve a linear system after factoring............ccccccoeeeeeeennnn, LFSzZD
Real Toeplitz Matrices in Toeplitz Storage

Solve a linear SYSteM .........vviiiiiiieiiie e LSLTO

Complex Toeplitz Matrices in Toeplitz Storage
Solve a linear SYStEM ........ccciiiiuiiii s LSLTC

145
148
149
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1.1.19 Complex Circulant Matrices in Circulant Storage

Solve alinear System.........cccvvvvviiiiii LSLCC 251
1.1.20 Iterative Methods
Preconditioned conjugate gradient...........oooccvviiieeneeenennns PCGRC 253
Jacobi conjugate gradient..........ccooeeeeeieei e, JCGRC 259
Generalized minimum residual..........ccccccovvviiiiiiiiiee e, GMRES 262
1.2. Linear Least Squares and Matrix Factorization
1.2.1 Least Squares, QR Decomposition and Generalized Inverse
Solve a Least-squares SyStem .........ccccceveveveveviiiieiiieceeeeeee, LSQRR 272
Solve a Least-squares SYStEM ........coccvveeeriireeriiiieeeeiiieeeens LOQRRV 275
High accuracy Least squares ...........cccceeeeveieie e, LSBRR 279
Linearly constrained Least SQUareS.........cccocvvveerivieeeniiinnnnn, LCLSQ 282
QR deCOMPOSITION ....uvuviiiiiiiiiiiiiiiiiiriae s LORRR 286
Accumulation of QR decomposition ...........cccccevveeeeeiinnnnee. LQERR 289
QR decomposition ULIlItIES .........cevvvveieieieieiiieieieeeeeeeeeeeeeeeee LQRSL 292
QR fACtOr UPAALE ....vvvveeeeeiieiiieie e LUPQR 295
1.2.2 Cholesky Factorization
Cholesky factoring for rank deficient matrices..................... LCHRG 299
Cholesky factor update............coovveeeiiiiiieiiieiee e LUPCH 301
Cholesky factor down-date...........cccccceevvviviiiiiiiiiiiie LDNCH 304
1.2.3 Singular Value Decomposition (SVD)
Real singular value decomposition...........c.ccceveeviiiieeninnnnn. LSVRR 307
Complex singular value decomposition..........ccccceeeeeeeeeeennn. LSVCR 311
Generalized INVEISE.......cuuuveiiee et LSGRR 314

Usage Notes

Solving Linear Equations

Many of the routines described in this chapter are for matrices with special
properties or structure. Computer time and storage requirements for solving
systems with coefficient matrices of these types can often be drastically reduced,
using the appropriate routine, compared with using a routine for solving a general
complex system.

The appropriate matrix property and corresponding routine can be located in the
“Routines’ section. Many of the linear equation solver routines in this chapter are
derived from subroutines from LINPACK, Dongarra et al. (1979). Other routines
have been developed by Visual Numerics staff, derived from draft versions of
LAPACK subprograms, Bischof et al. (1988), or were obtained from alternate
sources.

A system of linear equations is representgdb=b wher A is then x n
coefficient data matrip is the known right-hand-sith-vector, an x is the
unknown or solutio n-vector. Figure 1-1 summarizes the relationships among
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the subroutines. Routine names are in boxes and input/output data are in ovals.
The suffix ** in the subroutine names depend on the matrix type. For example, to
compute the determinant of A use LFC** or LFT** followed by LFD**.

The pathsusing LSA** or LFI ** use iterative refinement for amore accurate
solution. The path using LSA* * isthe same asusing LFC** followed by LFI **.
The path using LSL* * is the same as the path using LFC** followed by LFS* *.
The matrix inversion routinesLI N** are available only for certain matrix types.

Matrix Types

The two letter codes for the form of coefficient matrix, indicated by ** in Figure
1-1, are asfollows:

RG Real general (sguare) matrix.

CG Complex general (square) matrix.

TR or CRRedl tridiagonal matrix.

RB Real band matrix.

TQor CQComplex tridiagonal matrix.

CB Complex band matrix.

SF Real symmetric matrix stored in the upper half of a square
matrix.

DS Real symmetric positive definite matrix stored in the upper half
of asguare matrix.

DH Complex Hermitian positive definite matrix stored in the upper
half of a complex square matrix.

HF Complex Hermitian matrix stored in the upper half of a
complex square matrix.

QSor PB Real symmetric positive definite band matrix.

QH or @B Complex Hermitian positive definite band matrix.

XG Real general sparse matrix.

ZG Complex general sparse matrix.

XD Real symmetric positive definite sparse matrix.

ZD Complex Hermitian positive definite sparse matrix.

IMSL MATH/LIBRARY
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4 v v
LI N-* LSA* * LFI** LFD**
LSL** LFS**
I |
v
or
x=ATb

Figure 1-1 Solution and Factorization of Linear Systems

Solution of Linear Systems

The simplest routines to use for solving linear equations are LSL** and LSA* *
For example, the mnemonic for matrices of real general form isRG. So, the
routines LSLRG (page 11) and LSARG (page 10) are appropriate to use for solving
linear systems when the coefficient matrix is of real general form. The routine
LSARG uses iterative refinement, and more time than LSLRG, to determine a high
accuracy solution.

The high accuracy solvers provide maximum protection against extraneous
computational errors. They do not protect the results from instability in the
mathematical approximation. For a more complete discussion of this and other
important topics about solving linear equations, see Rice (1983), Stewart (1973),
or Golub and van Loan (1989).

Multiple Right Sides

There are situations where the LSL* * and LSA* * routines are not appropriate.
For example, if the linear system has more than one right-hand-side vector, it is
most economical to solve the system by first calling afactoring routine and then
calling a solver routine that uses the factors. After the coefficient matrix has been
factored, the routine LFS** or LFI ** can be used to solve for one right-
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hand side at atime. Routines LFI * * usesiterative refinement to determine a high
accuracy solution but requires more computer time and storage than routines
LES**.

Determinants

The routines for evaluating determinants are named LFD* * . Asindicated in
Figure 1-1, these routines require the factors of the matrix asinput. The values of
determinants are often badly scaled. Additional complicationsin structures for
evaluating them result from this fact. See Rice (1983) for comments on
determinant evaluation.

lterative Refinement

Iterative refinement can often improve the accuracy of awell-posed numerical
solution. The iterative refinement algorithm used is as follows:

X =A"'b
Fori=1, 50
r; = Ax,,; — b computed in higher precision
p=ATT
Xi =X t P
if (Ilp; Il < €ll x; [E-) Exit

End for
Error — Matrix is too ill-conditioned

If the matrixA is in single precision, then the residuat Ax;_; — b is computed

in double precision. IA is in double precision, then quadruple-precision
arithmetic routines are used.

Matrix Inversion

An inverse of the coefficient matrix can be computed directly by one of the
routines named! N** . These routines are provided for general matrix forms and
some special matrix forms. When they do not exist, or when it is desirable to
compute a high accuracy inverse, the two-step technique of calling the factoring
routine followed by the solver routine can be used. The inverse is the solution of
the matrix systemAX = | wherel denotes tha x n identity matrix, and the

solution isX =A™

Singularity

The numerical and mathematical notions of singularity are not the same. A matrix
is considered numerically singular if it is sufficiently close to a mathematically
singular matrix. If error messages are issued regarding an exact singularity then
specific error message level reset actions must be taken to handle the error
condition. By default, the routines in this chapter stop. The solvers require that
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the coefficient matrix be numerically nonsingular. There are some teststo
determine if this condition is met. When the matrix is factored, using routines
LFC**, the condition number is computed. If the condition number islarge
compared to the working precision, awarning message is issued and the
computations are continued. In this case, the user needs to verify the usability of
the output. If the matrix is determined to be mathematically singular, or ill-
conditioned, aleast-squares routine or the singular value decomposition routine
may be used for further analysis.

Special Linear Systems

Toeplitz matrices have entries which are constant along each diagonal, for
example:

Po P P2 B3
P-1 Po P P2
P> P12 Po B
P-3 P2 P21 Po

Real Toeplitz systems can be solved using LSLTO, page 248. Complex Toeplitz
systems can be solved using LSLTC, page 249.

A=

Circulant matrices have the property that each row is obtained by shifting the row
above it one place to the right. Entries that are shifted off at the right reenter at
the left. For example:

PL P2 P3 Pa
A= P4 P P2 Ps
Ps P2 P P2
P2 P3 P4 P

Complex circulant systems can be solved using LSLCC, page 251.

Iterative Solution of Linear Systems

The preconditioned conjugate gradient routines PCGRC, page 253, and JCGRC,
page 259, can be used to solve symmetric positive definite systems. The routines
are particularly useful if the system islarge and sparse. These routines use reverse
communication, so A can be in any storage scheme. For general linear systems,
use GVRES, page 262.

QR Decomposition

The QR decomposition of amatrix A consists of finding an orthogonal matrix Q,
a permutation matrix P, and an upper trapezoidal matrix R with diagonal elements
of nonincreasing magnitude, such that AP = QR. This decompositionis
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determined by the routines LQRRR, page 286, or LQRRV, page 275. It returns R
and the information needed to compute Q. To actually compute Q use LQERR,
page 289. Figure 1-2 summarizes the rel ationships among the subroutines.

The QR decomposition can be used to solve the linear system Ax = b. Thisis
equivaentto Rx = QT Pb. The routine LQRSL, page 292, can be used to find

QT Pb from the information computed by LQRRR. Then x can be computed by
solving atriangular system using LSLRT, page 45. If the sysem Ax=bis
overdetermined, then this procedure solves the least-squares problem, i.e., it finds
an x for which

2
||AX - b”z
is aminimum.

If the matrix Ais changed by arank-1 update, A - A+ orxyT, the QR
decomposition of A can be updated/down-dated using the routine LUPQR,

page 295. In some applications a series of linear systems which differ by rank-1
updates must be solved. Computing the QR decomposition once and then
updating or down-dating it usually faster than newly solving each system.

LQRRR or LQRRV

I | ]

LQERR LQRSL

Qb, Q'b,

L east-squares
solution

Figure 1-2 Least-Squares Routine
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LSARG/DLSARG (Single/Double precision)

Solve areal general system of linear equations with iterative refinement.

Usage
CALL LSARG (N, A, LDA, B, IPATH X)

Arguments
N — Number of equations. (Input)
A — N by N matrix containing the coefficients of the linear system. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of lengttN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systeiX = B is solved.

| PATH = 2 means the systeﬁ{X =B is solved.

X — Vector of lengthN containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is
LSARG N + 2N units, or
DLSARG 2N + 3N units.

Workspace may be explicitly provided, if desired, by use of
L2ARG DL2ARG. The reference is

CALL L2ARG (N, A, LDA, B, IPATH, X, FAC, |PVT, VK)

The additional arguments are as follows:

FAC — Work vector of IengthN2 containing the_U factorization ofa
on output.

IPVT — Integer work vector of lengtk containing the pivoting
information for thd_U factorization ofA on output.

WK — Work vector of lengthn.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.
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Algorithm

Routine LSARG solves a system of linear algebraic equations having area general
coefficient matrix. It first uses the routine LFCRG, page 15, to compute an LU
factorization of the coefficient matrix and to estimate the condition number of the
matrix. The solution of the linear system is then found using the iterative
refinement routine LFI RG, page 22.

LSARGfailsif U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if Aissingular or very close to asingular matrix.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSARG solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of three linear equations is solved. The coefficient matrix has real
genera form and the right-hand-side vector b has three elements.

C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, N=3)
REAL A(LDA, LDA), B(N), X(N)
C
C Set values for A and B
C
C A= (33.0 16.0 72.0)
(o (-24.0 -10.0 -57.0)
(o ( 18.0 -11.0 7.0)
C
C B =(129.0 -96.0 8.5)
C
DATA A/ 33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
DATA B/ 129.0, -96.0, 8.5/
C
CALL LSARG (N, A LDA, B, IPATH, X)

C Print results

CALL WRRRN (X', 1, N, X, 1, 0)

END

Output
X
1 2 3

1.000 1.500 1.000
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LSLRG/DLSLRG (Single/Double precision)

Solve areal general system of linear equations without iterative refinement.

Usage
CALL LSLRG (N, A, LDA, B, IPATH X)

Arguments
N — Number of equations. (Input)
A — N by N matrix containing the coefficients of the linear system. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of lengttN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefix = B is solved.

| PATH = 2 means the systeﬁﬁx =B s solved.

X — Vector of lengthN containing the solution to the linear system. (Output)
If B is not needed3 andX can share the same storage locations.

Comments

1. Automatic workspace usage does not exceed

LSLRG N(N+ 1) + 2N units, or
DLSLRG 2N(N + 1) + 3\ units.

Workspace may be explicitly provided, if desired, by use of
L2LRGDL2LRG. The reference is

CALL L2LRG (N, A, LDA, B, IPATH, X, FAC, |PVT, VK)
The additional arguments are as follows:

FAC — Work vector of Iengtm2 containing thd_U factorization ofa
on output. IfA is not neededy andFAC can share the same storage
locations. See Item 3 below to avoid memory bank conflicts.

IPVT — Integer work vector of lengtk containing the pivoting
information for thd_U factorization ofA on output.

WK — Work vector of lengthn.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
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4 2 Theinput matrix issingular.
3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2LRG the leading
dimension of FACisincreased by | VAL(3) when Nisamultiple
of | VAL(4). Thevalues | VAL(3) and | VAL(4) are temporarily
replaced by | VAL(1) and | VAL(2); respectively, in LSLRG.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLRG. Users directly
calling L2LRG can allocate additional space for FAC and set
I VAL(3) and | VAL (4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLRG or L2LRG. Default values
for theoptionare | VAL(*) = 1, 16, O, 1.

17 This option has two values that determine if the L, condition
number isto be computed. Routine LSLRGtemporarily replaces
| VAL(2) by | VAL(1). The routine L2CRG computes the
condition number if I VAL(2) = 2. Otherwise L2CRG skips this
computation. LSLRG restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSLRG solves a system of linear algebraic equations having area general
coefficient matrix. It first uses the routine LFCRG (page 15) to compute an LU
factorization of the coefficient matrix based on Gauss elimination with partial
pivoting. Experiments were analyzed to determine efficient implementations on
severa different computers. For some supercomputers, particularly those with
efficient vendor-supplied BLAS, page 1046, versionsthat call Level 1,2 and 3
BLAS are used. The remaining computers use a factorization method provided to
us by Dr. Leonard J. Harding of the University of Michigan. Harding’s work
involves “loop unrolling and jamming” techniques that achieve excellent
performance on many computers. Using an optiShRG will estimate the
condition number of the matrix. The solution of the linear system is then found
usingLFSRG (page 20).

The routineL SLRGfails if U, the upper triangular part of the factorization, has a
zero diagonal element. This occurs onhji close to a singular matrix.

If the estimated condition number is greater thar(Wheree is machine
precision), a warning error is issued. This indicates that small changeaim
cause large changes in the solutioff the coefficient matrix is ill-conditioned or
poorly scaled, it is recommended that eith&@VRR, page 307, OLSARG,

page 10, be used.

IMSL MATH/LIBRARY
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Example 1

A system of three linear equations is solved. The coefficient matrix has real
genera form and the right-hand-side vector b has three elements.

Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, N=3)
REAL A(LDA, LDA), B(N), X(N)

Set values for A and B
A= (33.0 16.0 72.0)
(-24.0 -10.0 -57.0)
( 18.0 -11.0 7.0)

B

(129.0 -96.0 8.5)

DATA A/ 33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
DATA B/ 129.0, -96.0, 8.5/

CALL LSLRG (N, A LDA, B, IPATH X)
Print results
CALL WRRRN (X', 1, N, X, 1, 0)
END

Output
X

1 2 3

1.000 1.500 1.000

Example 2

A system of N= 16 linear equationsis solved using the routine L2LRG. The option
manager is used to eliminate memory bank conflict inefficiencies that may occur
when the matrix dimension isamultiple of 16. The leading dimension of FAC= A
isincreased from Nto N + IVAL (3)=17, since N=16=IVAL (4). The data used for
the test is a nonsymmetric Hadamard matrix and a right-hand side generated by a
known solution, X; =j,j=1.,N

Declare variables
INTEGER LDA, N
PARAMETER (LDA=17, N=16)

SPECIFICATIONS FOR PARAMETERS
INTEGER ICHP, IPATH, IPUT, KBANK
REAL ONE, ZERO
PARAMETER (ICHP=1, IPATH=1, IPUT=2, KBANK=16, ONE=1.0EO,
& ZERO=0.0EQ)

SPECIFICATIONS FOR LOCAL VARIABLES
INTEGER |, IPVT(N), J, K, NN
REAL  A(LDA,N), B(N), WK(N), X(N)

SPECIFICATIONS FOR SAVE VARIABLES
INTEGER IOPT(1), IVAL(4)
SAVE IVAL

SPECIFICATIONS FOR SUBROUTINES
EXTERNAL IUMAG, L2LRG, SGEMV, WRRRN

Data for option values.
DATA IVAL/1, 16, 1, 16/
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C Set values for A and B:
A(1,1) = ONE
NN 1
C Generate Hadanmard matri x.
DO 20 K=1, 4
DO 10 J=1, NN
DO 10 1=1, NN
A(NNHI L, J) = - A(I
A(l, NNHJ) = A(I
A(NNHI, NN#J) =
10 CONTI NUE
NN = NN + NN
20 CONTI NUE
C CGener at e ri ght - hand- si de.
DO 30 J=1, N
X(J) =3
30 CONTI NUE
C Set B = A*
CALL SGEMV ('N’, N, N, ONE, A, LDA, X, 1, ZERO, B, 1)
C Clear solution array.
DO 40 J=1,N
X(J) = ZERO
40 CONTINUE

C
C

Set option to avoid memory
bank conflicts.

IOPT(1) = KBANK

CALL IUMAG ('MATH’, ICHP, IPUT, 1, IOPT, IVAL)
Solve A*X = B.

CALL L2LRG (N, A, LDA, B, IPATH, X, A, IPVT, WK)
Print results

CALL WRRRN (X', 1, N, X, 1, 0)

END

Output
X
1 2 3 4 5 6 7 8 9 10
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

11 12 13 14 15 16
11.00 12.00 13.00 14.00 15.00 16.00

LFCRG/DLFCRG (Single/Double precision)

Compute the LU factorization of areal general matrix and estimate itsL,
condition number.

Usage

CALL LFCRG (N, A, LDA, FAC, LDFAC, IPVT, RCOND)
Arguments

N — Order of the matrix. (Input)

A — N by N matrix to be factored. (Input)
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LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC— N by N matrix containing th&U factorization of the matrir. (Output)
If A'is not neededd andFAC can share the same storage locations.

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengttN containing the pivoting information for tié)
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal ofttendition
number ofa. (Output)

Comments
1. Automatic workspace usage is

LFCRG Nunits, or
DLFCRG 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CRGDL2CRG. The reference is

CALL L2CRG (N, A, LDA, FAC, LDFAC, |PVT, RCOND, WK)
The additional argument is
WK — Work vector of lengthn.

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.
Algorithm

RoutineLFCRG performs anLU factorization of a real general coefficient matrix.
It also estimates the condition number of the matrix. Déactorization is done
using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting
in that the pivoting strategy is the same as if each row were scaled to have the
sameco-norm.

Thel, condition number of the matriis defined to b&(A) = |}A|[|Wl|[. Since

it is expensive to compute&ﬂ ||, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described in a paper
by Cline et al. (1979).

If the estimated condition number is greater thar(Wheree is machine
precision), a warning error is issued. This indicates that very small changes in
can cause very large changes in the solutidierative refinement can sometimes
find the solution to such a system.

LFCRG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur onlyAfeither is singular or is very close to a singular
matrix.

16 « Chapter 1: Linear Systems IMSL MATH/LIBRARY



The LU factors are returned in aform that is compatible with routines LFI RG,
page 22, LFSRG, page 20, and LFDRG, page 24. To solve systems of equations
with multiple right-hand-side vectors, use LFCRGfollowed by either LFI RGor
LFSRG called once for each right-hand side. The routine LFDRG can be called to
compute the determinant of the coefficient matrix after LFCRG has performed the
factorization.

Let F be the matrix FAC and let p be the vector | PVT. The triangular matrix U is
stored in the upper triangle of F. The strict lower triangle of F contains the
information needed to reconstruct L™ usi ng

L =Ly Py ... LP,

where P, is the identity matrix with rowsk and p, interchanged and L, isthe
identity with F;, fori =k + 1, ..., N inserted below the diagonal. The strict lower

half of F can aso be thought of as containing the negative of the multipliers.
LFCRGis based on the LINPACK routine SGECO, see Dongarra et al. (1979).
SGECO uses unscaled partial pivoting.

Example

Theinverse of a3 x 3 matrix is computed. LFCRGis called to factor the matrix
and to check for singularity or ill-conditioning. LFI RGis called to determine the
columns of theinverse.

C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, LDFAC=3, N=3)
| NTEGER I PVT(N), J, NOUT
REAL A(LDA, LDA), AI NV(LDA, LDA), FAC(LDFAC, LDFAC), RCOND,
& RES(N), RI(N)
C Set values for A
(o A=( 1.0 3.0 3.0)
C ( 1.0 3.0 4.0)
C ( 1.0 4.0 3.0)
C
DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
C
CALL LFCRG (N, A, LDA, FAC, LDFAC, |PVT, RCOND)
C Print the reciprocal condition nunber
C and the L1 condition nunber

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99998) RCOND, 1. 0E0/ RCOND

C Set up the colums of the identity
C matrix one at a time in RJ

CALL SSET (N, 0.0, RJ, 1)

DO 10 J=1, N

RJI(J) = 1.0

C R) is the J-th colum of the identity
C matri x so the follow ng LFI RG
C ref erence places the J-th colum of
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C the inverse of Ain the J-th colum
C of Al NV
CALL LFIRG (N, A LDA, FAC, LDFAC, |IPVT, RJ, |PATH,
& AINV(1,J), RES)
RJ(J) =0.0
10 CONTI NUE
C Print results
CALL WRRRN (AINV’, N, N, AINV, LDA, 0)
C
99998 FORMAT (" RCOND =",F5.3,/,’ L1 Condition number =",F6.3)

END

Output
RCOND =0.015
L1 Condition number = 66.471

AINV

1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

LFTRG/DLFTRG (Single/Double precision)

Compute the LU factorization of areal general matrix.

Usage
CALL LFTRG (N, A, LDA, FAC, LDFAC, IPVT)

Arguments
N — Order of the matrix. (Input)

A — N by N matrix to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing th&U factorization of the matria. (Output)
If A'is not neededd andFAC can share the same storage locations.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for théJ
factorization. (Output)
Comments

1 Automatic workspace usage is
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LFTRG Nunits, or
DLFTRG 2N units.

Workspace may be explicitly provided, if desired, by use of L2TRG
DL2TRG. Thereferenceis

CALL L2TRG (N, A, LDA, FAC, LDFAC, |PVT, WK)
The additional argument is

WK — Work vector of lengti\N used for scaling.

2. Informational error
Type Code
4 2 The input matrix is singular.
Algorithm

RoutineLFTRG performs anLU factorization of a real general coefficient matrix.
ThelLU factorization is done using scaled partial pivoting. Scaled partial pivoting
differs from partial pivoting in that the pivoting strategy is the same as if each row
were scaled to have the samaorm.

The routineL FTRGfails if U, the upper triangular part of the factorization, has a
zero diagonal element. This can occur onl i§ singular or very close to a
singular matrix.

ThelLU factors are returned in a form that is compatible with routifre8G

(page 22)LFSRG (page 20) andFDRG (page 24). To solve systems of equations
with multiple right-hand-side vectors, UseTRG followed by eithelFI RG or
LFSRG called once for each right-hand side. The routiRBRG can be called to
compute the determinant of the coefficient matrix affe&fiRG has performed the
factorization. LefF be the matrirAC and letp be the vector PVT. The

triangular matriXJ is stored in the upper triangle I6f The strict lower triangle of

F contains the information needed to I‘eCOI’]Sﬂ’_L_JICUSing
L' =Ly Py .. .LP,

whereP; is the identity matrix with rows andp, interchanged ang; is the
identity withF;, fori =k + 1, ...,N inserted below the diagonal. The strict lower
half of F can also be thought of as containing the negative of the multipliers.

RoutineLFTRGis based on the LINPACK routir®&EFA. See Dongarra et al.
(1979). The routine&GEFA uses partial pivoting.

Example

A linear system with multiple right-hand sides is solved. RoutfT&®Gis called
to factor the coefficient matrix. The routinESRGis called to compute the two
solutions for the two right-hand sides. In this case, the coefficient matrix is
assumed to be well-conditioned and correctly scaled. Otherwise, it would be
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better to call LFCRG (page 15) to perform the factorization, and LFI RG (page 22)

to compute the solutions.

X(N, 2)

| PATH, X(1,J))

C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, LDFAC=3, N=3)
| NTEGER I PVT(N), J
REAL A(LDA, LDA), B(N,2), FAC(LDFAC, LDFAQ),
C
C Set values for A and B
C
(o A=( 1.0 3.0 3.0)
C ( 1.0 3.0 4.0)
C ( 1.0 4.0 3.0)
C
C B=( 1.0 10.0)
C ( 4.0 14.0)
C ( -1.0 9.0)
C
DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
DATA B/1.0, 4.0, -1.0, 10.0, 14.0, 9.0/
C
CALL LFTRG (N, A, LDA, FAC, LDFAC, 1PVT)
Solve for the two right-hand sides
DO 10 J=1, 2
CALL LFSRG (N, FAC, LDFAC, |IPVT, B(1,J),
10 CONTI NUE
C Print results
CALL WRRRN (X', N, 2, X, N, 0)
END
Output
X
1 2
1 -2.000 1.000
2 -2.000 -1.000
3 3.000 4.000

LFSRG/DLFSRG (Single/Double precision)

Solve areal general system of linear equations given the LU factorization of the

coefficient matrix.

Usage

CALL LFSRG (N, FAC, LDFAC, IPVT, B, IPATH, X)

Arguments

N — Number of equations. (Input)

FAC — N by N matrix containing th&U factorization of the coefficient matrix
as output from routineFCRG (page 15). (Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)
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PARAMETER
| NTEGER
REAL

IPVT — Vector of lengthN containing the pivoting information for théJ
factorization ofA as output from subrouting=CRG (page 15) ot FTRG DLFTRG

(page 18). (Input)
B — Vector of lengttN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systeiX = B is solved.

| PATH = 2 means the systeﬁ{X =B is solved.

X — Vector of lengthN containing the solution to the linear system. (Output)
If B is not needed3 andX can share the same storage locations.

Algorithm

RoutineLFSRG computes the solution of a system of linear algebraic equations
having a real general coefficient matrix. To compute the solution, the coefficient
matrix must first undergo drlJ factorization. This may be done by calling either
LFCRG, page 15, oLFTRG, page 18. The solution #& = b is found by solving

the triangular systemsy = b andUx =y. The forward elimination step consists of
solving the systerhy = b by applying the same permutations and elimination
operations td that were applied to the columnsfin the factorization routine.
The backward substitution step consists of solving the triangular s\stery

for x.

LFSRG andLFI RG, page 22, both solve a linear system givehlitactorization.
LFI RG generally takes more time and produces a more accurate answer than
LFSRG. Each iteration of the iterative refinement algorithm usedryRG calls
LFSRG. The routindFSRGis based on the LINPACK routir&eESL ; see
Dongarra et al. (1979).

Example

The inverse is computed for a real general3matrix. The input matrix is
assumed to be well-conditioned, hendeTRGis used rather tharFCRG.
Decl are vari abl es
(I PATH=1, LDA=3, LDFAC=3, N=3)
I, IPVT(N), J
A(LDA, LDA), Al NV(LDA, LDA), FAC(LDFAC, LDFAC), RI(N)

Set values for A

A=( 1.0 3.0 3.0)
( 1.0 3.0 4.0)
( 1.0 4.0 3.0)

DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/

CALL LFTRG (N, A, LDA, FAC, LDFAC, 1PVT)

CALL SSET

Set up the colums of the identity
matrix one at a time in RJ
(N, 0.0, RJ, 1)

IMSL MATH/LIBRARY

Chapter 1: Linear Systems « 21



DO

C RJ is the J-th colum of the identity
C matri x so the follow ng LFSRG

C reference places the J-th colum of

C the inverse of Ain the J-th colum
C

of Al NV
CALL LFSRG (N, FAC, LDFAC, IPVT, RJ, |PATH, AINV(1,J))
RJI(J) = 0.0
10 CONTI NUE
C Print results
CALL WRRRN (AINV’, N, N, AINV, LDA, 0)
END
Output
AINV
1 2 3

1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

LFIRG/DLFIRG (Single/Double precision)

Use iterative refinement to improve the solution of areal general system of linear
equations.

Usage
CALL LFIRG (N, A, LDA, FAC, LDFAC, IPVT, B, IPATH, X, RES)

Arguments
N — Number of equations. (Input)
A — N by N matrix containing the coefficient matrix of the linear system. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing th&U factorization of the coefficient matrix
as output from routineFCRG DLFCRG or LFTRGE DLFTRG.  (Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for théJ
factorization ofA as output from routineFCRG DLFCRG or LFTRG DLFTRG.
(Input)

B — Vector of lengtiN containing the right-hand side of the linear system.
(Input)
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IPATH — Path indicator. (Input)
| PATH = 1 means the systeft X =B is solved.

| PATH = 2 means the systew{x =B is solved.
X — Vector of lengthN containing the solution to the linear system. (Output)

RES — Vector of lengthN containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
3 2 The input matrix is too ill-conditioned for iterative
refinement to be effective.

Algorithm

RoutineLFI RG computes the solution of a system of linear algebraic equations
having a real general coefficient matrix. Iterative refinement is performed on the
solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first underddJan
factorization. This may be done by calling eithECRG, page 15, OLFTRG,
page 18.

Iterative refinement fails only if the matrix is very ill-conditioned.

Routines FI RG andLFSRG (page 20) both solve a linear system givehlits
factorizationLFI RG generally takes more time and produces a more accurate
answer tham FSRG. Each iteration of the iterative refinement algorithm used by
LFI RGcallsLFSRG.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.5 to the
second element.

C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, LDFAC=3, N=3)
| NTEGER | PVT(N), NOUT
REAL A(LDA, LDA), B(N), FAC(LDFAC, LDFAC), RCOND, RES(N), X(N)
C
C Set values for A and B
C
C A=( 1.0 3.0 3.0)
C ( 1.0 3.0 4.0)
C ( 1.0 4.0 3.0)
C
C B=(-0.5 -1.0 1.5)
C

DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
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DATA B/-0.5, -1.0, 1.5/
C
CALL LFCRG (N, A, LDA, FAC, LDFAC, |PVT, RCOND)
C Print the reciprocal condition number
CALL UMACH (2, NaUT)
VWRI TE (NOUT, 99999) RCOND, 1. 0EO/ RCOND
C Solve the three systens
DO 10 J=1, 3
CALL LFIRG (N, A, LDA, FAC, LDFAC, |PVT, B, |PATH, X, RES)
Print results
CALL WRRRN (X', 1, N, X, 1, 0)
Perturb B by adding 0.5 to B(2)
B(2) =B(2) + 0.5
10 CONTINUE
C
99999 FORMAT ( RCOND =",F5.3,/, L1 Condition number =",F6.3)
END

Output
RCOND =0.015
L1 Condition number = 66.471

X
1 2 3
-5.000 2.000 -0.500
X
1 2 3
-6.500 2.000 0.000
X
1 2 3

-8.000 2.000 0.500

LFDRG/DLFDRG (Single/Double precision)

Compute the determinant of areal general matrix given the LU factorization of
the matrix.

Usage
CALL LFDRG (N, FAC, LDFAC, IPVT, DET1, DET2)

Arguments

N — Order of the matrix. (Input)

FAC — N by N matrix containing th&U factorization of the matria as output
from routineLFCRG DLFCRG (page 15). (Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for théJ
factorization as output from routin€TRG DLFTRG or LFCRGE DLFCRG. (Input)
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DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 10| DET1| < 10.0 orDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form @t DET1 * 10PET2

Algorithm

RoutineLFDRG computes the determinant of a real general coefficient matrix. To
compute the determinant, the coefficient matrix must first undergtan
factorization. This may be done by calling eithECRG (page 15) OLFTRG

(page 18). The formula dét= detL detU is used to compute the determinant.
Since the determinant of a triangular matrix is the product of the diagonal
elements

N
detU = |_|i:1Uii

(The matrixU is stored in the upper triangle BAC.) SincelL is the product of
triangular matrices with unit diagonals and of permutation matrices,

detL = (—1)k wherek is the number of pivoting interchanges.
RoutineLFDRGis based on the LINPACK routir®EDI ; see Dongarra et al.
(1979).

Example

The determinant is computed for a real generaB3matrix.

C Decl are vari abl es
PARAMETER (LDA=3, LDFAC=3, N=3)
| NTEGER I PVT(N), NouT
REAL A(LDA, LDA), DET1, DET2, FAC(LDFAC, LDFAC)
C
C Set values for A
(o A= ( 33.0 16.0 72.0)
C (-24.0 -10.0 -57.0)
C ( 18.0 -11.0 7.0)
C
DATA A/ 33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
C
CALL LFTRG (N, A, LDA, FAC, LDFAC, 1PVT)
C Conput e t he determ nant
CALL LFDRG (N, FAC, LDFAC, |PVT, DET1, DET2)
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) DET1, DET2
C
99999 FORMAT (' The determinant of A is ’, F6.3, ' * 10, F2.0)
END

Output
The determinant of A is -4.761 * 10**3.
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LINRG/DLINRG (Single/Double precision)

Compute the inverse of areal general matrix.

Usage
CALL LINRG (N, A LDA, AINV, LDAINV)

Arguments
N — Order of the matridA. (Input)
A — N by N matrix containing the matrix to be inverted. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

AINV — N by N matrix containing the inverse af (Output)
If Ais not needed andAl Nv can share the same storage locations.

LDAINV — Leading dimension ofl NV exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

LINRG 2N+ N(N-1)/2 units, or
DLI NRG 3N + N(N - 1) units.

Workspace may be explicitly provided, if desired, by use of
L2NRGDL2NRG. The reference is

CALL L2NRG (N, A, LDA, AINv, LDAINV, W, I|WK)
The additional arguments are as follows:
WK — Work vector of lengtin+ N(N— 1)/2.

IWK — Integer work vector of lengtk

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The inverse
might not be accurate.
4 2 The input matrix is singular.
Algorithm

RoutineLI NRG computes the inverse of a real general matrix. It first uses the
routineLFCRG (page 15) to compute aJ factorization of the coefficient matrix
and to estimate the condition number of the matrix. Routh@RG computes)

and the information needed to complﬁé LI NRT, page 49, is then used to
computeU‘l. Finally,A‘1 is computed using‘1 =u'L.
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Theroutine LI NRGfailsif U, the upper triangular part of the factorization, has a
zero diagonal element or if the iterative refinement algorithm fails to converge.
Thiserror occurs only if Aissingular or very close to asingular matrix.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A

can cause very large changesin A™ .

Example

Theinverseis computed for area general 3 x 3 matrix.

C Decl are vari abl es
PARAMETER (LDA=3, LDAI NvV=3, N=3)
| NTEGER 1, J, NOUT
REAL A(LDA, LDA), Al NV(LDAI NV, LDAI NV)
C
C Set values for A
C A=( 1.0 3.0 3.0)
C ( 1.0 3.0 4.0)
C ( 1.0 4.0 3.0)
C
DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
C
CALL LINRG (N, A LDA, AINV, LDAINV)
C Print results
CALL WRRRN (AINV’, N, N, AINV, LDAINV, 0)
END
Output
AINV
1 2 3

1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

LSACG/DLSACG (Single/Double precision)

Solve a complex general system of linear equationswith iterative refinement.

Usage
CALL LSACG (N, A, LDA, B, IPATH, X)

Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficients of the linear system.
(Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
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B — Complex vector of lengti containing the right-hand side of the linear

system.

(Input)

IPATH — Path indicator. (Input)

| PATH =
| PATH =

1 means the systefiX =B is solved.
2 means the syste@ﬁlx =B is solved.

X — Complex vector of length containing the solution to the linear system.

(Output)

Comments

1.

Automatic workspace usage is
LSACG 2N + 3N units, or
DLSACG 4N + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2ACG DL2ACG. The reference is

CALL L2ACG (N, A, LDA, B, IPATH, X, FAC, |PVT, VK)

The additional arguments are as follows:

FAC — Complex work vector of Iengm2 containing the-U
factorization ofA on output.

IPVT — Integer work vector of lengtk containing the pivoting
information for the_U factorization ofA on output.

WK — Complex work vector of lengtk

Informational errors

Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.

Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routintACG the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2); respectively, in.SACG.
Additional memory allocation faFAC and option value
restoration are done automaticallyLiBACG. Users directly
calling L2ACG can allocate additional space fo&C and set
I VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that usSACG or L2ACG. Default values
for the option aré VAL(*) = 1, 16, 0, 1.
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17 This option has two values that determine if theL; condition
number isto be computed. Routine LSACG temporarily replaces
I VAL(2) by 1 VAL(1). The routine L2CCG computes the
condition number if | VAL(2) = 2. Otherwise L2CCG skips this
computation. LSACG restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSACG solves a system of linear algebraic equations with a complex
genera coefficient matrix. It first uses the routine LFCCG, page 32, to compute an
LU factorization of the coefficient matrix and to estimate the condition number of
the matrix. The solution of the linear system is then found using the iterative
refinement routine LFI CG, page 39.

LSACGfailsif U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if Aissingular or very close to asingular matrix.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSACG solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of three linear equations is solved. The coefficient matrix has complex
genera form and the right-hand-side vector b has three elements.

Decl are vari abl es

PARAMETER (| PATH=1, LDA=3, N=3)
COMVPLEX A(LDA, LDA), B(N), X(N)
Set values for A and B
A= ( 3.0-2.0i 2.0+4.0i 0.0-3.0i)
( 1.0+1.0i 2.0-6.0i 1.0+2.0i)
( 4.0+0.0i -5.0+1.0i 3.0-2.0i)
B = (10.0+5.0i 6.0-7.0i -1.0+2.0i)
DATA A/ (3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),
& (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/

DATA B/ (10.0,5.0), (6.0,-7.0), (-1.0,2.0)/

Solve AX = B (I PATH = 1)

CALL LSACG (N, A, LDA, B, IPATH X

Print results

CALL WRCRN (X', 1, N, X, 1, 0)
END
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Output
X
1 2 3
( 1.000,-1.000) ( 2.000, 1.000) ( 0.000, 3.000)

LSLCG/DLSLCG (Single/Double precision)

Solve a complex general system of linear equationswithout iterative refinement.

Usage
CALL LSLCG (N, A, LDA, B, IPATH X)

Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficients of the linear system.
(Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefix = B is solved.

| PATH = 2 means the systeﬁ#x =B is solved.

X — Complex vector of lengt containing the solution to the linear system.
(Output)

If B is not needed3 andX can share the same storage locations.
Comments

1. Automatic workspace usage is
LSLCG 2N + 3N units, or

DLSLCG 4N + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2LCE DL2LCG. The reference is

CALL L2LCG (N, A, LDA, B, IPATH, X, FAC, |PVT, VWK)
The additional arguments are as follows:
FAC — Complex work vector of Iengm2 containing the_U

factorization ofa on output. IfA is not neededd andFAC can share the
same storage locations.
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IPVT — Integer work vector of lengtk containing the pivoting
information for thd_U factorization ofA on output.

WK — Complex work vector of length

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routin®_CG the leading
dimension oFAC s increased byVAL(3) whenNis a multiple
of I VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2); respectively, in.SLCG.
Additional memory allocation fafAC and option value
restoration are done automaticallyLiBLCG. Users directly
calling L2LCG can allocate additional space fexC and set

| VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that usSLCG or L2LCG. Default values
for the option aré VAL(*) =1, 16, 0, 1.

17 This option has two values that determine ifltheondition
number is to be computed. Routin®. CG temporarily replaces
I VAL(2) byl VAL(1). The routind.2CCG computes the
condition number if VAL(2) = 2. Otherwis&2CCG skips this
computationLSLCG restores the option. Default values for the
option arel VAL(*) = 1, 2.

Algorithm

RoutineLSLCG solves a system of linear algebraic equations with a complex
general coefficient matrix. It first uses the routif®cCG, page 32, to compute an

LU factorization of the coefficient matrix and to estimate the condition number of
the matrix. The solution of the linear system is then found wsig8gG, page 37.

LSLCGfails if U, the upper triangular part of the factorization, has a zero diagonal
element. This occurs only 4 either is a singular matrix or is very close to a
singular matrix.

If the estimated condition number is greater thar(Wheree is machine
precision), a warning error is issued. This indicates that very small changes in
can cause very large changes in the solwtidithe coefficient matrix is ill-
conditioned or poorly scaled, it is recommended LH$ACG, page 27, be used.
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Example

A system of three linear equations is solved. The coefficient matrix has complex
genera form and the right-hand-side vector b has three elements.

C Decl are vari abl es

PARAMETER (| PATH=1, LDA=3, N=3)

COVPLEX A(LDA, LDA), B(N), X(N
C Set values for A and B
C
C A= ( 3.0-2.0i 2.0+4.0i 0.0-3.0i)
C ( 1.0+1.0i 2.0-6.0i 1.0+2.0i)
C ( 4.0+0.0i -5.0+1.0i 3.0-2.0i)
(o
C B = (10. 0+5. Qi 6.0-7.0i -1.0+2.0i)
C

DATA A/ (3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),

& (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/

DATA B/ (10.0,5.0), (6.0,-7.0), (-1.0,2.0)/
C Solve AX = B (1 PATH = 1)

CALL LSLCG (N, A LDA, B, IPATH X)
C Print results

CALL WRCRN (X', 1, N, X, 1, 0)
END
Output
X
1 2 3

(1.000,-1.000) ( 2.000, 1.000) ( 0.000, 3.000)

LFCCG/DLFCCG (Single/Double precision)

Compute the LU factorization of a complex general matrix and estimate itsL,;
condition number.

Usage
CALL LFCCG (N, A, LDA, FAC, LDFAC, IPVT, RCOND)

Arguments
N — Order of the matrix. (Input)
A — ComplexN by N matrix to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — ComplexN by N matrix containing th&U factorization of the matrir
(Output)
If Ais not neededd andFAC can share the same storage locations.

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)
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IPVT — Vector of lengthN containing the pivoting information for théJ
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal oftreondition
number ofA. (Output)

Comments

1. Automatic workspace usage is

LFCCG 2N units, or
DLFCCG 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CCdE DL2CCG. The reference is

CALL L2CCG (N, A, LDA, FAC, LDFAC, |PVT, RCOND, WK)
The additional argument is

WK — Complex work vector of length

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.
Algorithm

RoutineLFCCG performs anLU factorization of a complex general coefficient
matrix. It also estimates the condition number of the matrix LTh&actorization

is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to
have the same-norm.

Thel, condition number of the matriis defined to b&(A) = |}A|[|Wl|[. Since

it is expensive to computé\ﬂ ||, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater thar(Wheree is machine
precision), a warning error is issued. This indicates that very small changes in
can cause very large changes in the solutidierative refinement can sometimes
find the solution to such a system.

LFCCG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur onlyAfeither is singular or is very close to a singular
matrix.

TheLU factors are returned in a form that is compatible with routifre€G,
page 39LFSCG, page 37, andFDCG, page 42. To solve systems of equations
with multiple right-hand-side vectors, useCCG followed by eithelFI CG or
LFSCG called once for each right-hand side. The routiReCG can be called to
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compute the determinant of the coefficient matrix after LFCCG has performed the
factorization.

Let F be the matrix FAC and let p be the vector | PVT. The triangular matrix U is
stored in the upper triangle of F. The strict lower triangle of F contains the
information needed to reconstruct L™ usi ng

L =Ly(Pyg ... LP,

where P, is the identity matrix with rowsk and p, interchanged and L, isthe
identity with F;; fori =k + 1, ..., Ninserted below the diagonal. The strict lower
half of F can also be thought of as containing the negative of the multipliers.

LFCCGis based on the LINPACK routine CGECO, see Dongarra et al. (1979).
CGECO uses unscaled partial pivoting.

Example

Theinverse of a3 x 3 matrix is computed. LFCCGis called to factor the matrix
and to check for singularity or ill-conditioning. LFI CG (page 39) is called to
determine the columns of theinverse.

Decl are vari abl es
ER (I PATH=1, LDA=3, LDFAC=3, N=3)

| NTEGER I PVT(N), NOUT
REAL RCOND, THI RD
COVPLEX A(LDA, LDA), AINV(LDA, LDA), RI(N), FAC(LDFAC, LDFAC),
& RES( N)
Decl are functions
COVPLEX CWVPLX
Set values for A
A=( 1.0+1.0i 2.0+3.0i 3.0+3.0i)
( 2.0+1.0i 5.0+3.0i 7.0+4.0i)
( -2.0+1.0i -4.0+4.0i -5.0+3.0i)
DATA A/ (1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
& (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
Scale A by dividing by three
THIRD = 1.0/3.0
DO 10 1=1, N
CALL CSSCAL (N, THIRD, A(1,1), 1)
CONTI NUE
Factor A
CALL LFCCG (N, A, LDA, FAC, LDFAC, |PVT, RCOND)

Print the L1 condition nunber

CALL UMACH (2, NOUT)

WRI TE (

CALL CSl

NOUT, 99999) RCOND, 1. O0EO/ RCOND
Set up the colums of the identity
matrix one at a time in RJ

ET (N, (0.0,0.0), RJ, 1)

DO 20 J=1, N
RI(J) = CMPLX(1.0,0.0)

R) is the J-th colum of the identity
matri x so the follow ng LFI RG
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C ref erence places the J-th colum of
C the inverse of Ain the J-th colum
C of Al NV
CALL LFICG (N, A LDA, FAC, LDFAC, |IPVT, RJ, |PATH,
& AINV(1,J), RES)
RJ(J) = CWPLX(0.0,0.0)
20 CONTI NUE
C Print results
CALL WRCRN (AINV’, N, N, AINV, LDA, 0)
C
99999 FORMAT (" RCOND =",F5.3,/,’ L1 Condition number =",F6.3)

END

Output
RCOND =0.016
L1 Condition number = 63.104

AINV
1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)

2 (-1.600,-1.800) (0.200, 0.600) ( 0.400,-0.800)

3 (-0.600, 2.200) ( 1.200,-1.400) ( 0.400, 0.200)

LFTCG/DLFTCG (Single/Double precision)

Compute the LU factorization of a complex general matrix.

Usage
CALL LFTCG (N, A, LDA, FAC, LDFAC, IPVT)

Arguments
N — Order of the matrix. (Input)
A — ComplexN by N matrix to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — ComplexN by N matrix containing théU factorization of the matria.
(Output)
If Ais not neededd andFAC can share the same storage locations.

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengtiN containing the pivoting information for tié)
factorization. (Output)
Comments

1. Automatic workspace usage is
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LFTCG 2N units, or
DLFTCG 4N units.

Workspace may be explicitly provided, if desired, by use of
L2TCE DL2TCG. Thereferenceis

CALL L2TCG (N, A, LDA, FAC, LDFAC, |PVT, WK)
The additional argument is

WK — Complex work vector of length

2. Informational error
Type Code
4 2 The input matrix is singular.
Algorithm

RoutineLFTCG performs anLU factorization of a complex general coefficient
matrix. TheLU factorization is done using scaled partial pivoting. Scaled partial
pivoting differs from partial pivoting in that the pivoting strategy is the same as if
each row were scaled to have the sarmerm.

LFTCGfails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur onlyAfeither is singular or is very close to a singular
matrix.

ThelLU factors are returned in a form that is compatible with routifre€G,
page 39LFSCG, page 37, andFDCG, page 42. To solve systems of equations
with multiple right-hand-side vectors, UserCG followed by eithelFI CG or
LFSCG called once for each right-hand side. The routiReCG can be called to
compute the determinant of the coefficient matrix aff&@CG (page 32) has
performed the factorization.

Let F be the matri¥AC and letp be the vector PVT. The triangular matrixJ is
stored in the upper triangle Bf The strict lower triangle df contains the

information needed to reconstruct using
L =Ly Py ... LP,

whereP; is the identity matrix with rows andP;, interchanged and, is the
identity withF;, fori =k + 1, ..., N inserted below the diagonal. The strict lower
half of F can also be thought of as containing the negative of the multipliers.

LFTCGis based on the LINPACK routir®@EFA; see Dongarra et al. (1979).
CGEFA uses unscaled partial pivoting.

Example

A linear system with multiple right-hand sides is soln&d'CG is called to
factor the coefficient matrix. FSCGis called to compute the two solutions for the
two right-hand sides. In this case the coefficient matrix is assumed to be well-
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conditioned and correctly scaled. Otherwise, it would be better to call LFCCGto
perform the factorization, and LFI CGto compute the solutions.
C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, LDFAC=3, N=3)

INTEGER | PVT(N)
COWLEX  A(LDA LDA), B(N 2), X(N 2), FAC(LDFAC, LDFAC)

C Set values for A
C A= ( 1.0+1.0i 2.0+3.0i 3.0-3.0i)
C ( 2.0+1.0i 5.0+3.0i 7.0-5.0i)
C (-2.0+1.0i -4.0+4.0i 5.0+3.0i)
C
DATA A/ (1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
& (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/
C
C Set the right-hand sides, B
C B=( 3.0+5.0i 9.0+ 0.0i)
C ( 22.0+10.0i 13.0+ 9.0i)
C (-10.0+ 4.0i 6.0+10.0i)
C
DATA B/ (3.0,5.0), (22.0,10.0), (-10.0,4.0), (9.0,0.0),
& (13.0,9.0), (6.0,10.0)/
C
C Factor A
CALL LFTCG (N, A, LDA, FAC, LDFAC, 1PVT)
C Solve for the two right-hand sides
DO 10 J=1, 2
CALL LFSCG (N, FAC, LDFAC, IPVT, B(1,J), IPATH X(1,J))
10 CONTI NUE
C Print results
CALL WRCRN (X', N, 2, X, N, 0)
END
Output
X
1 2

1 (1.000,-1.000) ( 0.000, 2.000)
2 (2.000, 4.000) (-2.000,-1.000)
3 (3.000, 0.000) (1.000, 3.000)

LFSCG/DLFSCG (Single/Double precision)

Solve a complex general system of linear equations given the LU factorization of
the coefficient matrix.

Usage
CALL LFSCG (N, FAC, LDFAC, IPVT, B, IPATH, X)

Arguments

N — Number of equations. (Input)
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FAC — ComplexN by N matrix containing th&U factorization of the coefficient
matrix A as output from routineFCCG DLFCCG or LFTCGE DLFTCG. (Input)

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengttN containing the pivoting information for tié)
factorization ofA as output from routineFCCG DLFCCG or LFTCE DLFTCG.

(Input)
B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefx = B is solved.

| PATH = 2 means the syste@ﬁlx =B is solved.

X — Complex vector of length containing the solution to the linear system.
(Output)
If B is not needed andX can share the same storage locations.

Algorithm

RoutineLFSCG computes the solution of a system of linear algebraic equations
having a complex general coefficient matrix. To compute the solution, the
coefficient matrix must first undergo &bJ factorization. This may be done by
calling eitheLFCCG, page 32, oLFTCG, page 35. The solution #x = b is found
by solving the triangular systerhg = b andUx =y. The forward elimination step
consists of solving the systdm = b by applying the same permutations and
elimination operations tb that were applied to the columns/in the
factorization routine. The backward substitution step consists of solving the
triangular systenx =y for x.

Routines FSCG andLFI CG (page 39) both solve a linear system givehlits
factorizationLFI CG generally takes more time and produces a more accurate
answer tham FSCG. Each iteration of the iterative refinement algorithm used by
LFI CGcallsLFSCG.

LFSCGis based on the LINPACK routir@SESL; see Dongarra et al. (1979).

Example

The inverse is computed for a complex generalXBmatrix. The input matrix is
assumed to be well-conditioned, heh€&CG (page 35) is used rather than

LFCCG.
C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, LDFAC=3, N=3)
| NTEGER I PVT(N)
REAL TH RD
COVPLEX A(LDA, LDA), AINV(LDA, LDA), RI(N), FAC(LDFAC, LDFAQ)
C Decl are functions
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COWPLEX CVPLX

C Set values for A
C
C A= ( 1.0+1.0i 2.0+3.0i 3.0+3.0i)
C ( 2.0+1.0i 5.0+3.0i 7.0+4.0i)
C ( -2.0+1.0i -4.0+4.0i -5.0+3.0i)
C
DATA A/ (1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
& (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
C
C Scale A by dividing by three
THRD = 1.0/3.0
DO 10 1=1, N
CALL CSSCAL (N, THIRD, A(1,1), 1)
10 CONTI NUE
Factor A
CALL LFTCG (N, A LDA, FAC, LDFAC, 1PVT)
C Set up the colums of the identity
C matrix one at a time in RJ
CALL CSET (N, (0.0,0.0), RJ, 1)
DO 20 J=1,
RJ(J) = CWPLX(1.0,0.0)
C RJ is the J-th colum of the identity
C matri x so the follow ng LFSCG
C reference places the J-th colum of
C the inverse of Ain the J-th colum
C of ANV
CALL LFSCG (N, FAC, LDFAC, |PVT, RJ, |PATH, Al NV(1,J))
RJ(J) = CWPLX(0.0,0.0)
20 CONTI NUE
C Print results
CALL WRCRN (AINV’, N, N, AINV, LDA, 0)
END
Output
AINV
1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) ( 0.400,-0.800)
3 (-0.600, 2.200) ( 1.200,-1.400) ( 0.400, 0.200)

LFICG/DLFICG (Single/Double precision)

Use iterative refinement to improve the solution of a complex general system of

linear equations.

Usage

CALL LFICG (N, A, LDA, FAC, LDFAC, IPVT, B, IPATH, X, RES)

Arguments

N — Number of equations. (Input)
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A — ComplexN by N matrix containing the coefficient matrix of the linear
system. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — ComplexN by N matrix containing th&U factorization of the coefficient
matrix A as output from routineFCCGE DLFCCG or LFTCGE DLFTCG. (Input)

LDFAC — Leading dimension @fAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengtiN containing the pivoting information for tié)
factorization ofA as output from routineFCCG DLFCCG or LFTCE DLFTCG.

(Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefx = B is solved.

| PATH = 2 means the syste@ﬁlx =B is solved.

X — Complex vector of length containing the solution to the linear system.
(Output)

RES — Complex vector of lengtl containing the residual vector at the
improved solution. (Output)

Comments

Informational error
Type Code
3 2 The input matrix is too ill-conditioned for iterative refinement
to be effective.

Algorithm

RoutineLFI CG computes the solution of a system of linear algebraic equations
having a complex general coefficient matrix. Iterative refinement is performed on
the solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first underddJan
factorization. This may be done by calling eithECCG, page 32, oLFTCG,
page 35.

Iterative refinement fails only if the matrix is very ill-conditioned. Routines
LFI CGandLFSCG (page 37) both solve a linear system givehlits
factorizationLFI CG generally takes more time and produces a more accurate

40 « Chapter 1: Linear Systems IMSL MATH/LIBRARY



answer than LFSCG. Each iteration of the iterative refinement algorithm used by
LFI CGcallsLFSCG

Example

A set of linear systemsis solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.5+ 0.5i
to the second element.

C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, LDFAC=3, N=3)
| NTEGER I PVT(N), NoUT
REAL RCOND

COWLEX  A(LDA LDA), B(N), X(N), FAC(LDFAC, LDFAC), RES(N)

C Decl are functions
COVPLEX CMPLX
C Set values for A
C
C A= ( 1.0+1.0i 2.0+3.0i 3.0-3.0i)
C ( 2.0+1.0i 5.0+3.0i 7.0-5.0i)
C ( -2.0+1.0i -4.0+4.0i 5.0+3.0i)
C
DATA A/ (1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
& (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/
C
C Set values for B
C B = ( 3.0+5.0i 22.0+10.0i -10.0+4.0i)
C
DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0)/
C Factor A
CALL LFCCG (N, A, LDA, FAC, LDFAC, |PVT, RCOND)
C Print the L1 condition nunber
CALL UMACH (2, NOUT)
VWRI TE ( NOUT, 99999) RCOND, 1. 0EO/ RCOND
C Solve the three systens
DO 10 J=1, 3
CALL LFICG (N, A LDA, FAC, LDFAC, |1PVT, B, IPATH X, RES)
Print results
CALL WRCRN ('X', 1, N, X, 1, 0)
Perturb B by adding 0.5+0.5i to B(2)
B(2) = B(2) + CMPLX(0.5,0.5)
10 CONTINUE
C
99999 FORMAT (" RCOND =",F5.3,/,’ L1 Condition number =",F6.3)

END

Output
RCOND =0.023
L1 Condition number = 42.799

X
1 2 3
(1.000,-1.000) ( 2.000, 4.000) ( 3.000, 0.000)
X
1 2 3

(0.910,-1.061) (1.986, 4.175) (3.123, 0.071)
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X
1 2 3
( 0.821,-1.123) ( 1.972, 4.349) ( 3.245, 0.142)

LFDCG/DLFDCG (Single/Double precision)

Compute the determinant of acomplex general matrix given the LU factorization
of the matrix.

Usage
CALL LFDCG (N, FAC, LDFAC, |PVT, DET1, DET2)

Arguments
N — Order of the matrix. (Input)

FAC — ComplexN by N matrix containing th&U factorization of the matrir as
output from routine FTCG DLFTCG or LFCCE DLFCCG. (Input)

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengtiN containing the pivoting information for tié)
factorization as output from routin€TCG DLFTCG or LFCCE DLFCCG.  (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 1O[DET1| < 10.0 oDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form @t DET1 * 10PET2

Algorithm

RoutineLFDCG computes the determinant of a complex general coefficient
matrix. To compute the determinant the coefficient matrix must first undergo an
LU factorization. This may be done by calling eithE€CG, page 32, oLFTCG,

page 35. The formula dét= detL detU is used to compute the determinant.
Since the determinant of a triangular matrix is the product of the diagonal
elements,

N
detU = |_|i:1Uii

(The matrixU is stored in the upper triangle BAC.) SincelL is the product of
triangular matrices with unit diagonals and of permutation matrices,

detlL = (—1)k wherek is the number of pivoting interchanges.
LFDCGis based on the LINPACK routir@EDI ; see Dongarra et al. (1979).
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Example

The determinant is computed for a complex general 3 x 3 matrix.

C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, LDFAC=3, N=3)
| NTEGER I PVT(N), NOUT
REAL DET2
COMPLEX A(LDA, LDA), FAC(LDFAC, LDFAC), DET1
C Set values for A
C
C A=( 3.0-2.0i 2.0+4.0i 0.0-3.0i)
C ( 1.0+1.0i 2.0-6.0i 1.0+2.0i)
C ( 4.0+0.0i -5.0+1.0i 3.0-2.0i)
C
DATA A/ (3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),
& (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/
C
C Factor A
CALL LFTCG (N, A LDA, FAC, LDFAC, 1PVT)
C Conpute the determ nant for the
C factored matrix
CALL LFDCG (N, FAC, LDFAC, |PVT, DET1, DET2)
C Print results
CALL UMACH (2, NOUT)
VRI TE (NOUT, 99999) DET1, DET2
C

99999 FORMAT (' The determinant of A is’,3X,'(',F6.3,",’,F6.3,

&
END

") * 10% F2.0)

Output

The determinant of A is ( 0.700, 1.100) * 10**1.

LINCG/DLINCG (Single/Double precision)

Compute the inverse of acomplex general matrix.

Usage
CALL LINCG (N, A, LDA, AINV, LDAINV)

Arguments
N — Order of the matridA. (Input)

A — ComplexN by N matrix containing the matrix to be inverted. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

AINV — ComplexN by N matrix containing the inverse af (Output)
If A'is not neededd andAl NV can share the same storage locations.

LDAINV — Leading dimension ofl NV exactly as specified in the dimension
statement of the calling program. (Input)
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000000

Comments
1 Automatic workspace usageis

LI NCG 3N+ N(N — 1) units, or
DLI NCG 5N + 2N(N - 1) units.

Workspace may be explicitly provided, if desired, by use of
L2NCE DL2NCG. The referenceis

CALL L2NCG (N, A, LDA, AINv, LDAINV, W, I|WK)
The additional arguments are as follows:
WK — Complex work vector of length+ N(N - 1)/2.

IWK — Integer work vector of lengtk

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The inverse
might not be accurate.
4 2 The input matrix is singular.
Algorithm

RoutineLI NCG computes the inverse of a complex general matrix.

It first uses the routineFCCG, page 32, to compute amJ factorization of the
coefficient matrix and to estimate the condition number of the magtCG
computedJ and the information needed to comph’t’e LI NCT, page 55, is then
used to computel™ . Finally A is computed using™ =U™'L™.

LI NCGfails if U, the upper triangular part of the factorization, has a zero diagonal

element or if the iterative refinement algorithm fails to converge. This errors
occurs only ifA is singular or very close to a singular matrix.

If the estimated condition number is greater thar(heree is machine
precision), a warning error is issued. This indicates that very small charfges in

can cause very large changeNh

Example

The inverse is computed for a complex general3Bmatrix.
Decl are vari abl es

PARAMETER (LDA=3, LDAI NV=3, N=3)

REAL
COWPLEX

TH RD
A(LDA, LDA), Al NV( LDAI NV, LDAI NV)
Set values for A

A= ( 1.0+1.0i 2.0+3.0i 3.0+3.0i)
( 2.0+1.0i 5.0+3.0i 7.0+4.0i)
( -2.0+1.0i -4.0+4.0i -5.0+3.0i)
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DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),
& (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
C
C Scale A by dividing by three
TH RD = 1.0/3.0
DO 10 1=1, N
CALL CSSCAL (N, THIRD, A(1,1), 1)
10 CONTI NUE
C Cal cul ate the inverse of A
CALL LINCG (N, A LDA, AINv, LDAI Nv)
C Print results
CALL WRCRN (AINV’, N, N, AINV, LDAINV, 0)
END
Output
AINV
1 2 3

1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) ( 0.400,-0.800)
3 (-0.600, 2.200) ( 1.200,-1.400) ( 0.400, 0.200)

LSLRT/DLSLRT (Single/Double precision)

Solve areal triangular system of linear equations.

Usage
CALL LSLRT (N, A, LDA, B, IPATH, X)

Arguments

N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix for the triangular linear
system. (Input)

For a lower triangular system, only the lower triangular part and diagoaalref

referenced. For an upper triangular system, only the upper triangular part and
diagonal ofA are referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of lengtiN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means solvax = B, A lower triangular.
| PATH = 2 means solvaX = B, A upper triangular.

| PATH= 3 means solva’X = B, A lower triangular.
| PATH= 4 means solva’x =B, A upper triangular.
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X — Vector of lengthN containing the solution to the linear system. (Output)
If B is not needed3 andX can share the same storage locations.

Algorithm

RoutineL SLRT solves a system of linear algebraic equations with a real triangular
coefficient matrix LSLRT fails if the matrixA has a zero diagonal element, in

which case\ is singularLSLRT is based on the LINPACK routir8TRSL; see
Dongarra et al. (1979).

Example

A system of three linear equations is solved. The coefficient matrix has lower
triangular form and the right-hand-side vectphas three elements.

C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, N=3)
REAL A(LDA, LDA), B(LDA), X(LDA)
C Set values for A and B
C
C A=( 2.0 )
C ( 2.0 -1.0 )
C ( -4.0 2.0 5.0)
C
C B=( 2.0 5.0 0.0)
C
DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
DATA B/ 2.0, 5.0, 0.0/
C
C Solve AX = B (I PATH = 1)
CALL LSLRT (N, A, LDA, B, IPATH X)
C Print results
CALL WRRRN (X', 1, N, X, 1, 0)
END
Output
X
1 2 3

1.000 -3.000 2.000

LFCRT/DLFCRT (Single/Double precision)

Estimate the condition number of areal triangular matrix.

Usage
CALL LFCRT (N, A, LDA, IPATH, RCOND)

Arguments

N — Order of the matrix. (Input)

A — Nby Nmatrix containing the triangular matrix whose condition number isto
be estimated. (Input)

46 « Chapter 1: Linear Systems IMSL MATH/LIBRARY



For alower triangular matrix, only the lower triangular part and diagonal of A are
referenced. For an upper triangular matrix, only the upper triangular part and
diagona of A are referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

IPATH — Path indicator. (Input)
| PATH =1 means\ is lower triangular.
| PATH = 2 mean4\ is upper triangular.

RCOND — Scalar containing an estimate of the reciprocal of ttendition
number ofa. (Output)

Comments
1. Automatic workspace usage is

LFCRT Nunits, or
DLFCRT 2N units.

Workspace may be explicitly provided, if desired, by use2aRT/
DL2CRT. The reference is

CALL L2CRT (N, A, LDA, |PATH, RCOND, VK)
The additional argument is
WK — Work vector of lengtin.

2. Informational error
Type Code
3 1 The input triangular matrix is algorithmically singular.
Algorithm

RoutineLFCRT estimates the condition number of a real triangular matrixLThe
condition number of the matriXis defined to b&(A) = |Al} |W1|[. Since itis

expensive to compute\ﬂ [|, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater thar(heree is machine
precision), a warning error is issued. This indicates that very small changes in
can cause very large changes in the solution

LFCRT is based on the LINPACK routir&TRCG;, see Dongarra et al. (1979).

Example

An estimate of the reciprocal condition number is computed fox 8 Bwer
triangular coefficient matrix.
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C Decl are vari abl es
PARAMETER (| PATH=1, LDA=3, N=3)
REAL A(LDA, LDA), RCOND
| NTEGER NOUT

al for A and B

Set e
A =

)

u
2
2 )
5. 0)

~—<

S
.0
.0 -1.0
-4.0 2.0
DATA A/ 2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

Conpute the reciprocal condition
nunber (| PATH=1)

CALL LFCRT (N, A LDA, |PATH, RCOND)
Print results

O 000 00000

CALL UMACH (2, NOUT)
VRl TE (NOUT, 99999) RCOND, 1. 0EO/ RCOND
99999 FORMAT ( RCOND =",F5.3,/,; L1 Condition number = *,F6.3)
END

Output
RCOND = 0.091
L1 Condition number = 10.968

LFDRT/DLFDRT (Single/Double precision)

Compute the determinant of areal triangular matrix.

Usage
CALL LFDRT (N, A, LDA, DET1, DET2)

Arguments
N — Order of the matrix A. (Input)

A — N by N matrix containing the triangular matrix. (Input)
The matrix can be either upper or lower triangular.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 1O[DET1| < 10.0 oDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form dgtf DET1 * 10PET2,

Comments
Informational error
Type Code
3 1 The input triangular matrix is singular.
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Algorithm

Routine LFDRT computes the determinant of areal triangular coefficient matrix.
The determinant of atriangular matrix is the product of the diagonal elements.

_ N
LFDRT isbased on the LINPACK routine STRDI ; see Dongarra et al. (1979).

Example

The determinant is computed for a3 x 3 lower triangular matrix.

C Decl are vari abl es
PARAMETER (LDA=3, N=3)
REAL A(LDA, LDA), DET1, DET2
| NTEGER NOUT

Set values for A

A=( 2.0 )
( 2.0 -1.0 )
( -4.0 2.0 5.0)

DATA A/ 2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/

Conput e the determ nant of A
CALL LFDRT (N, A LDA, DET1, DET2)
Print results

O 00 00000

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) DET1, DET2
99999 FORMAT (' The determinant of Ais’, F6.3, ' * 10**, F2.0)
END

Output
The determinant of A is -1.000 * 10**1.

LINRT/DLINRT (Single/Double precision)

Compute the inverse of areal triangular matrix.

Usage
CALL LINRT (N, A, LDA, IPATH, AINV, LDAINV)

Arguments

N — Order of the matrix. (Input)

A — N by N matrix containing the triangular matrix to be inverted. (Input)
For a lower triangular matrix, only the lower triangular part and diagomehoé
referenced. For an upper triangular matrix, only the upper triangular part and
diagonal ofA are referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
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IPATH — Path indicator. (Input)
| PATH =1 means\ is lower triangular.
| PATH = 2 mean4\ is upper triangular.

AINV — N by N matrix containing the inverse af (Output)

If Ais lower triangularAl NV is also lower triangular. W is upper triangular,

Al NV is also upper triangular. Kis not neededd andAl NV can share the same
storage locations.

LDAINV — Leading dimension ofl NV exactly as specified in the dimension
statement of the calling program. (Input)

Algorithm

RoutineLl NRT computes the inverse of a real triangular matrix. It falshiis a
zero diagonal element.

Example

The inverse is computed for ax3 lower triangular matrix.

C Decl are vari abl es
PARAMETER (LDA=3, LDAI Nv=3, N=3)
REAL A(LDA, LDA), Al NV(LDA, LDA)
C Set values for A
C A=( 2.0 )
C ( 2.0 -1.0 )
(o ( -4.0 2.0 5.0)
C
DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
C
C Conpute the inverse of A
| PATH = 1
CALL LINRT (N, A LDA, |PATH AINV, LDAINV)
C Print results
CALL WRRRN (AINV’, N, N, AINV, LDA, 0)
END
Output
AINV
1 2 3

1 0.500 0.000 0.000
2 1.000 -1.000 0.000
3 0.000 0.400 0.200

LSLCT/DLSLCT (Single/Double precision)

Solve a complex triangular system of linear equations.

Usage
CALL LSLCT (N, A, LDA, B, IPATH, X)
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Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficient matrix of the triangular
linear system. (Input)

For a lower triangular system, only the lower triangla f referenced. For an
upper triangular system, only the upper triangla isfreferenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
| PATH = 1 means solvaX =B, A lower triangular
| PATH = 2 means solvax = B, A upper triangular

| PATH = 3 means solva’’x = B, A lower triangular
| PATH = 4 means solva’x =B, A upper triangular

X — Complex vector of lengtl containing the solution to the linear system.
(Output)
If B is not needed andX can share the same storage locations.

Comments

Informational error
Type Code
4 1 The input triangular matrix is singular. Some of its diagonal
elements are near zero.

Algorithm

RoutineL SLCT solves a system of linear algebraic equations with a complex
triangular coefficient matriX.SLCT fails if the matrixA has a zero diagonal
element, in which casgeis singularLSLCT is based on the LINPACK routine
CTRSL; see Dongarra et al. (1979).

Example

A system of three linear equations is solved. The coefficient matrix has lower
triangular form and the right-hand-side vectymas three elements.

C Decl are vari abl es
| NTEGER | PATH, LDA, N
PARAMETER (LDA=3, N=3)
COVPLEX A(LDA, LDA), B(LDA), X(LDA)

C Set values for A and B

C

C A= ( -3.0+2.0i )
(o ( -2.0-1.0i 0.0+6.0i )
C ( -1.0+3.0i 1.0-5.0i -4.0+0.0i )
C

C B = (-13.0+0.0i -10.0-1.0i -11.0+3.0i)
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DATA A/ (-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),
& (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
DATA B/ (-13.0,0.0), (-10.0,-1.0), (-11.0,3.0)/

C
C Solve AX = B
| PATH = 1
CALL LSLCT (N, A LDA, B, IPATH X
C Print results
CALL WRCRN (X', 1, N, X, 1, 0)
END
Output
X
1 2 3

(3.000, 2.000) (1.000, 1.000) ( 2.000, 0.000)

LFCCT/DLFCCT (Single/Double precision)

Estimate the condition number of a complex triangular matrix.

Usage
CALL LFCCT (N, A, LDA, IPATH, RCOND)

Arguments
N — Order of the matrix. (Input)

A — ComplexN by N matrix containing the triangular matrix. (Input)
For a lower triangular system, only the lower triangla f referenced. For an
upper triangular system, only the upper triangla freferenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

IPATH — Path indicator. (Input)
| PATH= 1 means\ is lower triangular.
| PATH = 2 meang\ is upper triangular.

RCOND — Scalar containing an estimate of the reciprocal ot treondition
number ofA. (Output)

Comments
1. Automatic workspace usage is

LFCCT 2N units, or
DLFCCT 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CCT/ DL2CCT. The reference is
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CALL L2CCT (N, A, LDA, |PATH, RCOND, CVK)
The additional argument is
CWK — Complex work vector of lengtk

2. Informational error
Type Code
3 1 The input triangular matrix is algorithmically singular.
Algorithm

RoutineLFCCT estimates the condition number of a complex triangular matrix.
Thel, condition number of the matriis defined to b&(A) = |Al} |Wl|[. Since

it is expensive to computa.&\ﬂ ||, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979). If the estimated condition number is greater tleafwheree is

machine precision), a warning error is issued. This indicates that very small
changes i\ can cause very large changes in the solwti@RFCCT is based on

the LINPACK routineCTRCO, see Dongarra et al. (1979).

Example

An estimate of the reciprocal condition number is computed fox 8 Bwer
triangular coefficient matrix.

C Decl are vari abl es
| NTEGER | PATH, LDA, N
PARAMETER (LDA=3, N=3)
| NTEGER NOUT
REAL RCOND
COMVPLEX A( LDA, LDA)
Set values for A

A = ( -3.0+2.0i )
( -2.0-1.0i 0.0+6.0i )

( -1.0+3.0i 1.0-5.0i -4.0+0.0i )

0

000000

DATA A/ (-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,86.
& (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/

).

Conpute the reciprocal condition
nunber

[eXeXe)

| PATH = 1
CALL LFCCT (N, A LDA, |PATH, RCOND)
C Print results
CALL UMACH (2, NOUT)
VWWRI TE ( NOUT, 99999) RCOND, 1. 0EO/ RCOND
99999 FORMAT (" RCOND =",F5.3,/, L1 Condition number =",F6.3)
END

IMSL MATH/LIBRARY Chapter 1: Linear Systems ¢ 53



Output
RCOND = 0. 191
L1 Condition nunmber = 5.223

LFDCT/DLFDCT (Single/Double precision)

Compute the determinant of a complex triangular matrix.

Usage
CALL LFDCT (N, A, LDA, DET1, DET2)

Arguments
N — Order of the matripA. (Input)

A — ComplexN by N matrix containing the triangular matrix.(Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 1O[DET1| < 10.0 oDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form dgt¢ DET1 * 10PET2

Comments
Informational error
Type Code
3 1 The input triangular matrix is singular.
Algorithm

RoutineLFDCT computes the determinant of a complex triangular coefficient
matrix. The determinant of a triangular matrix is the product of the diagonal
elements

_ N
LFDCT is based on the LINPACK routir&RDI ; see Dongarra et al. (1979).

Example

The determinant is computed for & 3 complex lower triangular matrix.

C Decl are vari abl es
| NTEGER LDA, N
PARAMETER (LDA=3, N=3)
| NTEGER NOUT
REAL DET2
COVPLEX A(LDA, LDA), DET1
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Set values for A

A = ( -3.0+2.0i
( -2.0-1.0i 0.0+6.0i

000000

DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.

& (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/

(eXe!

Conput e the determ nant of A
CALL LFDCT (N, A, LDA, DET1, DET2)
Print results
CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) DET1, DET2
99999 FORMAT (' The determinant of Ais (',F4.1,",F4.1,") * 10**,
& F2.0)
END

Output
The determinant of A is ( 0.5, 0.7) * 10**2.

( -1.0+43.0i 1.0-5.0i -4.0+0.0i

)
)
)
0),

LINCT/DLINCT (Single/Double precision)

Compute the inverse of acomplex triangular matrix.

Usage
CALL LINCT (N, A, LDA, IPATH, AINV, LDAINV)

Arguments

N — Order of the matrix. (Input)

A — ComplexN by N matrix containing the triangular matrix to be inverted.

(Input)

For a lower triangular matrix, only the lower triangleAd$ referenced. For an

upper triangular matrix, only the upper triangleaad$ referenced.

LDA — Leading dimension of exactly as specified in the dimension statement

of the calling program. (Input)

IPATH — Path indicator. (Input)
| PATH= 1 means\ is lower triangular.
| PATH = 2 meang\ is upper triangular.

AINV — ComplexN by N matrix containing the inverse af (Output)
If Ais lower triangularAl NV is also lower triangular. W is upper triangular,
Al NV is also upper triangular. Kis not neededy andAl NV can share the same

storage locations.

LDAINV — Leading dimension ofl NV exactly as specified in the dimension

statement of the calling program. (Input)
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Comments

Informational error

Type Code
4 1 The input triangular matrix is singular. Some of its diagonal
elements are close to zero.
Algorithm

Routine LI NCT computes the inverse of acomplex triangular matrix. It failsif A

has a zero diagona element.

Example

Theinverseis computed for a3 x 3 lower triangular matrix.

C Decl are vari abl es
| NTEGER | PATH, LDA, LDAINV, N
PARAMETER (LDA=3, N=3, LDAI NV=3)
COMPLEX A(LDA, LDA), Al NV( LDA, LDA)

C Set values for A
C
C A= ( -3.0+2.0i )
C ( -2.0-1.0i 0.0+6.0i )
C ( -1.0+43.0i 1.0-5.0i -4.0+0.0i )
C
DATA A/ (-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),
& (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
C
C Conpute the inverse of A
| PATH = 1
CALL LINCT (N, A, LDA, |PATH, AINV, LDAINV)
C Print results
CALL WRCRN (AINV’, N, N, AINV, LDAINV, 0)
END
Output
AINV
1 2 3

1 (-0.2308,-0.1538) ( 0.0000, 0.0000) (0.0000, 0.0000)
2 (-0.0897, 0.0513) ( 0.0000,-0.1667) ( 0.0000, 0.0000)
3 (0.2147,-0.0096) (-0.2083,-0.0417) (-0.2500, 0.0000)

LSADS/DLSADS (Single/Double precision)

Solve areal symmetric positive definite system of linear equations with iterative

refinement.

Usage
CALL LSADS (N, A, LDA, B, X)
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Arguments
N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric positive
definite linear system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of lengtiN containing the right-hand side of the linear system.
(Input)
X — Vector of lengthN containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is
LSADS N + N units, or
DLSADS 2N + 2N units.

Workspace may be explicitly provided, if desired, by use of
L2ADS/ DL2ADS. The reference is

CALL L2ADS (N, A, LDA, B, X, FAC, VK)

The additional arguments are as follows:

FAC — Work vector of IengtIN2 containing thR"R factorization ofa
on output.

WK — Work vector of lengtin.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is not positive definite.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routirADS the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SADS.
Additional memory allocation faFAC and option value
restoration are done automaticallyLi®ADS. Users directly
callingL2ADS can allocate additional space feAC

and set VAL(3) andl VAL(4) so that memory bank conflicts
no longer cause inefficiencies. There is no requirement that
users change existing applications thatWw&s&DS or L2ADS.
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O00000000

O O

| NTEGER

Default values for the option are
I VAL(*) =1, 16,0, 1.

17 This option has two values that determine if the L, condition
number isto be computed. Routine LSADS temporarily replaces
| VAL(2) by | VAL(1). The routine L2CDS computes the
condition number if | VAL(2) = 2. Otherwise L2CDS skips this
computation. LSADS restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSADS solves a system of linear algebraic equations having areal
symmetric positive definite coefficient matrix. It first uses the routine LFCDS,

page 61, to compute an R’R Chol esky factorization of the coefficient matrix and
to estimate the condition number of the matrix. The matrix R is upper triangular.
The solution of the linear system is then found using the iterative refinement
routine LFI DS, page 67. LSADS failsif any submatrix of Ris not positive definite,
if R has a zero diagonal element or if the iterative refinement algorithm fails to
converge. These errors occur only if Aiseither very close to asingular matrix or
amatrix which is not positive definite. If the estimated condition number is
greater than 1/e (where € is machine precision), awarning error isissued. This
indicates that very small changesin A can cause very large changesin the solution
X. Iterative refinement can sometimes find the solution to such a system. LSADS
solves the problem that is represented in the computer; however, this problem
may differ from the problem whose solution is desired.

Example

A system of three linear equations is solved. The coefficient matrix has real
positive definite form and the right-hand-side vector b has three elements.

Decl are vari abl es
LDA, N

PARAMETER (LDA=3, N=3)

REAL

A(LDA, LDA), B(N), X(N)
Set values for A and B

A=( 1.0 -3.0 2.0)

( -3.0 10.0 -5.0)
( 2.0 -5.0 6.0)
B=( 27.0 -78.0 64.0)
DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

DATA B/ 27.0, -78.0, 64.0/

CALL LSADS (N, A LDA B, X

Print results

CALL WRRRN (X', 1, N, X, 1, 0)
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END

X
1 2
1.000 -4.000

Output

3
7.000

LSLDS/DLSLDS (Single/Double precision)

Solve areal symmetric positive definite system of linear equations without
iterative refinement.

Usage
CALL LSLDS (N, A, LDA B, X

Arguments
N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric positive
definite linear system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)
X — Vector of lengtiN containing the solution to the linear system. (Output)
If B is not needed3 andX can share the same storage locations.
Comments
1. Automatic workspace usage is

LSLDS N +Nunits, or

DLSLDS 2N + 2N units.

Workspace may be explicitly provided, if desired, by use of
L2LDS/ DL2LDS. The reference is

CALL L2LDS (N, A, LDA, B, X, FAC, VK)

The additional arguments are as follows:

FAC — Work vector of IengthN2 containing thR"R factorization ofa
on output. IfA is not neededs can share the same storage locations as
FAC.

WK — Work vector of lengtin.
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2. Informational errors

Type Code
3 1 The input matrix istoo ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is not positive definite.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routine L2LDS the leading
dimension of FACisincreased by | VAL(3) when Nisamultiple
of | VAL(4). Thevalues | VAL(3) and | VAL(4) are temporarily
replaced by | VAL(1) and | VAL(2), respectively, in LSLDS.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLDS. Users directly
calling L2LDsS can allocate additional space for FAC and set

I VAL(3) and | VAL (4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSLDS or L2LDS. Default values
for the option are

IVAL(*)=1,16,0, 1.

17 This option has two values that determine if the L, condition
number isto be computed. Routine LSLDS temporarily replaces
| VAL(2) by | VAL(1). The routine L2CDS computes the
condition number if | VAL(2) = 2. Otherwise L2CDS skips this
computation. LSLDS restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSLDS solves a system of linear algebraic equations having areal
symmetric positive definite coefficient matrix. It first uses the routine LFCDS,

page 61, to compute an R’R Chol esky factorization of the coefficient matrix and
to estimate the condition number of the matrix. The matrix R is upper triangular.
The solution of the linear system is then found using the routine LFSDS, page 65.
LSLDs failsif any submatrix of Ris not positive definite or if R has a zero
diagona element. These errors occur only if A either isvery close to asingular
matrix or to amatrix which is not positive definite. If the estimated condition
number is greater than 1/e (where € is machine precision), awarning error is
issued. Thisindicates that very small changesin A can cause very large changes
in the solution x. If the coefficient matrix isill-conditioned, it is recommended
that LSADS, page 56, be used.

Example

A system of three linear equationsis solved. The coefficient matrix has real
positive definite form and the right-hand-side vector b has three elements.
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Decl are vari abl es

| NTEGER LDA, N

PARAMETER (LDA=3, N=3)

REAL A(LDA, LDA), B(N), X(N)
C
C Set values for A and B
C
C A=( 1.0 -3.0 2.0)
C ( -3.0 10.0 -5.0)
C ( 2.0 -5.0 6.0)
C
C B=( 27.0 -78.0 64.0)
C

DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

DATA B/ 27.0, -78.0, 64.0/
C

CALL LSLDS (N, A LDA B, X

Print results
CALL WRRRN (X', 1, N, X, 1, 0)
C
END
Output
X
1 2 3

1.000 -4.000 7.000

LFCDS/DLFCDS (Single/Double precision)

Compute the R'R Cholesky factorization of areal symmetric positive definite
matrix and estimate itsL, condition number.

Usage
CALL LFCDS (N, A, LDA, FAC, LDFAC, RCOND)

Arguments
N — Order of the matrix. (Input)

A — N by N symmetric positive definite matrix to be factored. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the upper triangular matf the
factorization ofA in the upper triangular part. (Output)

Only the upper triangle &fAC will be used. IfA is not neededd andFAC can
share the same storage locations.

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)
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RCOND — Scalar containing an estimate of the reciprocal ot treondition
number ofA. (Output)

Comments

1. Automatic workspace usage is

LFCDS N units, or
DLFCDS 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CDS/DL2CDS. The reference is

CALL L2CDS (N, A, LDA, FAC, LDFAC, RCOND, VK)
The additional argument is
WK — Work vector of lengtin.

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is not positive definite.
Algorithm

RoutineLSADS computes aR’R Cholesky factorization and estimates the
condition number of a real symmetric positive definite coefficient matrix. The
matrix R is upper triangular.

Thel,; condition number of the matrix A is defined tok{@d) = A} ||A‘1||. Since

it is expensive to computé\ﬂ ||, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater thar(\heree is machine
precision), a warning error is issued. This indicates that very small changes in
can cause very large changes in the solutidierative refinement can sometimes
find the solution to such a system.

LFCDS fails if any submatrix oR is not positive definite or iR has a zero
diagonal element. These errors occur onl i§ very close to a singular matrix
or to a matrix which is not positive definite.

TheR’Rfactors are returned in a form that is compatible with routifess,
page 67LFSDS, page 65, andFDDS, page 69. To solve systems of equations
with multiple right-hand-side vectors, usecbs followed by eitheLFI DS or
LFSDS called once for each right-hand side. The routiRBDS can be called to
compute the determinant of the coefficient matrix affe3DS has performed the
factorization.

LFCDS is based on the LINPACK routir®0CO; see Dongarra et al. (1979).
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Example

Theinverse of a3 x 3 matrix is computed. LFCDS is called to factor the matrix
and to check for nonpositive definiteness or ill-conditioning. LFI DS (page 67) is
called to determine the columns of the inverse.

C Decl are vari abl es
| NTEGER LDA, LDFAC, N, NOUT
PARAMETER (LDA=3, LDFAC=3, N=3)
REAL A(LDA, LDA), AINV(LDA, LDA), COND, FAC(LDFAC, LDFAC),
& RES(N), RI(N
C
C Set values for A
C A=( 1.0 -3.0 2.0)
C ( -3.0 10.0 -5.0)
C ( 2.0 -5.0 6.0)
C
DATA AV1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C Factor the matrix A
CALL LFCDS (N, A, LDA, FAC, LDFAC, COND)
C Set up the colums of the identity
C matrix one at atine in RJ
CALL SSET (N, 0.0EO0, RJ, 1)
DO 10 J=1, N
RJ(J) = 1.0EO
C R) is the J-th colum of the identity
C matri x so the follow ng LFIDS
C ref erence places the J-th colum of
C the inverse of Ain the J-th columm
C of AINV
CALL LFIDS (N, A LDA, FAC, LDFAC, RJ, AINV(1,J), RES)
RJ(J) = 0.0EO
10 CONTI NUE
C Print the results
CALL UMACH (2, NaUT)

VWRI TE (NOUT, 99999) COND, 1. 0EO/ COND
CALL WRRRN (AINV’, N, N, AINV, LDA, 0)
99999 FORMAT (" COND =",F5.3,/,; L1 Condition number =",F9.3)

END

Output

COND =0.001

L1 Condition number = 673.839

AINV

1 2 3
35.00 8.00
00 2.00 -1.00

1
2 8.
3 -5.00 -1.00 1.00

-5.00
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LFTDS/DLFTDS (Single/Double precision)

Compute the R'R Cholesky factorization of areal symmetric positive definite
matrixX.

Usage
CALL LFTDS (N, A, LDA, FAC, LDFAQ)

Arguments
N — Order of the matrix. (Input)

A — N by N symmetric positive definite matrix to be factored. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the upper triangular matRxf the
factorization ofa in the upper triangle. (Output)

Only the upper triangle ¢fAC will be used. IfA is not needed) andFAC can
share the same storage locations.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments
Informational error
Type Code
4 2 The input matrix is not positive definite.
Algorithm

RoutineLFTDS computes aR’R Cholesky factorization of a real symmetric
positive definite coefficient matrix. The matifikis upper triangular.

LFTDs fails if any submatrix oR is not positive definite or iR has a zero
diagonal element. These errors occur onl i§ very close to a singular matrix
or to a matrix which is not positive definite.

TheR'R factors are returned in a form that is compatible with routifress,
page 67LFSDS, page 65, andrFDDS, page 69. To solve systems of equations
with multiple right-hand-side vectors, UserDs followed by eithelFI DS or
LFSDsS called once for each right-hand side. The routireDS can be called to
compute the determinant of the coefficient matrix affafDS has performed the
factorization.

LFTDS is based on the LINPACK routirgOFA; see Dongarra et al. (1979).
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Example

Theinverse of a3 x 3 matrix is computed. LFTDS is called to factor the matrix
and to check for nonpositive definiteness. LFSDS (page 65) is called to determine

the columns of the inverse.

C Decl are vari abl es
| NTECER LDA, LDFAC, N
PARAMETER (LDA=3, LDFAC=3, N=3)
REAL A(LDA, LDA), AINV(LDA, LDA), FAC(LDFAC, LDFAC), RI(N)
C
C Set values for A
C A=( 1.0 -3.0 2.0)
C ( -3.0 10.0 -5.0)
C ( 2.0 -5.0 6.0)
C
DATA A 1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C Factor the matrix A
CALL LFTDS (N, A, LDA, FAC, LDFAC)
C Set up the colums of the identity
C matrix one at a time in RJ
CALL SSET (N, 0.0EO0, RJ, 1)
DO 10 J=1, N
RJ(J) = 1.0EO
C R) is the J-th colum of the identity
C matri x so the foll ow ng LFSDS
C ref erence places the J-th colum of
C the inverse of Ain the J-th colum
C of ANV
CALL LFSDS (N, FAC, LDFAC, RJ, AINV(1,J))
RJ(J) = 0.0EO
10 CONTI NUE
C Print the results
CALL WRRRN (AINV’, N, N, AINV, LDA, 0)
C
END
Output
AINV
1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

LFSDS/DLFSDS (Single/Double precision)

Solve areal symmetric positive definite system of linear equations given the R'R
Cholesky factorization of the coefficient matrix.

Usage

CALL LFSDS (N, FAC, LDFAC, B, X)
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Arguments

N — Number of equations. (Input)
FAC — N by N matrix containing th&” R factorization of the coefficient matrix
A as output from routineFCDS/DLFCDS or LFTDS/DLFTDS.  (Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)

X — Vector of lengthN containing the solution to the linear system. (Output)
If B is not needed3 andX can share the same storage locations.

Comments
Informational error
Type Code
4 1 The input matrix is singular.
Algorithm

This routine computes the solution for a system of linear algebraic equations
having a real symmetric positive definite coefficient matrix. To compute the

solution, the coefficient matrix must first undergoRaTrR factorization. This may
be done by calling eith&FCDS, page 61, oLFTDS, page 63R is an upper
triangular matrix.

The solution toAx = b is found by solving the triangular systthTsy =band
Rx =vy.

LFSDS andLFI DS, page 67, both solve a linear system giveRﬁé
factorization.LFI DS generally takes more time and produces a more accurate
answer thanFSDS. Each iteration of the iterative refinement algorithm used by
LFI DS callsLFSDS.

LFSDS is based on the LINPACK routirgC0sL ; see Dongarra et al. (1979).

Example

A set of linear systems is solved successiuaiyDS (page 63) is called to factor
the coefficient matrixLFSDS is called to compute the four solutions for the four
right-hand sides. In this case the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better tarelis
(page 61) to perform the factorization, &rf DS (page 67) to compute the
solutions.

C Decl are vari abl es

| NTEGER LDA, LDFAC, N
PARAMETER (LDA=3, LDFAC=3, N=3)
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REAL A(LDA, LDA), B(N, 4), FAC(LDFAC, LDFAC), X(N,4)

C

C Set values for A and B

C

C A=( 1.0 -3.0 2.0)

C ( -3.0 10.0 -5.0)

C ( 2.0 -5.0 6.0)

C

C B=( -1.0 3.6 -8.0 -9.4)

C ( -3.0 -4.2 11.0 17.6)

C ( -3.0 -5.2 -6.0-23.4)

C
DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,
& -9.4, 17.6, -23.4/

C Factor the matrix A

CALL LFTDS (N, A LDA, FAC, LDFAQ
Conput e the sol utions
DO 10 I=1, 4
CALL LFSDS (N, FAC, LDFAC, B(1,1), X(1,1))
10 CONTI NUE
Print sol utions
CALL WRRRN ("The solution vectors are’, N, 4, X, N, 0)

END

Output
The solution vectors are
1 2 3 4
-44.0 118.4 -162.0 -71.2
-11.0 25.6 -36.0 -16.6
50 -19.0 23.0 6.0

WN -

LFIDS/DLFIDS (Single/Double precision)

Useiterative refinement to improve the solution of areal symmetric positive
definite system of linear equations.

Usage
CALL LFIDS (N, A, LDA, FAC, LDFAC, B, X, RES)

Arguments
N — Number of equations. (Input)

A — N by N matrix containing the symmetric positive definite coefficient matrix
of the linear system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
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FAC — N by N matrix containing th&”R factorization of the coefficient matrix
A as output from routineFCDS/DLFCDS or LFTDS/DLFTDS.  (Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)
X — Vector of lengthN containing the solution to the linear system. (Output)

RES — Vector of lengthN containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
3 2 The input matrix is too ill-conditioned for iterative refinement
to be effective.

Algorithm

RoutineLFI DS computes the solution of a system of linear algebraic equations
having a real symmetric positive definite coefficient matrix. Iterative refinement

is performed on the solution vector to improve the accuracy. Usually almost all of
the digits in the solution are accurate, even if the matrix is somewhat ill-
conditioned.

To compute the solution, the coefficient matrix must first underg‘@rah
factorization. This may be done by calling eithE€DS, page 61, oLFTDS,
page 63.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFI DS andLFSDS, page 65, both solve a linear system giveRﬁé
factorization.LFI DS generally takes more time and produces a more accurate
answer thanFSDS. Each iteration of the iterative refinement algorithm used by
LFI DS callsLFSDS.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.2 to the
second element.

C Decl are vari abl es
| NTEGER LDA, LDFAC, N
PARAMETER (LDA=3, LDFAC=3, N=3)
REAL A(LDA, LDA), B(N), COND, FAC(LDFAC, LDFAC), RES(N, 3),
& X(N, 3)

(eXe!

Set values for A and B
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C
C A=( 1.0 -3.0 2.0)
C ( -3.0 10.0 -5.0)
C ( 2.0 -5.0 6.0)
C

C B=( 1.0 -3.0 2.0)
C

DATA A 1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
DATA B/ 1.0, -3.0, 2.0/

@]

Factor the matrix A
CALL LFCDS (N, A LDA, FAC, LDFAC, COND)
Print the estimated condition nunber
CALL UMACH (2, NaoUT)
VWRI TE (NOUT, 99999) COND, 1. 0EO/ COND
C Conput e the sol utions
DO 10 1=1, 3
CALL LFIDS (N, A LDA FAC, LDFAC, B, X(1,1), RES(1,1))
B(2) = B(2) + .2EO0
10 CONTI NUE
C Print solutions and residuals
CALL WRRRN ("The solution vectors are’, N, 3, X, N, 0)
CALL WRRRN ('The residual vectors are’, N, 3, RES, N, 0)

C
99999 FORMAT (" COND ="'F5.3,/,” L1 Condition number =",F9.3)
END
Output
COND =0.001

L1 Condition number = 673.839

The solution vectors are
1 2 3

1 1.000 2.600 4.200

2 0.000 0.400 0.800

3 0.000 -0.200 -0.400

The residual vectors are

1 2 3
1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000

LFDDS/DLFDDS (Single/Double precision)

Compute the determinant of areal symmetric positive definite matrix given the
R'R Cholesky factorization of the matrix.

Usage
CALL LFDDS (N, FAC, LDFAC, DET1, DET2)

Arguments

N — Order of the matrix. (Input)
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C

| NTEGER

FAC — N by N matrix containing th&”R factorization of the coefficient matrix
A as output from routineFCDS/DLFCDS or LFTDS/DLFTDS.  (Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that, 10|DET1| < 10.0 oiDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, dptf DET1 * 10PET2

Algorithm

RoutineLFDDS computes the determinant of a real symmetric positive definite
coefficient matrix. To compute the determinant, the coefficient matrix must first

undergo aR’R factorization. This may be done by calling eithE€DS,

page 61, oLFTDS, page 63. The formula dat= detR’ detR = (detR)2 is used
to compute the determinant. Since the determinant of a triangular matrix is the
product of the diagonal elements,

N
det R= |_| = R
(The matrixR is stored in the upper triangle BAC.)
LFDDS is based on the LINPACK routir&0DI ; see Dongarra et al. (1979).

Example

The determinant is computed for a real positive definke33natrix.

Decl are vari abl es
LDA, LDFAC, N, NOUT

PARAMETER (LDA=3, N=3, LDFAC=3)

REAL

A(LDA, LDA), DET1, DET2, FAC(LDFAC, LDFAC)

Set values for A

A=( 1.0 -3.0 2.0)
( -3.0 20.0 -5.0)
( 2.0 -5.0 6.0)

DATA A/ 1.0, -3.0, 2.0, -3.0, 20.0, -5.0, 2.0, -5.0, 6.0/

Factor the matrix

CALL LFTDS (N, A, LDA, FAC, LDFAC)

Conput e the det erm nant

CALL LFDDS (N, FAC, LDFAC, DET1, DET2)

Print results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) DET1, DET2

99999 FORMAT (' The determinant of A is *,F6.3," * 10**',F2.0)

END
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Output
The determinant of Ais 2.100 * 10**1.

LINDS/DLINDS (Single/Double precision)

Compute the inverse of areal symmetric positive definite matrix.

Usage
CALL LINDS (N, A LDA, AINV, LDAINV)

Arguments
N — Order of the matripA. (Input)

A — N by N matrix containing the symmetric positive definite matrix to be
inverted. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

AINV — N by N matrix containing the inverse af (Output)
If Ais not neededy andAl NV can share the same storage locations.

LDAINV — Leading dimension ofl NV exactly as specified in the dimension
statement of the calling program. (Input)

Comments

1. Automatic workspace usage is

LI NDS N units, or
DLI NDS 2N units.

Workspace may be explicitly provided, if desired, by use of
L2NDS/DL2NDS. The reference is

CALL L2NDS (N, A, LDA, AINv, LDAINV, VK)
The additional argument is
WK — Work vector of lengtin.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is not positive definite.
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Algorithm

Routine LI NDS computes the inverse of areal symmetric positive definite matrix.
It first uses the routine LFCDS, page 61, to compute an R’R factorization of the
coefficient matrix and to estimate the condition number of the matrix. LI NRT,
page 49, is then used to compute R . Finally A iscomputed usingR™" =R R
T

LI NDS failsif any submatrix of Ris not positive definite or if R has a zero
diagonal element. These errors occur only if Aisvery closeto asingular matrix
or to amatrix which is not positive definite.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changesin A™ .

Example

Theinverseis computed for area positive definite 3 x 3 matrix.

C Decl are vari abl es
| NTEGER LDA, LDAINV, N
PARAMETER (LDA=3, LDAI NvV=3, N=3)
REAL A(LDA, LDA), Al NV( LDAI NV, LDAI NV)

C
C Set values for A
(o A=( 1.0 -3.0 2.0)
C ( -3.0 10.0 -5.0)
C ( 2.0 -5.0 6.0)
C
DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C
CALL LINDS (N, A LDA, AINV, LDAINV)
C Print results
CALL WRRRN (AINV’, N, N, AINV, LDAINV, 0)
C
END
Output
AINV

1 2 3
35.00 8.00 -5.00
00 2.00 -1.00

1
2 8.
3 -5.00 -1.00 1.00

LSASF/DLSASF (Single/Double precision)

Solve areal symmetric system of linear equations with iterative refinement.

Usage
CALL LSASF (N, A, LDA, B, X)
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Arguments
N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric linear
system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of lengtiN containing the right-hand side of the linear system.
(Input)
X — Vector of lengthN containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is
LSASF N + 2N units, or
DLSASF 2N + 3N units.

Workspace may be explicitly provided, if desired, by use of
L2ASF/DL2ASF. The reference is

CALL L2ASF (N, A, LDA, B, X, FAC, |PVT, WK)
The additional arguments are as follows:
FAC — Work vector of lengtiN* N containing information about the

U DU factorization ofa on output. IfA is not needed) andFAC can
share the same storage location.

IPVT — Integer work vector of lengtk containing the pivoting
information for the factorization @& on output.

WK — Work vector of lengthn.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routin2ASF the leading
dimension oFAC s increased byVAL(3) whenNis a multiple
of I VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, il SASF.
Additional memory allocation fafAC and option value
restoration are done automaticallyLiBASF. Users
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directly calling L2ASF can allocate additional space for FAC
and set | VAL(3) and | VAL (4) so that memory bank conflicts no
longer cause inefficiencies. Thereis no requirement that users
change existing applications that use LSASF or L2ASF. Default
valuesfor the option are | VAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if theL; condition
number isto be computed. Routine LSASF temporarily replaces
I VAL(2) by 1 VAL(1). The routine L2CSF computes the
condition number if | VAL(2) = 2. Otherwise L2CSF skips this
computation. LSASF restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSASF solves systems of linear algebraic equations having areal
symmetric indefinite coefficient matrix. It first uses the routine LFCSF, page 77,

to computeaU DU T tactorization of the coefficient matrix and to estimate the
condition number of the matrix. D isablock diagonal matrix with blocks of order
1or 2, and U isamatrix composed of the product of a permutation matrix and a
unit upper triangular matrix. The solution of the linear system is then found using
the iterative refinement routine LFI SF, page 83.

LSASF failsif ablock in D issingular or if the iterative refinement algorithm fails
to converge. These errors occur only if Aissingular or very closeto asingular
matrix.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSASF solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of three linear equations is solved. The coefficient matrix has real
symmetric form and the right-hand-side vector b has three elements.

Decl are vari abl es

PARAMETER (LDA=3, N=3)

REAL

A(LDA, LDA), B(N), X(N)
Set values for A and B

A =

B=( 4.1 -4.7 6.5)

DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
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DATA B/ 4.1, -4.7, 6.5/

C

CALL LSASF (N, A LDA B, X

C

Print results

CALL WRRRN (X', 1, N, X, 1, 0)

END

X
1 2 3

-4.100 -3.500 1.200

Output

LSLSF/DLSLSF (Single/Double precision)

Solve areal symmetric system of linear equations without iterative refinement.

Usage
CALL LSLSF (N, A, LDA, B, X)

Arguments
N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric linear
system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)
X — Vector of lengthN containing the solution to the linear system. (Output)

Comments

1. Automatic workspace usage is
LSLSF N + 2N units, or
DLSLSF 2N + 3N units.

Workspace may be explicitly provided, if desired, by use of
L2LSF/DL2LSF. The reference is

CALL L2LSF (N, A, LDA, B, X, FAC, |PVT, W)

The additional arguments are as follows:

FAC — Work vector of Iengtm2 containing information about the

U DU factorization ofa on output. IfA is not needed) andFAC can
share the same storage locations.
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IPVT — Integer work vector of lengtk containing the pivoting
information for the factorization @& on output.

WK — Work vector of lengthn.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routin®_SF the leading
dimension oFAC s increased byVAL(3) whenNis a multiple
of I VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SLSF.
Additional memory allocation fafAC and option value
restoration are done automaticallyLiBLSF. Users directly
calling LSLSF can allocate additional space fexC and set

| VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that ussLSF or LSLSF. Default values
for the option aré VAL(*) =1, 16, 0, 1.

17 This option has two values that determine ifltheondition
number is to be computed. Routin®. SF temporarily replaces
I VAL(2) byl VAL(1). The routind.2CSF computes the
condition number if VAL(2) = 2. Otherwis&2CSF skips this
computationLSLSF restores the option. Default values for the
option arel VAL(*) = 1, 2.

Algorithm

RoutineL SLSF solves systems of linear algebraic equations having a real
symmetric indefinite coefficient matrix. It first uses the routiR€SF, page 77,

to compute &J DU factorization of the coefficient matri is a block diagonal
matrix with blocks of order 1 or 2, atdlis a matrix composed of the product of
a permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routiagr, page 81.
LSLSF fails if a block inD is singular. This occurs only A either is singular or is
very close to a singular matrix.

Example

A system of three linear equations is solved. The coefficient matrix has real
symmetric form and the right-hand-side vetttras three elements.
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Decl are vari abl es
PARAMETER (LDA=3, N=3)

REAL A(LDA, LDA), B(N), X(N)
C
C Set values for A and B
C
C A=( 1.0 -2.0 1.0
C ( -2.0 3.0 -2.0)
C ( 1.0 -2.0 3.0)
C
C B=( 4.1 -4.7 6.5)
C
DATA A¥1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
DATA B/ 4.1, -4.7, 6.5/
C
CALL LSLSF (N, A LDA B, X
C Print results
CALL WRRRN (X', 1, N, X, 1, 0)
END
Output
X
1 2 3

-4.100 -3.500 1.200

LFCSF/DLFCSF (Single/Double precision)

Compute the U DU T tactorization of area symmetric matrix and estimate its L
condition number.

Usage
CALL LFCSF (N, A, LDA, FAC, LDFAC, IPVT, RCOND)

Arguments
N — Order of the matrix. (Input)

A — N by N symmetric matrix to be factored. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing information about the factorization of the
symmetric matrid. (Output)

Only the upper triangle &fAC is used. IfA is not neededd andFAC can share the
same storage locations.

LDFAC — Leading dimension ¢fAC exactly as specified in the dimension
statement of the calling program. (Input)
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IPVT — Vector of lengthN containing the pivoting information for the
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal oftreondition
number ofA. (Output)

Comments

1. Automatic workspace usage is

LFCSF N units, or
DLFCSF 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CSF/DL2CSF. The reference is

CALL L2CSF (N, A, LDA, FAC, LDFAC, |PVT, RCOND, WK)
The additional argument is
WK — Work vector of lengtin.

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.
Algorithm

RoutineLFCSF performs &J DU T factorization of a real symmetric indefinite
coefficient matrix. It also estimates the condition number of the matrixUThe

DU factorization is called the diagonal pivoting factorization.

Thel, condition number of the matriis defined to b&(A) = |Al} |Wl|[. Since

it is expensive to computa.&\ﬂ ||, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater thar(heree is machine
precision), a warning error is issued. This indicates that very small changes in
can cause very large changes in the solitidierative refinement can sometimes
find the solution to such a system.

LFCSF fails if A is singular or very close to a singular matrix.

TheU DU factors are returned in a form that is compatible with routifreSF,
page 83LFSSF, page 81, andrFDSF, page 85. To solve systems of equations
with multiple right-hand-side vectors, useCSF followed by eithelFI SF or
LFSSF called once for each right-hand side. The routirBSF can be called to
compute the determinant of the coefficient matrix aff&@SF has performed the
factorization.
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LFCSF isbased on the LINPACK routine SSI CO, see Dongarra et al. (1979).

Example

Theinverse of a3 x 3 matrix is computed. LFCSF is called to factor the matrix
and to check for singularity or ill-conditioning. LFI SF (page 83) is called to
determine the columns of the inverse.

C Decl are vari abl es
PARAMETER (LDA=3, N=3)
| NTEGER I PVT(N), NOUT
REAL A(LDA, LDA), AINV(N,N), FAC(LDA, LDA), RI(N), RES(N),
& COND
C
C Set values for A
C
C A=( 1.0 -2.0 1.0)
C ( -2.0 3.0 -2.0)
C ( 1.0 -2.0 3.0)
C
DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
C Factor A and return the reciprocal
C condi tion nunber estimate
CALL LFCSF (N, A LDA, FAC, LDA, |PVT, COND)
C Print the estimate of the condition
C nunber

CALL UMACH (2, NOUT)
VRl TE (NOUT, 99999) COND, 1. 0EO/ COND

C Set up the colums of the identity
C matrix one at a time in RJ
CALL SSET (N, 0.0E0, RJ, 1)
DO 10 J=1, N
RI(J) = 1.0EO
C RJ is the J-th colum of the identity
C matri x so the follow ng LFI SF
C reference places the J-th colum of
C the inverse of Ain the J-th colum
C of AINV
CALL LFISF (N, A LDA FAC, LDA IPVT, RJ, AINV(1,J), RES)
RJ(J) = 0.0EO
10 CONTI NUE
C Print the inverse

CALL WRRRN (AINV’, N, N, AINV, LDA, 0)
99999 FORMAT (" COND ="F5.3,/,” L1 Condition number =",F6.3)

END
Output
COND =0.034
L1 Condition number = 29.750
AINV
1 2 3

1 -2.500 -2.000 -0.500
2 -2.000 -1.000 0.000
3 -0.500 0.000 0.500
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LFTSF/DLFTSF (Single/Double precision)

Computethe U DU T factorization of areal symmetric matrix.

Usage
CALL LFTSF (N, A, LDA, FAC, LDFAC, 1PVT)

Arguments
N — Order of the matrix. (Input)

A — N by N symmetric matrix to be factored. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the information about the factorization of the
symmetric matrid. (Output)

Only the upper triangle ¢fAC is used. IfA is not neededy andFAC can share the
same storage locations.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for the
factorization. (Output)

Comments
Informational error
Type Code
4 2 The input matrix is singular.
Algorithm

RoutineLFTSF performs &J DU factorization of a real symmetric indefinite

coefficient matrix. ThaJ DU factorization is called the diagonal pivoting
factorization.

LFTSF fails if A is singular or very close to a singular matrix.

TheU DU factors are returned in a form that is compatible with routireSsF,
page 83LFSSF, page 81, andFDSF, page 85. To solve systems of equations
with multiple right-hand-side vectors, UseTSF followed by eithelFI SF or
LFSSF called once for each right-hand side. The routiRBSF can be called to
compute the determinant of the coefficient matrix affarSF has performed the
factorization.

LFTSF is based on the LINPACK routirgsl FA; see Dongarra et al. (1979).
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PARAMETER
| NTEGER
REAL

DATA A/1.0
CALL LFTSF

o0 O 000000

CALL SSET
DO 10 J=1
RI(J) =

00000

CALL LF
RI(J) =
10 CONTI NUE

Example

Theinverse of a3 x 3 matrix is computed. LFTSF is called to factor the matrix
and to check for singularity. LFSSF (page 81) is called to determine the columns
of theinverse.
Decl are vari abl es
(LDA=3, N=3)
| PVT(N)
A(LDA, LDA), AINV(N, N), FAC(LDA LDA), RI(N)

Set values for A

A=( 1.0 -2.0 1.0)
( -2.0 3.0 -2.0)
( 1.0 -2.0 3.0)

, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
Factor A

(N, A, LDA, FAC, LDA, 1PVT)
Set up the colums of the identity
matrix one at atine in RJ]

(N, 0.0E0, RJ, 1)

, N

1. OEO
R) is the J-th colum of the identity
matri x so the foll ow ng LFSSF
ref erence places the J-th colum of
the inverse of Ain the J-th colum
of ANV

SSF (N, FAC, LDA, IPVT, RJ, AINV(1,J))

0. OEO

Print the inverse

CALL WRRRN (AINV’, N, N, AINV, LDA, 0)

END

AINV
1 2 3
1 -2.500 -2.000 -0.5
2 -2.000 -1.000 0.0
3 -0.500 0.000 0.5

Output

00
00
00

LFSSF/DL

FSSF (Single/Double precision)

Solve areal symmetric system of linear equations given the U DU T tactorization
of the coefficient matrix.

Usage
CALL LFSSF (N, FAC, LDFAC, IPVT, B, X)

Arguments

N — Number of equations. (Input)
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FAC — N by N matrix containing the factorization of the coefficient marixs
output from routiné. FCSF/DLFCSF or LFTSF/DLFTSF. (Input)
Only the upper triangle ¢fAC is used.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for the
factorization ofa as output from routineFCSF/DLFCSF or LFTSF/DLFTSF.

(Input)
B — Vector of lengthN containing the right-hand side of the linear system.
(Input)

X — Vector of lengthN containing the solution to the linear system. (Output)
If B is not needed andX can share the same storage locations.

Algorithm

RoutineLFSSF computes the solution of a system of linear algebraic equations
having a real symmetric indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undeltchthT
factorization. This may be done by calling eithECSF, page 77, OLFTSF,
page 80.

LFSSF andLFI SF, page 83, both solve a linear system givel)iBU T
factorizationLFI SF generally takes more time and produces a more accurate
answer thamFSSF. Each iteration of the iterative refinement algorithm used by
LFI SF callsLFSSF.

LFSSF is based on the LINPACK routirgs!| SL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successitetySF (page 80) is called to factor
the coefficient matrixLFSSF is called to compute the four solutions for the four
right-hand sides. In this case the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better taredF

(page 77) to perform the factorization, arl SF (page 83) to compute the
solutions.

Decl are vari abl es

PARAMETER (LDA=3, N=3)

| NTEGER
REAL

| PVT(N)
A(LDA LDA), B(N 4), X(N, 4), FAC(LDA, LDA)

Set values for A and B
A= (
(
(

RPN

.0
.0
.0
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C
C B=(-1.0 3.6 -80 -9.4)
C ( -3.0 -4.2 11.0 17.6)
C ( -3.0 -5.2 -6.0-23.4)
C
DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,
& -9.4, 17.6, -23.4/
C Factor A
CALL LFTSF (N, A LDA, FAC, LDA, 1PVT)
C Solve for the four right-hand sides
DO 10 1=1, 4
CALL LFSSF (N, FAC, LDA, IPVT, B(1,1), X(1,1))
10 CONTI NUE
C Print results
CALL WRRRN (X', N, 4, X, N, 0)
END
Output
X
1 2 3 4
1 10.00 2.00 1.00 0.00
2 5.00 -3.00 5.00 1.20
3 -1.00 -440 1.00 -7.00

LFISF/DLFISF (Single/Double precision)

Use iterative refinement to improve the solution of areal symmetric system of
linear equations.

Usage
CALL LFISF (N, A, LDA, FAC, LDFAC, IPVT, B, X, RES)

Arguments
N — Number of equations. (Input)

A — N by N matrix containing the coefficient matrix of the symmetric linear
system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — N by N matrix containing the factorization of the coefficient marixs
output from routiné. FCSF/DLFCSF or LFTSF/DLFTSF. (Input)
Only the upper triangle ¢fAC is used.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for the
factorization ofA as output from routineFCSF/DLFCSF or LFTSF/DLFTSF.

(Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems « 83



0O0000000

@]

DATA A/ 1.0, -2.
DATA B/ 4.1, -4.

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)
X — Vector of lengthN containing the solution. (Input)

RES — Vector of lengthN containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
3 2 The input matrix is too ill-conditioned for iterative refinement
to be effective.

Algorithm

LFI SF computes the solution of a system of linear algebraic equations having a
real symmetric indefinite coefficient matrix. Iterative refinement is performed on
the solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undetg®& T
factorization. This may be done by calling eithECSF, page 77, oLFTSF,
page 80.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFI SF andLFSSF, page 81, both solve a linear system giveinBsUT
factorization.LFI SF generally takes more time and produces a more accurate
answer thamFSSF. Each iteration of the iterative refinement algorithm used by
LFI SF callsLFSSF.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.2 to the
second element.

Decl are vari abl es

PARAMETER (LDA=3, N=3)

[ PVT(N), NOUT
A(LDA LDA), B(N), X(N), FAC(LDA, LDA), RES(N), COND

Set values for A and B
A=( 1.0 -2.0 1.0)
( -2.0 3.0 -2.0)
( 1.0 -2.0 3.0)

B=( 4.1 -4.7 6.5)
0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
2

, 6.5/
Factor A and conpute the estinmate
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CALL LFCSF (N, A, LDA, FAC, LDA,

CALL UMACH (2, NOUT)

VRI TE ( NOUT, 99999) COND, 1.0EO/ COND
then perturb right-hand side

DO 10 1=1, 3

CALL LFISF (N, A LDA, FAC, LDA,

CALL WRRRN (X', 1, N, X, 1, 0)
CALL WRRRN (RES’, 1, N, RES, 1, 0)

B(2) = B(2) + .20E0
10 CONTINUE
C

99999 FORMAT (' COND =",F5.3,/,” L1 Condition number =",F6.3)

END

Output
COND =0.034
L1 Condition number = 29.750

X
1 2 3
-4.100 -3.500 1.200

RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00

X
1 2 3
-4.500 -3.700 1.200

RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00

X
1 2 3
-4.900 -3.900 1.200

RES
1 2 3
-2.384E-07 -2.384E-07 0.000E+00

of the reciprocal
| PVT, COND)
Print condition nunber

condi ti on nunber

| PVT, B, X, RES)

LFDSF/DLFDSF (Single/Double precision)

Compute the determinant of areal symmetric matrix given theU DU r

factorization of the matrix.

Usage

CALL LFDSF (N, FAC, LDFAC, IPVT, DET1, DET2)
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Arguments
N — Order of the matrix. (Input)

FAC — N by N matrix containing the factored matixas output from subroutine
LFTSF/DLFTSF or LFCSF/DLFCSF.  (Input)

LDFAC — Leading dimension @fAC exactly as specified in the dimension

statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for théDU r

factorization as output from routin€TSF/DLFTSF or LFCSF/DLFCSF. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that, 1O|DET1| < 10.0 omDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, A@té DET1 * 10PET2,

Algorithm

RoutineLFDSF computes the determinant of a real symmetric indefinite
coefficient matrix. To compute the determinant, the coefficient matrix must first

undergo &J DU factorization. This may be done by calling eithECSF,
page 77, OLFTSF, page 80. Since dét =11, the formula def = detU det

D detU” = detD is used to compute the determinant. Nextdlet computed as
the product of the determinants of its blocks.

LFDSF is based on the LINPACK routirgs! DI ; see Dongarra et al. (1979).

Example

The determinant is computed for a real symmetpic33matrix.

C Decl are vari abl es
PARAMETER (LDA=3, N=3)
| NTEGER I PVT(N), NOUT
REAL A(LDA, LDA), FAC(LDA, LDA), DET1, DET2
C
C Set values for A
C A=( 1.0 -2.0 1.0)
C ( -2.0 3.0 -2.0)
(o ( 1.0 -2.0 3.0)
C
DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
C Factor A
CALL LFTSF (N, A LDA, FAC, LDA, [PVT)
C Conput e the det erm nant
CALL LFDSF (N, FAC, LDA, |PVT, DET1, DET2)
C Print the results

CALL UMACH (2, NaUT)
WRI TE (NOUT, 99999) DET1, DET2
99999 FORMAT (' The determinant of Ais’, F6.3, ' * 10**, F2.0)
END
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Output
The determinant of Ais -2.000 * 10**0.

LSADH/DLSADH (Single/Double precision)

Solve a Hermitian positive definite system of linear equations with iterative
refinement.

Usage
CALL LSADH (N, A, LDA B, X

Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficient matrix of the Hermitian
positive definite linear system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

X — Complex vector of lengt containing the solution of the linear system.
(Output)
Comments
1. Automatic workspace usage is
LSADH 2N + 2N units, or
DLSADH 4N” + 4N units.

Workspace may be explicitly provided, if desired, by use of
L2ADH/DL2ADH. The reference is

CALL L2ADH (N, A, LDA, B, X FAC W)

The additional arguments are as follows:

FAC — Complex work vector of Ienglkl2 containing thek’ R
factorization ofA on output.

WK — Complex work vector of lengtk

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution

might not be accurate.
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3 4 Theinput matrix is not Hermitian. It has adiagonal
entry with asmall imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal
entry with an imaginary part.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routine L2 ADH the leading
dimension of FACisincreased by | VAL(3) when Nisamultiple
of | VAL(4). Thevalues | VAL(3) and | VAL(4) are temporarily
replaced by | VAL(1) and | VAL(2), respectively, in LSADH.
Additional memory allocation for FAC and option value
restoration are done automatically in LSADH. Users directly
calling L2ADH can allocate additional space for FAC and set

I VAL(3) and | VAL (4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSADH or L2ADH. Default values
for theoptionare | VAL(*) = 1, 16, O, 1.

17 This option has two values that determine if the L, condition
number is to be computed. Routine LSADH temporarily replaces
| VAL(2) by | VAL(1). The routine L2CDH computes the
condition number if I VAL(2) = 2. Otherwise L2CDH skips this
computation. LSADH restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSADH solves a system of linear algebraic equations having a complex
Hermitian positive definite coefficient matrix. It first uses the routine LFCDH,

page 92, to compute an RY R Chol esky factorization of the coefficient matrix and
to estimate the condition number of the matrix. The matrix R is upper triangular.
The solution of the linear system is then found using the iterative refinement
routine LFI DH, page 99.

LSADH fails if any submatrix of Ris not positive definite, if R has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if A either isvery closeto asingular matrix or isamatrix that is not
positive definite.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changesin the solution x. Iterative refinement can sometimes
find the solution to such a system. LSADH solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.
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Example

A system of five linear equationsis solved. The coefficient matrix has complex
positive definite form and the right-hand-side vector b has five elements.

C Decl are vari abl es
| NTEGER LDA, N
PARAMETER (LDA=5, N=5)
COVPLEX A(LDA, LDA), B(N), X(N)

C
C Set values for A and B
C
C A = (  2.0+0. 0i -1.0+1. Qi 0. 0+0. 0i 0. 0+0. Oi 0.0+0.0i )
C ( 4. 0+0. 0i 1. 0+2. 0i 0. 0+0. Oi 0.0+0.0i )
C ( 10. 0+0. Oi 0. 0+4. Oi 0.0+0.0i )
C ( 6. 0+0. Oi 1.0+1.0i )
C ( 9.0+0.0i )
C
C B = ( 1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i )
C
DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
& 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),
& (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),
& (25.0,16.0)/
C

CALL LSADH (N, A, LDA, B, X)
Print results
CALL WRCRN (X', 1, N, X, 1, 0)

END

Output
X

1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) ( 0.000,-2.000)
5

(3.000, 2.000)

LSLDH/DLSLDH (Single/Double precision)

Solve a complex Hermitian positive definite system of linear equations without
iterative refinement.

Usage
CALL LSLDH (N, A, LDA, B, X)

Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficient matrix of the Hermitian
positive definite linear system. (Input)
Only the upper triangle & is referenced.
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LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

X — Complex vector of lengt containing the solution to the linear system.
(Output)
If B is not needed3 andX can share the same storage locations.
Comments
1. Automatic workspace usage is

LSLDH 2N + 2N units, or

DLSLDH 4N’ + 4N units.

Workspace may be explicitly provided, if desired, by use2aDH/
DL2LDH. The reference is

CALL L2LDH (N, A, LDA, B, X, FAC, VK)

The additional arguments are as follows:

FAC — Complex work vector of length N’ containi ng the RTR
factorization of A on output. If Aisnot needed, A can share the same
storage locations as FAC.

WK — Complex work vector of lengtk

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal
entry with an imaginary part.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routir® DH the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SLDH.
Additional memory allocation faFAC and option value
restoration are done automaticallyLigLDH. Users

directly callingL2LDH can allocate additional space feAC

and set VAL(3) andl VAL(4) so that memory bank conflicts
no longer cause inefficiencies. There is no requirement that
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users change existing applications that use LSLDH or L2LDH.
Default values for the option are | VAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if theL; condition
number isto be computed. Routine LSLDH temporarily replaces
I VAL(2) by 1 VAL(1). The routine L2CDH computes the
condition number if | VAL(2) = 2. Otherwise L2CDH skips this
computation. LSLDH restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSLDH solves a system of linear algebraic eguations having a complex
Hermitian positive definite coefficient matrix. It first uses the routine LFCDH,

page 92, to compute an RY R chol esky factorization of the coefficient matrix and
to estimate the condition number of the matrix. The matrix R is upper triangular.
The solution of the linear system is then found using the routine LFSDH, page 97.

LSLDH failsif any submatrix of Ris not positive definite or if R hasazero
diagonal element. These errors occur only if Aisvery closeto asingular matrix
or to amatrix which is not positive definite.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. If the coefficient matrix isill-
conditioned or poorly scaled, it is recommended that LSADH, page 87, be used.

Example

A system of five linear equationsis solved. The coefficient matrix has complex
Hermitian positive definite form and the right-hand-side vector b has five
elements.

Decl are vari abl es
LDA, N

PARAMETER (LDA=5, N&5)

COWPLEX

DATA

DATA

A

A(LDA, LDA), B(N), X(N)

Set values for A and B

( 2.0+40.0i -1.0+1.0i 0.0+0.0i  0.0+0.0i  0.0+0.0i )
( 4.0+0.0i  1.0+2.0i  0.0+0.0i  0.0+0.0i )
( 10.0+0.0i  0.0+4.0i  0.0+0.0i )
( 6.0+0.0i  1.0+1.0i )
( 9.0+0.0i )
( 1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i )

(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),

4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),

(0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),
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& (25.0,16.0)/

CALL LSLDH (N, A, LDA B, X
Print results
CALL WRCRN (X', 1, N, X, 1, 0)

END

Output
X
1 2 3 4
(2.000, 1.000) ( 3.000, 0.000) (-1.000,-1.000) ( 0.000,-2.000)
5

(3.000, 2.000)

LFCDH/DLFCDH (Single/Double precision)

Compute the R Rfactorization of a complex Hermitian positive definite matrix
and estimate its L, condition number.

Usage
CALL LFCDH (N, A, LDA, FAC, LDFAC, RCOND)

Arguments
N — Order of the matrix.  (Input)

A — ComplexN by N Hermitian positive definite matrix to be factored. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — ComplexN by N matrix containing the upper triangular matf the
factorization ofA in the upper triangle. (Output)

Only the upper triangle &fAC will be used. IfA is not neededd andFAC can
share the same storage locations.

LDFAC — Leading dimension ¢fAC exactly as specified in the dimension
statement of the calling program. (Input)

RCOND — Scalar containing an estimate of the reciprocal ofttendition
number ofa. (Output)

Comments
1. Automatic workspace usage is

LFCDH 2N units, or
DLFCDH 4N units.
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Workspace may be explicitly provided, if desired, by use of
L2CDH/DL2CDH. Thereferenceis
CALL L2CDH (N, A, LDA, FAC, LDFAC, RCOND, VK)

The additional argument is

WK — Complex work vector of lengtk

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.

4 4 The input matrix is not Hermitian.
4 2 The input matrix is not positive definite. It has a
diagonal entry with an imaginary part.
Algorithm

RoutineLFCDH computes ar” R Cholesky factorization and estimates the
condition number of a complex Hermitian positive definite coefficient matrix.
The matrixR is upper triangular.

Thel, condition number of the matriis defined to b&(A) = |Al} HA‘1 || Since

it is expensive to computé\ﬂ [I, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).

If the estimated condition number is greater thar(Wheree is machine
precision), a warning error is issued. This indicates that very small charfges in
can cause very large changes in the solutidierative refinement can sometimes
find the solution to such a system.

LFCDH fails if any submatrix oR is not positive definite or iR has a zero
diagonal element. These errors occur oni i very close to a singular matrix
or to a matrix which is not positive definite.

The R Rfactors are returned in a form that is compatible with routifre®H,
page 99LFSDH, page 97, andFDDH, page 101. To solve systems of equations
with multiple right-hand-side vectors, useCbH followed by eitheLFI DH or
LFSDH called once for each right-hand side. The routiRBDH can be called to
compute the determinant of the coefficient matrix affe3dDH has performed the
factorization.

LFCDH is based on the LINPACK routir@0CO; see Dongarra et al. (1979).
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Example

Theinverse of a5 x 5 Hermitian positive definite matrix is computed. LFCDH is

called to factor the matrix and to check for nonpositive definiteness or ill-

conditioning. LFI DH (page 99) is called to determine the columns of the inverse.
C Decl are vari abl es

| NTEGER LDA, LDFAC, N, NOUT
PARAMETER (LDA=5, LDFAC=5, N=5)

REAL COND
COVPLEX A(LDA, LDA), AINV(LDA, LDA), FAC(LDFAC, LDFAQ),
& RES(N), RI(N)

C
C Set values for A
C
C A= ( 2.0+0.0i -1.0+1.0i 0. 0+0. Qi 0. 0+0. Oi 0.0+0.0i )
C ( 4. 0+0. 0i 1. 0+2. Qi 0. 0+0. Oi 0.0+0.0i )
C ( 10. 0+0. 0i 0. 0+4. Oi 0.0+0.0i )
C ( 6. 0+0. Oi 1.0+1.0i )
C ( 9.0+0.0i )
C

DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
& 4*(0.0,0.0), (21.0,2.0), (10.0,0.0), 4*(0.0,0.0),
& (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,2.0), (9.0,0.0)/
C Factor the matrix A
CALL LFCDH (N, A, LDA, FAC, LDFAC, COND)

C Set up the colums of the identity
C matrix one at a time in RJ
CALL CSET (N, (0.OEO,0.0E0), RJ, 1)
DO 10 J=1, N
RJ(J) = (1.0EO, 0. OEO)
C R) is the J-th colum of the identity
C matri x so the foll ow ng LFI DH
C ref erence places the J-th colum of
C the inverse of Ain the J-th colum
C of ANV
CALL LFIDH (N, A LDA, FAC, LDFAC, RJ, AINV(1,1J), RES)
RJ(J) = (0.OEO, 0. OEO)
10 CONTI NUE
C Print the results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) COND, 1. 0EO/ COND
CALL WRCRN (AINV’, N, N, AINV, LDA, 0)

C
99999 FORMAT (' COND =",F5.3,/,” L1 Condition number =",F6.3)

END
Output
COND =0.067
L1 Condition number = 14.961
AINV
1 2 3 4

1 (0.7166, 0.0000) ( 0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) ( 0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) ( 0.0000,-0.1244)
4 (-0.0207,-0.0622) (-0.0829,-0.0415) ( 0.0000, 0.1244) ( 0.2592, 0.0000)
5 (0.0092, 0.0046) ( 0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
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5
( 0.0092, - 0. 0046)
( 0.0138, 0.0046)
(-0.0138, 0.0138)
(-0
(0

. 0288, - 0. 0288)
. 1175, 0. 0000)

GO WNPE

LFTDH/DLFTDH (Single/Double precision)

Compute the RY Rfactorization of a complex Hermitian positive definite matrix.

Usage
CALL LFTDH (N, A, LDA, FAC, LDFAQ

Arguments
N — Order of the matrix. (Input)

A — ComplexN by N Hermitian positive definite matrix to be factored. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — ComplexN by N matrix containing the upper triangular mawinf the
factorization ofa in the upper triangle. (Output)

Only the upper triangle ¢fAC will be used. IfA is not needed) andFAC can
share the same storage locations.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments
Informational errors
Type Code
3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.
4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal entry with

an imaginary part.

Algorithm

RoutineLFTDH computes ar’ R Cholesky factorization of a complex
Hermitian positive definite coefficient matrix. The matRxs upper triangular.
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DATA A /(2.0,0.0), 4*(
4*(0.0,0.0), (
(0.0,4.0), (6.0,0.

LFTDH failsif any submatrix of Ris not positive definite or if R has a zero
diagonal element. These errors occur only if Aisvery closeto asingular matrix
or to amatrix which is not positive definite.

The R R factors are returned in aform that is compatible with routines LFI DH,
page 99, LFSDH, page 97, and LFDDH, page 101. To solve systems of equations
with multiple right-hand-side vectors, use LFCDH followed by either LFI DH or
LFSDH called once for each right-hand side. The IMSL routine LFDDH can be
called to compute the determinant of the coefficient matrix after LFCDH has
performed the factorization.

LFTDH is based on the LINPACK routine CPOFA; see Dongarra et al. (1979).

Example

Theinverse of a5 x 5 matrix is computed. LFTDH is called to factor the matrix
and to check for nonpositive definiteness. LFSDH (page 97) is called to determine
the columns of theinverse.

Decl are vari abl es
LDA, LDFAC, N
(LDA=5, LDFAC=5, N=5)
A(LDA, LDA), Al NV(LDA, LDA), FAC(LDFAC, LDFAC), RI(N)

Set values for A

2.0+0.0i -1.0+1.0i  0.0+0.0i  0.0+0.0i  0.0+0.0i )
4.0+0.0i  1.0+2.0i  0.0+0.0i  0.0+0.0i )

10.0+0.0i  0.0+4.0i  0.0+0.0i )

6.0+0.0i  1.0+1.0i )

9.0+0.0i )

0.0,0.0), (-1.0,1.0), (4.0,0.0),
1.0,2.0), (10.0,0.0), 4*(0.0,0.0),

0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
Factor the matrix A

CALL LFTDH (N, A, LDA, FAC, LDFAC)

Set up the colums of the identity
matrix one at a time in RJ
(N, (0.0EO, 0.0E0), RJ, 1)

(1. OEO, 0. OEO)
RJ is the J-th colum of the identity
matri x so the followi ng LFSDH
reference places the J-th colum of
the inverse of Ain the J-th colum
of Al NV

CALL LFSDH (N, FAC, LDFAC, RJ, AINV(1,J))

(0. OEO, 0. OE0)

C
| NTEGER
PARAVETER
COMPLEX

C

C

C

C A= (

C (

C (

C (

C (

C
&

&

c

c

C
CALL CSET
DO 10 J=1, N

RI(J) =

c

C

C

C

C

RI(J) =
10 CONTI NUE
c

Print the results

CALL WRCRN (AINV’, N, N, AINV, LDA, 1)

END
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( 0.7166, 0.0000) ( 0.2166,-0.2166) (-0.0899, -0.0300)

Output
Al NV
1 2 3 4
0207, 0.0622)
0829, 0.0415)
0000, - 0. 1244)
2592, 0.0000)

(
( 0.4332, 0.0000) (-0.0599,-0.1198) (
( 0.1797, 0.0000) (

(

5

1
2
3
4
1 ( 0.0092, -0.0046)
2 ( 0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 ( 0.1175, 0.0000)

LFSDH/DLFSDH (Single/Double precision)

Solve a complex Hermitian positive definite system of linear equations given the
R Rfactorization of the coefficient matrix.

Usage
CALL LFSDH (N, FAC, LDFAC, B, X)

Arguments
N — Number of equations. (Input)

FAC — ComplexN by N matrix containing the factorization of the coefficient
matrix A as output from routineFCDH/DLFCDH or LFTDH/DLFTDH.  (Input)

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Complex vector of length containing the right-hand side of the linear
system. (Input)

X — Complex vector of length containing the solution to the linear system.
(Output)
If B is not needed andX can share the same storage locations.

Comments
Informational error
Type Code
4 1 The input matrix is singular.
Algorithm

This routine computes the solution for a system of linear algebraic equations
having a complex Hermitian positive definite coefficient matrix. To compute the

solution, the coefficient matrix must first underngﬂlR factorization. This
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may be done by calling either LFCDH, page 92, or LFTDH, page 95. Ris an upper
triangular matrix.

The solution to Ax = b is found by solving the triangular systems RA y=band
Rx=y.

LFSDH and LFI DH, page 99, both solve alinear system given its RTR
factorization. LFI DH generally takes more time and produces a more accurate
answer than LFSDH. Each iteration of the iterative refinement algorithm used by
LFI DH calls LFSDH.

LFSDH is based on the LINPACK routine CPOSL; see Dongarra et al. (1979).

Example

A set of linear systemsis solved successively. LFTDH (page 95) is called to factor
the coefficient matrix. LFSDH is called to compute the four solutions for the four
right-hand sides. In this case, the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better to call LFCDH
(page 92) to perform the factorization, and LFI DH (page 99) to compute the
solutions.
C Decl are vari abl es

| NTEGER LDA, LDFAC, N

PARAMETER (LDA=5, LDFAC=5, N=5)

COVPLEX A(LDA, LDA), B(N, 3), FAC(LDFAC, LDFAC), X(N, 3)

C
C Set values for A and B
C
C A = (  2.0+0. 0i -1. 0+1. Qi 0. 0+0. 0i 0. 0+0. Oi 0.0+0.0i )
C ( 4. 0+0. 0i 1. 0+2. 0i 0. 0+0. Oi 0.0+0.0i )
C ( 10. 0+0. Oi 0. 0+4. Oi 0.0+0.0i )
C ( 6. 0+0. Oi 1.0+1.0i )
C ( 9.0+0.0i )
C
C B = ( 3.0+3.0i 4. 0+0. 0i 29.0-9.0i )
C ( 5.0-5.0i 15.0-10.0i -36.0-17.0i )
C ( 5.0+4.0i -12.0-56.0i -15.0-24.0i )
C ( 9.0+7.0i -12. 0+10. 0i -23.0-15.0i )
C (-22. 0+1. Qi 3.0-1.0i -23.0-28.0i )
C
DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
& 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4(0 0,0.0),
& (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1010), (9.0,0.0)/
DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)

& (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),

& (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),

& (-23.0,-15.0), (-23.0,-28.0)/
C
C Factor the matrix A

CALL LFTDH (N, A, LDA, FAC, LDFAQ
C Conput e the solutions
DO 10 1=1, 3
CALL LFSDH (N, FAC, LDFAC, B(1,1), X(1,1))
10 CONTI NUE
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Print solutions
CALL WRCRN (X', N, 3, X, N, 0)

END
Output
X
1 2 3
1 ( 1.00, 0.00) ( 3.00,-1.00) (11.00, -1.00)
2 ( 1.00, -2.00) ( 2.00, 0.00) (-7.00, 0.00)
3 ( 2.00, 0.00) (-1.00,-6.00) (-2.00, -3.00)
4 ( 2.00, 3.00) ( 2.00, 1.00) (-2.00, -3.00)
5 (-3.00, 0.00) ( 0.00, 0.00) (-2.00, -3.00)

LFIDH/DLFIDH (Single/Double precision)

Use iterative refinement to improve the solution of a complex Hermitian positive
definite system of linear equations.

Usage
CALL LFIDH (N, A, LDA, FAC, LDFAC, B, X, RES)

Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficient matrix of the linear
system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — ComplexN by N matrix containing the factorization of the coefficient
matrix A as output from routineFCDH/DLFCDH or LFTDH/DLFTDH.  (Input)
Only the upper triangle ¢fAC is used.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

X — Complex vector of lengt containing the solution. (Input)

RES — Complex vector of lengtl containing the residual vector at the
improved solution. (Output)
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Comments

Informational error

Type Code
3 3 Theinput matrix istoo ill-conditioned for iterative refinement
to be effective.
Algorithm

Routine LFI DH computes the solution of a system of linear algebraic equations
having a complex Hermitian positive definite coefficient matrix. Iterative
refinement is performed on the solution vector to improve the accuracy. Usually
amost all of the digitsin the solution are accurate, even if the matrix is somewhat
ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an RTR
factorization. This may be done by calling either LFCDH, page 92, or LFTDH,
page 95.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFI DH and LFSDH, page 97, both solve alinear system given its RY R
factorization. LFI DH generally takes more time and produces a more accurate
answer than LFSDH. Each iteration of the iterative refinement algorithm used by
LFI DHcalls LFSDH.

Example

A set of linear systemsis solved successively. The right-hand-side vector is
perturbed by adding (1 + i)/2 to the second element after each call to LFI DH.

Decl are vari abl es

| NTEGER LDA, LDFAC, N
PARAMETER (LDA=5, LDFAC=5, N=5)

REAL

RCOND

COMPLEX  A(LDA, LDA), B(N), FAC(LDFAC LDFAC), RES(N,3), X(N,3)

DATA

Ro Ro

DATA

CALL

Set values for A and B

= ( 2.0+0.0i -1.0+1.0i 0. 0+0. Oi 0. 0+0. Oi 0.0+0.0i )
( 4. 0+0. 0i 1. 0+2. Qi 0. 0+0. Oi 0.0+0.0i )
( 10. 0+0. Qi 0. 0+4. 0i 0.0+0.0i )
( 6. 0+0. Oi 1.0+1.0i )
( 9.0+0.0i )

= ( 3.0+3.0i 5.0-5.0i 5.0+4.0i 9.0+7.0i -22.0+1.0i )

A/(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),
4*(0.0,0.0), (21.0,2.0), (10.0,0.0), 4*(0.0,0.0),
(0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/

B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/

Factor the matrix A

LFCDH (N, A, LDA, FAC, LDFAC, RCOND)

Print the estimted condition nunber
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CALL UMACH (2, NaUT)
VWRI TE ( NOUT, 99999) RCOND, 1. 0EO/ RCOND
C Conmput e the sol utions, then perturb B
DO 10 1=1, 3
CALL LFIDH (N, A LDA, FAC, LDFAC, B, X(1,1), RES(1,1))
B(2) = B(2) + (0.5EO0, 0.5E0Q)
10 CONTI NUE
C Print solutions and residuals
CALL WRCRN (X', N, 3, X, N, 0)
CALL WRCRN ('RES’, N, 3, RES, N, 0)
C
99999 FORMAT (" RCOND =",F5.3,/,’ L1 Condition number =',F6.3)
END

Output
RCOND = 0.067
L1 Condition number = 14.961

X
1 2 3

1 (1.000, 0.000) ( 1.217, 0.000) ( 1.433, 0.000)

2 (1.000,-2.000) (1.217,-1.783) ( 1.433,-1.567)

3 (2.000, 0.000) (1.910, 0.030) ( 1.820, 0.060)

4 (2.000, 3.000) (1.979,2.938) (1.959, 2.876)

5 (-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)

RES
1 2 3
1 (1.192E-07, 0.000E+00) ( 6.592E-08, 1.686E-07) ( 1.318E-07, 2.010E-14)
2 (1.192E-07,-2.384E-07) (-5.329E-08,-5.329E-08) ( 1.318E-07,-2.258E-07)
3 ( 2.384E-07, 8.259E-08) ( 2.390E-07,-3.309E-08) ( 2.395E-07, 1.015E-07)
4 (-2.384E-07, 2.814E-14) (-8.240E-08,-8.790E-09) (-1.648E-07,-1.758E-08)
5 (-2.384E-07,-1.401E-08) (-2.813E-07, 6.981E-09) (-3.241E-07,-2.795E-08)

LFDDH/DLFDDH (Single/Double precision)

Compute the determinant of a complex Hermitian positive definite matrix given
the R’ R Chol esky factorization of the matrix.

Usage
CALL LFDDH (N, FAC, LDFAC, DET1, DET?2)

Arguments
N — Order of the matrix. (Input)

FAC — ComplexN by N matrix containing th&” R factorization of the
coefficient matrixA as output from routineFCDH/DLFCDH or LFTDH/DLFTDH.

(Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)
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DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 1O[DET1| < 10.0 oDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form @t DET1 * 10PET2.

Algorithm

RoutineLFDDH computes the determinant of a complex Hermitian positive
definite coefficient matrix. To compute the determinant, the coefficient matrix

must first undergo aR" Rfactorization. This may be done by calling either

LFCDH, page 92, oL FTDH, page 95. The formula dAt= detR” detR = (detR)2
is used to compute the determinant. Since the determinant of a triangular matrix is
the product of the diagonal elements,

_ N
(The matrixR is stored in the upper triangle BAC.)
LFDDH is based on the LINPACK routir@0DI ; see Dongarra et al. (1979).

Example
The determinant is computed for a complex Hermitian positive definitg 3
matrix.

C Decl are vari abl es

INTEGER  LDA, LDFAC, N, NOUT
PARAMETER (LDA=3, N=3, LDFAC=3)

REAL DET1, DET2

COWPLEX  A(LDA, LDA), FAC(LDFAC, LDFAC)

C
(o Set values for A
C
C A= ( 6.0+0.0i 1.0-1.0i 4.0+0.0i )
C ( 1.0+1.0i 7.0+0.0i -5.0+1.0i )
C ( 4.0+0.0i -5.0-1.0i 11.0+0.0i )
C
DATA A /(6.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (7.0,0.0),
& (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (11.0,0.0)/
C Factor the matrix
CALL LFTDH (N, A, LDA, FAC, LDFAQ)
C Conput e the determ nant
CALL LFDDH (N, FAC, LDFAC, DET1, DET2)
C Print results
CALL UMACH (2, NauT)
VWRI TE (NOUT, 99999) DET1, DET2
C
99999 FORMAT ('’ The determinant of A is ,F6.3," * 10**",F2.0)

END

Output
The determinant of Ais 1.400 * 10**2.
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LSAHF/DLSAHF (Single/Double precision)

Solve a complex Hermitian system of linear equations with iterative refinement.

Usage
CALL LSAHF (N, A, LDA, B, X

Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficient matrix of the Hermitian
linear system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length containing the right-hand side of the linear
system. (Input)

X — Complex vector of length containing the solution to the linear system.
(Output)
Comments
1. Automatic workspace usage is
LSAHF 2\ + 3N units, or
DLSAHF 4N’ + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2AHF/DL2AHF. The reference is

CALL L2AHF (N, A, LDA, B, X, FAC, |PVT, QKX

The additional arguments are as follows:

FAC — Complex work vector of Iengm2 containing information about
theU DU factorization ofa on output.

IPVT — Integer work vector of lengtk containing the pivoting
information for the factorization @& on output.

CWK — Complex work vector of length

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal
entry with a small imaginary part.
4 2 The input matrix singular.
4 4 The input matrix is not Hermitian. It has a diagonal

entry with an imaginary part.
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3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routine L2 AHF the leading
dimension of FACisincreased by | VAL(3) when Nisamultiple
of | VAL(4). Thevalues | VAL(3) and | VAL(4) are temporarily
replaced by | VAL(1) and | VAL(2), respectively, in LSAHF.
Additional memory allocation for FAC and option value
restoration are done automatically in LSAHF. Users directly
calling L2AHF can allocate additional space for FAC and set
I VAL(3) and | VAL (4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that use LSAHF or L2AHF. Default values
for theoptionare | VAL(*) = 1, 16, O, 1.

17 This option has two values that determine if the L, condition
number is to be computed. Routine LSAHF temporarily replaces
| VAL(2) by | VAL(1). The routine L2CHF computes the
condition number if | VAL(2) = 2. Otherwise L2CHF skips this
computation. LSAHF restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSAHF solves systems of linear algebraic equations having a complex
Hermitian indefinite coefficient matrix. It first uses the routine LFCHF, page 108,

to compute aU DU factorization of the coefficient matrix and to estimate the
condition number of the matrix. D isablock diagonal matrix with blocks of order
1 or 2and U isamatrix composed of the product of a permutation matrix and a
unit upper triangular matrix. The solution of the linear system is then found using
the iterative refinement routine LFI HF, page 114.

LSAHF failsif ablock in D issingular or if theiterative refinement algorithm fails
to converge. These errors occur only if Aissingular or very close to asingular
matrix.

If the estimated condition number is greater than /e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changesin the solution x. Iterative refinement can sometimes
find the solution to such a system. LSAHF solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.
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Example

A system of three linear equations is solved. The coefficient matrix has complex
Hermitian form and the right-hand-side vector b has three elements.

C Decl are vari abl es
| NTEGER LDA, N
PARAMETER (LDA=3, N=3)
COVPLEX A(LDA, LDA), B(N), X(N)

C
C Set values for A and B
C
C A = ( 3.0+0. 0i 1.0-1.0i  4.0+0.0i )
C ( 1.0+1.0i  2.0+0.0i ~-5.0+1.0i )
C ( 4.0+0.0i -5.0-1.0i -2.0+0.0i )
C
C B=( 7.0+32.0i -39.0-21.0i 51.0+9.0i )
C
DATA A/ (3.0,0.0), (1.0,1.0), (4.0,0.0), (21.0,-1.0), (2.0,0.0),
& (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
DATA B/ (7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
C

CALL LSAHF (N, A, LDA B, X
Print results
CALL WRCRN (X', 1, N, X, 1, 0)
END

Output
X
1 2 3
( 2.00, 1.00) (-10.00, -1.00) ( 3.00, 5.00)

LSLHF/DLSLHF (Single/Double precision)

Solve a complex Hermitian system of linear equations without iterative
refinement.

Usage
CALL LSLHF (N, A, LDA, B, X)

Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficient matrix of the Hermitian
linear system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

B — Complex vector of length containing the right-hand side of the linear
system. (Input)
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X — Complex vector of lengt containing the solution to the linear system.
(Output)
Comments
1. Automatic workspace usage is
LSLHE 2N’ + 3N units, or
DLSLHF 4N + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2LHF/DL2LHF. The reference is

CALL L2LHF (N, A LDA, B, X, FAC, |1PVT, QX
The additional arguments are as follows:

FAC — Complex work vector of Iengm2 containing information about

theU DU factorization ofa on output. IfA is not neededy can share
the same storage locations WthkC.

IPVT — Integer work vector of lengtk containing the pivoting
information for the factorization @& on output.

CWK — Complex work vector of length

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal
entry with a small imaginary part.
4 2 The input matrix is singular.
4 4 The input matrix is not Hermitian. It has a diagonal
entry with an imaginary part.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routin®_HF the leading
dimension oFAC s increased byVAL(3) whenNis a multiple
of I VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, if.SLHF.
Additional memory allocation fafAC and option value
restoration are done automaticallyLiBLHF. Users directly
calling L2LHF can allocate additional space fexC and set

| VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that ussSLHF or L2LHF. Default values
for the option aré VAL(*) =1, 16, 0, 1.

17 This option has two values that determine ifltheondition
number is to be computed. Routin® HF temporarily
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replaces | VAL(2) by | VAL(1). The routine L2CHF computes the
condition number if | VAL(2) = 2. Otherwise L2CHF skips this
computation. LSLHF restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSLHF solves systems of linear algebraic equations having a complex
Hermitian indefinite coefficient matrix. It first uses the routine LFCHF, page 108,

to computea U DU’ factorization of the coefficient matrix. D is ablock diagonal
matrix with blocks of order 1 or 2 and U isamatrix composed of the product of a
permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LFSHF,

page 112. LSLHF failsif ablock in D issingular. This occurs only if Aissingular
or very closeto asingular matrix. If the coefficient matrix isill-conditioned or
poorly scaled, it is recommended that L SAHF, page 103 be used.

Example

A system of three linear equations is solved. The coefficient matrix has complex
Hermitian form and the right-hand-side vector b has three elements.
C Decl are vari abl es
| NTEGER LDA, N
PARAMETER (LDA=3, N=3)
COVPLEX A(LDA, LDA), B(N), X(N)

(o
C Set values for A and B
C
C A = ( 3.0+0. 0i 1.0-1.0i  4.0+0.0i )
C 1. 0+1. 0i 2. 0+0. 0i -5.0+1.0i )
C ( 4.0+0.0i -5.0-1.0i -2.0+0.0i )
C
C B=( 7.0+32.0i -39.0-21.0i 51.0+9.0i )
C

DATA A/ (3.0,0.0), (1.0,1.0), (4.0,0.0), (21.0,-1.0), (2.0,0.0),

& (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

DATA B/ (7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
C

CALL LSLHF (N, A, LDA B, X
C Print results

CALL WRCRN (X', 1, N, X, 1, 0)
END
Output
X
1 2 3

( 2.00, 1.00) (-10.00, -1.00) ( 3.00, 5.00)

IMSL MATH/LIBRARY Chapter 1: Linear Systems « 107



LFCHF/DLFCHF (Single/Double precision)

Compute the U DU factorization of acomplex Hermitian matrix and estimate its
L, condition number.

Usage
CALL LFCHF (N, A, LDA, FAC, LDFAC, |PVT, RCOND)

Arguments
N — Order of the matrix. (Input)

A — ComplexN by N Hermitian matrix to be factored. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — ComplexN by N matrix containing the information about the
factorization of the Hermitian matrix (Output)

Only the upper triangle ¢fAC is used. IfA is not neededy andFAC can share the
same storage locations.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for the
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal ot treondition
number ofA. (Output)

Comments

1. Automatic workspace usage is

LFCHF 2N units, or
DLFCHF 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CHF/DL2CHF. The reference is

CALL L2CHF (N, A, LDA, FAC, LDFAC, |PVT, RCOND, CWK)
The additional argument is

CWK — Complex work vector of length

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.
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4 2 Theinput matrix issingular.
4 4 The input matrix is not Hermitian. It has a diagonal
entry with an imaginary part.

Algorithm

Routine LFCHF performsa U DU factorization of acomplex Hermitian
indefinite coefficient matrix. It also estimates the condition number of the matrix.

The U DU factorization is called the diagonal pivoting factorization.

The L, condition number of the matrix A is defined to be k(A) = ||Al} ||A’1 |- Since

it is expensive to compute [JA™ ||, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
etal. (1979).

If the estimated condition number is greater than 1/ (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCHF failsif Aissingular or very close to asingular matrix.

The U DU factors are returned in aform that is compatible with routines

LFI HF, page 114, LFSHF, page 112, and LFDHF, page 117. To solve systems of
equations with multiple right-hand-side vectors, use LFCHF followed by either
LFI HF or LFSHF called once for each right-hand side. The routine LFDHF can be
called to compute the determinant of the coefficient matrix after LFCHF has
performed the factorization.

LFCHF is based on the LINPACK routine CSI CO; see Dongarra et al. (1979).

Example

Theinverse of a3 x 3 complex Hermitian matrix is computed. LFCHF is called to
factor the matrix and to check for singularity or ill-conditioning. LFI HF
(page 114) is called to determine the columns of the inverse.

C Decl are vari abl es
| NTEGER LDA, N
PARAMETER (LDA=3, N=3)
| NTEGER | PVT(N), NOUT
REAL RCOND
COVPLEX A(LDA, LDA), AINV(LDA N), FAC(LDA LDA), RI(N), RES(N)

C Set values for A
C
C A = ( 3.0+0.0i 1.0-1.0i 4.0+0.0i )
C ( 1.0+1.0i 2.040.0i -5.0+1.0i )
C ( 4.0+0.0i -5.0-1.0i -2.0+0.0i )
C
DATA A/ (3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
& (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
C Set out put unit nunber
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CALL UMACH (2, NOUT)

C Factor A and return the reciprocal
C condi ti on nunber estinmate
CALL LFCHF (N, A LDA, FAC, LDA, |PVT, RCOND)
C Print the estimate of the condition
C nunber
VWRI TE ( NOUT, 99999) RCOND, 1. 0EO/ RCOND
C Set up the colums of the identity
C matrix one at a time in RJ
CALL CSET (N, (0.0EO0,0.0E0), RJ, 1)
DO 10 J=1, N
RJ(J) = (1.0EO0, 0.0E0)
C RJ is the J-th colum of the identity
C matri x so the followi ng LFIHF
C reference places the J-th colum of
C the inverse of Ain the J-th colum
C of Al NV
CALL LFIHF (N, A LDA, FAC, LDA, IPVT, RJ, AINV(1,J), RES)
RJ(J) = (0.0EO, 0.0E0)
10 CONTI NUE
C Print the inverse
CALL WRCRN (AINV’, N, N, AINV, LDA, 0)
C
99999 FORMAT (" RCOND =",F5.3,/,’ L1 Condition number =",F6.3)
END
Output

RCOND =0.240
L1 Condition number = 4.175

AINV
1 2 3

1 (0.2000, 0.0000) (0.1200, 0.0400) ( 0.0800,-0.0400)

2 (0.1200,-0.0400) ( 0.1467, 0.0000) (-0.1267,-0.0067)

3 (0.0800, 0.0400) (-0.1267, 0.0067) (-0.0267, 0.0000)

LFTHF/DLFTHF (Single/Double precision)

Compute the U DU factorization of a complex Hermitian matrix.

Usage
CALL LFTHF (N, A, LDA, FAC, LDFAC, IPVT)

Arguments

N — Order of the matrix. (Input)

A — ComplexN by N Hermitian matrix to be factored. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
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FAC — ComplexN by N matrix containing information about the factorization of
the Hermitian matria.  (Output)

Only the upper triangle ¢fAC is used. IfA is not neededy andFAC can share the
same storage locations.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for the
factorization. (Output)

Comments
Informational errors
Type Code
3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.
4 2 The input matrix is singular.
4 4 The input matrix is not Hermitian. It has a diagonal entry with
an imaginary part.
Algorithm

RoutineLFTHF performs &J DU factorization of a complex Hermitian

indefinite coefficient matrix. The) DU factorization is called the diagonal
pivoting factorization.

LFTHF fails if A is singular or very close to a singular matrix.

TheU DU factors are returned in a form that is compatible with routines
LFI HF, page 114 FSHF, page 112, andFDHF, page 117. To solve systems of
equations with multiple right-hand-side vectors, WSEHF followed by either

LFI HF or LFSHF called once for each right-hand side. The routirBHF can be
called to compute the determinant of the coefficient matrix BREHF has
performed the factorization.

LFTHF is based on the LINPACK routirgsl FA; see Dongarra et al. (1979).

Example

The inverse of a 8 3 matrix is computed.FTHF is called to factor the matrix
and check for singularity.FSHF is called to determine the columns of the
inverse.
C Decl are vari abl es

| NTEGER LDA, N

PARAMETER (LDA=3, N=3)

| NTEGER I PVT(N)

COVPLEX A(LDA, LDA), AINV(LDA N), FAC(LDA LDA), RI(N)

Set values for A

o000

A= ( 3.040.0i 1.0-1.0i  4.0+0.0i )
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C ( 1.0+1.0i 2.0+0.0i -5.0+1.0i )
C ( 4.0+0.0i -5.0-1.0i -2.0+0.0i )
C
DATA A/ (3.0,0.0), (1.0,1.0), (4.0,0.0), (21.0,-1.0), (2.0,0.0),
& (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
C Factor A
CALL LFTHF (N, A, LDA, FAC, LDA, [|PVT)
C Set up the colums of the identity
C matrix one at a time in RJ
CALL CSET (N, (0.0EO0,0.0E0), RJ, 1)
DO 10 J=1, N
RJ(J) = (1.0EO0, 0.0E0)
C RJ is the J-th colum of the identity
C matri x so the foll owi ng LFSHF
C reference places the J-th colum of
C the inverse of Ain the J-th colum
C of Al NV
CALL LFSHF (N, FAC, LDA, IPVT, RJ, AINV(1,1J))
RJ(J) = (0.0EO, 0.0E0)
10 CONTI NUE
C Print the inverse
CALL WRCRN (AINV’, N, N, AINV, LDA, 0)
END
Output
AINV
1 2 3

1 (0.2000, 0.0000) (0.1200, 0.0400) ( 0.0800,-0.0400)
2 (0.1200,-0.0400) ( 0.1467, 0.0000) (-0.1267,-0.0067)
3 (0.0800, 0.0400) (-0.1267, 0.0067) (-0.0267, 0.0000)

LFSHF/DLFSHF (Single/Double precision)

Solve a complex Hermitian system of linear equations given the U pu’
factorization of the coefficient matrix.

Usage
CALL LFSHF (N, FAC, LDFAC, IPVT, B, X)

Arguments
N — Number of equations. (Input)

FAC — ComplexN by N matrix containing the factorization of the coefficient
matrix A as output from routineFCHF/DLFCHF or LFTHF/DLFTHF.  (Input)
Only the upper triangle &fAC is used.

LDFAC — Leading dimension of FAC exactly as specified in the dimension
statement of the calling program. (Input)
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IPVT — Vector of lengthN containing the pivoting information for the
factorization ofA as output from routineFCHF/DLFCHF or LFTHF/DLFTHF.
(Input)

B — Complex vector of lengtl containing the right-hand side of the linear
system. (Input)

X — Complex vector of length containing the solution to the linear system.
(Output)
If B is not needed andX can share the same storage locations.

Algorithm

RoutineLFSHF computes the solution of a system of linear algebraic equations
having a complex Hermitian indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undengdi)aJH
factorization. This may be done by calling eithECHF, page 108, OLFTHF,
page 110.

LFSHF andLFI HF, page 114, both solve a linear system givet iU
factorizationLFI HF generally takes more time and produces a more accurate
answer than FSHF. Each iteration of the iterative refinement algorithm used by
LFI HF callsLFSHF.

LFSHF is based on the LINPACK routires| SL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successivgiyHF (page 110) is called to
factor the coefficient matrix. FSHF is called to compute the three solutions for
the three right-hand sides. In this case the coefficient matrix is assumed to be
well-conditioned and correctly scaled. Otherwise, it would be better toret-
(page 108) to perform the factorization, arid HF (page 114) to compute the
solutions.
C Decl are vari abl es

| NTEGER LDA, N

PARAMETER (LDA=3, N=3)

| NTEGER I PVT(N), |

COVPLEX A(LDA, LDA), B(N, 3), X(N,3), FAC(LDA, LDA)

Set values for A and B
A = ( 3.0+0.0i 1.0-1.0i  4.0+0.0i )

( 1.0+1.0i  2.0+0.0i -5.0+1.0i )
( 4.040.0i -5.0-1.0i -2.0+0.0i )

(o8}
1

( 7.0+32.0i -6.0+11.0i -2.0-17.0i )
(-39.0-21.0i -5.5-22.5i 4.0+10.0i )
( 51.0+ 9.0i 16.0+17.0i -2.0+12.0i )

0O0000000000

DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),
& (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
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DATA B/ (7.0,32.0), (-39.0,-21.0), (51.0,9.0), (-6.0,11.0),
& (-5.5,-22.5), (16.0,17.0), (-2.0,-17.0), (4.0,10.0),
& (-2.0,12.0)/
Factor A
CALL LFTHF (N, A, LDA, FAC, LDA, |PVT)
Solve for the three right-hand sides
DO 10 1=1, 3
CALL LFSHF (N, FAC, LDA, IPVT, B(1,1), X(1,1))

10 CONTI NUE
C Print results
CALL WRCRN (X', N, 3, X, N, 0)
END
Output
X
1 2 3

1 ( 2.00, 1.00) ( 1.00, 0.00) ( 0.00, -1.00)
2 (-10.00, -1.00) ( -3.00, -4.00) ( 0.00, -2.00)
3 ( 3.00, 5.00) (-0.50, 3.00) ( 0.00, -3.00)

LFIHF/DLFIHF (Single/Double precision)

Use iterative refinement to improve the solution of a complex Hermitian system
of linear equations.

Usage
CALL LFIHF (N, A, LDA, FAC, LDFAC, IPVT, B, X, RES)

Arguments
N — Number of equations. (Input)

A — ComplexN by N matrix containing the coefficient matrix of the Hermitian
linear system. (Input)
Only the upper triangle & is referenced.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

FAC — ComplexN by N matrix containing the factorization of the coefficient
matrix A as output from routineFCHF/DLFCHF or LFTHF/DLFTHF. (Input)
Only the upper triangle ¢fAC is used.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for the
factorization ofA as output from routineFCHF/DLFCHF or LFTHF/DLFTHF.
(Input)

B — Complex vector of length containing the right-hand side of the linear
system. (Input)
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C
| NTEGER
PARAMETER
| NTEGER
REAL
COWPLEX

C

C

C

C

C

C

C

C

C

X — Complex vector of lengt containing the solution. (Output)

RES — Complex vector of length containing the residual vector at the

improved solution. (Output)
Comments
Informational error
Type Code
3 3 The input matrix is too ill-conditioned for iterative refinement
to be effective.
Algorithm

RoutineLFI HF computes the solution of a system of linear algebraic equations
having a complex Hermitian indefinite coefficient matrix.

Iterative refinement is performed on the solution vector to improve the accuracy.
Usually almost all of the digits in the solution are accurate, even if the matrix is
somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undeltchaJH
factorization. This may be done by calling eithECHF, page 108, oL FTHF,
page 110.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFI HF andLFSHF, page 112, both solve a linear system gived iU
factorization.LFI HF generally takes more time and produces a more accurate
answer thanFSHF. Each iteration of the iterative refinement algorithm used by
LFI HF callsLFSHF.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.2 + 0.2
to the second element.

Decl are vari abl es
LDA, N
(LDA=3, N=3)
I PVT(N), NOUT
RCOND
A(LDA, LDA), B(N), X(N),

FAC(LDA, LDA), RES(N)

Set values for A and B

A= ( 3.040.0i 1.0-1.0i  4.0+0.0i )
( 1.0+1.0i  2.0+0.0i -5.0+1.0i )
( 4.040.0i -5.0-1.0i -2.0+0.0i )
B = ( 7.0+32.0i -39.0-21.0i 51.0+9.0i )
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DATA A/ (3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0),
& (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/

DATA B/ (7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
C Set out put unit nunber
CALL UMACH (2, NOUT)

(2.0,0.0),

C Factor A and conpute the estinmate
C of the reciprocal condition nunber
CALL LFCHF (N, A, LDA, FAC, LDA, |PVT, RCOND)
VRI TE ( NOUT, 99998) RCOND, 1. 0EO/ RCOND
C Sol ve, then perturb right-hand side
DO 10 1=1, 3
CALL LFIHF (N, A LDA, FAC, LDA I|PVT, B, X, RES)
C Print results
WRI TE ( NOUT, 99999) |
CALL WRCRN ('X', 1, N, X, 1, 0)
CALL WRCRN ('RES’, 1, N, RES, 1, 0)
B(2) = B(2) + (0.2E0, 0.2E0)
10 CONTINUE
C

99998 FORMAT (" RCOND =",F5.3,/, L1 Condition number =",F6.3)
99999 FORMAT (//,’ For problem’, 1)
END

Output
RCOND =0.240
L1 Condition number = 4.175
For problem 1
X
1 2 3
( 2.00, 1.00) (-10.00, -1.00) ( 3.00, 5.00)

RES
1 2 3
(2.384E-07,-4.768E-07) ( 0.000E+00,-3.576E-07) (-1.421E-14, 1.421E-14)

For problem 2
X
1 2 3
(2.016, 1.032) (-9.971,-0.971) (2.973, 4.976)

RES
1 2 3
(2.098E-07,-1.764E-07) ( 6.231E-07,-1.518E-07) (1.272E-07, 4.005E-07)

For problem 3
X
1 2 3
(2.032,1.064) (-9.941,-0.941) (2.947, 4.952)

RES
1 2 3
(4.196E-07,-3.529E-07) ( 2.925E-07,-3.632E-07) ( 2.543E-07, 3.242E-07)
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LFDHF/DLFDHF (Single/Double precision)

Compute the determinant of a complex Hermitian matrix given theU pu’
factorization of the matrix.

Usage
CALL LFDHF (N, FAC, LDFAC, |PVT, DET1, DET2)

Arguments
N — Number of equations. (Input)

FAC — ComplexN by N matrix containing the factorization of the coefficient
matrix A as output from routineFCHF/DLFCHF or LFTHF/DLFTHF.  (Input)
Only the upper triangle &fAC is used.

LDFAC — Leading dimension ¢fAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengtiN containing the pivoting information for the
factorization ofA as output from routineFCHF/DLFCHF or LFTHF/DLFTHF.
(Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 1O[DET1| < 10.0 oDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form @t DET1 * 10PET2

Algorithm

RoutineLFDHF computes the determinant of a complex Hermitian indefinite
coefficient matrix. To compute the determinant, the coefficient matrix must first

undergo &J DU factorization. This may be done by calling eithECHF,
page 108, oLFTHF, page 110. Since det= =1, the formula def = detU det

D detU”” = detD is used to compute the determinant.[@deés computed as the
product of the determinants of its blocks.

LFDHF is based on the LINPACK routirgsl DI ; see Dongarra et al. (1979).

Example

The determinant is computed for a complex Hermitiar33matrix.

C Decl are vari abl es
| NTEGER LDA, N
PARAMETER (LDA=3, N=3)
| NTEGER | PVT(N), NOUT
REAL DET1, DET2
COVPLEX A(LDA, LDA), FAC(LDA, LDA)
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C Set values for A
C
C A = ( 3.0+0. Oi 1.0-1.0i  4.0+0.0i )
C ( 1.0+1.0i  2.0+0.0i ~-5.0+1.0i )
C ( 4.0+0.0i -5.0-1.0i -2.0+0.0i )
C
DATA A/ (3.0,0.0), (1.0,1.0), (4.0,0.0), (21.0,-1.0), (2.0,0.0),
& (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
C Factor A
CALL LFTHF (N, A, LDA, FAC, LDA, [|PVT)
C Conput e the det erm nant
CALL LFDHF (N, FAC, LDA, |PVT, DET1, DET2)
C Print the results
CALL UMACH (2, NaUT)
WRI TE (NOUT, 99999) DET1, DET2
C
99999 FORMAT (' The determinant is’, F5.1, ' * 10**, F2.0)

END

Output
The determinant is -1.5 * 10**2.

LSLTR/DLSLTR (Single/Double precision)

Solve areal tridiagonal system of linear equations.

Usage
CALL LSLTR (N, C, D, E, B)

Arguments
N — Order of the tridiagonal matrix. (Input)

C — Vector of lengthN containing the subdiagonal of the tridiagonal matrix in
C(2) throughC(N). (Input/Output)
On outputC is destroyed.

D — Vector of lengthN containing the diagonal of the tridiagonal matrix.
(Input/Output)
On outputD is destroyed.

E — Vector of lengtiN containing the superdiagonal of the tridiagonal matrix in
E(1) throughE(N-1). (Input/Output)
On outputE is destroyed.

B — Vector of lengtiN containing the right-hand side of the linear system on
entry and the solution vector on return. (Input/Output)
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Comments

Informational error

Type Code
4 2 An element along the diagonal became exactly zero during
execution.
Algorithm

Routine LSLTR factors and solves the real tridiagonal linear system Ax=Db.
LSLTRisintended just for tridiagonal systems. The coefficient matrix does not
have to be symmetric. The algorithm is Gaussian elimination with partial pivoting
for numerical stability. See Dongarra (1979), LINPACK subprograms
SGTSL/DGTSL, for details. When computing on vector or parallel computers the
cyclic reduction algorithm, page 119, should be considered as an alternative

method to solve the system.
Example
A system of n =4 linear equations is solved.
C Decl aration of variables
| NTEGER N
PARAMETER  ( N=4)
C
REAL B(N, C(N), DN, E(N

CHARACTER CLABEL(1)*6, FMr*8, RLABEL(1)*4
EXTERNAL  LSLTR WRRRL

C
DATA FMT/'(E13.6)"/
DATA CLABEL/'NUMBER’/
DATA RLABEL/'NONE’/
C C(*), D(*), E(*), and B(*)
C contain the subdiagonal, diagonal,
C superdiagonal and right hand side.
DATA C/0.0, 0.0, -4.0, 9.0/, D/6.0, 4.0, -4.0, -9.0/
DATA E/-3.0, 7.0, -8.0, 0.0/, B/48.0, -81.0, -12.0, -144.0/
C
C
CALLLSLTR (N, C, D, E, B)
C Output the solution.
CALL WRRRL ('Solution:’, 1, N, B, 1, 0, FMT, RLABEL, CLABEL)
END
Output
Solution:
1 2 3 4

0.400000E+01 -0.800000E+01 -0.700000E+01 0.900000E+01
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LSLCR/DLSLCR (Single/Double precision)

Compute the L DU factorization of areal tridiagonal matrix A using acyclic
reduction algorithm.

Usage
CALL LSLCR (N, C, A B, 1JOB, Y, U IR 19
Arguments

N — Order of the matrix. (Input)
N must be greater than zero.

C — Avrray of size Rl containing the upper codiagonal of théy N tridiagonal
matrix in the entrie€(1), ..., C(N—1). (Input/Output)

A — Array of size Rl containing the diagonal of tieby N tridiagonal matrix in
the entrie\(1), ..., A(N). (Input/Output)

B — Array of size Rl containing the lower codiagonal of tRéoy N tridiagonal
matrix in the entrieg(1), ..., B(N— 1). (Input/Output)

IJOB — Flag to direct the desired factoring or solving step. (Input)

1JOB  Action

1 Factor the matriA and solve the systeAx =y, wherey is stored in
arrayy.

2 Do the solve step only. Ugdrom arrayY. (The factoring step has
already been done.)

3 Factor the matriA but do not solve a system.

4,5,6 Same meaning as with the valaiéB = 3. For efficiency, no error
checking is done on the validity of any input value.

Y — Array of size Rl containing the right hand side for the sys#en+ y in the
orderY(1), ..., Y(N). (Input/Output)

The vector x overwrite¥ in storage.

U — Array of size Rl of flags that indicate any singularitiesfof (Output)
AvalueU(l ) = 1. means that a divide by zero would have occurred during the
factoring. Otherwis&(l ) = 0.

IR — Array of integers that determine the sizes of loops performed in the cyclic
reduction algorithm. (Output)

IS — Array of integers that determine the sizes of loops performed in the cyclic
reduction algorithm. (Output)
The sizes of Randl S must be at least lgfN) + 3.
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Algorithm

Routine LSLCR factors and solves the real tridiagonal linear system Ax =y. The
matrix is decomposed in the form A =L DU, where L is unit lower triangular, U
isunit upper triangular, and D is diagonal. The algorithm used for the
factorization is effectively that described in Kershaw (1982). More details, tests
and experiments are reported in Hanson (1990).

LSLCRisintended just for tridiagonal systems. The coefficient matrix does not
have to be symmetric. The agorithm amounts to Gaussian elimination, with no
pivoting for numerical stability, on the matrix whose rows and columns are
permuted to a new order. See Hanson (1990) for details. The expectation is that
LSLCRwill outperform either LSLTR, page 118, or LSLPB, page 143, on vector or
paralel computers. Its performance may be inferior for small values of n, on
scalar computers, or high-performance computers with non-optimizing compilers.

Example

A system of n = 1000 linear equations is solved. The coefficient matrix is the
symmetric matrix of the second difference operation, and the right-hand-side
vector y is the first column of the identity matrix. Note that &, ,,= 1. The solution
vector will be the first column of the inverse matrix of A. Then anew systemis
solved wherey is now the last column of the identity matrix. The solution vector
for this system will be the last column of the inverse matrix.

Decl are vari abl es

| NTEGER LP, N, N2
PARAMETER (LP=12, N=1000, N2=2*N)

INTEGER |, 1JOB, IR(LP), IS(LP), NOUT
REAL A(N2), B(N2), C(N2), UN2), YL(N2), Y2(N2)
EXTERNAL  LSLCR, UMACH

Define matrix entries:
DO 10 1=1, N- 1

(1) = -1.EO0
A1) = 2. E0
B(1) = -1.EO0
Y1(1+1) = 0.EO0
Y2(1) = 0. EO
CONTI NUE
A(N) = 1.E0
Y1(1) = 1.EO
Y2(N) = 1.EO
ot ai n deconposition of matrix and
solve the first system
1JOB =1

CALL LSLCR (N, C, A B, 1JOB, Y1, U IR 19

Sol ve the second systemwi th the
deconposi tion ready:
1JOB = 2
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CALL LSLCR (N, C, A B, 1J0B, Y2, U, IR 19
CALL UMACH (2, NauT)
WRITE (NOUT,*) ' The value of nis: ', N
WRITE (NOUT,*) ' Elements 1, n of inverse matrix columns 1’/
& ‘and n:’, Y1(1), Y2(N)
END

Output
The value of nis: 1000
Elements 1, n of inverse matrix columns 1 and n: 1.00000 1000.000

LSARB/DLSARB (Single/Double precision)

Solve areal system of linear equations in band storage mode with iterative
refinement.

Usage
CALL LSARB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Arguments
N — Number of equations. (Input)

A — (NLCA + NUCA + 1) byN array containing th® by N banded coefficient
matrix in band storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

B — Vector of lengtiN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefix= B is solved.

| PATH = 2 means the systeﬁﬁx =B is solved.

X — Vector of lengthN containing the solution to the linear system. (Output)

Comments
1. Automatic workspace usage is

LSARB (2* NLCA +NUCA + 1)* N+ 2N units, or
DLSARB 2(2* NLCA + NUCA + 1)* N+ 3N units.

Workspace may be explicitly provided, if desired, by use of
L2ARB/DL2ARB. The reference is
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CALL L2ARB (N, A, LDA, NLCA, NUCA B, IPATH, X, FAGC
| PVT, VK)

The additional arguments are as follows:

FAC — Work vector of length (2 NLCA + NUCA + 1) * N containing
the LU factorization ofA on output.

IPVT — Work vector of lengtiN containing the pivoting information
for theLU factorization ofA on output.

WK — Work vector of lengtin.

Informational errors

Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.

Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routir®ARB the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SARB.
Additional memory allocation faFAC and option value
restoration are done automaticallyLiBARB. Users directly
callingL2ARB can allocate additional space fo&C and set
I VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that utSARB or L2ARB. Default values
for the option aré VAL(*) = 1, 16, 0, 1.

17 This option has two values that determine ifltheondition
number is to be computed. Routin®ARB temporarily replaces
| VAL(2) by | VAL(1). The routind.2CRB computes the
condition number if VAL(2) = 2. Otherwisé&2CRB skips this
computationLSARB restores the option. Default values for the
option arel VAL(*) = 1, 2.

Algorithm

RoutineL SARB solves a system of linear algebraic equations having a real banded

coefficient matrix. It first uses the routin€CRB, page 127, to compute &t

factorization of the coefficient matrix and to estimate the condition number of the

matrix. The solution of the linear system is then found using the iterative
refinement routinéFl RB, page 134.

LSARSB fails if U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors

occur only ifAis singular or very close to a singular matrix.
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If the estimated condition number is greater than /e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSARB solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of four linear equationsis solved. The coefficient matrix has real
banded form with 1 upper and 1 lower codiagona. The right-hand-side vector b
has four elements.

Decl are vari abl es

| NTEGER | PATH, LDA, N, NLCA, NUCA
PARAMETER (| PATH=1, LDA=3, N=4, NLCA=1, NUCA=1)
REAL A(LDA,N), B(N), X(N)
EXTERNAL LSARB, WRRRN
Set values for Ain band form and B
A=( 00 -1.0 -2.0 2.0)
( 2.0 1.0 -1.0 1.0)
( -3.0 0.0 2.0 0.0)
B=( 3.0 1.0 11.0 -2.0)
DATA A/ 0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
& 2.0, 1.0, 0.0/
DATA B/ 3.0, 1.0, 11.0, -2.0/

CALL LSARB (N, A, LDA, NLCA NUCA B, |PATH X)

Print results

CALL WRRRN (X', 1, N, X, 1, 0)

END

X

2 3 4

Output

2.000 1.000 -3.000 4.000

LSLRB/DLSLRB (Single/Double precision)

Solve areal system of linear equationsin band storage mode without iterative
refinement.

Usage
CALL LSLRB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Arguments

N — Number of equations. (Input)
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A — (NLCA + NUCA + 1) byN array containing the by N banded coefficient
matrix in band storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefx= B is solved.

| PATH = 2 means the systew{x =B is solved.

X — Vector of lengthN containing the solution to the linear system. (Output)
If B is not needed andX can share the same storage locations.

Comments
1. Automatic workspace usage is

LSLRB (2* NLCA+NUCA + 1)* N+ 2N units, or
DLSLRB 2(2* NLCA + NUCA + 1)* N+ 3N units.

Workspace may be explicitly provided, if desired, by use of
L2LRB/DL2LRB. The reference is

CALL L2LRB (N, A, LDA, NLCA, NUCA B, IPATH, X, FAGC
| PVT, VK)

The additional arguments are as follows:

FAC — Work vector of length (2 NLCA + NUCA + 1) * N containing
theLU factorization ofa on output. IfA is not neededi can share the
first (NLCA + NUCA + 1) * N storage locations witRAC.

IPVT — Work vector of lengtiN containing the pivoting information
for theLU factorization ofa on output.

WK — Work vector of lengthn.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routin®_RB the leading
dimension oFAC s increased byVAL(3) whenNis a multiple
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| NTEGER
PARAMETER
REAL
EXTERNAL

of I VAL(4). Thevalues| VAL(3) and | VAL(4) are temporarily
replaced by | VAL(1) and | VAL(2), respectively, in LSLRB.
Additional memory allocation for FAC and option value
restoration are done automatically in LSLRB. Users directly
calling L2LRB can alocate additional space for FAC and set

I VAL(3) and | VAL(4) so that memory bank conflicts no longer
cause inefficiencies. Thereis no requirement that users change
existing applications that use LSLRB or L2LRB. Default values
for theoption are | VAL(*) =1, 16, O, 1.

17 This option has two values that determine if theL; condition
number isto be computed. Routine LSLRB temporarily replaces
I VAL(2) by 1 VAL(1). The routine L2CRB computes the
condition number if | VAL(2) = 2. Otherwise L2CRB skips this
computation. LSLRB restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSLRB solves a system of linear algebraic equations having areal banded
coefficient matrix. It first uses the routine LFCRB, page 127, to compute an LU
factorization of the coefficient matrix and to estimate the condition number of the
matrix. The solution of the linear system is then found using LFSRB, page 132.
LSLRB failsif U, the upper triangular part of the factorization, has a zero diagonal
element. Thisoccursonly if Aissingular or very close to asingular matrix. If the
estimated condition number is greater than 1/ (where € is machine precision), a
warning error isissued. Thisindicates that very small changesin A can cause very
large changesin the solution x. If the coefficient matrix isill-conditioned or
poorly scaled, it is recommended that LSARB, page 122, be used.

Example

A system of four linear equationsis solved. The coefficient matrix has real
banded form with 1 upper and 1 lower codiagonal. The right-hand-side vector b
has four elements.
Decl are vari abl es
I PATH, LDA, N, NLCA, NUCA
(I PATH=1, LDA=3, N=4, NLCA=1, NUCA=1)

A(LDA,N), B(N), X(N
LSLRB, WRRRN
Set values for Ain band form and B

A=( 0.0 -1.0 -2.0 2.0)
( 20 1.0 -1.0 1.0)
( -3.0 0.0 2.0 0.0)
B=( 3.0 1.0 11.0 -2.0)

DATA A 0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
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& 2.0, 1.0, 0.0/
DATA B/ 3.0, 1.0, 11.0, -2.0/
C
CALL LSLRB (N, A, LDA, NLCA, NUCA, B, |IPATH, X)

C Print results

CALL WRRRN (X', 1, N, X, 1, 0)
C

END

Output
X
1 2 3 4
2.000 1.000 -3.000 4.000

LFCRB/DLFCRB (Single/Double precision)

Compute the LU factorization of areal matrix in band storage mode and estimate
itsL; condition number.

Usage
CALL LFCRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RCOND)

Arguments
N — Order of the matrix. (Input)

A — (NLCA + NUCA + 1) byN array containing ths by N matrix in band storage
mode to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

FAC — (2* NLCA + NUCA + 1) byN array containing theU factorization of the
matrixA. (Output)
If Ais not neededy can share the firsNLCA + NUCA + 1) * N locations withFAC

LDFAC — Leading dimension tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for théJ
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal ot treondition
number ofA. (Output)
Comments

1. Automatic workspace usage is

IMSL MATH/LIBRARY Chapter 1: Linear Systems « 127



LFCRB N units, or
DLFCRB 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CRB/DL2CRB. Thereferenceis

CALL L2CRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT,
RCOND, VAK)

The additional argument is
WK — Work vector of length.

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.
Algorithm

RoutineLFCRB performs an_U factorization of a real banded coefficient matrix.
It also estimates the condition number of the matrix. Oéactorization is done
using scaled partial pivoting. Scaled partial pivoting differs from partial pivoting
in that the pivoting strategy is the same as if each row were scaled to have the
sameeo-norm.

The L, condition number of the matrixis defined to be&(A) = [JAll [IA™ ||

Since it is expensive to compl.";e‘1 [l » the condition number is only estimated.
The estimation algorithm is the same as used by LINPACK and is described by
Cline et al. (1979).

If the estimated condition number is greater thar(Wheree is machine
precision), a warning error is issued. This indicates that very small changes in
can cause very large changes in the solitidierative refinement can sometimes
find the solution to such a system.

LSCRB fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur onlyAfis singular or very close to a singular matrix.
ThelLU factors are returned in a form that is compatible with routire&B,

page 1341 FSRB, page 132, andrFDRB, page 136. To solve systems of equations
with multiple right-hand-side vectors, useCRB followed by eithelFI RB or

LFSRB called once for each right-hand side. The routirBRB can be called to
compute the determinant of the coefficient matrix affe@RB has performed the
factorization.

Let F be the matri¥AC, letm= NLCA and letm, = NUCA. The firstm+ m, + 1
rows of F contain the triangular mattikin band storage form. The lowey m

rows of F contain the multipliers needed to reconstrict

LFCRB is based on the LINPACK routir&sBCGC; see Dongarra et al. (1979).
SGBCOuses unscaled partial pivoting.
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Example

Theinverse of a4 x 4 band matrix with one upper and one lower codiagonal is
computed. LFCRB is called to factor the matrix and to check for singularity or ill-
conditioning. LFI RB (page 134) is called to determine the columns of the inverse.

C Decl are vari abl es
| NTEGER | PATH, LDA, LDFAC, N, NLCA, NUCA, NOUT
PARAMETER (| PATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
| NTEGER I PVT(N)
REAL A(LDA N), AINV(N,N), FAC(LDFAC,N), RCOND, RI(N), RES(N)

EXTERNAL LFCRB, LFIRB, SSET, UMACH, WRRRN

C Set values for Ain band form
C A=( 00 -1.0 -2.0 2.0
C ( 20 1.0 -1.0 1.0)
C (-3.0 0.0 2.0 0.0
C
DATA A/O.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
& 2.0, 1.0, 0.0/
C
CALL LFCRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, |PVT, RCOND)
C Print the reciprocal condition nunmber
C and the L1 condition nunber
CALL UMACH (2, NauT)
VRI TE ( NOUT, 99999) RCOND, 1. 0EO0/ RCOND
C Set up the colums of the identity
C matrix one at a time in RJ
CALL SSET (N, 0.0EO0, RJ, 1)
DO 10 J=1, N
RJ(J) = 1.0EO
C RJ is the J-th colum of the identity
C matri x so the followi ng LFIRB
C reference places the J-th colum of
C the inverse of Ain the J-th colum
C of ANV
CALL LFIRB (N, A LDA, NLCA, NUCA, FAC, LDFAC, |PVT, RJ, |PATH,
& AINV(1,J), RES)
RJ(J) = 0.0EO
10 CONTI NUE
C Print results
CALL WRRRN (AINV’, N, N, AINV, N, 0)
C
99999 FORMAT (" RCOND =",F5.3,/,’ L1 Condition number =",F6.3)
END
Output
RCOND = 0.065

L1 Condition number = 15.351

AINV
1 2 3 4
1 -1.000 -1.000 0.400 -0.800
2 -3.000 -2.000 0.800 -1.600
3 0.000 0.000 -0.200 0.400
4 0.000 0.000 0.400 0.200
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LFTRB/DLFTRB (Single/Double precision)

Compute the LU factorization of areal matrix in band storage mode.

Usage
CALL LFTRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, I|PVT)

Arguments
N — Order of the matrix. (Input)

A — (NLCA + NUCA + 1) byN array containing th® by N matrix in band storage
mode to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

FAC — (2* NLCA + NUCA + 1) byN array containing theU factorization of the
matrixA. (Output)
If Ais not needed) can share the firsNLCA + NUCA + 1)* N locations withFAC

LDFAC — Leading dimension ¢fAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengttN containing the pivoting information for tié)
factorization. (Output)

Comments

1. Automatic workspace usage is

LFTRB Nunits, or
DLFTRB 2N units.

Workspace may be explicitly provided, if desired, by use of
L2TRB/DL2TRB. The reference is

CALL L2TRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, |PVT,
VIK)

The additional argument is

WK — Work vector of lengti\N used for scaling.

2 Informational error
Type Code
4 2 The input matrix is singular.
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C
| NTEGER
PARAMETER
| NTEGER
REAL
EXTERNAL

C

C

C

C

C

C

C

C

C

3. Integer Options with Chapter 10 Options Manager

21 The performance of the LU factorization may improve on high-
performance computers if the blocking factor, NB, is increased.
The current version of the routine allows NB to be reset to a
value no larger than 32. Default valueisNB = 1.

Algorithm

The routine LFTRB performs an LU factorization of area banded coefficient
matrix using Gaussian elimination with partial pivoting. A failure occursif U, the
upper triangular factor, has a zero diagonal element. This can happen if Aisclose
to asingular matrix. The LU factors are returned in aform that is compatible with
routines LFI RB, page 134, LFSRB, page 132, and LFDRB, page 136. To solve
systems of equations with multiple right-hand-side vectors, useLFTRB followed
by either LFI RB or LFSRB called once for each right-hand side. The routine
LFDRB can be called to compute the determinant of the coefficient matrix after
LFTRB has performed the factorization

Let m; = NLCA, and let m,, = NUCA. Thefirst m, + m, + 1 rows of FAC contain the
triangular matrix U in band storage form. The next m; rows of FAC contain the

multipliers needed to produce L™ .

The routine LFTRB is based on the the blocked LU factorization algorithm for
banded linear systems given in Du Croz, et a. (1990). Level-3 BLAS invocations
were replaced by in-line loops. The blocking factor nb has the default value 1 in
LFTRB. It can be reset to any positive value not exceeding 32.

Example

A linear system with multiple right-hand sidesis solved. LFTRB is called to factor
the coefficient matrix. LFSRB (page 132) is called to compute the two solutions
for the two right-hand sides. In this case the coefficient matrix is assumed to be
appropriately scaled. Otherwise, it may be better to call routine LFCRB (page 127)
to perform the factorization, and LFI RB (page 134) to compute the solutions.
Decl are vari abl es
| PATH, LDA, LDFAC, N, NLCA, NUCA
(1 PATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
| PVT(N)
A(LDA/N), B(N 2), FAC(LDFAC,N), X(N, 2)
LFTRB, LFSRB, WRRRN
Set values for Ain band form and B

A=( 0.0 -1.0 -2.0 2.0)
( 220 1.0 -1.0 1.0)
( -3.0 0.0 2.0 0.0)

B =( 12.0 -17.0)
(-19.0 23.0)
( 6.0 5.0)

IMSL MATH/LIBRARY

Chapter 1: Linear Systems « 131



C ( 8.0 5.0
C

DATA AO.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,

& 2.0, 1.0, 0.0/

DATA B/ 12.0, -19.0, 6.0, 8.0, -17.0, 23.0, 5.0, 5.0/
C Conpute factorization

CALL LFTRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, |PVT)
C Solve for the two right-hand sides

DO 10 J=1, 2
CALL LFSRB (N, FAC, LDFAC, NLCA, NUCA, |PVT, B(1,J), |PATH,
& X(1,3))
10 CONTI NUE
Print results
CALL WRRRN (X', N, 2, X, N, 0)

END

Output

1 2

LFSRB/DLFSRB (Single/Double precision)

Solve areal system of linear equations given the LU factorization of the
coefficient matrix in band storage mode.

Usage
CALL LFSRB (N, FAC, LDFAC, NLCA, NUCA, IPVT, B, IPATH, X)

Arguments
N — Number of equations. (Input)

FAC — (2[ONLCA + NUCA + 1) byN array containing theU factorization of the
coefficient matrixA as output from routineFCRB/DLFCRB or LFTRB/DLFTRB.
(Input)

LDFAC — Leading dimension tfAC exactly as specified in the dimension
statement of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)

NUCA — Number of upper codiagonals af (Input)

IPVT — Vector of lengthN containing the pivoting information for théJ
factorization ofA as output from routineFCRB/DLFCRB or LFTRB/DLFTRB.
(Input)
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B — Vector of lengthN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefx = B is solved.

| PATH = 2 means the systew{x =B is solved.

X — Vector of lengthN containing the solution to the linear system. (Output)
If B is not needed andX can share the same storage locations.

Algorithm

RoutineLFSRB computes the solution of a system of linear algebraic equations
having a real banded coefficient matrix. To compute the solution, the coefficient
matrix must first undergo drlJ factorization. This may be done by calling either
LFCRB, page 127, ot FTRB, page 130. The solution f&x = b is found by solving

the banded triangular systeins=b andUx =y. The forward elimination step
consists of solving the systdm = b by applying the same permutations and
elimination operations tb that were applied to the columns/in the

factorization routine. The backward substitution step consists of solving the
banded triangular systeldx =y for x.

LFSRB andLFI RB, page 134, both solve a linear system givehlits
factorizationLFI RB generally takes more time and produces a more accurate
answer tham FSRB. Each iteration of the iterative refinement algorithm used by
LFI RB callsLFSRB.

LFSRB is based on the LINPACK routir&SBSL; see Dongarra et al. (1979).

Example

The inverse is computed for a real banded#matrix with one upper and one
lower codiagonal. The input matrix is assumed to be well-conditioned, hence
LFTRB (page 130) is used rather tHafFCRB.

Decl are vari abl es
| PATH, LDA, LDFAC, N, NLCA, NUCA
(I PATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
| PVT(N)
A(LDA N), AINV(N,N), FAC(LDFAC,N), RI(N
LFSRB, LFTRB, SSET, WRRRN

Set values for Ain band form

A=( 0.0 -1.0 -2.0 2.0)
( 220 1.0 -1.0 1.0)
( -3.0 0.0 2.0 0.0)

DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,

2.0, 1.

0.0/

CALL LFTRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, I|PVT)

Set up the colums of the identity
matrix one at a time in RJ

CALL SSET (N, 0.0EO, RJ, 1)
DO 10 J=1, N
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RJ(J) = 1.0E0

C RJ is the J-th colum of the identity
C matri x so the follow ng LFSRB
C ref erence places the J-th colum of
C the inverse of Ain the J-th colum
C of Al NV
CALL LFSRB (N, FAC, LDFAC, NLCA, NUCA, |PVT, RJ, |PATH,
& AINV(1,J))
RJ(J) = 0.0EO

10 CONTI NUE
C Print results

CALL WRRRN (AINV’, N, N, AINV, N, 0)
C

END

Output
AINV

1 2 3 4
1 -1.000 -1.000 0.400 -0.800
2 -3.000 -2.000 0.800 -1.600
3 0.000 0.000 -0.200 0.400
4 0.000 0.000 0.400 0.200

LFIRB/DLFIRB (Single/Double precision)

Use iterative refinement to improve the solution of areal system of linear
equationsin band storage mode.

Usage

CALL LFIRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, B,
IPATH, X,RES)

Arguments

N — Number of equations. (Input)

A — (NUCA +NLCA +1) byN array containing th® by N banded coefficient
matrix in band storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

FAC — (2* NLCA +NUCA +1) byN array containing theU factorization of the
matrix A as output from routinedS=CRB/DLFCRB or LFTRB/DLFTRB. (Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

134 « Chapter 1: Linear Systems IMSL MATH/LIBRARY



IPVT — Vector of lengthN containing the pivoting information for théJ
factorization ofA as output from routineFCRB/DLFCRB or LFTRB/DLFTRB.
(Input)

B — Vector of lengtiN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)

| PATH = 1 means the systefix = B is solved.

| PATH = 2 means the systeﬁﬁx =B s solved.
X — Vector of lengthN containing the solution to the linear system. (Output)

RES — Vector of lengthN containing the residual vector at the improved
solution. (Output)

Comments

Informational error
Type Code
3 2 The input matrix is too ill-conditioned for iterative refinement
to be effective.

Algorithm

RoutineLFI RB computes the solution of a system of linear algebraic equations
having a real banded coefficient matrix. Iterative refinement is performed on the
solution vector to improve the accuracy. Usually almost all of the digits in the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first underddJan
factorization. This may be done by calling eithECRB, page 127, oLFTRB,
page 130.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFI RB andLFSRB, page 132, both solve a linear system givehlis
factorization.LFI RB generally takes more time and produces a more accurate
answer thanFSRB. Each iteration of the iterative refinement algorithm used by
LFI RB callsLFSRB.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.5 to the
second element.

C Decl are vari abl es
| NTEGER | PATH, LDA, LDFAC, N, NLCA, NUCA, NOUT
PARAMETER (| PATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
| NTEGER I PVT(N)
REAL A(LDA, N), B(N), FAC(LDFAC, N), RCOND, RES(N), X(N)

EXTERNAL LFCRB, LFIRB, UMACH WRRRN
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C Set values for Ain band form and B
C

C A=( 00 -1.0 -2.0 2.0)

C ( 2.0 1.0 -1.0 1.0)

C ( -3.0 0.0 2.0 0.0)

C

C B=( 3.0 5.0 7.0 -9.0)

C

DATA A 0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
& 2.0, 1.0, 0.0/
DATA B/ 3.0, 5.0, 7.0, -9.0/

@]

CALL LFCRB (N, A LDA, NLCA, NUCA, FAC, LDFAC, |PVT, RCOND)
C Print the reciprocal condition nunmber
CALL UMACH (2, NauT)
VRI TE ( NOUT, 99999) RCOND, 1. 0EO0/ RCOND
C Solve the three systens
DO 10 J=1, 3
CALL LFIRB (N, A LDA, NLCA, NUCA, FAC, LDFAC, |PVT, B,

& | PATH, X, RES)
C Print results
CALL WRRRN ('X', 1, N, X, 1, 0)
C Perturb B by adding 0.5 to B(2)
B(2) = B(2) + 0.5E0
10 CONTINUE
C
99999 FORMAT (" RCOND =",F5.3,/,' L1 Condition number =",F6.3)
END
Output

RCOND = 0.065
L1 Condition number = 15.351
X
1 2 3 4
2.000 1.000 -5.000 1.000

X
1 2 3 4
1.500 0.000 -5.000 1.000

X
1 2 3 4
1.000 -1.000 -5.000 1.000

LFDRB/DLFDRB (Single/Double precision)

Compute the determinant of a real matrix in band storage mode given the LU
factorization of the matrix.

Usage
CALL LFDRB (N, FAC, LDFAC, NLCA, NUCA, IPVT, DET1, DET2)
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C
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PARAMETER
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REAL
EXTERNAL

C

C

Arguments
N — Order of the matrix. (Input)

FAC — (2* NLCA + NUCA + 1) byN array containing theU factorization of the
matrix A as output from routineFTRB/DLFTRB or LFCRB/DLFCRB. (Input)

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

NLCA — Number of lower codiagonals in matax (Input)
NUCA — Number of upper codiagonals in mataix (Input)

IPVT — Vector of lengtiN containing the pivoting information for tié)
factorization as output from routiné€TRB/DLFTRB or LFCRB/DLFCRB. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 10|DET1| < 10.0 orDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form @t DET1 * 10PET2

Algorithm

RoutineLFDRB computes the determinant of a real banded coefficient matrix. To
compute the determinant, the coefficient matrix must first undergtan
factorization. This may be done by calling eithECRB, page 127, oLFTRB,

page 130. The formula dat= detL detU is used to compute the determinant.
Since the determinant of a triangular matrix is the product of the diagonal
elements,

N
detU = |_|i:1Uii

(The matrixU is stored in the upp@&UCA + NLCA + 1 rows ofFAC as a banded
matrix.) Sincel is the product of triangular matrices with unit diagonals and of

permutation matrices, det= (—1)", wherek is the number of pivoting
interchanges.

LFDRB is based on the LINPACK routir@BDI ; see Dongarra et al. (1979).

Example

The determinant is computed for a real banded4matrix with one upper and
one lower codiagonal.

Decl are vari abl es
| PATH, LDA, LDFAC, N, NLCA, NUCA, NOUT
(I PATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
| PVT(N)
A(LDA, N), DET1, DET2, FAC(LDFAC, N)
LFTRB, LFDRB, UVACH
Set values for Ain band form
A=( 00 -1.0 -2.0 2.0)
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( 220 1.0
( -3.0 0.0

[eXeX@)

DATA A 0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,
1.0

& 2.0, , 0.0/
C
CALL LFTRB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, |PVT)
C Conput e the determ nant
CALL LFDRB (N, FAC, LDFAC, NLCA, NUCA, |PVT, DET1, DET2)
C Print the results

CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99999) DET1, DET2
99999 FORMAT (' The determinant of Ais’, F6.3, ' * 10**, F2.0)
END

Output
The determinant of A is 5.000 * 10**0.

LSAQS/DLSAQS (Single/Double precision)

Solve areal symmetric positive definite system of linear equationsin band
symmetric storage mode with iterative refinement.

Usage
CALL LSAQS (N, A, LDA, NCODA, B, X)

Arguments
N — Number of equations. (Input)

A — NCODA + 1 byN array containing ths by N positive definite band
coefficient matrix in band symmetric storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals&f (Input)

B — Vector of lengtiN containing the right-hand side of the linear system.
(Input)
X — Vector of lengthN containing the solution to the linear system. (Output)

Comments
1. Automatic workspace usage is

LSAQS N(NCODA + 1) +Nunits, or
DLSAQS 2N(NCODA + 1) + N units.

Workspace may be explicitly provided, if desired, by use of
L2AQS/DL2AQS. The reference is

CALL L2AGS (N, A LDA, NCODA, B, X, FAC, WK
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The additional arguments are as follows:

FAC — Work vector of lengtiNCODA + 1 byN containing theR” R
factorization ofA in band symmetric storage form on output.

WK — Work vector of lengtin.

2. Informational errors
Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is not positive definite.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routirAQS the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SAGS.
Additional memory allocation faFAC and option value
restoration are done automaticallyLiBAQS.

Users directly calling 2AQS can allocate additional space for
FAC and set VAL(3) andl VAL(4) so that memory bank
conflicts no longer cause inefficiencies. There is no
requirement that users change existing applications that use
LSAQS or L2AGS. Default values for the option ar&AL(*) =
1,16,0, 1.

17 This option has two values that determine ifltheondition
number is to be computed. Routin®AQS temporarily replaces
I VAL(2) byl VAL(1). The routind.2CQS computes the
condition number if VAL(2) = 2. Otherwis&.2CQS skips this
computationLSAQS restores the option. Default values for the
option arel VAL(*) = 1,2.

Algorithm

RoutineL SAQS solves a system of linear algebraic equations having a real
symmetric positive definite band coefficient matrix. It first uses the routine

LFCQS, page 145, to compute &{RrR Cholesky factorization of the coefficient
matrix and to estimate the condition number of the md®rig.an upper

triangular band matrix. The solution of the linear system is then found using the
iterative refinement routineFl QS, page 151.

LSAQS fails if any submatrix oR is not positive definite, iR has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only ifA is very close to a singular matrix or to a matrix which is not
positive definite.
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If the estimated condition number is greater than /e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changesin the solution x. Iterative refinement can sometimes
find the solution to such a system. LSAQS solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of four linear equationsis solved. The coefficient matrix has rea
positive definite band form, and the right-hand-side vector b has four elements.
C Decl are vari abl es

| NTEGER LDA, N, NCODA
PARAMETER (LDA=3, N=4, NCODA=2)

REAL A(LDA, N, B(N), X(N
C
(o Set values for Ain band symmetric form and B
C
C A=( 0.0 0.0 -1.0 1.0)
C ( 0.0 0.0 2.0 -1.0)
C ( 220 4.0 7.0 3.0)
C
C B=( 6.0-11.0 -11.0 19.0)
C
DATA A/ 2*¥0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/
DATA B/6.0, -11.0, -11.0, 19.0/
C Solve A*X = B

CALL LSAQS (N, A LDA, NCODA, B, X
C Print results
CALL WRRRN (X', 1, N, X, 1, 0)

END

Output
X
1 2 3 4
4.000 -6.000 2.000 9.000

LSLQS/DLSLQS (Single/Double precision)

Solve areal symmetric positive definite system of linear equations in band
symmetric storage mode without iterative refinement.

Usage
CALL LSLQS (N, A, LDA, NCODA, B, X)

Arguments

N — Number of equations. (Input)
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A — NCODA + 1 byN array containing thi& by N positive definite band
symmetric coefficient matrix in band symmetric storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals&f (Input)

B — Vector of lengthN containing the right-hand side of the linear system.

(Input)

X — Vector of lengthN containing the solution to the linear system. (Output)

Comments

1.

Automatic workspace usage is

LSLQS N(NCODA + 1) +N units, or
DLSLQS 2N(NCODA + 1) + N units.

Workspace may be explicitly provided, if desired, by use of
L2LQS/DL2LQS. The reference is

CALL L2LQS (N, A, LDA, NCODA, B, X, FAC, WK)

The additional arguments are as follows:

FAC — Work vector of lengtiNCODA + 1 byN containing thk’R
factorization ofa in band symmetric form on output.Afis not needed,
A andFAC can share the same storage locations.

WK — Work vector of lengtin.

Informational errors

Type Code
3 1 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is not positive definite.

Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routir® QS the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SLGS.
Additional memory allocation faFAC and option value
restoration are done automaticallyLisLQS. Users directly
callingL2LQs can allocate additional space fo&C and set
I VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that usSLQS or L2LQS. Default values
for the option aré VAL(*) = 1,16,0,1.
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17 This option has two values that determine if the L; condition
number isto be computed. Routine LSLQS temporarily replaces
I VAL(2) by 1 VAL(1). The routine L2CQS computes the
condition number if | VAL(2) = 2. Otherwise L2CQS skips this
computation. LSLQS restores the option. Default values for the
optionare | VAL(*) = 1,2.

Algorithm

Routine LSLQS solves a system of linear algebraic equations having areal
symmetric positive definite band coefficient matrix. It first uses the routine

LFCQS, page 145, to compute an R’R Chol esky factorization of the coefficient
matrix and to estimate the condition number of the matrix. R is an upper
triangular band matrix. The solution of the linear system is then found using the
routine LFSQS, page 149.

LSLQS failsif any submatrix of Ris not positive definite or if R has a zero
diagonal element. These errors occur only if Aisvery closeto asingular matrix
or to amatrix which is not positive definite.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. If the coefficient matrix isill-
conditioned or poorly scaled, it is recommended that LSAQS, page 138, be used.

Example

A system of four linear equationsis solved. The coefficient matrix has real
positive definite band form and the right-hand-side vector b has four elements.

C Decl are vari abl es
| NTEGER LDA, N, NCODA
PARAMETER (LDA=3, N=4, NCCDA=2)
REAL A(LDA, N), B(N), X(N)
(o
C Set values for Ain band symetric form and B
C
(o A=( 0.0 0.0 -1.0 1.0)
C ( 0.0 0.0 2.0 -1.0)
C ( 2.0 4.0 7.0 3.0)
C
C B=( 6.0-11.0 -11.0 19.0)
C
DATA A/ 2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/
DATA B/ 6.0, -11.0, -11.0, 19.0/
C Solve A*X = B
CALL LSLQS (N, A LDA, NCODA, B, X
C Print results

CALL WRRRN (X', 1, N, X, 1, 0)
END
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Output
X
1 2 3 4
4.000 -6.000 2.000 9.000

LSLPB/DLSLPB (Single/Double precision)

Compute the R'DR Cholesky factorization of areal symmetric positive definite
matrix A in codiagonal band symmetric storage mode. Solve a system Ax = b.

Usage
CALL LSLPB (N, A, LDA, NCODA, 1JOB, U

Arguments

N — Order of the matrix. (Input)
Must satisfyN > 0.

A — Array containing thél by N positive definite band coefficient matrix and
right hand side in codiagonal band symmetric storage mode. (Input/Output)
The number of array columns must be at I8@8SDA + 2. The number of columns
is not an input to this subprogram.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
Must satisfyL DA = N + NCODA.

NCODA — Number of upper codiagonals of matkix (Input)
Must satisfyNCODA > 0 andNCCDA < N.

1JOB — Flag to direct the desired factorization or solving step. (Input)
1JOB  Meaning

1 factor the matrixa and solve the systeax = b, whereb is stored in
columnNCCDA + 2 of arrayA. The vectoix overwritesb in storage.

2 solve step only. Udeas colummCCDA + 2 of A. (The factorization step
has already been done.) The vectowerwritesh in storage.

3 factor the matriA but do not solve a system.

4,56 same meaning as with the vdlueB = 3. For efficiency, no error
checking is done on value®A, N, NCODA, andu(*).

U — Array of flags that indicate any singularitiestohamely loss of positive-
definiteness of a leading minor. (Output)

A valueU(l ) = 0. means that the leading minor of dimensias not positive-
definite. Otherwisel(l ) = 1.
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00000

| NTEGER
PARAMETER

| NTEGER
REAL
EXTERNAL

Comments
1 Automatic workspace usageis

LSLPB NCODA units, or
DLSLPB 2 * NCODA units.

Workspace may be explicitly provided, if desired, by use of
L2LPB/DL2LPB Thereferenceis

CALL L2LPB (N, A, LDA, NCODA, 1JOB, U, WK)
The additional argument is
WK — Work vector of lengttNCODA.

2. Informational error
Type Code
4 2 The input matrix is not positive definite.
Algorithm

RoutineLSLPB factors and solves the symmetric positive definite banded linear

systemAx = b. The matrix is factored so that= R’DR, whereR is unit upper
triangular and is diagonal. The reciprocals of the diagonal entrie3 afe
computed and saved to make the solving step more efficient. Errors will occur if
D has a non-positive diagonal element. Such events occur @niy Vfery close

to a singular matrix or is not positive definite.

LSLPB is efficient for problems with a small band width. The particular cases
NCCODA = 0, 1, 2 are done with special loops within the code. These cases will give
good performance. See Hanson (1989) for details. When solving tridiagonal
systemsNCODA = 1, the cyclic reduction codeSLCR, page 119, should be
considered as an alternative. The expectation i1 81atR will outperform

LSLPB on vector or parallel computers. It may be inferior on scalar computers or
even parallel computers with non-optimizing compilers.

Example

A system of four linear equations is solved. The coefficient matrix has real
positive definite codiagonal band form and the right-hand-side viettas four
elements.

Decl are vari abl es
LDA, N, NCODA

(N=4, NCODA=2, LDA=N+NCODA)
1JoB

A(LDA, NCODA+2), U(N)
LSLPB, WRRRN

Set values for A and right side in
codi agonal band symmetric form

A = ( * * * * )
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C ( * * * *
C (2.0 * * 6. 0)
C (4.0 0.0 * -11.0)
C (7.0 2.0 -1.0 -11.0)
C (3.0 -1.0 1.0  19.0)
C

DATA ((A(1+NCODA, J), 1=1, N), J=1, NCODA+2) /2.0, 4.0, 7.0, 3.0, 0.0,
& -

0.0, 2.0, -1.0, 0.0, 0.0, -1.0, 1.0, 6.0, -11.0, -11.0,
& 19. 0/
C Fact or and solve A*x = b.
1JOB =1
CALL LSLPB (N, A LDA, NCODA, 1J0B, U
C Print results
CALL WRRRN ('X’, 1, N, ANCODA+1,NCODA+2), 1, 0)
END
Output
X

1 2 3 4
4.000 -6.000 2.000 9.000

LFCQS/DLFCQS (Single/Double precision)

Compute the R’ R Chol esky factorization of areal symmetric positive definite
matrix in band symmetric storage mode and estimateits L; condition number.

Usage
CALL LFCQS (N, A, LDA, NCODA, FAC, LDFAC, RCOND)

Arguments
N — Order of the matrix. (Input)

A — NCODA + 1 byN array containing thi by N positive definite band
coefficient matrix in band symmetric storage mode to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals&f (Input)

FAC — NCODA + 1 byN array containing thRR factorization of the matri in
band symmetric form. (Output)
If Ais not neededy andFAC can share the same storage locations.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

RCOND — Scalar containing an estimate of the reciprocal of.thendition
number ofA. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems « 145



Comments
1 Automatic workspace usageis

LFCQS Nunits, or
DLFCQS 2N units.

Workspace may be explicitly provided, if desired, by use of
L2CQS/DL2CQS. Thereferenceis

CALL L2CQS (N, A, LDA, NCODA, FAC, LDFAC, RCOND, VK)
The additional argument is
WK — Work vector of lengtin.

2. Informational errors
Type Code
3 3 The input matrix is algorithmically singular.
4 2 The input matrix is not positive definite.
Algorithm

RoutineLFCQS computes aR’R Cholesky factorization and estimates the
condition number of a real symmetric positive definite band coefficient m@&trix.
is an upper triangular band matrix.

Thel, condition number of the matrixis defined to b&(A) = ||A|}; ||A’1 [I; -

Since it is expensive to compyg&™ ||, the condition number is only estimated.
The estimation algorithm is the same as used by LINPACK and is described by
Cline et al. (1979).

If the estimated condition number is greater thar(heree is machine
precision), a warning error is issued. This indicates that very small charfges in
can cause very large changes in the solutidierative refinement can sometimes
find the solution to such a system.

LFCGQS fails if any submatrix oR is not positive definite or iR has a zero
diagonal element. These errors occur oni i§ very close to a singular matrix
or to a matrix which is not positive definite.

TheR’Rfactors are returned in a form that is compatible with routiFegs,

page 151LFSQS, page 149, andrFDQS, page 153. To solve systems of equations
with multiple right-hand-side vectors, usecqs followed by eithelFI QS or

LFSQS called once for each right-hand side. The routiReQs can be called to
compute the determinant of the coefficient matrix affe3Qs has performed the
factorization.

LFCQS is based on the LINPACK routiréBCO; see Dongarra et al. (1979).
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Example

The inverse of a4 x 4 symmetric positive definite band matrix with one
codiagonal is computed. LFCQS is called to factor the matrix and to check for
nonpositive definiteness or ill-conditioning. LFI QS (page 151) is called to
determine the columns of the inverse.

C Decl are vari abl es
| NTEGER LDA, LDFAC, N, NCODA, NOUT
PARAMETER (LDA=2, LDFAC=2, N=4, NCODA=1)

REAL A(LDA, N), AINV(N,N), RCOND, FAC(LDFAC, N),
& RES(N), RI(N)
C
C Set values for Ain band symetric form
C
C A=( 0.0 1.0 1.0 1.0)
C ( 220 2.5 2.5 2.0)
C
DATA A/0O.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
C Factor the matrix A
CALL LFCQS (N, A LDA, NCODA, FAC, LDFAC, RCOND)
C Set up the colums of the identity
C matrix one at a time in RJ
CALL SSET (N, 0.0EO0, RJ, 1)
DO 10 J=1, N
RJ(J) = 1.0EO
C RJ is the J-th colum of the identity
C matrix so the following LFI QS
C reference places the J-th columm of
C the inverse of Ain the J-th colum
C of AINV
CALL LFIQS (N, A, LDA NCODA, FAC, LDFAC, RJ, AINV(1,J), RES)
RJ(J) = 0.0EO
10 CONTI NUE
C Print the results

CALL UMACH (2, NauT)
VRI TE ( NOUT, 99999) RCOND, 1. 0EO/ RCOND
CALL WRRRN (AINV’, N, N, AINV, N, 0)
99999 FORMAT (" RCOND =",F5.3,/,’ L1 Condition number =",F6.3)
END

Output

RCOND =0.160
L1 Condition number = 6.248

AINV
1 2 3 4
0.6667 -0.3333 0.1667 -0.0833
-0.3333 0.6667 -0.3333 0.1667
0.1667 -0.3333 0.6667 -0.3333
-0.

1
2
3
4 -0.0833 0.1667 -0.3333 0.6667
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LFTQS/DLFTQS (Single/Double precision)

Compute the R'R Cholesky factorization of areal symmetric positive definite
matrix in band symmetric storage mode

Usage
CALL LFTQS (N, A, LDA NCODA, FAC, LDFAC

Arguments
N — Order of the matrix. (Input)

A — NCODA + 1 byN array containing thi by N positive definite band
coefficient matrix in band symmetric storage mode to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals&f (Input)

FAC — NCODA + 1 byN array containing thR” R factorization of the matria.
(Output)
If A's not neededy andFAC can share the same storage locations.

LDFAC — Leading dimension ¢fAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments
Informational error
Type Code
4 2 The input matrix is not positive definite.
Algorithm

RoutineLFTQS computes aR’ R Cholesky factorization of a real symmetric
positive definite band coefficient matriR.is an upper triangular band matrix.

LFTQS fails if any submatrix oR is not positive definite or iR has a zero
diagonal element. These errors occur onl i very close to a singular matrix
or to a matrix which is not positive definite.

TheR Rfactors are returned in a form that is compatible with routifegs,

page 151LFSQS, page 149, andrFDQS, page 153. To solve systems of equations
with multiple right hand-side vectors, userQs followed by eithelFI QS or

LFSQS called once for each right-hand side. The routiReQs can be called to
compute the determinant of the coefficient matrix affarQs has performed the
factorization.

LFTQS is based on the LINPACK routir@BFA; see Dongarra et al. (1979).
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Example

Theinverse of a3 x 3 matrix is computed. LFTQS is called to factor the matrix
and to check for nonpositive definiteness. LFSQS (page 149) is called to
determine the columns of theinverse.

C Decl are vari abl es
| NTEGER LDA, LDFAC, N, NCODA
PARAMETER (LDA=2, LDFAC=2, N=4, NCODA=1)

REAL A(LDA, N, AINV(N, N, FAC(LDFAC, N, RI(N
C
C Set values for Ain band symetric form
C
C A=( 0.0 1.0 1.0 1.0)
C ( 20 2.5 2.5 2.0)
C
DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
C Factor the matrix A
CALL LFTQS (N, A, LDA, NCODA, FAC, LDFAC)
C Set up the colums of the identity
C matrix one at a time in RJ
CALL SSET (N, 0.0EO0, RJ, 1)
DO 10 J=1, N
RJ(J) = 1.0EO
C R) is the J-th colum of the identity
C matri x so the foll ow ng LFSQS
C ref erence places the J-th colum of
C the inverse of Ain the J-th colum
C of ANV
CALL LFSQ@ (N, FAC, LDFAC, NCODA, RJ, AINV(1,J))
RJ(J) = 0.0EO
10 CONTI NUE
C Print the results
CALL WRRRN (AINV’, N, N, AINV, N, 1)
END
Output
AINV
1 2 3 4
1 0.6667 -0.3333 0.1667 -0.0833
2 0.6667 -0.3333 0.1667
3 0.6667 -0.3333
4 0.6667

LFSQS/DLFSQS (Single/Double precision)

Solve areal symmetric positive definite system of linear equations given the
factorization of the coefficient matrix in band symmetric storage mode.

Usage
CALL LFSQS (N, FAC, LDFAC, NCODA, B, X)
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Arguments

N — Number of equations. (Input)

FAC — NCODA + 1 byN array containing thR” R factorization of the positive
definite band matrixA in band symmetric storage mode as output from subroutine

LFCQS/DLFCQS or LFTQS/DLFTQS.  (Input)

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

NCODA — Number of upper codiagonals&f (Input)

B — Vector of lengttN containing the right-hand side of the linear system.
(Input)

X — Vector of lengthN containing the solution to the linear system. (Output)
If B is not needed andX an share the same storage locations.

Comments
Informational error
Type Code
4 1 The factored matrix is singular.
Algorithm

This routine computes the solution for a system of linear algebraic equations
having a real symmetric positive definite band coefficient matrix. To compute the

solution, the coefficient matrix must first undergd%TnR factorization. This may
be done by calling eith&iFCQs, page 145, otFTQS, page 148Ris an upper
triangular band matrix.

The solution toAx = b is found by solving the triangular systthTg/ =band
Rx =y.

LFSQS andLFI QS, page 151, both solve a linear system giveR?tR
factorizationLFI QS generally takes more time and produces a more accurate
answer than FSQS. Each iteration of the iterative refinement algorithm used by
LFI QS callsLFSQs.

LFSQS is based on the LINPACK routir&®BSL; see Dongarra et al. (1979).

Example

A set of linear systems is solved successivgiy QS (page 148) is called to

factor the coefficient matri. FSQS is called to compute the four solutions for the
four right-hand sides. In this case the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better toreds

(page 145) to perform the factorization, arid QS (page 151) to compute the
solutions.
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Decl are vari abl es

A(LDA, N), B(N, 4), FAC(LDFAC, N), X(N,4)

Set values for A in band symme

0.0 0.0 -1.
0.0 0.0 2.
2.0 4.0 7.
4.0 -3.0 9
6.0 10.0 29.
15.0 12.0 11.
-7.0 1.0 14
0, 2.0, 7.0, 1.
10.0, 12.0, 1.
2.0/

Factor the matrix A

tric form and B

0 1.0)
0 -1.0)
0 3.0)
.0 -1.0)
0 3.0)
0 6.0)
0 2.0)
0, -1.0, 3.0/
0, 9.0, 29.0

Conput e the sol utions

Print sol utions

C
| NTEGER LDA, LDFAC, N, NCCDA
PARAMETER (LDA=3, LDFAC=3, N=4, NCODA=2)
REAL
Cc
C
C
c
c A= (
c (
c (
C
C B = (
c (
c (
c (
C
DATA A/ 2*0.0, 2.0, 2*0.0, 4.0, -1.
DATA B/ 4.0, 6.0, 15.0, -7.0, -3.0,
& 11.0, 14.0, -1.0, 3.0, 6.0,
c
CALL LFTQS (N, A, LDA, NCODA, FAC, LDFAC
c
DO 10 1=1, 4
CALL LFSQS (N, FAC, LDFAC, NCODA, B(1,1), X(1
10 CONTI NUE
C
CALL WRRRN (X', N, 4, X, N, 0)
c
END
Output
X
1 2 3 4
1 3.000 -1.000 5.000 0.000
2 1.000 2.000 6.000 0.000
3 2.000 1.000 1.000 1.000
4 -2.000 0.000 3.000 1.000

1)

LFIQS/DLFIQS (Single/Double precision)

Use iterative refinement to improve the solution of areal symmetric positive
definite system of linear equations in band symmetric storage mode.

Usage

CALL LFIQS (N, A, LDA, NCODA, FAC, LDFAC, B, X, RES)

Arguments

N — Number of equations. (Input)

A — NCODA + 1 byN array containing ths by N positive definite band
coefficient matrix in band symmetric storage mode. (Input)
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LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper codiagonals&f (Input)

FAC — NCODA + 1 byN array containing thR” R factorization of the matria
as output from routineFCQS/DLFCQS or LFTQS/DLFTQS.  (Input)

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)
X — Vector of lengthN containing the solution to the system. (Output)

RES — Vector of lengthN containing the residual vector at the improved
solution. (Output)

Comments
Informational error
Type Code
3 4 The input matrix is too ill-conditioned for iterative refinement

to be effective.

Algorithm

RoutineLFI QS computes the solution of a system of linear algebraic equations
having a real symmetric positive-definite band coefficient matrix. Iterative
refinement is performed on the solution vector to improve the accuracy. Usually
almost all of the digits in the solution are accurate, even if the matrix is somewhat
ill-conditioned.

To compute the solution, the coefficient matrix must first underg@rfm
factorization. This may be done by calling either IMSL routiReQs, page 145,
or LFTQS, page 148.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFI QS andLFSQS, page 149, both solve a linear system giveR?tR
factorizationLFI QS generally takes more time and produces a more accurate
answer than FSQS. Each iteration of the iterative refinement algorithm used by
LFI QS callsLFSQs.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding 0.5 to the
second element.

C Decl are vari abl es
| NTEGER LDA, LDFAC, N, NCODA, NOUT
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PARAMETER (LDA=2, LDFAC=2, N=4, NCODA-=1)

REAL A(LDA, N), B(N), RCOND, FAC(LDFAC, N), RES(N, 3),
& X(N, 3)
Cc
C Set values for Ain band symmetric form and B
Cc
Cc A=( 00 1.0 1.0 1.0)
Cc ( 220 2.5 2.5 2.0)
C
Cc B=( 30 50 7.0 4.0)
C
DATA AVO0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
DATA B/ 3.0, 5.0, 7.0, 4.0/
C Factor the matrix A

CALL LFCQS (N, A LDA, NCODA, FAC, LDFAC, RCOND)
C Print the estimated condition nunber
CALL UMACH (2, NaUT)
VWRI TE ( NOUT, 99999) RCOND, 1. 0EO/ RCOND
C Conput e the sol utions
DO 10 1=1, 3
CALL LFIQS (N, A LDA NCODA, FAC, LDFAC, B, X(1,1), RES(1,1))
B(2) = B(2) + 0.5E0
10 CONTI NUE
C Print solutions and residuals
CALL WRRRN (X', N, 3, X, N, 0)
CALL WRRRN ('RES', N, 3, RES, N, 0)
99999 FORMAT (" RCOND =",F5.3,/,' L1 Condition number =",F6.3)
END

Output
RCOND =0.160
L1 Condition number = 6.248

X

1 2 3
1.167 1.000 0.833
0.667 1.000 1.333
2.167 2.000 1.833
0.917 1.000 1.083

A WNBE

RES
1 2 3
1 7.947E-08 0.000E+00 9.934E-08
2 7.947E-08 0.000E+00 3.974E-08
3 7.947E-08 0.000E+00 1.589E-07
4 -3.974E-08 0.000E+00 -7.947E-08

LFDQS/DLFDQS (Single/Double precision)

Compute the determinant of areal symmetric positive definite matrix given the
R’R Chol esky factorization of the band symmetric storage mode.

Usage
CALL LFDQS (N, FAC, LDFAC, NCODA, DET1, DET?2)
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O O O 0000000

Arguments

N — Number of equations. (Input)

FAC — NCODA + 1 byN array containing thR” R factorization of the positive
definite band matrix4, in band symmetric storage mode as output from
subroutineLFCQS/DLFCQS or LFTQS/DLFTQS.  (Input)

LDFAC — Leading dimension afAC exactly as specified in the dimension
statement of the calling program. (Input)

NCODA — Number of upper codiagonals&f (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 10|DET1| < 10.0 orDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form @t DET1 * 10PET2,

Algorithm

RoutineLFDQS computes the determinant of a real symmetric positive-definite
band coefficient matrix. To compute the determinant, the coefficient matrix must

first undergo aR’ R factorization. This may be done by calling either IMSL
routineLFCQS, page 145, ot FTQS, page 148. The formula dat= detR” detR

= (detR)2 is used to compute the determinant. Since the determinant of a
triangular matrix is the product of the diagonal elements,

detR=|_|i’11Ri

LFDQS is based on the LINPACK routirgBDI ; see Dongarra et al. (1979).

Example

The determinant is computed for a real positive definkeddmatrix with 2
codiagonals.

Decl are vari abl es
| NTEGER LDA, LDFAC, N, NCODA, NOUT
PARAMETER (LDA=3, N=4, LDFAC=3, NCODA=2)
REAL A(LDA, N), DET1, DET2, FAC(LDFAC, N)

Set values for A in band symetric form

A=( 00 00 1.0 -2.0)
( 0.0 2.0 1.0 3.0)
( 70 6.0 6.0 8.0)

DATA A/ 2*0.0, 7.0, 0.0, 2.0, 6.0, 1.0, 1.0, 6.0, -2.0, 3.0, 8.0/
Factor the matrix

CALL LFTQS (N, A, LDA, NCODA, FAC, LDFAQ)
Conput e t he determ nant

CALL LFDQS (N, FAC, LDFAC, NCODA, DET1, DET2)
Print results
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CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) DET1, DET2

C

99999 FORMAT (' The determinant of A is ’,F6.3," * 10**',F2.0)

END

Output

The determinant of Ais 1.186 * 10**3.

LSLTQ/DLSLTQ (Single/Double precision)

Solve a complex tridiagonal system of linear equations.

Usage
CALL LSLTQ (N, C, D, E, B)

Arguments
N — Order of the tridiagonal matrix. (Input)

C — Complex vector of lengtl containing the subdiagonal of the tridiagonal
matrix inC(2) throughC(N). (Input/Output)
On outputC is destroyed.

D — Complex vector of length containing the diagonal of the tridiagonal
matrix. (Input/Output)
On outputD is destroyed.

E — Complex vector of lengti containing the superdiagonal of the tridiagonal
matrix inE(1) throughe(N- 1). (Input/Output)
On outputE is destroyed.

B — Complex vector of length containing the right-hand side of the linear
system on entry and the solution vector on return. (Input/Output)

Comments

Informational error
Type Code
4 2 An element along the diagonal became exactly zero during
execution.

Algorithm

RoutineLSLTQfactors and solves the complex tridiagonal linear systemb.
LSLTQis intended just for tridiagonal systems. The coefficient matrix does not
have to be symmetric. The algorithm is Gaussian elimination with pivoting for
numerical stability. See Dongarra et al. (1979), LINPACK subprograms
CGTSL/ZGTSL, for details. When computing on vector or parallel computers the
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cyclic reduction algorithm, page 156, should be considered as an alternative
method to solve the system.

Example
A system of n = 4 linear equationsis solved.
C Decl arati on of variabl es
| NTEGER N
PARAMETER  ( N=4)
C
COVPLEX B(N, C(N, DN, E(N
CHARACTER CLABEL(1)*6, FMr*8, RLABEL(1)*4
EXTERNAL LSLTQ WRCRL
C
DATA FMT/'(E13.6)"/
DATA CLABEL/’'NUMBER’/
DATA RLABEL/'NONE’/
C C(*), D(), E(*) and B(¥)
C contain the subdiagonal,
C diagonal, superdiagonal and
C right hand side.

DATA C/(0.0,0.0), (-9.0,3.0), (2.0,7.0), (7.0,-4.0)/

DATA D/(3.0,-5.0), (4.0,-9.0), (-5.0,-7.0), (-2.0,-3.0)/

DATA E/(-9.0,8.0), (1.0,8.0), (8.0,3.0), (0.0,0.0)/

DATA B/(-16.0,-93.0), (128.0,179.0), (-60.0,-12.0), (9.0,-108.0)/

(eXe!

CALL LSLTQ (N, C, D, E, B)

C Output the solution.
CALL WRCRL ('Solution:’, 1, N, B, 1, 0, FMT, RLABEL, CLABEL)
END

Output
Solution:
1 2
(-0.400000E+01,-0.700000E+01) (-0.700000E+01, 0.400000E+01)
3 4

(0.700000E+01,-0.700000E+01) ( 0.900000E+01, 0.200000E+01)

LSLCQ/DLSLCQ (Single/Double precision)

Compute the LDU factorization of acomplex tridiagonal matrix A using acyclic
reduction algorithm.

Usage
CALL LSLCQ (N, C, A, B, IJOB, Y, U, IR, IS)
Arguments

N — Order of the matrix. (Input)
N must be greater than zero.
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C — Complex array of sizeNecontaining the upper codiagonal of théy N
tridiagonal matrix in the entrieg1), ..., C((N— 1). (Input/Output)

A — Complex array of sizeNecontaining the diagonal of tineby N tridiagonal
matrix in the entriea(1), ..., AIN—1). (Input/Output)

B — Complex array of sizeNecontaining the lower codiagonal of tRdsy N
tridiagonal matrix in the entrie&(1), ..., B(N— 1). (Input/Output)

IJOB — Flag to direct the desired factoring or solving step. (Input)

1JOB  Action

1 Factor the matri and solve the systeAx =y, wherey is stored in
arrayy.

2 Do the solve step only. Ugdrom arrayY. (The factoring step has
already been done.)

3 Factor the matri@ but do not solve a system.

4 Same meaning as with the valueB = 3. For efficiency, no error

checking is done on the validity of any input value.

Y — Complex array of sizeNecontaining the right-hand side of the systenF y
in the ordery(1),...,Y(N). (Input/Output)
The vectorx overwritesy in storage.

U — Real array of size 2N of flags that indicate any singulariti@s ofOutput)
A valueU(l ) = 1. means that a divide by zero would have occurred during the
factoring. Otherwisé(l ) = 0.

IR — Array of integers that determine the sizes of loops performed in the cyclic
reduction algorithm. (Output)

IS — Array of integers that determine the sizes of loops performed in the cyclic
reduction algorithm. (Output)
The sizes of these arrays must be at leas{Nbg 3.

Algorithm

RoutineLSLCQfactors and solves the complex tridiagonal linear systemy.

The matrix is decomposed in the foAr LDU, whereL is unit lower triangular,

U is unit upper triangular, arid is diagonal. The algorithm used for the
factorization is effectively that described in Kershaw (1982). More detalils, tests
and experiments are reported in Hanson (1990).

LSLCQis intended just for tridiagonal systems. The coefficient matrix does not
have to be Hermitian. The algorithm amounts to Gaussian elimination, with no
pivoting for numerical stability, on the matrix whose rows and columns are
permuted to a new order. See Hanson (1990) for details. The expectation is that
LSLCQwill outperform eithet. SLTQ, page 155, ot SLQB, page 181, on vector or
parallel computers. Its performance may be inferior for small valugsoof

scalar computers, or high-performance computers with non-optimizing compilers.
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Example

A real skew-symmetric tridiagonal matrix, A, of dimension n = 1000 is given by
c,=-k a=0andb,=k k=1, ...,n—1, a,=0. Thismatrix will have
eigenvalues that are purely imaginary. The eigenval ue closest to the imaginary
unit is required. This number is obtained by using inverse iteration to
approximate a complex eigenvector y. The eigenvalue is approximated by

A= yH Ay/yH y. (Thisexampleis contrived in the sense that the given tridiagonal
skew-symmetric matrix eigenvalue problem is essentially equivaent to the
tridiagonal symmetic eigenvalue problem where thec; = k and the other data are
unchanged.)

C Decl are vari abl es
| NTEGER LP, N, N2
PARAMETER (LP=12, N=1000, N2=2*N)

C
| NTEGER I, 1JOB, IR(LP), IS(LP), K, NOUT
REAL Al MAG, U(N2)
COVPLEX A(N2), B(N2), C(N2), CWPLX, CONUG S, T, Y(N2)
I NTRINSIC Al MAG CWVPLX, CONJG
EXTERNAL LSLCQ UVACH
C Define entries of skew symretric
C matri x, A
DO 10 1=1, N- 1
al) = -1
C Thi s anmounts to subtracting the
C positive imaginary unit fromthe
C di agonal . (The ei genval ue cl osest
C tothis value is desired.)
A(1) = CWPLX(O. EQ, - 1. OEQ)
B(1) = I
C This initializes the approximate
C ei genvect or.
Y(1) = 1.EO0
10 CONTI NUE
A(N) = CWPLX(0. EO, - 1. OEO)
Y(N) = 1. E0
C First step of inverse iteration
C follows. Obtain deconposition of
C matri x and solve the first system
1JOB =1
CALL LSLCQ (N, C, A B, 1JOB, Y, U IR 19
C
C Next steps of inverse iteration
C follow Solve the systemagain with
C t he deconposition ready:
1JOB = 2
DO 20 K=1, 3
CALL LSLCQ (N, C, A B, 1JOB, Y, U IR 19
20 CONTI NUE
C
C Conput e the Ral eigh quotient to
C estimate the eigenval ue closest to
C the positive imaginary unit. After
C the approxi mate ei genvector, y, is
C conput ed, the estinmate of the
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ei genvalue is ctrans(y)*A+y/t,
where t = ctrans(y)*y.

(eXe!

S = -CONIG(Y(1))*Y(2)

T = CONJG(Y(1))*Y(1)

DO30 =2, N- 1
S =S+ CONUGY(1))*((1-1)*Y(I-1)-1*Y(I+1))
T =T+ CONIG Y(1))*Y(1)

30 CONTI NUE

S =S+ CONUG Y(N)) *(N-1) *Y( N 1)

T=T+ CONGY(N)*Y(N)

S=9T

CALL UMACH (2, NauT)
WRITE (NOUT,*) ' The value of nis: ', N
WRITE (NOUT,*) ' Value of approximate imaginary eigenvalue:’,

& AIMAG(S)
STOP
END

Output

The value of nis: 1000
Value of approximate imaginary eigenvalue: 1.03811

LSACB/DLSACB (Single/Double precision)

Solve a complex system of linear equations in band storage mode with iterative
refinement.

Usage
CALL LSACB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Arguments
N — Number of equations. (Input)

A — ComplexNLCA + NUCA + 1 byN array containing this by N banded
coefficient matrix in band storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

B — Complex vector of length containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefix = B is solved.

| PATH = 2 means the systeﬁ#x =B is solved.

X — Complex vector of lengt containing the solution to the linear system.
(Output)
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Comments
1 Automatic workspace usageis

LSACB 2N(2* NLCA+ NUCA + 1) + 3N units, or
DLSACB 4N(2 * NLCA + NUCA + 1) + 5N units.

Workspace may be explicitly provided, if desired, by use of
L2ACB/DL2ACB The referenceis

CALL L2ACB (N, A, LDA, NLCA, NUCA B, IPATH, X, FAGC
| PVT, VK)

The additional arguments are as follows:

FAC — Complex work vector of length 2NLCA + NUCA + 1)* N
containing tha.U factorization ofa on output.

IPVT — Integer work vector of lengtk containing the pivoting
information for the_U factorization ofA on output.

WK — Complex work vector of lengtk

2. Informational errors
Type Code
3 3 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routirACB the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SACB.
Additional memory allocation faFAC and option value
restoration are done automaticallyLiBACB. Users directly
callingL2ACB can allocate additional space fo&C and set

I VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that usSACB or L2ACB. Default values
for the option aré VAL(*) = 1,16,0,1.

17 This option has two values that determine ifltheondition
number is to be computed. Routin®ACB temporarily replaces
| VAL(2) by | VAL(1). The routind.2CCB computes the
condition number if VAL(2) = 2. Otherwisé&.2CCB skips this
computationLSACB restores the option. Default values for the
option arel VAL(*) = 1,2.
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Algorithm

Routine LSACB solves a system of linear algebraic eguations having a complex
banded coefficient matrix. It first uses the routine LFCCB, page 164, to compute
an LU factorization of the coefficient matrix and to estimate the condition number
of the matrix. The solution of the linear system is then found using the iterative
refinement routine LFI CB, page 172.

LSACB failsif U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. These errors
occur only if Aissingular or very close to asingular matrix.

If the estimated condition number is greater than /e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSACB solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of four linear equationsis solved. The coefficient matrix has complex
banded form with one upper and one lower codiagonal. The right-hand-side
vector b has four elements.
C Decl are vari abl es
| NTEGER | PATH, LDA, N, NLCA, NUCA
PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)
COVPLEX A(LDA N), B(N), X(N)

C
C Set values for Ain band form and B
C
C A= ( 0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i )
(o ( -2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i )
C (  6.0+1.0i 1. 0+1. Oi 0. 0+2. 0i 0.0+0.0i )
C
C B = ( -10.0-5.0i 9. 5+5.5i 12.0-12.0i 0.0+8.0i )
C
DATA A/ (0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
& (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
& (1.0,-1.0), (0.0,0.0)/
DATA B/ (-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/
C Solve A*X = B
| PATH = 1
CALL LSACB (N, A LDA, NLCA, NUCA, B, |IPATH, X)
C Print results
CALL WRCRN (X', 1, N, X, 1, 0)
C

END

Output
X

1 2 3 4
(3.000, 0.000) (-1.000, 1.000) ( 3.000, 0.000) (-1.000, 1.000)
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LSLCB/DLSLCB (Single/Double precision)

Solve a complex system of linear equations in band storage mode without
iterative refinement.

Usage
CALL LSLCB (N, A, LDA, NLCA, NUCA, B, |PATH, X)

Arguments
N — Number of equations. (Input)

A — ComplexNLCA + NUCA + 1 byN array containing ths by N banded
coefficient matrix in band storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

B — Complex vector of length containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)

| PATH = 1 means the systefix = B is solved.

| PATH = 2 means the systeﬁ#x =B is solved.

X — Complex vector of lengt containing the solution to the linear system.
(Output)
If B is not needed, themandX may share the same storage locations.

Comments

1. Automatic workspace usage is

LSLCB 2N(2* NLCA + NUCA + 1) + N units, or
DLSLCB 4N(2 * NLCA + NUCA + 1) + N units.

Workspace may be explicitly provided, if desired, by use of
L2LCB/DL2LCB The reference is

CALL L2LCB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FAC,
| PVT, VK)

The additional arguments are as follows:

FAC — Complex work vector of length (2NLCA + NUCA + 1)* N
containing thd_U factorization ofA on output. IfA is not neededy can
share the firstN\LCA + NUCA + 1) * Nlocations withFAC.

IPVT — Integer work vector of lengtk containing the pivoting
information for the_U factorization ofA on output.
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WK — Complex work vector of lengtk

2. Informational errors
Type Code
3 3 The input matrix is too ill-conditioned. The solution
might not be accurate.
4 2 The input matrix is singular.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routir®. CB the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SLCB.
Additional memory allocation faFAC and option value
restoration are done automaticallyLi8LCB. Users directly
callingL2LCB can allocate additional space fo&C and set

I VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that uSLCB or L2LCB. Default values
for the option aré VAL(*) = 1,16,0,1.

17 This option has two values that determine ifltheondition
number is to be computed. Routin®CB temporarily replaces
| VAL(2) by | VAL(1). The routind.2CCB computes the
condition number if VAL(2) = 2. Otherwisé&.2CCB skips this
computationLSLCB restores the option. Default values for the
option arel VAL(*) = 1,2.

Algorithm

RoutineL SLCB solves a system of linear algebraic equations having a complex
banded coefficient matrix. It first uses the routiff€CB, page 164, to compute
anLU factorization of the coefficient matrix and to estimate the condition number
of the matrix. The solution of the linear system is then found wsi8gB, page

170.

LSLCB fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This occurs only A is singular or very close to a singular matrix.

If the estimated condition number is greater thar(heree is machine
precision), a warning error is issued. This indicates that very small chamges in
can cause very large changes in the solwtidhthe coefficient matrix is ill-
conditioned or poorly scaled, it is recommended L$ACB, page 159, be used.
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Example

A system of four linear equationsis solved. The coefficient matrix has complex
banded form with one upper and one lower codiagonal. The right-hand-side
vector b has four elements.
C Decl are vari abl es
| NTEGER | PATH, LDA, N, NLCA, NUCA
PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)
COVPLEX A(LDA N), B(N), X(N)

C
C Set values for Ain band form and B
C
C A= ( 0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i )
C ( -2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i )
C (  6.0+1.0i 1. 0+1. Oi 0. 0+2. 0i 0.0+0.0i )
C
C B = ( -10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i )
C

DATA A/ (0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),

& (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),

& (1.0,-1.0), (0.0,0.0)/

DATA B/ (-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/
C Solve A*X = B

| PATH = 1

CALL LSLCB (N, A LDA, NLCA, NUCA, B, |IPATH, X)
C Print results

CALL WRCRN (X', 1, N, X, 1, 0)
C
END
Output
X

1 2 3 4
(3.000, 0.000) (-1.000, 1.000) ( 3.000, 0.000) (-1.000, 1.000)

LFCCB/DLFCCB (Single/Double precision)

Compute the LU factorization of a complex matrix in band storage mode and
estimate its L, condition number.

Usage
CALL LFCCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT, RCOND)

Arguments
N — Order of the matrix. (Input)

A — ComplexNLCA + NUCA + 1 byN array containing th® by N matrix in band
storage mode to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
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NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonals af (Input)

FAC — Complex 2 NLCA + NUCA + 1 byN array containing theU
factorization of the matria.  (Output)
If Ais not neededy can share the firsNLCA + NUCA + 1) * N locations withFAC

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengthN containing the pivoting information for théJ
factorization. (Output)

RCOND — Scalar containing an estimate of the reciprocal oftreondition
number ofA. (Output)

Comments
1. Automatic workspace usage is

LFCCB 2N units, or
DLFCCB 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CCB/DL2CCB. The reference is

CALL L2CCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC,
| PVT, RCOND, WK)

The additional argument is

WK — Complex work vector of lengtk

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.
Algorithm

RoutineLFCCB performs arLU factorization of a complex banded coefficient
matrix. It also estimates the condition number of the matrix LTh&actorization

is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to
have the same-norm.

Thel,; condition number of the matriis defined to b&(A) = ||All; ||A’1||1, Since

it is expensive to comput ||, the condition number is only estimated. The
estimation algorithm is the same as used by LINPACK and is described by Cline
et al. (1979).
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If the estimated condition number is greater than /e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changesin the solution x. Iterative refinement can sometimes
find the solution to such a system.

LFCCB failsif U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if Aissingular or very close to asingular matrix.

The LU factors are returned in aform that is compatible with IMSL routines

LFI CB, page 172, LFSCB, page 170, and LFDCB, page 175. To solve systems of
equations with multiple right-hand-side vectors, use LFCCB followed by either
LFI CB or LFSCB called once for each right-hand side. The routine LFDCB can be
called to compute the determinant of the coefficient matrix after LFCCB has
performed the factorization.

Let F be the matrix FAC, let m;= NLCA and let m, = NUCA. Thefirstm, + m, + 1
rows of F contain the triangular matrix U in band storage form. The lower my
rows of F contain the multipliers needed to reconstruct L.

LFCCB is based on the LINPACK routine CGBCO; see Dongarra et al. (1979).
CGBCOuses unscaled partial pivoting.

Example

Theinverse of a4 x 4 band matrix with one upper and one lower codiagonal is
computed. LFCCB is called to factor the matrix and to check for singularity or ill-
conditioning. LFI CBis called to determine the columns of theinverse.

Decl are vari abl es

INTEGER | PATH, LDA, LDFAC, N, NLCA NUCA, NOUT
PARAMETER (| PATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
INTEGER | PVT(N)

REAL RCOND

COWLEX  A(LDA N), AINV(N,N), FAC(LDFAC, N), RI(N), RES(N)

DATA A/

Ro Ro

CALL LF

Set values for Ain band form

A=( 0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i )
0.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i )
6.0+1.0i 4.0+1.0i 0.0+2.0i 0.0+0.0i )

—_~—

(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
(4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
(1.0,-1.0), (0.0,0.0)/

CCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, |PVT, RCOND)
Print the reciprocal condition nunber
and the L1 condition nunber

CALL UMACH (2, NOUT)

WRI TE (

CALL CSl

NOUT, 99999) RCOND, 1. 0OEO/ RCOND
Set up the colums of the identity
matrix one at a time in RJ

ET (N, (0.0EO,0.0E0), RJ, 1)
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DO 10 J=1, N
RI(J) = (1.0EO0, 0. OEO)

C RJ is the J-th colum of the identity
C matri x so the follow ng LFI CB
C reference places the J-th colum of
C the inverse of Ain the J-th colum
C of ANV
CALL LFICB (N, A LDA, NLCA NUCA, FAC, LDFAC, IPVT, RJ, |PATH,
& AINV(1,J), RES)
RJ(J) = (0.OEO, 0. OEO)
10 CONTI NUE
C Print results
CALL WRCRN (AINV’, N, N, AINV, N, 0)
C
99999 FORMAT ( RCOND =",F5.3,/,’ L1 condition number =",F6.3)

END

Output
RCOND = 0.022
L1 condition number = 45.933

AINV
1 2 3 4

.562, 0.170) (0.125, 0.260) (-0.385,-0.135) (-0.239,-1.165)
122, 0.421) (-0.195, 0.094) (0.101,-0.289) (0.874,-0.179)
.034, 0.904) (-0.437, 0.090) (-0.153,-0.527) (1.087,-1.172)
.938, 0.870) (-0.347, 0.527) (-0.679,-0.374) (0.415,-1.759)

LFTCB/DLFTCB (Single/Double precision)

Compute the LU factorization of a complex matrix in band storage mode.

Usage
CALL LFTCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, IPVT)

Arguments
N — Order of the matrix. (Input)

A — ComplexNLCA + NUCA + 1 byN array containing ths by N matrix in band
storage mode to be factored. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

FAC — Complex 2¢ NLCA + NUCA + 1 byN array containing theU
factorization of the matria. (Output)
If Ais not needed) can share the firsNLCA + NUCA + 1) ON locations withFAC.
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LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Integer vector of lengtR containing the pivoting information for théJ
factorization. (Output)

Comments

1. Automatic workspace usage is

LFTCB 2N units, or
DLFTCB 4N units.

Workspace may be explicitly provided, if desired, by use of
L2TCB/DL2TCB The reference is

CALL L2TCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, |PVT,
VIK)

The additional argument is

WK — Complex work vector of length used for scaling.

2. Informational error
Type Code
4 2 The input matrix is singular.
Algorithm

RoutineLFTCB performs arLU factorization of a complex banded coefficient
matrix. TheLU factorization is done using scaled partial pivoting. Scaled partial
pivoting differs from partial pivoting in that the pivoting strategy is the same as if
each row were scaled to have the savrerm.

LFTCB fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur onlyAfis singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with routife€s,

page 1721 FSCB, page 170, andFDCB, page 175. To solve systems of equations
with multiple right-hand-side vectors, useTcB followed by eitheLFI CB or

LFSCB called once for each right-hand side. The routiRECB can be called to
compute the determinant of the coefficient matrix affarCB has performed the
factorization.

Let F be the matrixrAC, letm, = NLCA and letm, = NUCA. The firstm, + m, + 1
rows ofF contain the triangular matrld in band storage form. The lowey

rows ofF contain the multipliers needed to reconsttutt LFTCB is based on the
LINPACK routineCGBFA; see Dongarra et al. (1979GBFA uses unscaled
partial pivoting.
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Example

A linear system with multiple right-hand sidesis solved. LFTCB is called to factor
the coefficient matrix. LFSCB (page 170) is called to compute the two solutions
for the two right-hand sides. In this case the coefficient matrix is assumed to be
well-conditioned and correctly scaled. Otherwise, it would be better to call LFCCB
(page 164) to perform the factorization, and LFI CB (page 172) to compute the

solutions.
C Decl are vari abl es
| NTEGER | PATH, LDA, LDFAC, N, NLCA, NUCA
PARAMETER (| PATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
| NTEGER I PVT(N)
COMVPLEX A(LDA, N), B(N,2), FAC(LDFAC, N), X(N,2)
C
C Set values for Ain band form and B
C
C A=( 0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i )
C ( 0.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i )
C ( 6.0+1.0i 4.0+1.0i 0. 0+2. 0i 0.0+0.0i )
C
C B=( -4.0-5.0i 16.0-4.0i )
C ( 9. 5+5.5i -9.5+19.5i )
C ( 9.0-9.0i 12.0+12.0i )
C ( 0.0+8.0i -8.0-2.0i )
(o
DATA A/ (0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
& (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
& (1.0,-1.0), (0.0,0.0)/
DATA B/ (-4.0,-5.0), (9.5,5.5), (9.0,-9.0), (0.0,8.0),
& (16.0,-4.0), (-9.5,19.5), (12.0,12.0), (-8.0,-2.0)/
CALL LFTCB (N, A LDA, NLCA, NUCA, FAC, LDFAC, |PVT)
Solve for the two right-hand sides
DO 10 J=1, 2
CALL LFSCB (N, FAC, LDFAC, NLCA, NUCA, |IPVT, B(1,J), |PATH,
& X(1,3))
10 CONTI NUE
C Print results
CALL WRCRN (X', N, 2, X, N, 0)
C
END
Output
X
1 2
1 (3.000, 0.000) (0.000, 4.000)
2 (-1.000, 1.000) ( 1.000,-1.000)
3 (13.000, 0.000) (0.000, 4.000)
4 (-1.000, 1.000) ( 1.000,-1.000)
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LFSCB/DLFSCB (Single/Double precision)

Solve a complex system of linear equations given the LU factorization of the
coefficient matrix in band storage mode.

Usage
CALL LFSCB (N, FAC, LDFAC, NLCA, NUCA, |PVT, B, |IPATH X)

Arguments
N — Number of equations. (Input)

FAC — Complex 2¢ NLCA + NUCA + 1 byN array containing theU
factorization of the coefficient matrixas output from subrouting-CCB/DLFCCB
or LFTCB/DLFTCB. (Input)

LDFAC — Leading dimension afAC exactly as specified in the dimension
statement of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

IPVT — Vector of lengtiN containing the pivoting information for tié)
factorization ofA as output from subrouting=CCB/DLFCCB or LFTCB/DLFTCB.

(Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefx = B is solved.

| PATH = 2 means the syste@ﬁlx =B is solved.

X — Complex vector of length containing the solution to the linear system.
(Output)
If B is not needed andX can share the same storage locations.

Algorithm

RoutineLFSCB computes the solution of a system of linear algebraic equations
having a complex banded coefficient matrix. To compute the solution, the
coefficient matrix must first undergo &bJ factorization. This may be done by
calling eitheLFCCB, page 164, otFTCB, page 167. The solution &x =bis

found by solving the banded triangular systéms b andUx =y. The forward
elimination step consists of solving the systgns b by applying the same
permutations and elimination operationdtihat were applied to the columns of
A'in the factorization routine. The backward substitution step consists of solving
the banded triangular systesx =y for x.
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LFSCB and LFI CB, page 172, both solve alinear system givenits LU
factorization. LFI CB generally takes more time and produces a more accurate
answer than LFSCB. Each iteration of the iterative refinement algorithm used by

LFI CB calls LFSCB.

LFSCB is based on the LINPACK routine CGBSL; see Dongarra et al. (1979).

Example

Theinverseis computed for areal banded 4 x 4 matrix with one upper and one
lower codiagonal. The input matrix is assumed to be well-conditioned; hence
LFTCB (page 167) is used rather than LFCCB.

C Decl are vari abl es
| NTEGER | PATH, LDA, LDFAC, N, NLCA, NUCA
PARAMETER (LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
| NTEGER I PVT(N)
COVPLEX A(LDA, N), AINV(N,N), FAC(LDFAC,N), RI(N)
C
C Set values for Ain band form
(o
C A=( 0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i )
C ( -2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i )
C ( 6.0+1.0i 1. 0+1. Oi 0. 0+2. 0i 0.0+0.0i )
C
DATA A/ (0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
& (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
& (1.0,-1.0), (0.0,0.0)/
(o
CALL LFTCB (N, A LDA, NLCA, NUCA, FAC, LDFAC, I|PVT)
C Set up the colums of the identity
C matrix one at atine in RJ
CALL CSET (N, (0.0EO0,0.0E0), RJ, 1)
DO 10 J=1, N
RJ(J) = (1.0EO, 0.0E0)
C RJ is the J-th colum of the identity
C matri x so the follow ng LFSCB
C reference places the J-th colum of
C the inverse of Ain the J-th colum
C of Al NV
| PATH = 1
CALL LFSCB (N, FAC, LDFAC, NLCA, NUCA, |PVT, RJ, |PATH,
& AlNV(1,J))
RJ(J) = (0.0EO, 0. 0E0)
10 CONTI NUE
C Print results
CALL WRCRN (AINV’, N, N, AINV, N, 0)
C

END
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Output

Al NV

1 2 3 4
1 ( 0.165,-0.341) ( 0.376,-0.094) (-0.282, 0.471) (-1.600, 0.000)
2 ( 0.588,-0.047) ( 0.259, 0.235) (-0.494, 0.024) (-0.800,-1.200)
3 ( 0.318, 0.271) ( 0.012, 0.247) (-0.759,-0.235) (-0.550,-2.250)
4 ( 0.588,-0.047) ( 0.259, 0.235) (-0.994, 0.524) (-2.300,-1.200)

LFICB/DLFICB (Single/Double precision)

Use iterative refinement to improve the solution of a complex system of linear
equationsin band storage mode.

Usage

CALL LFICB (N, A LDA, NLCA, NUCA, FAC, LDFAC, |PVT, B,
| PATH, X, RES)

Arguments

N — Number of equations. (Input)

A — ComplexNLCA + NUCA + 1 byN array containing ths by N coefficient
matrix in band storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NLCA — Number of lower codiagonals af (Input)
NUCA — Number of upper codiagonalsaf (Input)

FAC — Complex 2¢ NLCA + NUCA + 1 byN array containing theU
factorization of the matrix as output from routineFCCB/DLFCCB or
LFTCB/DLFTCB. (Input)

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

IPVT — Vector of lengtiN containing the pivoting information for tié)
factorization ofA as output from routineFCCB/DLFCCB or LFTCB/DLFTCB.

(Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefx = B is solved.

| PATH = 2 means the syste@ﬁlx =B is solved.
X — Complex vector of lengtl containing the solution. (Output)

RES — Complex vector of lengtl containing the residual vector at the
improved solution. (Output)

172 « Chapter 1: Linear Systems IMSL MATH/LIBRARY



O00000000

@]

Comments

Informational error

Type Code
3 3 Theinput matrix istoo ill-conditioned for iterative refinement
be effective.
Algorithm

Routine LFI CB computes the solution of a system of linear algebraic equations
having a complex banded coefficient matrix. Iterative refinement is performed on
the solution vector to improve the accuracy. Usually almost all of the digitsin the
solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU
factorization. This may be done by calling either LFCCB, page 164, or LFTCB,
page 167.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFI CB and LFSCB, page 170, both solve alinear system givenits LU
factorization. LFI CB generally takes more time and produces a more accurate
answer than LFSCB. Each iteration of the iterative refinement algorithm used by
LFI CB calls LFSCB.

Example

A set of linear systemsis solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by adding (1 +i)/2
to the second element.

Decl are vari abl es

INTEGER | PATH, LDA, LDFAC, N, NLCA NUCA, NOUT
PARAMETER (| PATH=1, LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
INTEGER | PVT(N)

REAL RCOND

COWLEX  A(LDA N), B(N), FAC(LDFAC,N), RES(N), X(N)

Set values for Ain band form and B

A= ( 0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i )

( -2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i )

( 6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i )

B=( -10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i )

DATA A/ (0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),
& (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),
& (1.0,-1.0), (0.0,0.0)/
DATA B/ (-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/

CALL LFCCB (N, A LDA, NLCA, NUCA, FAC, LDFAC, |PVT, RCOND)
Print the reciprocal condition nunmber

CALL UMACH (2, NOUT)

VRI TE ( NOUT, 99998) RCOND, 1.0EO/ RCOND
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C Solve the three systens
DO 10 J=1, 3
CALL LFICB (N, A LDA, NLCA, NUCA, FAC, LDFAC, |PVT, B,
& | PATH, X, RES)
C Print results
WRI TE (NOUT, 99999) J
CALL WRCRN ('X', 1, N, X, 1, 0)
CALL WRCRN ('RES’, 1, N, RES, 1, 0)
C Perturb B by adding 0.5+0.5i to B(2)
B(2) = B(2) + (0.5E0,0.5E0)
10 CONTINUE
C
99998 FORMAT ( RCOND =",F5.3,/, L1 Condition number =",F6.3)
99999 FORMAT (//,’ For system ',11)
END

Output
RCOND =0.014
L1 Condition number = 72.414

For system 1
X
1 2 3 4
(3.000, 0.000) (-1.000, 1.000) ( 3.000, 0.000) (-1.000, 1.000)

RES
1 2 3

( 0.000E+00, 0.000E+00) ( 0.000E+00, 0.000E+00) ( 0.000E+00, 5.684E-14)
4

( 3.494E-22,-6.698E-22)

For system 2

X
1 2 3 4
(3.235,0.141) (-0.988, 1.247) (2.882, 0.129) (-0.988, 1.247)
RES
1 2 3

(-1.402E-08, 6.486E-09) (-7.012E-10, 4.488E-08) (-1.122E-07, 7.188E-09)
4
(-7.012E-10, 4.488E-08)

For system 3
X
1 2 3 4
(3.471,0.282) (-0.976, 1.494) (2.765, 0.259) (-0.976, 1.494)

RES
1 2 3
(-2.805E-08, 1.297E-08) (-1.402E-09,-2.945E-08) ( 1.402E-08, 1.438E-08)
4

(-1.402E-09,-2.945E-08)
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LFDCB/DLFDCB (Single/Double precision)

Compute the determinant of a complex matrix given the LU factorization of the
matrix in band storage mode.

Usage
CALL LFDCB (N, FAC, LDFAC, NLCA, NUCA, |PVT, DET1, DET2)

Arguments
N — Order of the matrix. (Input)

FAC — Complex (2 NLCA + NUCA + 1) byN array containing theU
factorization of the matrix as output from routineFTCB/DLFTCB or
LFCCB/DLFCCB. (Input)

LDFAC — Leading dimension @fAC exactly as specified in the dimension
statement of the calling program. (Input)

NLCA — Number of lower codiagonals in matax (Input)
NUCA — Number of upper codiagonals in mataix (Input)

IPVT — Vector of lengttN containing the pivoting information for tié)
factorization as output from routiné€TCB/DLFTCB or LFCCB/DLFCCB. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 1O|DET1 | < 10.0 orDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the fodet (A) = DET1 * 10PET2

Algorithm

RoutineLFDCB computes the determinant of a complex banded coefficient
matrix. To compute the determinant, the coefficient matrix must first undergo an
LU factorization. This may be done by calling eithE€CB, page 164, otFTCB,
page 167. The formula dat= detL detU is used to compute the determinant.
Since the determinant of a triangular matrix is the product of the diagonal
elements,

N
detU = |_|i:1Uii

(The matrixU is stored in the upp@&UCA + NLCA + 1 rows ofFAC as a banded
matrix.) Sincel is the product of triangular matrices with unit diagonals and of

permutation matrices, det= (—1)", wherek is the number of pivoting
interchanges.

LFDCB is based on the LINPACK routir@BDI ; see Dongarra et al. (1979).
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Example

The determinant is computed for a complex banded 4 x 4 matrix with one upper
and one lower codiagonal.
Decl are vari abl es

LDA, LDFAC, N, NLCA, NUCA, NOUT

ER (LDA=3, LDFAC=4, N=4, NLCA=1, NUCA=1)
| PVT(N)
DET2

A(LDA, Ny, DET1, FAC(LDFAC, N)

Set values for Ain band form

A= ( 0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i )

( -2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i )

( 6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i )
(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,63.0),
(1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),

(1.0,-1.0), (0.0,0.0)/

CALL LFTCB (N, A, LDA, NLCA, NUCA, FAC, LDFAC, |PVT)

CALL LF

Conput e the det erm nant
DCB (N, FAC, LDFAC, NLCA, NUCA, |PVT, DET1, DET2)
Print the results

CALL UMACH (2, NOUT)

WRI TE (

NOUT, 99999) DET1, DET2

99999 FORMAT (' The determinant of Ais (’, F6.3,",", F6.3, ") * 10**',

F2.0)

END

Output

The determinant of A is ( 2.500,-1.500) * 10**1.

LSAQH/DLSAQH (Single/Double precision)

Solve a complex Hermitian positive definite system of linear equationsin band
Hermitian storage mode with iterative refinement.

Usage
CALL LSAQH (N, A, LDA, NCODA, B, X)

Arguments
N — Number of equations. (Input)

A — ComplexNCODA + 1 byN array containing th® by N positive definite band
Hermitian coefficient matrix in band Hermitian storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
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NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of lengtl containing the right-hand side of the linear
system. (Input)

X — Complex vector of lengt containing the solution to the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSAQH 2N(NCODA + 2) units, or
DL SAQH 4N(NCODA + 2) units.

Workspace may be explicitly provided, if desired, by use of
L2AQH/DL2AQH The reference is

CALL L2ACQH (N, A, LDA, NCODA, B, X, FAC, W)
The additional arguments are as follows:

FAC — Complex work vector of lengttNGODA + 1) * N containing the
R R factorization ofa in band Hermitian storage form on output.

WK — Complex work vector of length

2. Informational errors
Type Code
3 3 The input matrix is too ill-conditioned. The solution
might not be accurate.
3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal
entry with an imaginary part.
3. Integer Options with Chapter 10 Options Manager
16 This option uses four values to solve memory bank conflict

(access inefficiency) problems. In routin®AQH the leading
dimension oFAC s increased byVAL(3) whenNis a multiple
of I VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, il SAQH.
Additional memory allocation fafAC and option value
restoration are done automaticallyLiBAQH. Users directly
calling L2AQH can allocate additional space fexC and set

| VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that usSAQH or L2AQH. Default values
for the option aré VAL(*) =1, 16, 0, 1.
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17 This option has two values that determine if the L; condition
number isto be computed. Routine LSAQH temporarily replaces
I VAL(2) by 1 VAL(1). The routine L2CQH computes the
condition number if | VAL(2) = 2. Otherwise L2CQH skips this
computation. LSAQH restores the option. Default values for the
optionarel VAL(*) =1, 2.

Algorithm

Routine LSAQH solves a system of linear algebraic equations having a complex
Hermitian positive definite band coefficient matrix. It first usesthe IMSL routine

LFCQH, page 184, to compute an R R Chol esky factorization of the coefficient
matrix and to estimate the condition number of the matrix. R is an upper
triangular band matrix. The solution of the linear system is then found using the
iterative refinement IMSL routine LFI QH, page 191.

LSAQH failsif any submatrix of Ris not positive definite, if R has a zero diagonal
element, or if the iterative refinement agorithm fails to converge. These errors
occur only if the matrix A either isvery close to asingular matrix or isamatrix
that is not positive definite.

If the estimated condition number is greater than /e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. Iterative refinement can sometimes
find the solution to such a system. LSAQH solves the problem that is represented

in the computer; however, this problem may differ from the problem whose
solution is desired.

Example

A system of five linear equationsis solved. The coefficient matrix has complex
Hermitian positive definite band form with one codiagonal and the right-hand-
side vector b has five elements.
C Decl are vari abl es
| NTEGER LDA, N, NCODA
PARAMETER (LDA=2, N=5, NCODA=1)
COVPLEX A(LDA N), B(N), X(N)

C
C Set values for Ain band Hermtian form and B
C
C A= ( 0.0+0.0i -1.0+1.0i 1. 0+2. 0i 0. 0+4. Oi 1.0+1.0i )
C ( 2.0+0.0i 4.0+0.0i 10.0+0.0i 6. 0+0. Oi 9.0+0.0i )
C
C B=( 1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i )
C
DATA A/ (0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
& (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
DATA B/ (1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),
& (25.0,16.0)/
C Solve A*X = B

CALL LSAQH (N, A LDA NCODA, B, X)
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Print results

CALL WRCRN (X', 1, N, X, 1, 0)

END

1 2

Output
X

3 4

(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) ( 0.000,-2.000)
5

(3.000, 2.000)

LSLQH/DLSLQH (Single/Double precision)

Solve a complex Hermitian positive definite system of linear equations in band
Hermitian storage mode without iterative refinement.

Usage
CALL LSLQH (N, A, LDA, NCODA, B, X)

Arguments
N — Number of equations. (Input)

A — ComplexNCODA + 1 byN array containing th® by N positive definite band
Hermitian coefficient matrix in band Hermitian storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper or lower codiagonalstof (Input)

B — Complex vector of lengtl containing the right-hand side of the linear
system. (Input)

X — Complex vector of length containing the solution to the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSLQH 2N(NCODA + 2) units, or
DL SLQH 4N(NCODA + 2) units.

Workspace may be explicitly provided, if desired, by use of
L2LQH/DL2LQH The reference is

CALL L2LQH (N, A, LDA, NCODA, B, X, FAC, \WK)

The additional arguments are as follows:
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FAC — Complex work vector of lengttNCODA + 1) * N containing the

R R factorization ofa in band Hermitian storage form on outputalis
not neededA andFAC can share the same storage locations.

WK — Complex work vector of lengtk

2. Informational errors
Type Code
3 3 The input matrix is too ill-conditioned. The solution
might not be accurate.
3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.

The input matrix is not positive definite.

The input matrix is not Hermitian. It has a diagonal
entry with an imaginary patrt.

4
4

AN

3. Integer Options with Chapter 10 Options Manager

16 This option uses four values to solve memory bank conflict
(access inefficiency) problems. In routir®.QH the leading
dimension ofFAC s increased byVAL(3) whenNis a multiple
of | VAL(4). The value$ VAL(3) andl VAL(4) are temporarily
replaced by VAL(1) andl VAL(2), respectively, in.SLQH.
Additional memory allocation faFAC and option value
restoration are done automaticallyLisLQH. Users directly
callingL2L(H can allocate additional space fo&C and set
I VAL(3) andl VAL(4) so that memory bank conflicts no longer
cause inefficiencies. There is no requirement that users change
existing applications that usSLQH or L2LQH. Default values
for the option aré VAL(*) = 1, 16, 0, 1.

17 This option has two values that determine ifltheondition
number is to be computed. Routin®.QH temporarily replaces
| VAL(2) by | VAL(1). The routind.2CQH computes the
condition number if VAL(2) = 2. Otherwisé&.2CQH skips this
computationL SLQH restores the option. Default values for the
option arel VAL(*) = 1, 2.

Algorithm

RoutineLSLQH solves a system of linear algebraic equations having a complex
Hermitian positive definite band coefficient matrix. It first uses the routine

LFCQH, page 184, to compute &R Cholesky factorization of the coefficient
matrix and to estimate the condition number of the md&riz.an upper

triangular band matrix. The solution of the linear system is then found using the
routineLFSQH, page 189.
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LSLQH failsif any submatrix of Ris not positive definite or if R has a zero
diagonal element. These errors occur only if A either isvery close to asingular
matrix or isamatrix that is not positive definite.

If the estimated condition number is greater than 1/e (where € is machine
precision), awarning error isissued. Thisindicates that very small changesin A
can cause very large changes in the solution x. If the coefficient matrix isill-
conditioned or poorly sealed, it is recommended that LSAQH, page 176, be used.

Example

A system of five linear equationsis solved. The coefficient matrix has complex
Hermitian positive definite band form with one codiagonal and the right-hand-
side vector b has five elements.
C Decl are vari abl es
| NTEGER N, NCODA, LDA
PARAMETER (N=5, NCODA=1, LDA=NCODA+1)
COMPLEX A(LDA N), B(N), X(N)

C
(o Set values for Ain band Hermitian form and B
C
C A=( 0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i )
C ( 2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i )
C
C B=( 1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i )
C

DATA A/ (0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),

& (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
DATA B/ (1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),
& (25.0,16.0)/

C Solve A*X = B

CALL LSLQH (N, A, LDA, NCODA, B, X)
C Print results

CALL WRCRN (X', 1, N, X, 1, 0)
C
END
Output
X
1 2 3 4

(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) ( 0.000,-2.000)

5
(3.000, 2.000)
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LSLQB/DLSLQB (Single/Double precision)

Compute the R DR Chol esky factorization of acomplex Hermitian positive-
definite matrix A in codiagonal band Hermitian storage mode. Solve a
system Ax=h.

Usage
CALL LSLQB (N, A, LDA NCODA, 1JOB, U)

Arguments

N — Order of the matrix. (Input)
Must satisfyN > 0.

A — Array containing thé&l by N positive-definite band coefficient matrix and the
right hand side in codiagonal band Hermitian storage mode. (Input/Output)
The number of array columns must be at leasN2CODA + 3. The number of
columns is not an input to this subprogram.

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
Must satisfyL DA = N + NCODA.

NCODA — Number of upper codiagonals of matkix (Input)
Must satisfyNCODA = 0 andNCODA < N.

1JOB — flag to direct the desired factorization or solving step. (Input)
1JOB  Meaning

1 factor the matrixa and solve the systeax = b; where the real part &f
is stored in column 2 NCODA + 2 and the imaginary part bfis stored
in column 2 NCODA + 3 of arrayA. The real and imaginary partstof
are overwritten by the real and imaginary parts. of

2 solve step only. Use the real parbads column 2 NCODA + 2 and the
imaginary part ob as column 2 NCODA + 3 of A. (The factorization
step has already been done.) The real and imaginary pareref
overwritten by the real and imaginary partx.of

3 factor the matriA but do not solve a system.

4,56 same meaning as with the vdlaeB = 3. For efficiency, no error
checking is done on value®A, N, NCODA, andu(*).

U — Array of flags that indicate any singularitiestohamely loss of positive-
definiteness of a leading minor. (Output)

A valueU(l ) = 0. means that the leading minor of dimensias not positive-
definite. Otherwisel(l ) = 1.
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| NTEGER
PARAMETER

| NTEGER
REAL
EXTERNAL

Comments
1 Automatic workspace usage is

LSLQB 2* NCODA units, or
DLSL@B 4 * NCODA units.

Workspace may be explicitly provided, if desired, by use of
L2LQB/DL2LQB Thereferenceis

CALL L2LQB (N, A, LDA, NCODA, 1J0OB, U, WK1, WK2)
The additional arguments are as follows:

WK1 — Work vector of lengtiNCODA.

WK2 — Work vector of lengtiNCODA.

2. Informational error
Type Code
4 2 The input matrix is not positive definite.
Algorithm

RoutineLSL@B factors and solves the Hermitian positive definite banded linear

systemAx = b. The matrix is factored so that= R” DR, whereR is unit upper
triangular and is diagonal and real. The reciprocals of the diagonal entriBs of

are computed and saved to make the solving step more efficient. Errors will occur
if D has a nonpositive diagonal element. Such events occur @nly ifery close

to a singular matrix or is not positive definite.

LSL@B is efficient for problems with a small band width. The particular cases
NCODA = 0, 1 are done with special loops within the code. These cases will give
good performance. See Hanson (1989) for more on the algorithm. When solving
tridiagonal system$CODA = 1, the cyclic reduction codesLCQ (page 156)

should be considered as an alternative. The expectation lsSthe® will
outperformLSLQB on vector or parallel computers. It may be inferior on scalar
computers or even parallel computers with non-optimizing compilers.

Example

A system of five linear equations is solved. The coefficient matrix has real
positive definite codiagonal Hermitian band form and the right-hand-side ‘ector
has five elements.

LDA, N, NCODA

(N=5, NCODA=1, LDA=N+NCCDA)
I, 1J0B, J

A(LDA, 2* NCODA+3), U(N)
LSLQB, WRRRN

Set values for A and right hand side
in codi agonal band Hermitian form
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C ( * * * * *

C (2.0 * * 1.0 5.0)

C A = (4.0 -1.0 1.0 12.0 -6.0)

C (10.0 1.0 2.0 1.0 -16.0)

C ( 6.0 0.0 4.0 -3.0 -3.0)

C ( 9.0 1.0 1.0 25.0 16.0)

C
DATA ((A(I +NCODA, J), I =1, N), J=1, 2* NCODA+3) /2.0, 4.0, 10.0, 6.0,
& 9.0, 0.0, -1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 2.0, 4.0, 1.0,
& 1.0, 12.0, 1.0, -3.0, 25.0, 5.0, -6.0, -16.0, -3.0, 16.0/

C

C Fact or and solve A*x = b.

C
1JOB =1
CALL LSLQB (N, A LDA, NCODA, 1J0B, U

C

C Print results

C

CALL WRRRN ('REAL(X)’, 1, N, ANCODA+1,2*NCODA+2), 1, 0)
CALL WRRRN (IMAG(X), 1, N, ANCODA+1,2*NCODA+3), 1, 0)
END

Output
REAL(X)
1 2 3 4 5
2.000 3.000 -1.000 0.000 3.000

IMAG(X)
1 2 3 4 5
1.000 0.000 -1.000 -2.000 2.000

LFCQH/DLFCQH (Single/Double precision)

Compute the R Rfactorization of a complex Hermitian positive definite matrix
in band Hermitian storage mode and estimate its L, condition number.

Usage
CALL LFCQH (N, A, LDA, NCODA, FAC, LDFAC, RCOND)

Arguments
N — Order of the matrix. (Input)

A — ComplexNCODA + 1 byN array containing th® by N positive definite band
Hermitian matrix to be factored in band Hermitian storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper or lower codiagonalstof (Input)
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FAC — ComplexNCODA + 1 byN array containing the!’ R factorization of the
matrixA. (Output)
If Ais not neededd andFAC can share the same storage locations.

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

RCOND — Scalar containing an estimate of the reciprocal ofttendition
number ofa. (Output)

Comments
1. Automatic workspace usage is

LFCQH 2Nunits, or
DLFCQH 4N units.

Workspace may be explicitly provided, if desired, by use of
L2CQH/DL2CQH. The reference is

CALL L2CQH (N, A, LDA, NCODA, FAC, LDFAC, RCOND, VK)
The additional argument is

WK — Complex work vector of length

2. Informational errors
Type Code
3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal

entry with a small imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal
entry with an imaginary part.
Algorithm

RoutineLFCQH computes ar’ R Cholesky factorization and estimates the
condition number of a complex Hermitian positive definite band coefficient
matrix. R is an upper triangular band matrix.

Thel, condition number of the matrixis defined to b&(A) = ||A||; ||A‘1 [I; -

Since it is expensive to comptﬂ;@‘1 |l; » the condition number is only estimated.
The estimation algorithm is the same as used by LINPACK and is described by
Cline et al. (1979).

If the estimated condition number is greater thar(Wheree is machine
precision), a warning error is issued. This indicates that very small changes in
can cause very large changes in the solutidterative refinement can sometimes
find the solution to such a system.
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LFCQH failsif any submatrix of Ris not positive definite or if R has a zero
diagonal element. These errors occur only if A either isvery close to asingular
matrix or isamatrix which is not positive definite.

The R R factors are returned in aform that is compatible with routines LFI QH,
page 191, LFSQH, page 189, and LFDQH, page 193. To solve systems of equations
with multiple right-hand-side vectors, use LFCQH followed by either LFI QH or
LFSQH called once for each right-hand side. The routine LFDQH can be called to
compute the determinant of the coefficient matrix after LFCQH has performed the
factorization.

LFCQH is based on the LINPACK routine CPBCO, see Dongarra et al. (1979).

Example

Theinverse of a5 x 5 band Hermitian matrix with one codiagonal is computed.
LFCQH is called to factor the matrix and to check for nonpositive definiteness or
ill-conditioning. LFI QH (page 191) is called to determine the columns of the
inverse.
C Decl are vari abl es

| NTEGER N, NCODA, LDA, LDFAC, NOUT

PARAMETER (N=5, NCODA=1, LDA=NCODA+1, LDFAC=LDA)

REAL RCOND

COVPLEX A(LDA N), AINV(N,N), FAC(LDFAC,N), RES(N), RI(N)

C
C Set values for Ain band Hermtian form
C
C A= ( 0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i )
C ( 2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i )
C
DATA A/ (0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
& (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
C Factor the matrix A
CALL LFCQH (N, A, LDA, NCODA, FAC, LDFAC, RCOND)
C Set up the colums of the identity
C matrix one at a time in RJ
CALL CSET (N, (0.OEO,0.0E0), RJ, 1)
DO 10 J=1, N
RJ(J) = (1.0EO, 0. OEO)
C R) is the J-th colum of the identity
C matrix so the foll owi ng LFI QH
C ref erence places the J-th colum of
C the inverse of Ain the J-th colum
C of ANV
CALL LFIQH (N, A, LDA, NCODA, FAC, LDFAC, RJ, AINV(1,J), RES)
RJ(J) = (0.OEO, 0. OEO)
10 CONTI NUE
C Print the results
CALL UMACH (2, Naum)
VRI TE ( NOUT, 99999) RCOND, 1. 0EO/ RCOND
CALL WRCRN (AINV’, N, N, AINV, N, 0)
C
99999 FORMAT ( RCOND =",F5.3,/,’ L1 Condition number =",F6.3)

END
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Output
RCOND = 0. 067
L1 Condition nunmber = 14.961

Al NV

1 2 3 4

1 ( 0.7166, 0.0000) ( 0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)

2 ( 0.2166, 0.2166) ( 0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)

3 (-0.0899, 0.0300) (-0.0599, 0.1198) ( 0.1797, 0.0000) ( 0.0000, - 0. 1244)

4 (-0.0207,-0.0622) (-0.0829,-0.0415) ( 0.0000, 0.1244) ( 0.2592, 0.0000)

5 ( 0.0092, 0.0046) ( 0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
5
1 ( 0.0092, -0.0046)
2 ( 0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288, -0.0288)
5 ( 0.1175, 0.0000)

LFTQH/DLFTQH (Single/Double precision)

Compute the R Rfactorization of a complex Hermitian positive definite matrix
in band Hermitian storage mode.

Usage
CALL LFTQH (N, A, LDA, NCODA, FAC, LDFAC)

Arguments
N — Order of the matrix. (Input)

A — ComplexNCODA + 1 byN array containing th® by N positive definite band
Hermitian matrix to be factored in band Hermitian storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper or lower codiagonalsfof (Input)

FAC — ComplexNCODA + 1 byN array containing the” R factorization of the
matrixA. (Output)
If Ais not neededy andFAC can share the same storage locations.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

Comments

Informational errors
Type Code
3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.
4 2 The input matrix is not positive definite.
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4 4 Theinput matrix is not Hermitian. It has adiagonal entry with
an imaginary part.

Algorithm

Routine LFTQH computes an RYR chol esky factorization of acomplex Hermitian
positive definite band coefficient matrix. Ris an upper triangular band matrix.

LFTQH failsif any submatrix of Ris not positive definite or if R has a zero
diagonal element. These errors occur only if A either isvery close to asingular
matrix or isamatrix which is not positive definite.

The R R factors are returned in aform that is compatible with routines LFI QH,
page 191, LFSQH, page 189, and LFDQH, page 193. To solve systems of equations
with multiple right-hand-side vectors, use LFTQH followed by either LFI QH or
LFSQH called once for each right-hand side. The routine LFDQH can be called to
compute the determinant of the coefficient matrix after LFTQH has performed the
factorization.

LFTQH isbased on the LINPACK routine SPBFA; see Dongarra et al. (1979).

Example

Theinverse of a5 x 5 band Hermitian matrix with one codiagonal is computed.
LFTQH s caled to factor the matrix and to check for nonpositive definiteness.
LFSQH is called to determine the columns of the inverse.

Decl are vari abl es
| NTEGER LDA, LDFAC, N, NCODA
PARAMETER (LDA=2, LDFAC=2, N=5, NCODA=1)
COVPLEX A(LDA, N), AINV(N, N), FAC(LDFAC, N), RI(N)

Set values for Ain band Hermitian form

A= ( 0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i )
( 2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i )

DATA A/ (0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
& (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
Factor the matrix A
CALL LFTQH (N, A, LDA, NCODA, FAC, LDFAC)
Set up the colums of the identity
matrix one at a time in RJ
CALL CSET (N, (0.OEO,0.0E0), RJ, 1)
DO 10 J=1, N
RJ(J) = (1.0EO, 0. OEO)
R) is the J-th colum of the identity
matri x so the foll owi ng LFSQH
ref erence places the J-th colum of
the inverse of Ain the J-th colum
of ANV
CALL LFSQH (N, FAC, LDFAC, NCODA, RJ, AINV(1,J))
RJ(J) = (0.OEO, 0. OEO)
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10 CONTI NUE

C Print the results
CALL WRCRN (AINV’, N, N, AINV, N, 0)

C
END

Output
AINV
1 2 3 4
1(0.7166, 0.0000) ( 0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) ( 0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) ( 0.1797, 0.0000) ( 0.0000,-0.1244)
4 (-0.0207,-0.0622) (-0.0829,-0.0415) ( 0.0000, 0.1244) ( 0.2592, 0.0000)
5 (0.0092, 0.0046) ( 0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
5

1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

LFSQH/DLFSQH (Single/Double precision)

Solve a complex Hermitian positive definite system of linear equations given the
factorization of the coefficient matrix in band Hermitian storage mode.

Usage
CALL LFSQH (N, FAC, LDFAC, NCODA, B, X)

Arguments

N — Number of equations. (Input)

FAC — ComplexNCODA + 1 byN array containing the” R factorization of the
Hermitian positive definite band matrx (Input)
FAC is obtained as output from routihnECQH/DLFCQH or LFTQH/DLFTQH .

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)

NCODA — Number of upper or lower codiagonalstof (Input)

B — Complex vector of lengti containing the right-hand-side of the linear
system. (Input)

X — Complex vector of lengt containing the solution to the linear system.
(Output)
If B is not needed3 andX can share the same storage locations.
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Comments

Informational error

Type Code
4 1 The factored matrix has a diagonal element close to zero.
Algorithm

This routine computes the solution for a system of linear algebraic equations
having a complex Hermitian positive definite band coefficient matrix. To

compute the solution, the coefficient matrix must first undergo an RY R
factorization. This may be done by calling either IMSL routine LFCQH, page 184,
or LFTQH, page 187. Ris an upper triangular band matrix.

The solution to Ax = b isfound by solving the triangular systems RY y=bhand Rx
= y

LFSQH and LFI QH, page 191, both solve alinear system given its RY R
factorization. LFI QH generally takes more time and produces a more accurate
answer than LFSQH. Each iteration of the iterative refinement algorithm used by
LFI QH calls LFSQH.

LFSQH is based on the LINPACK routine CPBSL; see Dongarra et al. (1979).

Example

A set of linear systemsis solved successively. LFTQH, page 187, is called to factor
the coefficient matrix. LFSQH is called to compute the three solutions for the three
right-hand sides. In this case the coefficient matrix is assumed to be well-
conditioned and correctly scaled. Otherwise, it would be better to call LFCQH,
page 184, to perform the factorization, and LFI QH, page 191, to compute the
solutions.

Decl are vari abl es
LDA, LDFAC, N, NCODA

PARAMETER (LDA=2, LDFAC=2, N=5, NCODA-=1)
COWPLEX

A(LDA, N), B(N,3), FAC(LDFAC,N), X(N,3)

Set values for Ain band Hermitian form and B

A

( 0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i )
( 2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i )

( 3.0+43.0i 4.0+0.0i 29.0-9.0i )
( 5.0-5.0i 15.0-10.0i -36.0-17.0i )
( 5.0+4.0i -12.0-56.0i -15.0-24.0i )
( 9.0+7.0i -12.0+10.0i -23.0-15.0i )
(-22.0+1.0i  3.0-1.0i -23.0-28.0i )

DATA A/ (0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),

(10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0),

9.0,0.0)/

DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), E-22.0,1.0),
0

(4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.

,10.0),
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& (3.

0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),

& (-23.0,-15.0), (-23.0,-28.0)/
C Factor the matrix A
CALL LFTQH (N, A, LDA, NCODA, FAC, LDFAQ)
C Conput e the sol utions
DO 10 1=1, 3
CALL LFSQH (N, FAC, LDFAC, NCODA, B(1,1), X(1,1))
10 CONTI NUE
C Print sol utions
CALL WRCRN (X', N, 3, X, N, 0)
END
Output
X
1 2 3
1 ( 1.00, 0.00) ( 3.00,-1.00) (11.00,-1.00)
2 ( 1.00, -2.00) ( 2.00, 0.00) (-7.00, 0.00)
3 ( 2.00, 0.00) (-1.00,-6.00) (-2.00, -3.00)
4 ( 2.00, 3.00) ( 2.00, 1.00) (-2.00, -3.00)
5 (-3.00, 0.00) ( 0.00, 0.00) (-2.00,-3.00)

LFIQH/DLFIQH (Single/Double precision)

Use iterative refinement to improve the solution of a complex Hermitian positive
definite system of linear equations in band Hermitian storage mode.

Usage
CALL LFIQH (N, A, LDA, NCODA, FAC, LDFAC, B, X, RES)

Arguments
N — Number of equations. (Input)

A — ComplexNCODA + 1 byN array containing th® by N positive definite band
Hermitian coefficient matrix in band Hermitian storage mode. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

NCODA — Number of upper or lower codiagonalsfof (Input)
FAC — ComplexNCODA + 1 byN array containing the” R factorization of the
matrix A as output from routineFCQH/DLFCQH or LFTQH/DLFTQH.  (Input)

LDFAC — Leading dimension fAC exactly as specified in the dimension
statement of the calling program. (Input)

B — Complex vector of length containing the right-hand side of the linear
system. (Input)

X — Complex vector of length containing the solution to the linear system.
(Output)
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RES — Complex vector of lengtl containing the residual vector at the
improved solution. (Output)

Comments

Informational error
Type Code
3 3 The input matrix is too ill-conditioned for iterative refinement
to be effective.

Algorithm

RoutineLFI QH computes the solution of a system of linear algebraic equations
having a complex Hermitian positive definite band coefficient matrix. Iterative
refinement is performed on the solution vector to improve the accuracy. Usually
almost all of the digits in the solution are accurate, even if the matrix is somewhat
ill-conditioned.

To compute the solution, the coefficient matrix must first underg@HaR
factorization. This may be done by calling eithECQH, page 184, ot FTQH,
page 187.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFI QH andLFSQH, page 189, both solve a linear system giveR’ﬁR
factorization.LFI QH generally takes more time and produces a more accurate
answer thamFSQH. Each iteration of the iterative refinement algorithm used by
LFI QH callsLFSQH.

Example

A set of linear systems is solved successively. The right-hand-side vector is
perturbed after solving the system each of the first two times by addiny/?21 +
to the second element.

C Decl are vari abl es
| NTEGER LDA, LDFAC, N, NCODA, NOUT
PARAMETER (LDA=2, LDFAC=2, N=5, NCODA=1)
REAL RCOND
COVPLEX A(LDA, N), B(N), FAC(LDFAC, N), RES(N,3), X(N, 3)

C
C Set values for Ain band Hermtian form and B
(o
C A= ( 0.0+0.0i -1.0+1.0i 1. 0+2. 0i 0. 0+4. Oi 1.0+1.0i )
C ( 2.0+0.0i 4.0+0.0i 10.0+0.0i 6. 0+0. Oi 9.0+0.0i )
C
C B =( 3.0+3.0i 5.0-5.0i 5. 0+4. 0i 9.0+7.0i -22.0+1.0i )
C
DATA A/ (0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
& (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
DATA B/ (3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/
C Factor the matrix A

CALL LFCQH (N, A, LDA, NCODA, FAC, LDFAC, RCOND)
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C Print the estimted condition nunber
CALL UMACH (2, NaUT)
VWRI TE ( NOUT, 99999) RCOND, 1. 0EO/ RCOND
C Conput e the sol utions
DO 10 1=1, 3
CALL LFIQH (N, A, LDA, NCODA, FAC, LDFAC, B, X(1,1), RES(1,1))
B(2) = B(2) + (0.5E0,0.5E0)
10 CONTI NUE
C Print solutions and residuals
CALL WRCRN (X', N, 3, X, N, 0)
CALL WRCRN ('RES', N, 3, RES, N, 0)
C
99999 FORMAT (" RCOND =",F5.3,/,' L1 Condition number =',F6.3)
END

Output
RCOND = 0.067
L1 Condition number = 14.961

X

1 2 3
1.000, 0.000) (1.217, 0.000) ( 1.433, 0.000)
1.000,-2.000) (1.217,-1.783) ( 1.433,-1.567)
2.000, 0.000) ( 1.910, 0.030) ( 1.820, 0.060)
2.000, 3.000) (1.979, 2.938) ( 1.959, 2.876)
-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)

RES

1 2 3
1 (1.192E-07, 0.000E+00) ( 6.592E-08, 1.686E-07) ( 1.318E-07, 2.010E-14)
2 (1.192E-07,-2.384E-07) (-5.329E-08,-5.329E-08) ( 1.318E-07,-2.258E-07)
3 ( 2.384E-07, 8.259E-08) ( 2.390E-07,-3.309E-08) ( 2.395E-07, 1.015E-07)
4 (-2.384E-07, 2.814E-14) (-8.240E-08,-8.790E-09) (-1.648E-07,-1.758E-08)
5 (-2.384E-07,-1.401E-08) (-2.813E-07, 6.981E-09) (-3.241E-07,-2.795E-08)

LFDQH/DLFDQH (Single/Double precision)

Compute the determinant of a complex Hermitian positive definite matrix given
the R’ R Chol esky factorization in band Hermitian storage mode.

Usage
CALL LFDQH (N, FAC, LDFAC, NCODA, DET1, DET2)
Arguments

N — Number of equations. (Input)

FAC — ComplexNCODA + 1 byN array containing the” R factorization of the
Hermitian positive definite band matrix (Input)
FAC is obtained as output from routinECQH/DLFCQH or LFTQH/DLFTCH.

LDFAC — Leading dimension ¢tfAC exactly as specified in the dimension
statement of the calling program. (Input)
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000000

@]

C

C

NCODA — Number of upper or lower codiagonalstof (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The valueDET1 is normalized so that 1O|DET1 | < 10.0 orDET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form ot DET1 * 10PET2

Algorithm

RoutineLFDQH computes the determinant of a complex Hermitian positive
definite band coefficient matrix. To compute the determinant, the coefficient

matrix must first undergo & R factorization. This may be done by calling
eitherLFCQH, page 184, ot FTQH, page 187. The formula dat= detR” detR =

(detR)2 is used to compute the determinant. Since the determinant of a triangular
matrix is the product of the diagonal elements,

det R= I_li'\ilRi

LFDQH is based on the LINPACK routir@BDI ; see Dongarra et al. (1979).

Example

The determinant is computed for &% complex Hermitian positive definite
band matrix with one codiagonal.

Decl are vari abl es
| NTEGER LDA, LDFAC, N, NCODA, NOUT
PARAMETER (LDA=2, N=5, LDFAC=2, NCODA=1)
REAL DET1, DET2
COVPLEX A(LDA, N), FAC(LDFAC, N)

Set values for Ain band Hermtian form

A=( 0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i )
( 2.0+40.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i )

DATA A/ (0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),
& (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

Factor the matrix

CALL LFTQH (N, A, LDA, NCODA, FAC, LDFAQ)
Conput e the det erm nant

CALL LFDQH (N, FAC, LDFAC, NCODA, DET1, DET2)
Print results

CALL UMACH (2, NaOUT)

VRI TE (NOUT, 99999) DET1, DET2

99999 FORMAT (' The determinant of A is *,F6.3," * 10**',F2.0)

END

Output

The determinant of Ais 1.736 * 10**3.
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LSLXG/DLSLXG (Single/Double precision)

Solve a sparse system of linear algebraic equations by Gaussian elimination.

Usage

CALL LSLXG (N, Nz, A, IROW JCOL, B, |PATH, |PARAM RPARAM
X)

Arguments

N — Number of equations. (Input)
NZ — The number of nonzero coefficients in the linear system. (Input)

A — Vector of length\z containing the nonzero coefficients of the linear system.
(Input)

IROW — Vector of lengtiNz containing the row numbers of the corresponding
elements im. (Input)

JCOL — Vector of lengtiNz containing the column numbers of the
corresponding elementsin (Input)

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefix = b is solved.

| PATH = 2 means the systeﬁf x =bis solved.

IPARAM — Parameter vector of length 6. (Input/Output)
Setl PARAM1) to zero for default values bPARAM andRPARAM
See Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

X — Vector of lengthN containing the solution to the linear system. (Output)

Comments
1. Automatic workspace usage is at least

LSLXG 19N+ 5* MAXNZ units, or
DLSLXG 21N + 6* MAXNZ units.

MAXNZ is the maximal number of nonzero elements at any stage of the
Gaussian elimination. In the absence of other information, sé#ixg
equal to 3 Nz is recommended. Higher or lower values may be used
depending on fill-in, seePARAM5) in Comment 3.

Workspace may be explicitly provided, if desired, by use of
L2LXEDL2LXG. The reference is
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CALL L2LXG (N, Nz, A, IROW JCOL, B, |PATH,
| PARAM RPARAM X, WK, LWK, [|WK, LIWK)

The additional arguments are as follows:

WK — Real work vector of lengthvK.

LWK — The length ofAK, LWK should be at leastNe+ MAXNZ.

IWK — Integer work vector of length WK.

LIWK — The length of WK, LI WK should be at least NA 4* MAXNZ.

The workspace limit is determined B¥XNz, where
MAXNZ = M NO(LWK- 2N, | NT(0.25(LI VK- 17N)))

Informational errors

Type Code
3 1 The coefficient matrix is numerically singular.
3 2 The growth factor is too large to continue.
3 3 The matrix is too ill-conditioned for iterative

refinement.

If the default parameters are desiredUfitXG, then set PARAM1) to

zero and call the routineSLXG. Otherwise, if any nondefault parameters
are desired for PARAMor RPARAM then the following steps should be
taken before callingSLXG.

CALL L4LXG (| PARAM RPARAM
Set nondefault values for desiredARAM RPARAM elements.

Note that the call ta4LXG will setl PARAMandRPARAMto their default
values, so only nondefault values need to be set above.

IPARAM — Integer vector of length 6.
| PARAM1) = Initialization flag.

| PARAM2) = The pivoting strategy

| PARAM2) Action

1 Markowitz row search

2 Markowitz column search

3 Symmetric Markowitz search
Default: 3.

I PARAM3) = The number of rows which have least numbers of nonzero
elements that will be searched for a pivotal element.
Default: 3.

| PARAM4) = The maximal number of nonzero elementa &t any stage
of the Gaussian elimination. (Output)
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I PARAM(5) = The workspace limit.

| PARAM5) Action

0 Default limit, see Comment 1.

integer Thisinteger value replaces the default workspace
limit.

When L2LXGiscadled, the values of LWK and LI VK are
used instead of | PARAM5).
Default: 0.

| PARAM6) = Iterative refinement is done when this is nonzero.
Default: O.

RPARAM — Real vector of length 5.
RPARAM1) = The upper limit on the growth factor. The computation
stops when the growth factor exceeds the limit.

Default: 10°.

RPARAM?2) = The stability factor. The absolute value of the pivotal
element must be bigger than the largest element in absolute value in its

row divided byRPARAM?2).
Default: 10.0.

RPARAM3) = Drop-tolerance. Any element in the lower triangular factor
L will be removed if its absolute value becomes smaller than the drop-
tolerance at any stage of the Gaussian elimination.

Default: 0.0.

RPARAM4) = The growth factor. It is calculated as the largest element in
absolute value in at any stage of the Gaussian elimination divided by
the largest element in absolute value in the orighmahtrix. (Output)
Large value of the growth factor indicates that an appreciable error in
the computed solution is possible.

RPARAM5) = The value of the smallest pivotal element in absolute value.
(Output)

If double precision is required, th@n4LXGis called andRPARAMIs
declared double precision.

Algorithm

Consider the linear equation

Ax=Db

whereA is an x n sparse matrix. The sparse coordinate format for the matrix
requires one real and two integer vectors. The real arcaytains all the
nonzeros irA. Let the number of nonzeros be. The two integer arrays ow
andj col , each of lengthz, contain the row and column numbers for these
entries inA. That is
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A rowii col @=al), 1=1,..,nz

with all other entriesin A zero.

The routine LSLXG solves a system of linear algebraic equations having areal
sparse coefficient matrix. It first uses the routine LFTXG (page 199) to perform an
LU factorization of the coefficient matrix. The solution of the linear systemis
then found using LFSXG (page 204).

The routine LFTXG by default uses a symmetric Markowitz strategy (Crowe et al.
1990) to choose pivots that most likely would reduce fill-ins while maintaining
numerical stability. Different strategies are also provided as options for row
oriented or column oriented problems. The algorithm can be expressed as

PAQ=LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively.

Finally, the solution x is obtained by the following calculations:
1)Lz=Pb
2)Uy=z
3) x=Qy

Example

As an example consider the 6 x 6 linear system:

10 0 0 0 0 O
0 10 -3 -1 0 ©
|0 0 15 0 0 O
A%l 2 0 0 10 -1 0
-1 0 0 -5 1 -3
-1 -2 0 0 0 6|

Letx” =(1, 2, 3,4,5,6)sothat Ax = (10, 7, 45, 33,-34, 31) . The number of
nonzerosin Aisnz = 15. The sparse coordinate form for Aisgiven by:

irow 6 2 3 2 4 4 5 5 55 1 6 6 2 4
jcoo 6 2 3 3 4 5 1 6 45 1 1 2 4 1
a 6 10 15 -3 10 -1 -1 3 5110 -1 -2 -1 -2
INTEGER N, NZ
PARAMETER (N=6, Nz=15)
c INTEGER | PARAM6), |PATH, |RONNZ), JCOL(NZ)
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REAL

A(Nz), B(N, RPARAM5), X(N)

L4LXG, LSLXG WRRRN

10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,
-1, -2,/

, 7., 45., 33., -34., 31./

6, 2, 3, 2, 4, 4, 5 5 5, 5 1, 6, 6, 2, 4/

6, 2, 3, 3, 4, 5 1, 6, 4, 5 1, 1, 2, 4, 1/

Change a default paranmeter

CALL L4ALXG (| PARAM RPARAM

= 203
Sol ve for X

CALL LSLXG (N, Nz, A, IROW JCOL, B, |PATH, |PARAM RPARAM X)

EXTERNAL
c
DATA A/ 6.,
& -2,
DATA B/ 10.
DATA | ROW
DATA JCOL/
c
| PATH = 1
c
| PARAM( 5)
c
c

CALLWRRRN ('x’, 1, N, X, 1, 0)

END

X
1 2 3 4
1.000 2.000 3.000

Output

5 6
4.000 5.000 6.000

LFTXG/DLFTXG (Single/Double precision)

Compute the LU factorization of areal general sparse matrix.

Usage
CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL,

FAC, IRFAC, JCFAC, IPVT, JPVT)
Arguments
N — Number of equations. (Input)
NZ — The number of nonzero coefficients in the linear system. (Input)

A — Vector of length\z containing the nonzero coefficients of the linear system.
(Input)

IROW — Vector of lengtiNz containing the row numbers of the corresponding
elements im. (Input)

JCOL — Vector of lengtiNz containing the column numbers of the
corresponding elementsAn  (Input)

IPARAM — Parameter vector of length 6. (Input/Output)
Setl PARAM1) to zero for default values 0PARAMandRPARAM See
Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.
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NFAC — On input, the dimension of vecteAC. (Input/Output)
On output, the number of nonzero coefficients in the triangular nagmdU.

NL — The number of nonzero coefficients in the triangular matexcluding
the diagonal elements. (Output)

FAC — Vector of lengttNFAC containing the nonzero elementd.aexcluding
the diagonals) in the firsiL locations and the nonzero elementt&Jah NL + 1 to
NFAC locations. (Output)

IRFAC — Vector of lengtiNFAC containing the row numbers of the
corresponding elements AC. (Output)

JCFAC — Vector of lengtiNFAC containing the column numbers of the
corresponding elements#AC. (Output)

IPVT — Vector of lengttN containing the row pivoting information for the)
factorization. (Output)

JPVT — Vector of lengtiN containing the column pivoting information for the
LU factorization. (Output)

Comments

1. Automatic workspace usage is

LFTXG 15N+ 5* MAXNZ units, or
DLFTXG 15N + 6 MAXNZ units.

MAXNZ is the maximal number of nonzero elements at any stage of the
Gaussian elimination. In the absence of other information, sétixigz
equal to 3z is recommended. Higher or lower values may be used
depending on fill-in, seePARAMS5) in Comment 3.

Workspace may be explicitly provided, if desired, by use of
L2TXGEDL2TXG. The reference is

CALL L2TXG (N, Nz, A [ROW JCO., |PARAM RPARAM
NFAC, NL, FAC, | RFAC, JCFAC, |PVT, JPVT,
WK, LWK, WK LIVK)

The additional arguments are as follows:

WK — Real work vector of lengthv.

LWK — The length ofAK, LWK should be at leastAXNz.

IWK — Integer work vector of lengthi VK.

LIWK — The length of VK, LI WK should be at least &5+ 4 OMAXNZ.

The workspace limit is determined B¥XNz, where
MAXNZ = M NO(LWK, | NT(O.25(LIVWK-15N)))
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Informational errors

Type Code
3 1 The coefficient matrix is numerically singular.
3 2 The growth factor is too large to continue.

If the default parameters are desired for LFTXG, then set | PARAM1) to
zero and call the routine LFTXG. Otherwise, if any nondefault parameters
aredesired for | PARAMoOr RPARAM, then the following steps should be
taken before calling LFTXG.

CALL L4ALXG (| PARAM RPARAM
Set nondefault values for desired | PARAM, RPARAMelements.

Note that the call to L4LXGwill set | PARAMand RPARAMtO their default
values, so only nondefault values need to be set above.

The arguments are as follows:

IPARAM — Integer vector of length 6.
| PARAM1) = Initialization flag.

| PARAM2) = The pivoting strategy.

| PARAM2) Action

1 Markowitz row search

2 Markowitz column search

3 Symmetric Markowitz search
Default: 3.

| PARAM3) = The number of rows which have least numbers of nonzero
elements that will be searched for a pivotal element.
Default: 3.

I PARAM4) = The maximal number of nonzero elements &t any stage
of the Gaussian elimination. (Output)

| PARAM5) = The workspace limit.

| PARAM5) Action

0 Default limit, see Comment 1.

integer This integer value replaces the default workspace
limit.

WhenL2TXGis called, the values eMK andLI WK are
used instead dfPARAMD).

| PARAM6) = Not used in.FTXG.
RPARAM — Real vector of length 5.

RPARAM1) = The upper limit on the growth factor. The computation
stops when the growth factor exceeds the limit.

Default: 10°.
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RPARAM2) = The stahility factor. The absolute value of the pivotal
element must be bigger than the largest element in absolute value in its
row divided by RPARAM?2).

Default: 10.0.

RPARAM3) = Drop-tolerance. Any element in the lower triangular factor
L will be removed if its absolute value becomes smaller than the drop-
tolerance at any stage of the Gaussian elimination.

Default: 0.0.

RPARAM4) = The growth factor. It is calculated as the largest element in
absolute valuein A at any stage of the Gaussian elimination divided by
the largest element in absolute value in the original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in
the computed solution is possible.

RPARAMb) = The value of the smallest pivotal element in absolute value.
(Output)

If double precision is required, then DL4LXGis called and RPARAMIs
declared double precision.

Algorithm
Consider the linear equation
Ax=b

where Aisan x n sparse matrix. The sparse coordinate format for the matrix A
requires one real and two integer vectors. Thereal array a contains al the
nonzerosin A. Let the number of nonzeros be nz. The two integer arraysi r ow
andj col , each of length nz, contain the row and column numbers for these
entriesin A. That is

Airowiicol @=2all), =1, ..,nz
with al other entriesin A zero.

The routine LFTXG performs an LU factorization of the coefficient matrix A. It by
default uses a symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots
that most likely would reduce fillins while maintaining numerical stability.
Different strategies are also provided as options for row oriented or column
oriented problems. The agorithm can be expressed as

PAQ=LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively.
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Finally, the solution x is obtained using LFSXG (page 204) by the following

calculations:
1) Lz=Pb
2)Uy=z
3) x=Qy
Example

Asan example, consider the 6 x 6 matrix of alinear system:

10 0 0 O 0 O]
0O 10 -3 -1 0 O
ac|0 0 15 0 0 0
|2 0 0 10 -1 ©
-1 0 0 -5 1 -3
-1 2 0 0 0 6]
The sparse coordinate form for Ais given by:
irow 6 2 3 2 4 4 5 5 55 1 6
jcoo 6 2 3 3 4 5 1 6 45 1 1
a 6 10 15 -3 10 -1 -1 -3 -5 1 10 -1
| NTEGER N, Nz
PARAMETER (N=6, NZ=15)
| NTEGER | PARAM 6), | ROANNZ), JCOL(NZ), NFAC, NL,
& I RFAC(3*Nz), JCFAC(3*Nz), IPVT(N), JPVT(N)
REAL RPARAM 5), A(NZ), FAC(3*Nz)
C
DATA A/ 6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10.,
& -2., -1., -2./
DATA IRONV 6, 2, 3, 2, 4, 4, 5, 5 5, 5 1, 6, 6, 2, 4/
DATA JCcOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
C
NFAC = 3*NzZ
C Use default options
| PARAM(1) = 0
CALL LFTXG (N, Nz, A |ROW JCOL, |PARAM RPARAM NFAC, NL,
& FAC, | RFAC, JCFAC, | PVT, JPVT)
C
CALL WRRRN (" fac’, 1, NFAC, FAC, 1, 0)
CALL WRIRN (irfac’, 1, NFAC, IRFAC, 1, 0)
CALL WRIRN (' jefac’, 1, NFAC, JCFAC, 1, 0)
CALLWRIRN (' p’, 1, N, IPVT, 1, 0)
CALLWRIRN (g, 1, N, JPVT, 1, 0)
C

END

6
2
-2

2
4
-1

4
1
-2
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1
-0.10

-1.00

w P
i

N -
w

W
[EnY

2
-5.00
12
30. 00
3 4
4 5
3 4
1 4
p
3 4
6 2
q
3 4
2 6

Output

fac
3 4 5 6 7 8 9 10
-0.20 -0.10 -0.10 -1.00 -0.20 4.90 -5.10 1.00
13 14 15 16
6. 00 -2.00 10. 00 15. 00
irfac
5 6 7 8 9 10 11 12 13 14 15 16
5 6 6 6 5 5 4 4 3 3 2 1
jcfac
5 6 7 8 9 10 11 12 13 14 15 16
2 5 2 6 6 5 6 4 4 3 2 1
5 6
5 4
5 6
5 4

LFSXG/DLFSXG (Single/Double precision)

Solve a sparse system of linear equations given the LU factorization of the
coefficient matrix.

Usage

CALL LFSXG (N, NFAC, NL, FAC, |RFAC, JCFAC, |PVT, JPVT, B,
| PATH, X)

Arguments

N — Number of equations. (Input)

NFAC — The number of nonzero coefficientsiaC as output from subroutine
LFTXGDLFTXG. (Input)

NL — The number of nonzero coefficients in the triangular matgxcluding
the diagonal elements as output from subroutfeXGDLFTXG.  (Input)

FAC — Vector of lengtiNFAC containing the nonzero elementd.afexcluding
the diagonals) in the firsiL locations and the nonzero element&Jah NL + 1 to
NFAC locations as output from subroutinETXGDLFTXG.  (Input)

IRFAC — Vector of lengtiNFAC containing the row numbers of the
corresponding elements BAC as output from subroutind=TXGDLFTXG.
(Input)

JCFAC — Vector of lengtiNFAC containing the column numbers of the
corresponding elements BAC as output from subrouting=TXGDLFTXG.
(Input)
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IPVT — Vector of lengthN containing the row pivoting information for the
factorization as output from subroutinETXGDLFTXG. (Input)

JPVT — Vector of lengtiN containing the column pivoting information for the
LU factorization as output from subroutibETXG/DLFTXG. (Input)

B — Vector of lengthN containing the right-hand side of the linear system.
(Input)

IPATH — Path indicator. (Input)
| PATH = 1 means the systefix = B is solved.

| PATH = 2 means the systeﬁfx =B is solved,

X — Vector of lengthN containing the solution to the linear system. (Output)

Algorithm
Consider the linear equation
Ax=b

whereA is an x n sparse matrix. The sparse coordinate format for the nfatrix
requires one real and two integer vectors. The real arcaytains all the
nonzeros irA. Let the number of nonzeros be. The two integer arrays ow
andj col , each of lengthz, contain the row and column numbers for these
entries inA. That is

A rowni col i =al), 1=1,...,nz

with all other entries i\ zero. The routiné FSXG computes the solution of the
linear equation given itsU factorization. The factorization is performed by
calling LFTXG (page 199). The solution of the linear system is then found by the
forward and backward substitution. The algorithm can be expressed as

PAQ=LU

whereP andQ are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), ahdandU are lower and upper triangular
matrices, respectively. Finally, the solutiois obtained by the following
calculations:

1)Lz=Pb
2)Uy=z
3)x=Qy
For more details, see Crowe et al. (1990).

Example

As an example, consider thex® linear system:
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10 0 0 0 0 O
0 10 -3 -1 0 0
0 0 15 0 0 O
2 0 0 10 -1 0
-1 0 0 -5 1 -3
-1 -2 0 0 0 6

Let

X =(1,2,3,4,5,6)
so that Ax, = (10, 7, 45, 33,-34, 31), and

x5 =(6,5,4,32,)

so that Ax, = (60, 35, 60, 16, —22, 10) T The sparse coordinate form for Ais

given by:
irow 6 2 3 2 4 4 5 5 55 1 6 6
jcoo 6 2 3 3 4 5 1 6 45 1 1 2
a 6 10 15 -3 10 -1 -1 -3 -5 1 10 -1 -2

| NTEGER N, NZ
PARAMETER (N=6, NZ=15)

INTEGER | PARAM 8), |PATH, I RONNZ), JCOL(NZ), NFAC,
& NL, |RFAC(3*Nz), JCFAC(3*Nz), IPVT(N), JPVT(N)
REAL RPARAM 10), X(N), A(NZ), B(N,2), FAC(3*N2)

CHARACTER Tl TLE(2)*2

DATA A/6., 10., 15 -3., 10., -1., -1., -3., -5., 1., 10., -1.,

Ro

-2., -1., -2,/
DATA B/ 10., 7., 45., 33., -34.,
60., 35., 60., 16., -22., -
DATA IROWV 6, 2, 3, 2, 4, 4, 5,
DATA JCaL/e6, 2, 3, 3, 4, 5, 1
DATA TITLE/'x1", 'x2'/

R

NFAC = 3*Nz
C Use default options
IPARAM(1) =0
C Perform LU factorization
CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL,
& FAC, IRFAC, JCFAC, IPVT, JPVT)
C
IPATH=1
DO101=1,2
C Solve A * X(i) = B(i)
CALL LFSXG (N, NFAC, NL, FAC, IRFAC, JCFAC, IPVT, JPVT,
& B(1,1), IPATH, X)
C

2
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CALL WRRRL (TITLE(l), 1, N, X, 1, 0, ’(f4.1)’, 'NONE’,

& 'NUMBER?)
10 CONTINUE
END
Output
x1

1 2 3 4 5

6

10 2.0 3.0 40 50 6.0

x2
1 2 3 4 5

6

6.0 50 40 30 2.0 1.0

LSLZG/DLSLZG (Single/Double precision)

Solve a complex sparse system of linear equations by Gaussian elimination.

Usage
CALL LSLZG (N, Nz, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM,

X)
Arguments
N — Number of equations. (Input)
NZ — The number of nonzero coefficients in the linear system. (Input)

A — Complex vector of lengthiz containing the nonzero coefficients of the
linear system. (Input)

IROW — Vector of lengtiNz containing the row numbers of the corresponding
elements im. (Input)

JCOL — Vector of lengtiNz containing the column numbers of the
corresponding elementsAn  (Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

IPATH — Path indicator. (Input)

| PATH = 1 means the systefix = b is solved.

| PATH = 2 means the systeM{ x =bis solved.

IPARAM — Parameter vector of length 6. (Input/Output)
Setl PARAM1) to zero for default values bPARAMandRPARAM See
Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

X — Complex vector of lengt containing the solution to the linear system.
(Output)
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Comments
1 Automatic workspace usage is at least

LSLZG 21N+ 6* MAXNZ units, or
DLSLZG 23N + 8 * MAXNZ units.

MAXNZ is the maximal number of nonzero elements at any stage of the
Gaussian elimination. In the absence of other information, setting MAXNZ
equal to 3Nz is recommended. Higher or lower values may be used
depending on fill-in, see | PARAM5) in Comment 3.

Workspace may be explicitly provided, if desired, by use of
L2LZGEDL2LZG Thereferenceis

CALL L2LZG (N, Nz, A, IROW JCOL, B, |PATH, |PARAM
RPARAM X, WK, LWK, |WK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of lengthvK.

LWK — The length ofAK, LWK should be at leasthNg MAXNZ.

IWK — Integer work vector of length WK.

LIWK — The length of WK, LI WK should be at least NA 4* MAXNZ.
The workspace limit is determined byXNz, where

MAXNZ = M NO( LVK- 2N, | NT(0. 25(LI VK- 17N)))

2. Informational errors
Type Code
3 1 The coefficient matrix is numerically singular.
3 2 The growth factor is too large to continue.
3 3 The matrix is too ill-conditioned for iterative
refinement.
3. If the default parameters are desiredlfsitZG, then set PARAM1) to

zero and call the routinesLzG. Otherwise, if any nondefault parameters
are desired for PARAMor RPARAM then the following steps should be
taken before callingSLZG.

CALL L4LZG (| PARAM RPARAM
Set nondefault values for desiredARAM RPARAM elements.

Note that the call ta4LzG will setl PARAMandRPARAMLO their default
values, so only nondefault values need to be set above. The arguments
are as follows:

IPARAM — Integer vector of length 6.
| PARAM1) = Initialization flag.
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| PARAM2) = The pivoting strategy.

| PARAM2) Action

1 Markowitz row search

2 Markowitz column search

3 Symmetric Markowitz search
Default: 3.

| PARAM3) = The number of rows which have |east numbers of nonzero
elements that will be searched for a pivotal element.
Default: 3.

| PARAM4) = The maximal number of nonzero elementsin A at any stage
of the Gaussian elimination. (Output)

| PARAM5) = The workspace limit.

| PARAM5) Action

0 Default limit, see Comment 1.

integer Thisinteger value replaces the default workspace
limit.

When L2LZGis cadled, the values of LWK and LI VK are
used instead of | PARAM5).
Default: 0.

| PARAM6) = Iterative refinement is done when thisis nonzero.
Defaullt: 0.

RPARAM — Real vector of length 5.

RPARAM1) = The upper limit on the growth factor. The computation
stops when the growth factor exceeds the limit.

Default: 10°.

RPARAM2) = The stability factor. The absolute value of the pivotal
element must be bigger than the largest element in absolute value in its
row divided byRPARAM?2).

Default: 10.0.

RPARAM3) = Drop-tolerance. Any elementAnwill be removed if its
absolute value becomes smaller than the drop-tolerance at any stage of
the Gaussian elimination.

Default: 0.0.

RPARAM4) = The growth factor. It is calculated as the largest element in
absolute value i at any stage of the Gaussian elimination divided by
the largest element in absolute value in the orighmahtrix. (Output)
Large value of the growth factor indicates that an appreciable error in
the computed solution is possible.

RPARAM5) = The value of the smallest pivotal element in absolute value.
(Output)
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If double precision is required, then DL4LZGis called and RPARAMIS
declared double precision.

Algorithm
Consider the linear equation
Ax=b

where Aisan x n complex sparse matrix. The sparse coordinate format for the
matrix A requires one complex and two integer vectors. The complex array a
contains all the nonzerosin A. Let the number of nonzeros be nz. The two integer
arraysi rowandj col , each of length nz, contain the row and column numbers
for theseentriesin A. That is

Airowii col @=2all), =1, ..,nz
with al other entriesin A zero.

The subroutine LSLZG solves a system of linear algebraic equations having a
complex sparse coefficient matrix. It first uses the routine LFTZG (page 212) to
perform an LU factorization of the coefficient matrix. The solution of the linear
system is then found using LFSZG (page 217). The routine LFTZG by default uses
asymmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most
likely would reduce fill-ins while maintaining numerical stability. Different
strategies are also provided as options for row oriented or column oriented
problems. The agorithm can be expressed as

PAQ=LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively. Finaly, the solution x is obtained by the following

calculations:
1)Lz=Pb
2)Uy=z
3) x=Qy
Example

Asan example, consider the 6 x 6 linear system:

210« Chapter 1: Linear Systems IMSL MATH/LIBRARY



[ 10+7i 0 0 0 0 0
0 3+2i -3+0i -1+2i 0 0
_ 0 0 4+2i 0 0 0
A=l oy 0 0 1+6i -1+3i 0
-5+ 4i 0 0 -5+0i 12+21 -7+T7i
-1+12i  -2+8 0 0 0 3+7]
Let
x| =(1+i,2+2i,3+3i,4+4i,5+5i, 6+ 6i)
so that

Ax = (3 + 17i, =19 + 5i, 6 + 18i, —38 + 32i, —63 + 49i, —57 + 83i) "

The number of nonzerosin Aisnz = 15. The sparse coordinate form for Ais
given by:

irow 6 2 2 4 3 5 6 556 4 25
jcol 6 2 3531141452 14°€6
| NTEGER N, Nz
PARAMETER (N=6, NZ=15)
C
| NTEGER | PARAM 6), | PATH, | RONNZ), JCOL(NZ)
REAL RPARAM 5)
COVPLEX A(NZ), B(N), X(N
EXTERNAL LSLZG WRCRN
C
DATA A/ (3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),
& (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),
& (12.0,2.0), (-2.0,8. 0) (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/
DATA B/ (3.0,17.0), (-109. 50) (6.0,18.0), (-38.0,32.0),
& (-63.0,49.0), (-57.0,83.0)/
DATA ROV 6, 2, 2, 4, 3, 1 5 4, 6, 5 5 6, 4, 2, 5/
DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/
C
| PATH =1
C Use default options
| PARAM(1) = 0
CALL LSLZG(N Nz, A, IROWN JCOL, B, |PATH, |PARAM RPARAM X)
C
CALL WRCRN (X', N, 1, X, N, 0)
END
Output
X
1 (/1.000, 1.000)
2 (12.000, 2.000)
3 (/3.000, 3.000)
4 (4.000, 4.000)
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( 5.000, 5.000)

5
6 ( 6.000, 6.000)

LFTZG/DLFTZG (Single/Double precision)

Compute the LU factorization of a complex general sparse matrix.

Usage
CALL LFTZG (N, Nz, A, |IROW JCOL, |PARAM RPARAM NFAC, NL,

FAC, | RFAC, JCFAC, | PVT, JPVT)
Arguments
N — Number of equations. (Input)
NZ — The number of nonzero coefficients in the linear system. (Input)

A — Complex vector of lengtlz containing the nonzero coefficients of the
linear system. (Input)

IROW — Vector of lengtiNz containing the row numbers of the corresponding
elements iA.  (Input)

JCOL — Vector of lengtiNz containing the column numbers of the
corresponding elements4n  (Input)

IPARAM — Parameter vector of length 6. (Input/Output)
Setl PARAM1) to zero for default values obPARAMandRPARAM See
Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

NFAC — On input, the dimension of vecteAC. (Input/Output)
On output, the number of nonzero coefficients in the triangular nagmdU.

NL — The number of nonzero coefficients in the triangular matexcluding
the diagonal elements. (Output)

FAC — Complex vector of lengthFAC containing the nonzero elementdof
(excluding the diagonals) in the firgt locations and the nonzero element&of
in NL + 1 toNFAC locations. (Output)

IRFAC — Vector of lengtiNFAC containing the row numbers of the
corresponding elements AC. (Output)

JCFAC — Vector of lengtiNFAC containing the column numbers of the
corresponding elements#AC. (Output)

IPVT — Vector of lengttN containing the row pivoting information for thel
factorization. (Output)
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JPVT — Vector of lengthN containing the column pivoting information for the
LU factorization. (Output)

Comments

1.

Automatic workspace usage is

LFTZG 15N+ 6* MAXNZ units, or
DLFTZG 15N + 8* MAXNZ units.

MAXNZ is the maximal number of nonzero elements at any stage of the
Gaussian elimination. In the absence of other information, se#ixg
equal to 3INzZ is recommended. Higher or lower values may be used
depending on fill-in, seePARAMS5) in Comment 3.

Workspace may be explicitly provided, if desired, by use of
L2TZGEDL2TZG The reference is

CALL L2TZG (N, Nz, A [ROW JCO., |PARAM RPARAM
NFAC, NL, FAC, | RFAC, JCFAC, |PVT, JPVT,
WK, LWK, WK LIVK)

The additional arguments are as follows:

WK — Complex work vector of lengttvK.

LWK — The length ofAK, LWK should be at leastAXNz.

IWK — Integer work vector of lengthi VK.

LIWK — The length of VK, LI WK should be at least &5+ 4* MAXNZ.

The workspace limit is determined B¥XNz, where
MAXNZ = M NO(LWK, | NT(0.25(LIWK-15N)))

Informational errors

Type Code
3 1 The coefficient matrix is numerically singular.
3 2 The growth factor is too large to continue.

If the default parameters are desiredUerZG, then set PARAM1) to

zero and call the routing=TZG. Otherwise, if any nondefault parameters
are desired for PARAMor RPARAM then the following steps should be
taken before callingFTZG

CALL L4LZG (| PARAM RPARAM
Set nondefault values for desireBARAM, RPARAM elements.

Note that the call ta4LzZG will setl PARAMandRPARAMtoO their default
values so only nondefault values need to be set above. The arguments
are as follows:

IPARAM — Integer vector of length 6.
| PARAM1) = Initialization flag.
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| PARAM2) = The pivoting strategy.

| PARAM2) Action

1 Markowitz row search

2 Markowitz column search

3 Symmetric Markowitz search
Default: 3.

| PARAM3) = The number of rows which have |least numbers of nonzero
elements that will be searched for a pivotal element.
Default: 3.

I PARAM4) = The maximal number of nonzero elementsin A at any
stage of the Gaussian elimination. (Output)

| PARAM5) = The workspace limit.

| PARAMS) Action

0 Default limit, see Comment 1.

integer Thisinteger value replaces the default workspace
limit.

When L2TZGis cadled, the values of LWK and LI VK are
used instead of | PARAM).
Default: 0.

| PARAM6) = Not used in LFTZG.
RPARAM — Real vector of length 5.

RPARAM1) = The upper limit on the growth factor. The computation
stops when the growth factor exceeds the limit.

Default: 10°.

RPARAM2) = The stability factor. The absolute value of the pivotal
element must be bigger than the largest element in absolute value in its
row divided byRPARAM?2).

Default: 10.0.

RPARAM3) = Drop-tolerance. Any element in the lower triangular factor
L will be removed if its absolute value becomes smaller than the drop-
tolerance at any stage of the Gaussian elimination.

Default: 0.0.

RPARAM4) = The growth factor. It is calculated as the largest element in
absolute value in at any stage of the Gaussian elimination divided by
the largest element in absolute value in the orighmahtrix. (Output)
Large value of the growth factor indicates that an appreciable error in
the computed solution is possible.

RPARAM5) = The value of the smallest pivotal element in absolute value.
(Output)
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If double precision is required, then DL4LZGis called and RPARAMIS
declared double precision.

Algorithm
Consider the linear equation
Ax=b

where A isacomplex n x n sparse matrix. The sparse coordinate format for the
matrix A requires one complex and two integer vectors. The complex array a
contains all the nonzerosin A. Let the number of nonzeros be nz. The two integer
arraysi rowandj col , each of length nz, contain the row and column indices for

theseentriesin A. That is
Airowii col @=2all), =1, ..,nz
with al other entriesin A zero.

Theroutine LFTZG performs an LU factorization of the coefficient matrix A. It
uses by default a symmetric Markowitz strategy (Crowe et al. 1990) to choose
pivots that most likely would reduce fill-ins while maintaining numerical stability.
Different strategies are also provided as options for row oriented or column
oriented problems. The agorithm can be expressed as

PAQ=LU

where P and Q are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), and L and U are lower and upper triangular
matrices, respectively.

Finally, the solution x is obtained using LFSZG (page 217) by the following

calculations:
1) Lz=Pb
2)Uy=z
3)x=Qy
Example
As an example, the following 6 x 6 matrix is factorized, and the outcome is
printed:
[ 10+7i 0 0 0 0 0]
0 3+2i -3+0i -1+2i 0 0
3 0 0 4+ 2i 0 0 0
A oog 0 0 1+6i -1+3 0
-5+ 4 0 0 -5+0i 12+2i -7+7i
| -1+121  -2+8i 0 0 0 3+7i |
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The sparse coordinate form for A is given by:

irow 6 2 2 4 3 15 46 556 4 25
jcol 6 2 3531141452146
INTEGER N, NFAC, NZ
PARAVETER (N=6, NZ=15, NFAC=3*NZ)
C SPECI FI CATI ONS FOR LOCAL VAR ABLES
INTEGER | PARAM 6), IPVT(N), | RFAC(NFAC), |RONNZ), JCFAC(NFAQ),
& JCOL(NZ), JPVT(N), NL
REAL RPARAM 5)

COWLEX  A(NZ), FAC(NFAC)

DATA A/ (3.0,7.0), (3020)
(10.0,7.0), (-5.
(12.0,2.0), (-2.

DATA IROW6, 2, 2, 4

DATA JCOL/6, 2, 3, 5

1.0,3.0), (4.0,2.0),
2.0), (-5.0,0.0),
,2.0), (-7.0,7.0)/

, 5/
6/

Ro Ro

%)
3

)

AN

| PARAM(1) =0
C Use default options
CALL LFTZG (N, Nz, A, IROW JCO., | PARAM RPARAM NFAC, NL, FAC,
& | RFAC, JCFAC, |PVT, JPVT)

CALL WRCRN (fac’,NFAC,1,FAC,NFAC,0)
CALL WRIRN (irfac ', 1, NFAC, IRFAC, 1, 0)
CALL WRIRN (’jefac’, 1, NFAC, JCFAC, 1, 0)
CALLWRIRN (Cp’, 1, N, IPVT, 1, 0)
CALLWRIRN (" q’, 1, N, JPVT, 1, 0)

END

Output
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1 2 3 4
2 3 1 4

p
1 2 3 4
3 1 6 2

q
1 2 3 4
3 1 2 6

jcfac

5 6 7 8 9 10 11 12 13 14 15 16
2 5 2 6 6 5 6 4 4 3 2 1
5 6
5 4
5 6
5 4

LFSZG/DLFSZG (Single/Double precision)

Solve a complex sparse system of linear equations given the LU factorization of
the coefficient matrix.

Usage

CALL LFSzZG (N, NFAC, NL, FAC, | RFAC, JCFAC, |PVT, JPVT, B,
| PATH, X)

Arguments

N — Number of equations. (Input)

NFAC — The number of nonzero coefficientsHAC as output from subroutine
LFTZGDLFTZG. (Input)

NL — The number of nonzero coefficients in the triangular matexcluding
the diagonal elements as output from subroutiezGDLFTZG. (Input)

FAC — Complex vector of lengthFAC containing the nonzero elementdof
(excluding the diagonals) in the firgt locations and the nonzero element&of
in NL+ 1 toNFAC locations as output from subroutinETZGDLFTZG. (Input)

IRFAC — Vector of lengttNFAC containing the row numbers of the
corresponding elements BAC as output from subrouting=TZGDLFTZG.
(Input)

JCFAC — Vector of lengtiNFAC containing the column numbers of the
corresponding elements FAC as output from subroutind=TZGDLFTZG.
(Input)

IPVT — Vector of lengttN containing the row pivoting information for the
factorization as output from subroutibETZGDLFTZG.  (Input)

JPVT — Vector of lengthN containing the column pivoting information for the
LU factorization as output from subroutibETZGDLFTZG. (Input)

B — Complex vector of lengtl containing the right-hand side of the linear
system. (Input)
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IPATH — Path indicator. (Input)
| PATH = 1 means the systefix = b is solved.

| PATH = 2 means the systeM{ x=bis solved .
X — Complex vector of lengtl containing the solution to the linear system.
(Output)
Algorithm
Consider the linear equation
Ax=b

whereA is a complexh x n sparse matrix. The sparse coordinate format for the
matrix A requires one complex and two integer vectors. The complexarray
contains all the nonzeros M Let the number of nonzeros be. The two integer
arraysi r owandj col , each of lengthz, contain the row and column numbers
for these entries iA. That is

A rowni col »=al), 1=1,...,nz
with all other entries i zero.

The routineL FSZG computes the solution of the linear equation givehlits
factorization. The factorization is performed by callifgr ZG (page 212). The
solution of the linear system is then found by the forward and backward
substitution. The algorithm can be expressed as

PAQ=LU

whereP andQ are the row and column permutation matrices determined by the
Markowitz strategy (Duff et al. 1986), ahdandU are lower and upper triangular
matrices, respectively.

Finally, the solutiorx is obtained by the following calculations:

1)Lz=Pb
2)Uy=z
3)x=Qy

For more details, see Crowe et al. (1990).

Example

As an example, consider the<® linear system:
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[ 10+7i 0 0 0 0 0
0 3+2i -3+0i -1+2i 0 0
v 0 0  4+2i 0 0 0
-2-4i 0 0 1+61 -1+3i 0
-5+ 4 0 0 -5+0i 12+2i -—7+7i
|—-1+12i  -2+8i 0 0 0 3+7 |
Let
X," = (1+i,2+2i,3+3i,4+4i,5+5i,6+6i)
so that
Ax, = (3+17i, -19 + 5i, 6 + 18i, —38 + 32i, -63 + 49i, -57 + 83i) "
and
X" = (6+6i,5+5i,4+4i,3+31,2+2i,1+i)
so that

Ax, = (18 + 102i, —16 + 16i, 8 + 24i, 11 —11i, —63 + 7i, =132 + 106i)”

The sparse coordinate form for A is given by:

irow 6 2 2 4 315 46 556 425
jcol 6 2 3531141452146

INTEGER N, NZ

PARAMETER (N=6, Nz=15)

INTEGER | PARAM6), |PATH, IPVT(N), |RFAC(3*NZ), | RONNZ),

& JCFAC(3*Nz), JCOL(NZ), JPVT(N), NFAC, NL

REAL RPARAM_ 5)

COWLEX  A(NZ), B(N,2), FAC(3*Nz), X(N)

CHARACTER Tl TLE(2) *2

2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),
4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),
8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/
.0,5.0), (6.0,18.0), (-38.0,32.0),
0,83.0), (18.0,102.0), (-16.0,16.0),

DATA A/ (3.0,7.0), (3.
& (10.0,7.0), (-5.
& (12.0,2.0), (-2.
DATA B/ (3.0,17.0), (-
& (
& 1
4
5

9
(-63.0,49.0), 7.
1.0,-11.0), (

3,
3

(8.0,24.0), (- -63.0,7.0), (-132.0,106.0)/
DATA | ROW 6, 2, 2, 1, 5 4, 6, 5 5, 6, 4, 2, 5
DATA JCOL/ 6, 2, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/

DATA TITLE/x1','x2'/

NFAC = 3*NZ
Use default options
IPARAM(1) =0
Perform LU factorization
CALL LFTZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FAC,
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&

| PATH
DO 10

| RFAC, JCFAC, | PVT, JPVT)

1
= 1,2
Solve A * X(i) = B(i)

CALL LFSZG (N, NFAC, NL, FAC, | RFAC, JCFAC, |PVT, JPVT,

&

B(1,1), IPATH X

CALL WRCRN (TITLE(l1), N, 1, X, N, 0)
10 CONTI NUE

END

CUAWNR
PR
oahrwNE

o

<)

e

NN NN NN
N Al
o
S
o

OO WNE

000,

ogakwnE

PNWAGOO

. 000)

LSLXD/DLSLXD (Single/Double precision)

Solve a sparse system of symmetric positive definite linear algebraic equations by
Gaussian elimination.

Usage
CALL LSLXD (N, Nz, A, ITRON JCO., B, |ITVWKSP, X)

Arguments
N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the lower triangle of the linear
system. (Input)

A — Vector of lengtiNz containing the nonzero coefficients in the lower triangle
of the linear system. (Input)

The sparse matrix has nonzeroes only in entrie®¥/(i), JCOL(i)) fori = 1 to

Nz, and at this location the sparse matrix has vafi)e

IROW — Vector of lengtiNz containing the row numbers of the corresponding
elements in the lower triangle &f (Input)
Notel ROW(i) = JCOL(i), since we are only indexing the lower triangle.
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JCOL — Vector of lengtiNz containing the column numbers of the
corresponding elements in the lower triangl@.of (Input)

B — Vector of lengttN containing the right-hand side of the linear system.

(Input)

I TWKSP — The total workspace needed. (Input)
If the default is desired, seTVWKSP to zero. See Comment 1 for the default.

X — Vector of lengthN containing the solution to the linear system. (Output)

Comments

1.

Automatic workspace usage is
LSLXD 18N+ 2INZ + 9 units, or

DLSLXD 20N + 27NZ + 9 units. This is the defaultliffksp is zero. If
the value is positive, TWKSP units are automatically allocated.

Workspace may be explicitly provided, if desired, by use of
L2LXD/DL2LXD. The reference is

CALL L2LXD (N, Nz, A, IROW JCOL, B, X, |PER
| PARAM  RPARAM WK, LWK, |WK, LIWK)

The additional arguments are as follows:

IPER — Vector of lengthN containing the ordering.

IPARAM — Integer vector of length 4. See Comment 3.
RPARAM — Real vector of length 2. See Comment 3.

WK — Real work vector of lengthvK.

LWK — The length ofAK, LWK should be at leastiN+ 6NZ.

WK — Integer work vector of length WK.

LIWK — The length of WK, LI WK should be at least &5+ 15\NZ + 9.
Note that the parametemWKSP is not an argument to this routine.

Informational errors

Type Code
4 1 The coefficient matrix is not positive definite.
4 2 A column without nonzero elements has been found in

the coefficient matrix.

If the default parameters are desiredLfi XD, then set PARAM1) to

zero and call the routine2L XD. Otherwise, if any nondefault parameters
are desired for PARAMor RPARAM then the following steps should be
taken before calling2LXD.

CALL L4LXD (| PARAM RPARAM
Set nondefault values for desiredARAM RPARAM elements.
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Note that the call to LALXD will set | PARAMand RPARAMtO their default
values, so only nondefault values need to be set above. The arguments
are asfollows:

IPARAM — Integer vector of length 4.
I PARAM1) = Initialization flag.

| PARAM2) = The numerical factorization method.

| PARAM 2) Action

0 Multifrontal

1 Sparse column

Default: 0.

I PARAM3) = The ordering option.

| PARAM 3) Action

0 Minimum degree ordering

1 User's ordering specified inPER
Default: 0.

| PARAM4) = The total number of nonzeros in the factorization matrix.
RPARAM — Real vector of length 2.

RPARAM1) = The value of the largest diagonal element in the Cholesky
factorization.

RPARAM2) = The value of the smallest diagonal element in the Cholesky
factorization.

If double precision is required, th@n4LXD is called andRPARAMIS
declared double precision.
Algorithm
Consider the linear equation
Ax=b

whereA is sparse, positive definite and symmetric. The sparse coordinate format
for the matrixA requires one real and two integer vectors. The real array
contains all the nonzeros in thaver triangle of A including the diagonal. Let the
number of nonzeros be. The two integer arrays ow andj col , each of length

nz, contain the row and column indices for these entriés That is

A rowni col i =al), 1=1,...,nz
irow(i) 2j col (i) i=1,...,nz
with all other entries in the lower triangleAdtero.

The subroutiné SLXD solves a system of linear algebraic equations having a real,
sparse and positive definite coefficient matrix. It first uses the rous@gD
(page 224) to compute a symbolic factorization of a permutation of the
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coefficient matrix. It then calls LNFXD (page 228) to perform the numerical
factorization. The solution of the linear system is then found using LFSXD

(page 232).
The routine LSCXD computes a minimum degree ordering or uses a user-supplied
ordering to set up the sparse data structure for the Cholesky factor, L. Then the
routine LNFXD produces the numerical entriesin L so that we have

PAP =L
Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routinesin Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). Thisisjust the standard factorization method based on the sparse
compressed storage scheme.

Finally, the solution x is obtained by the following calculations:
1)Ly, =Pb

2) LTYz =¥

3 x= PTy2

The routine LFSXD accepts b and the permutation vector which determinesP. It
then returns x.

Example

As an example consider the 5 x 5 linear system:

10 0 1 0 2
020 0 0 3
A=| 1 030 4 0
0 0 4 40 5
|2 3 0 5 50

Letx” = (1, 2, 3, 4, 5) so that Ax = (23, 55, 107, 197, 278) ”. The number of
nonzeros in the lower triangle of Aisnz = 10. The sparse coordinate form for the
lower triangle of Aiisgiven by:
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irow 1 2 3 34 4555 5
jcoo 1 21 33 412 4 5
a 10 20 1 30 4 40 2 3 5 50
or equivalently by
irow 4 555 1 23 34 5
jcol 4 12 4 1 21 3 3 5
a 40 2 3 510 20 1 30 4 50
| NTECER N, Nz
PARAMETER (N=5, NZzZ=10)
C
| NTECER I RONNZ), JCOL(NZ), |TWKSP
REAL A(NZ), B(N), X(N)
EXTERNAL  LSLXD, WRRRN
C
DATA A/ 10., 20., 1., 30., 4., 40., 2., 3., 5., 50./
DATA B/ 23., 55., 107., 197., 278./
DATA IROV 1, 2, 3, 3, 4, 4, 5 5, 5 5/
DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
C Use default workspace
| TWKSP = 0
C Solve A* X =B
CALL LSLXD (N, Nz, A, IROWN JCOL, B, |TWKSP, X)
C Print results
CALLWRRRN (' x’, 1, N, X, 1, 0)
END
Output

X
1 2 3 4 5
1.000 2.000 3.000 4.000 5.000

LSCXD/DLSCXD (Single/Double precision)

Perform the symbolic Cholesky factorization for a sparse symmetric matrix using
aminimum degree ordering or a user-specified ordering, and set up the data
structure for the numerical Cholesky factorization.

Usage

CALL LSCXD (N, Nz, IROW, JCOL, JOB, ITWKSP, MAXSUB, NZSUB,
INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE)

Arguments

N — Number of equations. (Input)

NZ — Total number of the nonzeros in the lower triangular part of the symmetric

matrix, including the nonzeros on the diagonal. (Input)
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IROW — Vector of lengtiNz containing the row subscripts of the nonzeros in
the lower triangular part of the matrix including the nonzeros on the diagonal.
(Input)

JCOL — Vector of lengtiNz containing the column subscripts of the nonzeros in
the lower triangular part of the matrix including the nonzeros on the diagonal.
(Input)

(I ROW(K), JCOL(K)) gives the row and column indices of tath nonzero

element of the matrix stored in coordinate form. NbROAK) = JCOL(K).

IJOB — Integer parameter selecting an ordering to permute the matrix
symmetrically. (Input)

I JOB = 0 selects the user ordering specifietl PER and reorders it so that the
multifrontal method can be used in the numerical factorization.

I JOB = 1 selects the user ordering specifietl PER.

I JOB = 2 selects a minimum degree ordering.

I JOB = 3 selects a minimum degree ordering suitable for the multifrontal method
in the numerical factorization.

I TWKSP — The total workspace needed. (Input)
If the default is desired, SeETVWKSP to zero. See Comment 1 for the default.

MAXSUB — Number of subscripts contained in arkgsUB. (Input/Output)

On input,MAXSUB gives the size of the arraizSUB.

Note that when default workspad¢a@(\KSP = 0) is used, SMAXSUB = 3* NZ.
Otherwise ( TVKSP > 0), setvAXSUB = (| TWKSP — 10* N-7)/ 4. On output,

MAXSUB gives the number of subscripts used by the compressed subscript format.

NZSUB — Vector of lengthMAXSUB containing the row subscripts for the off-
diagonal nonzeros in the Cholesky factor in compressed format. (Output)

INZSUB — Vector of lengtiN + 1 containing pointers foMzSUB. The row
subscripts for the off-diagonal nonzeros in colurmare stored itNZSUB from
locationl NZSUB (J) to | NzSUB(J + 1) - 1. (Output)

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor.
(Output)

ILNZ — Vector of lengtiN + 1 containing pointers to the Cholesky factor. The
off-diagonal nonzeros in coluninof the factor are stored from locatibhNz (J)

tol LNz(J + 1)- 1. (Output)

(I LNZ, NZSUB, | NZSUB) sets up the data structure for the off-diagonal nonzeros
of the Cholesky factor in column ordered form using compressed subscript
format.

IPER — Vector of lengthN containing the ordering specified byOB.
(Input/Output)
| PER (1) =K indicates that the original rowis the new row .

INVPER — Vector of lengthN containing the inverse permutation. (Output)
I NVPER (K) =1 indicates that the original romvis the new row .
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| SPACE — The storage space needed for stack of frontal matrices. (Output)

Comments
1. Automatic workspace usage is

LSCXD 10N+ 12Nz + 7 units. This is the defaultlifTwkSP is zero. If
the value is positive, TWKSP units are automatically allocated.

Workspace may be explicitly provided, if desired, by use2axD. The
reference is

CALL L2CXD (N, Nz, IROW JCOL, 1J0B, MAXSUB, NZSUB,
I NZSUB, MAXNZ, |LNZ, |PER, | NVPER,
| SPACE, LIV, [|WK)

The additional arguments are as follows:

LIWK — The length of WK, LI WK should be at least MO+ 12\Z + 7.
Note that the argumeRAXSUB should be set td ( WK — 10N — 7)/4.

IWK — Integer work vector of lengthi VK.

Note that the parametemTVWKSP is not an argument to this routine.

2. Informational errors
Type Code
4 1 The matrix is structurally singular.
Algorithm

Consider the linear equation
Ax=b

whereA is sparse, positive definite and symmetric. The sparse coordinate format
for the matrixA requires one real and two integer vectors. The real array
contains all the nonzeros in thmver triangle of A including the diagonal. Let the
number of nonzeros be. The two integer arrays ow andj col , each of length

nz, contain the row and column indices for these entriés irhat is

Ai v owai col 9 =a(i),  1=1,...,nz
i row(i) =j col (i) i=1,...,nz
with all other entries in the lower triangle dtero.

The routineL SCXD computes a minimum degree ordering or uses a user-supplied
ordering to set up the sparse data structure for the Cholesky factinen the
routineLNFXD (page 228) produces the numerical entrids $o that we have

PAPT=LLT

Here,P is the permutation matrix determined by the ordering.
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The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routinesin Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). Thisisjust the standard factorization method based on the sparse
compressed storage scheme.

Example

As an example, the following matrix is symbolically factorized, and the result is
printed:

(10 0 1 0 2
020 0 0 3
A=| 1 030 4 0
0 0 4 40 5
|2 3 0 5 50

The number of nonzerosin the lower triangle of Aisnz= 10. The sparse
coordinate form for the lower triangle of A isgiven by:

irow 1 2 3 3 4 4 5 5 5 5

j col 1 2 1 3 3 4 1 2 4 5
or equivaently by

irow 4 5 5 5 1 2 3 3 4 5

j col 4 1 2 4 1 2 1 3 5
| NTEGER N, Nz
PARAMETER (N=5, NZ=10)
C
| NTEGER 1JOB, |LNZ(N+1), INVPER(N), |NZSUB(N+1), |PER(N),
& | RO NZ), | SPACE, |TWKSP, JCOL(NzZ), MAXNZ, MAXSUB,
& NZSUB( 3* NZ)
EXTERNAL LSCXD, WRI RN
C
DATA IROW 1, 2, 3, 3, 4, 4, 5, 5 5, 5/
DATA JCOL/ 1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
C Sel ect m ni num degree ordering
C for multifrontal nethod
1JOB = 3
C Use default workspace
| TWKSP = 0
MAXSUB = 3*NZ

CALL LSCXD (N, Nz, IROW JCOL, 1JOB, |TWKSP, MAXSUB, NZSUB,

&

I NZSUB, MAXNZ, |LNz, |PER |NVPER, | SPACE)

IMSL MATH/LIBRARY

Chapter 1: Linear Systems « 227



R W

R

Print results

CALL WRIRN (iper’, 1, N, IPER, 1, 0)

CALL WRIRN (’invper’, 1, N, INVPER, 1, 0)

CALL WRIRN (' nzsub’, 1, MAXSUB, NZSUB, 1, 0)
CALL WRIRN ("inzsub’, 1, N+1, INZSUB, 1, 0)
CALL WRIRN (’ilnz ", 1, N+1, ILNZ, 1, 0)

END

=N

N N

Output

LNFXD/DLNFXD (Single/Double precision)

Compute the numerical Cholesky factorization of a sparse symmetrical matrix A.

Usage
CALL LNFXD (N, Nz, A, IROW, JCOL, IJOB, MAXSUB, NZSUB,

INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE,
ITWKSP, DIAG, RLNZ, RPARAM)
Arguments
N — Number of equations. (Input)
NZ — The number of nonzero coefficients in the linear system. (Input)

A — Vector of length\z containing the nonzero coefficients of the lower triangle
of the linear system. (Input)

IROW — Vector of lengtiNz containing the row numbers of the corresponding
elements in the lower triangle Af (Input)

JCOL — Vector of lengtiNz containing the column numbers of the
corresponding elements in the lower trianglé.of (Input)
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IJOB — Integer parameter selecting factorization method. (Input)
I JOB = 1 yields factorization in sparse column format.
I JOB = 2 yields factorization using multifrontal method.

MAXSUB — Number of subscripts contained in arNgBUB as output from
subroutineLSCXD/DLSCXD.  (Input)

NZSUB — Vector of lengthvaXSUB containing the row subscripts for the
nonzeros in the Cholesky factor in compressed format as output from subroutine
LSCXD/DLSCXD. (Input)

INZSUB — Vector of lengtiN + 1 containing pointers fo¥zZSUB as output from
subroutineLSCXD/DLSCXD.  (Input)

The row subscripts for the nonzeros in columare stored from locationNzZSUB
(3) to1 NzsSuB(J + 1) - 1.

MAXNZ — Length ofRLNZ as output from subroutinesSCXD/DLSCXD. (Input)

ILNZ — Vector of lengttN + 1 containing pointers to the Cholesky factor as
output from subroutineSCXD/DLSCXD.  (Input)

The row subscripts for the nonzeros in columuf the factor are stored from
location! LNZ(J) to | LNZ(J + 1)— 1. (I LNZ, NZSUB, | NZSUB) sets up the
compressed data structure in column ordered form for the Cholesky factor.

IPER — Vector of lengthN containing the permutation as output from subroutine
LSCXD/DLSCXD. (Input)

INVPER — Vector of lengthN containing the inverse permutation as output from
subroutineL SCXD/DLSCXD.  (Input)

| SPACE — The storage space needed for the stack of frontal matrices as output
from subroutine. SCXD/DLSCXD.  (Input)

I TWKSP — The total workspace needed. (Input)
If the default is desired, seTWKSP to zero. See Comment 1 for the default.

DIAG — Vector of lengthN containing the diagonal of the factor. (Output)

RLNZ — Vector of lengthVAXNZ containing the strictly lower triangle nonzeros
of the Cholesky factor. (Output)

RPARAM — Parameter vector containing factorization information. (Output)
RPARAM1) = smallest diagonal element.
RPARAM?2) = largest diagonal element.
Comments
1. Automatic workspace usage is
LNFXD 3N+ 3N\Z units, or

DLNFXD 4N + 6NZ units. This is the default ifTWKSP is zero. If the
value is positivel TWKSP units are automatically allocated.
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Workspace may be explicitly provided by use of L2FXD/DL2FXD . The
referenceis

CALL L2FXD (N, Nz, A [ROW JCOL, 1J0OB, MAXSUB,
NZSUB, | NZSUB, MAXNZ, |LNZ, |PER, | NVPER,
| SPACE, DI AG RLNZ, RPARAM WK, LW, | WK,
LI VK)

The additiona arguments are as follows:

WK — Real work vector of lengthvK.

LWK — The length ofAK, LWK should be at least + 3N\Z.

IWK — Integer work vector of lengthi VK.

LIWK — The length of VK, LI VK should be at least\2

Note that the parametemVWKSP is not an argument to this routine.

2. Informational errors
Type Code
4 1 The coefficient matrix is not positive definite.
4 2 A column without nonzero elements has been found in

the coefficient matrix.

Algorithm
Consider the linear equation
Ax=b

whereA is sparse, positive definite and symmetric. The sparse coordinate format
for the matrixA requires one real and two integer vectors. The real array
contains all the nonzeros in thmver triangle of A including the diagonal. Let the
number of nonzeros be. The two integer arrays ow andj col , each of length

nz, contain the row and column indices for these entriés irhat is

Ai v owai col 9 =ali),  1=1,...,nz
i row(i) =j col (i) i=1,...,nz
with all other entries in the lower triangle dkero. The routine NFXD produces

the Cholesky factorization (FfAPTgiven the symbolic factorization éfwhich
is computed by SCXD (page 224). That is, this routine computeshich
satisfies

PAP=LLT
The diagonal of is stored irDl AG and the strictly lower triangular part bofis
stored in compressed subscript fornRig RLNZ as follows. The nonzeros in the
j-th column ofL are stored in locatioriR(i), ..., R(i + k) wherei =1 LNz(j) andk

=1 LNzZ( +1)-1LNz(j) — 1. The row subscripts are stored in the vesE8UB
from locations NzSUB(j) to | NzSUB(j + 1) — 1.
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The numerical computations can be carried out in one of two ways. The first
method (when 1 JOB = 2) performs the factorization using a multifrontal
technique. This option requires more storage but in certain cases will be faster.
The multifrontal method is based on the routinesin Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984),
Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method
(when1 J0B = 1) isfully described in George and Liu (1981). Thisisjust the
standard factorization method based on the sparse compressed storage scheme.

Example

Asan example, consider the 5 x 5 linear system:

(10 0 1 0 2
020 0 0 3
A=| 1 030 4 0
0 0 4 40 5
|2 3 0 5 50

The number of nonzerosin the lower triangle of Aisnz = 10. The sparse
coordinate form for the lower triangle of A isgiven by:

irow 1 2 3 34 45565 5
jcol 1 21 33 412 4 5
a 10 20 1 30 4 40 2 3 5 50
or equivaently by
irow 4 555 1 23 34 5
jcol 4 1 2 4 1 21 3 3 5
a 40 2 3 510 20 1 30 4 50

Wefirst call LSCXD, page 224, to produce the symbolic information needed to
pass on to LNFXD. Then call LNFXD to factor this matrix. The results are displayed
below.

| NTEGER N, NZ, NRLNZ
PARAMETER (N=5, NZ=10, NRLNZ=10)

C
INTEGER  1JOB, ILNZ(N+1), INVPER(N), |NZSUB(N+1), |PER(N),
& | RONNZ), | SPACE, |TWKSP, JCOL(NZ), MAXNZ, MAXSUB,
& NZSUB( 3* NZ)
REAL A(NZ), DIAG(N), RLNZ(NRLNZ), RPARAM 2)
EXTERNAL  LNFXD, LSCXD, WRRRN
C
DATA A/ 10., 20., 1., 30., 4., 40., 2., 3., 5., 50./
DATA IROW1, 2, 3, 3, 4, 4, 5, 5, 5, 5/
DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
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Sel ect m ni num degree ordering
for multifrontal nethod

(eXe!

1JOB = 3
C Use default workspace
| TWKSP = 0
MAXSUB = 3*NZ
CALL LSCXD (N, Nz, ITROW JCO., 1J0B, |TWKSP, MAXSUB, NZSUB,
& | NZSUB, MAXNZ, |LNZ, |PER, |NVPER, | SPACE)
C Check if NRLNZ is | arge enough

I F (NRLNZ . GE. MAXNZ) THEN
Choose multifrontal nethod

1JOB = 2
CALL LNFXD (N, Nz, A |ROW JCOL, 1J0OB, MAXSUB, NZSUB, | NZSUB,
& MAXNZ, |LNZ, |PER, |INVPER, |SPACE, | TWKSP, DI AG
& RLNZ, RPARAM
C Print results

CALL WRRRN (' diag ', 1, N, DIAG, 1, 0)
CALL WRRRN (' rlnz’, 1, MAXNZ, RLNZ, 1, 0)
END IF

END

Output
diag
1 2 3 4 5
4.472 3.162 7.011 6.284 5.430

rinz
1 2 3 4 5 6
0.6708 0.6325 0.3162 0.7132 -0.0285 0.6398

LFSXD/DLFSXD (Single/Double precision)

Solve areal sparse symmetric positive definite system of linear equations, given
the Cholesky factorization of the coefficient matrix.

Usage
CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ,

DIAG, IPER, B, X)
Arguments
N — Number of equations. (Input)

MAXSUB — Number of subscripts contained in arNgB8UB as output from
subroutineLSCXD/DLSCXD.  (Input)

NZSUB — Vector of lengthvaXSUB containing the row subscripts for the off-
diagonal nonzeros in the factor as output from subrouth@XD/DLSCXD.

(Input)

INZSUB — Vector of lengtiN + 1 containing pointers fo¥zZSUB as output from
subroutineLSCXD/DLSCXD.  (Input)
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The row subscripts of column J are stored from location | NZSUB(J) to | NZSUB(J
+1) -1

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as
output from subroutineSCXD/DLSCXD.  (Input)

RLNZ — Vector of lengtiVAXNZ containing the off-diagonal nonzeros in the
factor in column ordered format as output from subroutexD/DLNFXD.

(Input)

ILNZ — Vector of lengthN + 1 containing pointers teLNZ as output from
subroutineL SCXD/DLSCXD. The nonzeros in columnof the factor are stored
from locationl LNZ(J) tol LNZ(J +1)- 1. (Input)

The valuesRLNZ, | LNZ, NZSUB, | NZSUB) give the off-diagonal nonzeros of the
factor in a compressed subscript data format.

DIAG — Vector of lengttN containing the diagonals of the Cholesky factor as
output from subroutineNFXD/DLNFXD.  (Input)

IPER — Vector of lengthN containing the ordering as output from subroutine
LSCXD/DLSCXD. (Input)
I PER(l ) =K indicates that the original rowis the new row .

B — Vector of lengtiN containing the right-hand side. (Input)

X — Vector of lengthN containing the solution. (Output)

Comments
Informational error
Type Code
4 1 The input matrix is numerically singular.
Algorithm

Consider the linear equation
Ax=b

whereA is sparse, positive definite and symmetric. The sparse coordinate format
for the matrixA requires one real and two integer vectors. The real array
contains all the nonzeros in thmver triangle of A including the diagonal. Let the
number of nonzeros be. The two integer arrays ow andj col , each of length

nz, contain the row and column indices for these entriés irhat is

Ai vowai col 9 =ali),  1=1,...,nz
i row(i) =j col (i) i=1,...,nz
with all other entries in the lower triangle dtero.

The routineLFSXD computes the solution of the linear system given its Cholesky
factorization. The factorization is performed by calli®-XD (page 224)
followed byLNFXD (page 228). The routineSCXD computes a minimum degree
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ordering or uses a user-supplied ordering to set up the sparse data structure for the
Cholesky factor, L. Then the routine LNFXD produces the numerical entriesin L
so that we have

PAPT=LLT

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routinesin Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). Thisisjust the standard factorization method based on the sparse

compressed storage scheme.

Finally, the solution x is obtained by the following calculations:
1)Ly, =Pb
2) LTYz =¥
3) x= P’ Vo

Example

Asan example, consider the 5 x 5 linear system:

10 0 1 0 2
020 0 0 3
A=| 1 030 4 0
0 0 4 40 5
|2 3 0 5 50

Let

x{ =(1,2,3,4,5)
so that Ax, = (23, 55, 107, 197, 278) 7, and

x5 =(5,4,3,2,1)

so that Ax, = (55, 83, 103, 97, 82) T The number of nonzerosin the lower triangle
of Aisnz = 10. The sparse coordinate form for the lower triangle of Aisgiven

by:
irow 1 2 3 34 4555 5
jcol 1 21 33 412 4 5
a 10 20 1 30 4 40 2 3 5 50
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or equivalently by

irbw 4 555 1 2 3 3 4 5
jcol 4 12 4 1 21 3 3 5
a 40 2 3 510 20 1 30 4 50

| NTEGER N, NZ, NRLNZ
PARAMETER (N=5, NZ=10, NRLNZ=10)

C
| NTECER 1JOB, ILNZ(N+1), INVPER(N), | NZSUB(N+1), |PER(N),
& I RONNZ), |SPACE, | TWKSP, JCOL(NZ), MAXNZ, MAXSUB,
& NZSUB( 3* NZ)
REAL A(Nz), B1(N), B2(N), DIAG N, RLNZ(NRLNZ), RPARAM 2),
& X(N)
EXTERNAL LFSXD, LNFXD, LSCXD, WRRRN
C
DATA A/ 10., 20., 1., 30., 4., 40., 2., 3., 5., 50./
DATA B1/23., 55., 107., 197., 278./
DATA B2/55., 83., 103., 97., 82./
DATA IROWNV1, 2, 3, 3, 4, 4, 5 5, 5 5/
DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
C Sel ect m ni mum degree ordering
C for nultifrontal method
1JoB = 3
C Use default workspace
| TWKSP = 0
MAXSUB = 3*NZ
CALL LSCXD (N, Nz, 1ROW JCOL, 1JOB, |TWKSP, MAXSUB, NZSUB,
& | NZSUB, MAXNZ, |LNz, |PER, |NVPER, |SPACE)
C Check if NRLNZ is |arge enough
IF (NRLNZ . CGE. MAXNZ) THEN
Choose multifrontal nethod
1JOB = 2
CALL LNFXD (N, Nz, A, |IROW JCOL, 1J0OB, MAXSUB, NZSUB, | NZSUB,
& MAXNZ, |1LNZ, |PER |NVPER, |SPACE, |TWKSP, DI AG
& RLNZ, RPARAM
C Solve A * X1 = Bl
CALL LFSXD (N, MAXSUB, NZSUB, |NZSUB, MAXNZ, RLNZ, |LNz, DI AG
& | PER, Bl, X)
C Print X1
CALLWRRRN (' x17,1,N, X, 1, 0)
C Solve A * X2 = B2
CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAG,
& IPER, B2, X)
C Print X2
CALL WRRRN (' x2 ", 1, N, X, 1, 0)
END IF
C
END
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Output

x1

1 2 3 4 5

1. 000 2. 000 3. 000 4. 000 5. 000
X2

1 2 3 4 5

5.000 4.000 3.000 2.000 1.000

LSLZD/DLSLZD (Single/Double precision)

Solve a complex sparse Hermitian positive definite system of linear equations by
Gaussian elimination.

Usage
CALL LSLZD (N, Nz, A, ITRON JCO., B, |ITVKSP, X)

Arguments
N — Number of equations. (Input)

NZ — The number of nonzero coefficients in the lower triangle of the linear
system. (Input)

A — Complex vector of lengtlz containing the nonzero coefficients in the
lower triangle of the linear system. (Input)

The sparse matrix has nonzeroes only in entrie®¥/(i), JCOL(i)) fori = 1 to
Nz, and at this location the sparse matrix has vafi)e

IROW — Vector of lengtiNz containing the row numbers of the corresponding
elements in the lower triangle Af (Input)
Notel ROW(i) = JCOL(i), since we are only indexing the lower triangle.

JCOL — Vector of lengtiNz containing the column numbers of the
corresponding elements in the lower trianglé.of (Input)

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

I TWKSP — The total workspace needed. (Input)

If the default is desired, SETVWKSP to zero. See Comment 1 for the default.

X — Complex vector of lengt containing the solution to the linear system.
(Output)
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Comments
1 Automatic workspace usage is
LSLZD 20N+ 27NZ + 9 units, or

DLSLZD 24N+ 39NZ + 9 units. Thisisthe default if | TWKSP is zero. If
thisvalue is positive, | TWKSP units are automatically allocated.

Workspace may be explicitly provided, if desired, by use of
L2LZD/DL2LZD. Thereferenceis

CALL L2LZD (N, Nz, A, IROW JCO., B, X, |PER
| PARAM RPARAM WK, LW, WK, LIVK)

The additional arguments are as follows:

IPER — Vector of lengthN containing the ordering.

IPARAM — Integer vector of length 4. See Comment 3.
RPARAM — Real vector of length 2. See Comment 3.

WK — Complex work vector of lengthvK.

LWK — The length ofAK, LWK should be at leastiN+ 6NZ.

WK — Integer work vector of length WK.

LIWK — The length of WK, LI WK should be at least &5+ 15\NZ + 9.

Note that the parameteTVWKSP is not an argument for this routine.

2. Informational errors
Type Code
4 1 The coefficient matrix is not positive definite.
4 2 A column without nonzero elements has been found in

the coefficient matrix.

3. If the default parameters are desiredLfcZD, then set PARAM1) to
zero and call the routine2L.zD. Otherwise, if any nondefault parameters
are desired for PARAMor RPARAM then the following steps should be
taken before calling2LzD.

CALL L4LZD (| PARAM RPARAM
Set nondefault values for desiredARAM RPARAM elements.

Note that the call ta4LzD will setl PARAMandRPARAMLO their default
values, so only nondefault values need to be set above. The arguments
are as follows:

IPARAM — Integer vector of length 4.
| PARAM1) = Initialization flag.
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I PARAM2) = The numerical factorization method.

| PARAM2) Action

0 Multifrontal

1 Sparse column

Defaullt: 0.

| PARAM3) = The ordering option.

| PARAM3) Action

0 Minimum degree ordering

1 User’s ordering specified inPER
Default: 0.

| PARAM4) = The total number of nonzeros in the factorization matrix.

RPARAM — Real vector of length 2.

RPARAM1) = The absolute value of the largest diagonal element in the
Cholesky factorization.

RPARAM2) = The absolute value of the smallest diagonal element in the
Cholesky factorization.

If double precision is required, th@h4LzD is called andRPARAMIs
declared double precision.

Algorithm
Consider the linear equation
Ax=b

whereA is sparse, positive definite and Hermitian. The sparse coordinate format
for the matrixA requires one complex and two integer vectors. The complex array
a contains all the nonzeros in the lower trianglé dficluding the diagonal. Let

the number of nonzeros he. The two integer arrays ow andj col , each of
lengthnz, contain the row and column indices for these entriés irhat is

Ai v owai col @ =ali),  1=1,...,nz
i row(i) =j col (i) i=1,...,nz
with all other entries in the lower triangle dtero.

The routineLSLZD solves a system of linear algebraic equations having a
complex, sparse, Hermitian and positive definite coefficient matrix. It first uses
the routineLSCXD (page 224) to compute a symbolic factorization of a
permutation of the coefficient matrix. It then calFzD (page 240) to perform

the numerical factorization. The solution of the linear system is then found using
LFSZD (page 244).

The routineL SCXD computes a minimum degree ordering or uses a user-supplied
ordering to set up the sparse data structure for the Cholesky factinen the
routineLNFZD produces the numerical entriediiso that we have
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PAP =LY
Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routinesin Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). Thisisjust the standard factorization method based on the sparse

compressed storage scheme.

Finally, the solution x is obtained by the following calculations:
1) Ly =Pb
2) L Y2=%
3) x= P’ Y

The routine LFSZD accepts b and the permutation vector which determinesP . It
then returns x.
Example
As an example, consider the 3 x 3 linear system:
2+0i -1+i 0
A=| -1-i 4+0i 1+2i
0 1-2i 10+0Qi
Letx” = (1+i,2+2i,3+3i) sothat Ax= (-2 + 2i, 5+ 15i, 36 + 28i) " The

number of nonzeros in the lower triangle of Aisnz = 5. The sparse coordinate
form for the lower triangle of A isgiven by:

irow 1 2 3 2 3
jcol 1 2 3 1 2
a 2+0i 4+0i 10+0i -1-i 1-2i
or equivaently by
irow 3 2 3 1 2
jcol 3 1 2 1 2

a 10+0i -1-i 1-2i 2+40i 4+0i

INTEGER N, NZ
PARAMETER (N=3, NZ=5)
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| NTEGER | RONNZ), JCOL(NZ), |TVKSP
COVPLEX A(NZ), B(N), X(N)
EXTERNAL  LSLZD, WRCRN

C
DATA A/ (2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
DATA B/ (-2.0,2.0), (5.0,15.0), (36.0,28.0)/
DATA IROWV 1, 2, 3, 2, 3/
DATA JCOoL/ 1, 2, 3, 1, 2/
C Use default workspace
| TWKSP = 0
C Solve A* X =B
CALL LSLZD (N, Nz, A [ROW JCOL, B, ITWKSP, X)
C Print results
CALLWRCRN ("x ", 1, N, X, 1, 0)
END
Output
X
1 2 3

(1.000, 1.000) ( 2.000, 2.000) ( 3.000, 3.000)

LNFZD/DLNFZD (Single/Double precision)

Compute the numerical Cholesky factorization of a sparse Hermitian matrix A.

Usage

CALL LNFZD (N, NZ, A, IROW, JCOL, 1IJ0B, MAXSUB, NZSUB,
INZSUB, MAXNZ, ILNZ, IPER, INVPER, ISPACE,
ITWKSP, DIAG, RLNZ, RPARAM)

Arguments
N — Number of equations. (Input)
NZ — The number of nonzero coefficients in the linear system. (Input)

A — Complex vector of lengthiz containing the nonzero coefficients of the
lower triangle of the linear system. (Input)

IROW — Vector of lengtiNz containing the row numbers of the corresponding
elements in the lower triangle Af (Input)

JCOL — Vector of lengtiNz containing the column numbers of the
corresponding elements in the lower trianglé.of (Input)

IJOB — Integer parameter selecting factorization method. (Input)
I JOB = 1 yields factorization in sparse column format.
I JOB = 2 yields factorization using multifrontal method.

MAXSUB — Number of subscripts contained in arNgBUB as output from
subroutineLSCXD/DLSCXD.  (Input)
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NZSUB — Vector of lengthvaXSUB containing the row subscripts for the
nonzeros in the Cholesky factor in compressed format as output from subroutine
LSCXD/DLSCXD. (Input)

INZSUB — Vector of lengtiN + 1 containing pointers fo¥zSUB as output from
subroutineLSCXD/DLSCXD.  (Input)

The row subscripts for the nonzeros in coluimare stored from location

| NZSUB(J) to | NZSUB(J + 1) - 1.

MAXNZ — Length ofRLNZ as output from subroutinesSCXD/DLSCXD. (Input)

ILNZ — Vector of lengtiN + 1 containing pointers to the Cholesky factor as
output from subroutineSCXD/DLSCXD.  (Input)

The row subscripts for the nonzeros in columuf the factor are stored from
location! LNz(J) to | LNZ(J + 1) - 1.

(I LNZ , NZSUB, | NZSUB) sets up the compressed data structure in column ordered
form for the Cholesky factor.

IPER — Vector of lengthN containing the permutation as output from subroutine
LSCXD/DLSCXD. (Input)

INVPER — Vector of lengthN containing the inverse permutation as output from
subroutineLSCXD/DLSCXD.  (Input)

| SPACE — The storage space needed for the stack of frontal matrices as output
from subroutine. SCXD/DLSCXD.  (Input)

I TWKSP — The total workspace needed. (Input)
If the default is desired, SeTVWKSP to zero. See Comment 1 for the default.

DIAG — Complex vector of lengti containing the diagonal of the factor.
(Output)

RLNZ — Complex vector of lengthiAXNZ containing the strictly lower triangle
nonzeros of the Cholesky factor. (Output)

RPARAM — Parameter vector containing factorization information. (Output)
RPARAM(1) = smallest diagonal element in absolute value.
RPARAM(2) = largest diagonal element in absolute value.
Comments
1. Automatic workspace usage is
LNFZD 4N+ 6NZ units, or

DLNFZD 6N + 12\Z units. This is the default ifTWKSP is zero. If the
value is positivel TWKSP units are automatically allocated.

Workspace may be explicitly provided by use. ®FzZD/DL2FZD. The
reference is
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CALL L2FZD (N, Nz, A, ITROWN JCOL, 1J0B, MAXSUB,
NZSUB, | NZSUB, NMAXNZ, |LNZ, |PER,
I NVPER, | SPACE, DI AG RLNZ, RPARAM WK
LVWK, WK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of lengthvK.

LWK — The length ofAK, LVK should be at least + 3\Z.

WK — Integer work vector of length WK.

LIWK — The length of W, LI VK should be at least\2

Note that the parametemVWKSP is not an argument to this routine.

2. Informational errors
Type Code
4 1 The coefficient matrix is not positive definite.
4 2 A column without nonzero elements has been found in

the coefficient matrix.

Algorithm
Consider the linear equation

Ax=b
whereA is sparse, positive definite and Hermitian. The sparse coordinate format
for the matrixA requires one complex and two integer vectors. The complex array
a contains all the nonzeros in tlesver triangle of A including the diagonal. Let

the number of nonzeros he. The two integer arrays ow andj col , each of
lengthnz, contain the row and column indices for these entriés irhat is

A rowaicol @ =all),  1=1,...,nz
irow(i) 2j col (i) i=1,...nz

with all other entries in the lower triangleAdtero.

The routineLNFzD produces the Cholesky factorizationPoAP” given the
symbolic factorization oA which is computed bySCXD (page 224). That is, this
routine computek which satisfies

PAP =LY

The diagonal of. is stored irDl AG and the strictly lower triangular part ofis
stored in compressed subscript fornRRir RLNZ as follows. The nonzeros in the
jth column ofL are stored in locatiori(i), ..., R(i + k) wherei =1 LNZ(j) andk =

I LNZ(j + 1)- 1 LNZ(j) — 1. The row subscripts are stored in the veszS8UB

from locationd NZSUB(j) to | NZSuB(j + 1) - 1.
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| NTEGER
PARAMETER

| NTEGER
&
&

REAL

COWPLEX
EXTERNAL

DATA A/ (2.
DATA | ROW
DATA JCOL/

(eXe!

1JOB = 3
| TWKSP = 0

The numerical computations can be carried out in one of two ways. The first
method (when 1 JOB = 2) performs the factorization using a multifrontal
technique. This option requires more storage but in certain cases will be faster.
The multifrontal method is based on the routinesin Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984),
Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method
(when1 J0B = 1) isfully described in George and Liu (1981). Thisisjust the
standard factorization method based on the sparse compressed storage scheme.

Example

As an example, consider the 3 x 3 linear system:

2+0i  -1+i 0
A= -1-i 4+00 1+2i
0 1-2i 10+0i

The number of nonzerosin the lower triangle of Aisnz = 5. The sparse
coordinate form for the lower triangle of A isgiven by:

irow 1 2 3 2 3
jcol 1 2 3 1 2
a 2+0i 4+0i 10+0i -1-i 1-2i
or equivaently by
irow 3 2 3 1 2
jcol 3 1 2 1 2
a 10+0i -1-i 1-2i 2+0i 4+0i

Wefirst call LSCXD to produce the symbolic information needed to pass on to
LNFZD. Then call LNFzZD to factor this matrix. The results are displayed below.

N, NZ, NRLNZ
(N=3, NZ=5, NRLNZ=5)

1JOB, ILNZ(N+#1), INVPER(N), |NZSUB(N+1), |PER(N),

| RONNZ), |SPACE, |TWKSP, JCOL(NZ), MAXNZ, MAXSUB,
NZSUB( 3* NZ)

RPARAM 2)

A(NZ), DIAG(N), RLNZ(NRLNZ)

LNFZD, LSCXD, WRCRN

0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
1, 2,73, 2, 3/

1, 2, 3, 1, 2/

Sel ect m ni num degree ordering
for multifrontal nethod

Use default workspace
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MAXSUB = 3*NZ
CALL LSCXD (N, Nz, ITROW JCOL, 1J0B, |TWKSP, MAXSUB, NZSUB,
& I NZSUB, MAXNZ, |LNZ, |PER, |NVPER, | SPACE)
Check if NRLNZ is | arge enough
I F (NRLNZ . GE. MAXNZ) THEN
Choose multifrontal nethod

1JOB = 2
CALL LNFZD (N, Nz, A, |ROW JCOL, 1J0OB, MAXSUB, NZSUB, | NZSUB,
& MAXNZ, |LNZ, |PER, |INVPER, |SPACE, | TWKSP, DI AG
& RLNZ, RPARAM)
C Print results

CALL WRCRN (' diag ', 1, N, DIAG, 1, 0)
CALL WRCRN (' rlnz’, 1, MAXNZ, RLNZ, 1, 0)
END IF

END

Output
diag
1 2 3
(1.414, 0.000) (1.732,0.000) (2.887,0.000)

rinz
1 2
(-0.707,-0.707) (0.577,-1.155)

LFSZD/DLFSZD (Single/Double precision)

Solve a complex sparse Hermitian positive definite system of linear equations,
given the Cholesky factorization of the coefficient matrix.

Usage

CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ,
DIAG,IPER, B, X)

Arguments
N — Number of equations. (Input)

MAXSUB — Number of subscripts contained in arNgB8UB as output from
subroutineLSCXD/DLSCXD.  (Input)

NZSUB — Vector of lengthvaXSUB containing the row subscripts for the off-
diagonal nonzeros in the factor as output from subrouth@XD/DLSCXD.

(Input)

INZSUB — Vector of lengtiN + 1 containing pointers fo¥zZSUB as output from
subroutineLSCXD/DLSCXD.  (Input)

The row subscripts of columhare stored from locationNzZSUB(J) to | NzZSUB
@+1)-1.
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MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as
output from subroutineSCXD/DLSCXD.  (Input)

RLNZ — Complex vector of lengthiAXNzZ containing the off-diagonal nonzeros
in the factor in column ordered format as output from subroutiF&D/DLNFZD.
(Input)

ILNZ — Vector of lengtiN +1 containing pointers tBLNZ as output from
subroutineL SCXD/DLSCXD. The nonzeros in columhof the factor are stored
from locationl LNZ(J) to| LNz(J + 1)—- 1. (Input)

The valuesRLNZ, | LNZ, NZSUB, | NZSUB) give the off-diagonal nonzeros of the
factor in a compressed subscript data format.

DIAG — Complex vector of lengtl containing the diagonals of the Cholesky
factor as output from subroutit&FZD/DLNFZD. (Input)

IPER — Vector of lengthN containing the ordering as output from subroutine
LSCXD/DLSCXD. (Input)
| PER(I') = K indicates that the original rois the new row .

B — Complex vector of lengtl containing the right-hand side. (Input)

X — Complex vector of lengt containing the solution. (Output)

Comments
Informational error
Type Code
4 1 The input matrix is numerically singular.
Algorithm

Consider the linear equation
Ax=b

whereA is sparse, positive definite and Hermitian. The sparse coordinate format
for the matrixA requires one complex and two integer vectors. The complex array
a contains all the nonzeros in tlesver triangle of A including the diagonal. Let

the number of nonzeros he. The two integer arrays ow andj col , each of
lengthnz, contain the row and column indices for these entriés irhat is

A rowni col i =al), 1=1,...,nz
irow(i) 2j col (i) i=1,...,nz
with all other entries in the lower triangleAdtero.

The routineLFSZD computes the solution of the linear system given its Cholesky
factorization. The factorization is performed by callii®CXD (page 224)

followed byLNFZD (page 240). The routineSCXD computes a minimum degree
ordering or uses a user-supplied ordering to set up the sparse data structure for
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the Cholesky factor, L. Then the routine LNFZD produces the numerical entriesin
L so that we have

PAPT =LY
Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first
method performs the factorization using a multifrontal technique. This option
requires more storage but in certain cases will be faster. The multifrontal method
is based on the routinesin Liu (1987). For detailed description of this method, see
Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), Ashcraft et al.
(1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). Thisisjust the standard factorization method based on the sparse
compressed storage scheme. Finally, the solution x is obtained by the following

calculations:
1)Ly, =Pb
2) L =W
IYx=PTy,
Example

Asan example, consider the 3 x 3 linear system:
2+01  -1+i 0
A=l -1-i 4+0i 1+2i
0O 1-2i 10+0i

Let

X, =(1+i,2+2i,3+3i)

sothat Ax, = (=2 + 2i, 5 + 15i, 36 + 28i)’, and
X3 =(3+3i,2+2i,1+1)

so that Ax, = (2 + 6i, 7 — 5i, 16 + 8i) T The number of nonzerosin the lower
triangle of Aisnz = 5. The sparse coordinate form for the lower triangle of Ais

given by:
irow 1 2 3 2 3
jcol 1 2 3 1 2
a 2+0i 4+0i 1040i -1-i 1-2i
or equivaently by
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irow 3 2 3 1 2
jeol 3 1 2 1 2
a 10+0i -1-i 1-2i 2+0i 4+0i

| NTEGER N, NZ, NRLNZ
PARAMETER (N=3, NZ=5, NRLNZ=5)

C
| NTECER 1JOB, ILNZ(N+1), INVPER(N), | NZSUB(N+1l), |PER(N),
& I RONNZ), |SPACE, | TWKSP, JCOL(NZ), MAXNZ, MAXSUB,
& NZSUB( 3* NZ)
COVPLEX A(Nz), B1(N), B2(N), DIAG N, RLNZ(NRLNZ), X(N)
REAL RPARAM 2
EXTERNAL LFSZD, LNFZD, LSCXD, WRCRN
C
DATA A/ (2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
DATA B1/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/
DATA B2/(2.0,6.0), (7.0,5.0), (16.0,8.0)/
DATA IROWV 1, 2, 3, 2, 3/
DATA JCOL/ 1, 2, 3, 1, 2/
C Sel ect m ni mum degree ordering
C for nultifrontal method
1JoB = 3
C Use default workspace
| TWKSP = 0
MAXSUB = 3*NZ
CALL LSCXD (N, Nz, 1ROW JCOL, 1JOB, |TVWKSP, MAXSUB, NZSUB,
& | NZSUB, MAXNZ, |LNz, |PER, |NVPER, |SPACE)
C Check if NRLNZ is |arge enough
IF (NRLNZ . GE. MAXNZ) THEN
Choose multifrontal nethod
1JOB = 2
CALL LNFZD (N, Nz, A, IROW JCOL, 1J0OB, MAXSUB, NZSUB, | NZSUB,
& MAXNZ, |1LNZ, |PER |NVPER, |SPACE, |TWKSP, DI AG
& RLNZ, RPARAM
C Solve A * X1 = Bl
CALL LFSZD (N, MAXSUB, NZSUB, |NZSUB, MAXNZ, RLNZ, |LNzZ, DI AG
& | PER, Bl, X)
C Print X1
CALLWRCRN (' x17,1,N, X, 1, 0)
C Solve A * X2 = B2
CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAG,
& IPER, B2, X)
C Print X2
CALL WRCRN ('x2 ", 1, N, X, 1, 0)
END IF
C
END
Output
x1
1 2 3
(1.000, 1.000) (2.000, 2.000) ( 3.000, 3.000)
x2
1 2 3

(3.000, 3.000) (2.000, 2.000) ( 1.000, 1.000)
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LSLTO/DLSLTO (Single/Double precision)

Solve areal Toeplitz linear system.

Usage
CALL LSLTO (N, A B, IPATH X)

Arguments
N — Order of the matrix represented Ay (Input)

A — Real vector of lengthNe- 1 containing the first row of the coefficient
matrix followed by its first column beginning with the second element. (Input)
See Comment 2.

B — Real vector of lengtN containing the right-hand side of the linear system.
(Input)

IPATH — Integer flag. (Input)
| PATH = 1 means the systefwx = B is solved.

| PATH = 2 means the systeﬁf x =B is solved.

X — Real vector of lengtN containing the solution of the linear system.
(Output)

If B is not needed themandX may share the same storage locations.
Comments

1. Automatic workspace usage is

LSLTO 2N- 2 units, or
DLSLTO 4N — 4 units.

Workspace may be explicitly provided, if desired, by use of
L2LTODL2LTO. The reference is

CALL L2LTO (N, A, B, IPATH X, W)
The additional argument is
WK — Work vector of lengthi2 - 2.

2. Because of the special structure of Toeplitz matrices, the first row and
the first column of a Toeplitz matrix completely characterize the matrix.
Hence, only the elemem¢l, 1),..., A(1,N), A(2, 1), ..., AN, 1) need to
be stored.

Algorithm

Toeplitz matrices have entries that are constant along each diagonal, for example,
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Po P P2 Pa
P-1 Po P P2
P2 P12 Po B
P-3 P2 P12 Po

Theroutine LSLTOIs based on the routine TSLS in the TOEPLITZ package, see
Arushanian et a. (1983). It is based on an agorithm of Trench (1964). This
algorithm is also described by Golub and van Loan (1983), pages 125-133.

A=

Example

A system of four linear equationsis solved. Note that only the first row and
column of the matrix A are entered.

C Decl are vari abl es

| NTEGER | PATH, N

PARAMETER  ( N=4)

REAL A(2*N-1), B(N), X(N)
C Set values for A, and B
C
C A=( 2 -3 -1 6 )
C ( 1 2 -3 -1 )
C ( 4 1 2 -3 )
C ( 3 4 1 2 )
C
C B= (16 -29 -7 5 )
C

DATA A/2.0, -3.0, -1.0, 6.0, 1.0, 4.0, 3.0/

DATA B/ 16.0, -29.0, -7.0, 5.0/
C Solve AX = B

| PATH = 1

CALL LSLTO (N, A B, IPATH X
C Print results

CALL WRRRN (X', 1, N, X, 1, 0)
END
Output
X

1 2 3 4
-2.000 -1.000 7.000 4.000

LSLTC/DLSLTC (Single/Double precision)

Solve acomplex Toeplitz linear system.

Usage
CALL LSLTC (N, A, B, IPATH, X)

Arguments

N — Order of the matrix represented Ay (Input)
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A — Complex vector of length\N2- 1 containing the first row of the coefficient
matrix followed by its first column beginning with the second element. (Input)
See Comment 2.

B — Complex vector of lengti containing the right-hand side of the linear
system. (Input)

IPATH — Integer flag. (Input)
| PATH = 1 means the systefwx = B is solved.

| PATH = 2 means the systeﬁfx =B is solved.

X — Complex vector of lengtl containing the solution of the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSLTC 4N- 4 units, or
DLSLTC 8N — 8 units.

Workspace may be explicitly provided, if desired, by use of
L2LTC/DL2LTC. The reference is

CALL L2LTC (N, A, B, IPATH X, WK)
The additional argument is
WK — Complex work vector of lengtiNz- 2.

2. Because of the special structure of Toeplitz matrices, the first row and
the first column of a Toeplitz matrix completely characterize the matrix.
Hence, only the elemem$l, 1),..., A(1,N), A(2, 1),..., A(N, 1) need to
be stored.

Algorithm

Toeplitz matrices have entries which are constant along each diagonal, for
example,

Po P P2 Pa
P-1 Po P P2
P> P12 Po B
P-3 P2 P12 Po

The routineLSLTC is based on the routinesLC in the TOEPLITZ package, see
Arushanian et al. (1983). It is based on an algorithm of Trench (1964). This
algorithm is also described by Golub and van Loan (1983), paged4325

A=
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Example

A system of four complex linear equationsis solved. Note that only the first row
and column of the matrix A are entered.

C Decl are vari abl es

PARAMETER  ( N=4)

COVPLEX A(2*N-1), B(N), X(N)
C Set values for A and B
C
C A= ( 2+2i -3 1+4i  6-2i )
C ( i 2+2i -3 1+4i )
C ( 4+2i [ 2420 -3 )
C ( 3-4i 4+2i i 2+2i )
C
C B = ( 6+65i -29-16i 7+ -10+i )
C

DATA A/ (2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0), (0.0,1.0),

& (4.0,2.0), (3.0,-4.0)/

DATA B/ (6.0,65.0), (-29.0,-16.0), (7.0,1.0), (-10.0,1.0)/
C Solve AX = B

| PATH = 1

CALL LSLTC (N, A B, IPATH X
C Print results

CALL WRCRN (X', 1, N, X, 1, 0)
END
Output
X
1 2 3 4

(-2.000, 0.000) (-1.000,-5.000) ( 7.000, 2.000) ( 0.000, 4.000)

LSLCC/DLSLCC (Single/Double precision)

Solve acomplex circulant linear system.

Usage
CALL LSLCC (N, A, B, IPATH, X)

Arguments
N — Order of the matrix represented Ay (Input)

A — Complex vector of lengtl containing the first row of the coefficient
matrix. (Input)

B — Complex vector of lengtl containing the right-hand side of the linear
system. (Input)

IPATH — Integer flag. (Input)

| PATH = 1 means the systefix = B is solved.

| PATH = 2 means the systeﬁfx =B is solved.
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X — Complex vector of lengt containing the solution of the linear system.
(Output)

Comments

1. Automatic workspace usage is

LSLCC 8N+ 15 units, or
DLSLCC 16N + 30 units.

Workspace may be explicitly provided, if desired, by use of
L2LCC/DL2LCC. The reference is

CALL L2LCC (N, A, B, I PATH, X, ACOPY, VK)
The additional arguments are as follows:

ACOPY — Complex work vector of lengtk If Ais not needed, thes
andACOPY may be the same.

WK — Work vector of length® + 15.

2. Informational error
Type Code
4 2 The input matrix is singular.
3. Because of the special structure of circulant matrices, the first row of a

circulant matrix completely characterizes the matrix. Hence, only the
elements\(1, 1),..., A(1, N) need to be stored.

Algorithm

Circulant matrices have the property that each row is obtained by shifting the row
above it one place to the right. Entries that are shifted off at the right re-enter at
the left. For example,

PL P2 P3 Pa
A= P4 P P2 Ps
Ps P2 P P2
P2 P3s P4 P

If g, = p_; and the subscripts gnandg are interpreted moduld, then

N N
(A} = PiojuaXi = ) Gj-ianX = (AX);
= i

whereq * x is the convolution off andx. By the convolution theorem, if
g* x=Dh, then

q0 % = b,where §
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isthe discrete Fourier transform of g as computed by the IMSL routine FFTCF
and O denotes elementwise multiplication. By division,

% =b0g
where O denotes elementwise division. The vector X is recovered from
X
through the use of IMSL routine FFTCB.

Tosolve Al x= b, use the vector p instead of q in the above agorithm.

Example

A system of four linear equationsis solved. Note that only the first row of the
matrix A is entered.

C Decl are vari abl es
| NTEGER | PATH, N
PARAMETER ( N=4)
COVPLEX AN, B(N), X(N)

C Set values for A, and B
C
C A= ( 2+2i -3+0i 1+4i 6-2i)
(o
(o B = (6+65i -41-10i -8-30i 63-3i)
C
DATA A/ (2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0)/
DATA B/ (6.0,65.0), (-41.0,-10.0), (-8.0,-30.0), (63.0,-3.0)/
C Solve AX = B (1 PATH = 1)
| PATH = 1
CALL LSLCC (N, A, B, IPATH X)
C Print results
CALL WRCRN (X', 1, N, X, 1, 0)
END
Output
1 2 3 4

(-2.000, 0.000) (-1.000,-5.000) ( 7.000, 2.000) ( 0.000, 4.000)

PCGRC/DPCGRC (Single/Double precision)

Solve areal symmetric definite linear system using a preconditioned conjugate
gradient method with reverse communication.

Usage
CALL PCGRC (IDO, N, X, P, R, Z, RELERR, ITMAX)
Arguments

IDO — Flag indicating task to be done. (Input/Output)
On the initial call DOmust be 0. If the routine returns witbo= 1, then set
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Z = AP, where A is the matrix, and call PCGRC again. If the routine returns with

| DO=2, then set Z to the solution of the system Mz = R, where Mis the
preconditioning matrix, and call PCGRC again. If the routine returns with | DO= 3,
then the iteration has converged and X contains the solution.

N — Order of the linear system. (Input)

X — Array of lengthN containing the solution. (Input/Output)
On input,X contains the initial guess of the solution. On outgupntains the
solution to the system.

P — Array of lengthN.  (Output)
Its use is described undebO.

R — Array of lengthN.  (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residual.

Z — Array of lengthN.  (Input)

Whenl DO = 1, it contain®\P, whereA is the linear system. WheémoO = 2, it
contains the solution ofz = R, whereMis the preconditioning matrix. When
I DO= 0, it is ignored. Its use is described unide®.

RELERR — Relative error desired. (Input)

ITMAX — Maximum number of iterations allowed. (Input)

Comments
1. Automatic workspace usage is

PCGRC 8* | TMAX units, or
DPCGRC 15* | TMAX units.

Workspace may be explicitly provided, if desired, by use of
P2GRC/DP2GRC. The reference is
CALL P2GRC (IDO, N, X, P, R Z, RELERR |TMAX, TRI,
WK, | VK)
The additional arguments are as follows:
TRI — Workspace of length 21 TMAX containing a tridiagonal matrix
(in band symmetric form) whose largest eigenvalue is approximately the
same as the largest eigenvalue of the iteration matrix. The workspace

arraysTRI , WK andl VK should not be changed between the initial call
with | DO= 0 andPCGRC/DPCGRC returning withl DO= 3.

WK — Workspace of length 51 TMAX.
WK — Workspace of lengthTMAX.
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2. Informational errors

Type Code
4 1 The preconditioning matrix is singular.
4 2 The preconditioning matrix is not definite.
4 3 Thelinear system is not definite.
4 4 Thelinear system issingular.
4 5 No convergence after | TMAX iterations.
Algorithm

Routine PCGRC solves the symmetric definite linear system Ax = b using the
preconditioned conjugate gradient method. This method is described in detail by
Golub and Van Loan (1983, Chapter 10), and in Hageman and Y oung (1981,
Chapter 7).

The preconditioning matrix, M, is amatrix that approximates A, and for which
the linear system Mz =r is easy to solve. These two properties are in conflict;
balancing them is atopic of much current research.

The number of iterations needed depends on the matrix and the error tolerance
RELERR. Asarough guide, | TMAX = N is often sufficient when N >> 1. Seethe
references for further information.

Let M be the preconditioning matrix, let b, p, r, x and z be vectors and let T be the
desired relative error. Then the algorithm used is as follows.

A=-1
Po = %
n =b-Ap
For k =1, ..., i tmax
Zk = M_lrk
If k = 1 then
Br=1
Py = Z
Else
. T
Bk = 2N/ Zealk
Pk = Z *+ B bk
End if
7= Ap

_ T T
Oy = Zal-1/ Z Py
X = Xy + 0 Py

Me = Me ~ O
If (llzdk <= (@ = M)lxlk) Then
Recompute A
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C
C

| NTEGER
PARAMETER

| NTEGER
REAL
EXTERNAL

If (lzdk < (@ -Mlxk) Exit
End if
end loop

Here A isan estimate of A,,,,.(G), the largest eigenvalue of the iteration matrix G

=1-M" A The stopping criterion is based on the result (Hageman and Y oung,
1981, pages 148-151)

% =X < 1 |2
X m 1-Amex (G) ka” M
Where
quﬁ,, = X" Mx

It is known that
)‘max(Tl) = )‘max(TZ) =S )‘max(G) <1

wherethe T, are the symmetric, tridiagonal matrices

Hy @
W, M, W
T = 2 Mo W3

W3 Mz Wy

with
Mk =1-By /g —1/ oy, iy =11/ 0y

and

Wy =By /Ay

The largest eigenvalue of T, is found using the routine EVASB. Usually this
eigenvalue computation is needed for only a few of the iterations.

Example 1

In this example, the solution to alinear system isfound. The coefficient matrix A
is stored as afull matrix. The preconditioning matrix is the diagona of A. Thisis
called the Jacobi preconditioner. It is also used by the IMSL routine JCGRC on
page 259.

LDA, N
(N3, LDA=N)

DO, | TMAX, J
A(LDA'N, B(N, P(N), R(N), RELERR X(N), Z(N
MURRV, PCGRC, SCOPY, WRRRN
( 1, -3, 2 )
A= ( -3 10, -5 )
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C 2, -5, 6 )
DATA A 1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C B= ( 27.0, -78.0, 64.0 )
DATA B/ 27.0, -78.0, 64.0/
C Set Rto right side
CALL SCOPY (N, B, 1, R 1)
C Initial guess for Xis B
CALL SCOPY (N, B, 1, X, 1)
C
| TMAX = 100
RELERR = 1. 0E-5
| DO =0
10 CALL PCGRC (IDO, N, X, P, R Z, RELERR, | TMAX)
IF (1DO.EQ 1) THEN
C Set z = Ap
CALL MURRV (N, N, A, LDA, N, P, 1, N, 2
GO TO 10
ELSE I|F (IDO .EQ 2) THEN
C Use di agonal of A as the
C preconditioning matrix M
C and set z = inv(M*r
DO 20 J=1, N
Z(J) = R(J)/A(I I
20 CONTI NUE
GO TO 10
END | F
C Print the solution
CALL WRRRN ('Solution’, N, 1, X, N, 0)
C
END
Output
Solution
1 1.001
2 -4.000
3 7.000
Example 2

In this example, a more complicated preconditioner is used to find the solution of
a linear system which occurs in a finite-difference solution of Laplace’s equation
on a 4x 4 grid. The matrix is
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&
C

&
C

&

&

(4 -1 0 -1
-1 4 -1 0 -1
0O -1 4 -1 -1
-1 0 -1 4 -1 0 -1
A= -1 0 -1 -1 0 -1
-1 0 -1 4 -1 0 -1
-1 -1 4 -1 O
-1 0 -1 4 -1
i -1 0 -1 4]
The preconditioning matrix M is the symmetric tridiagonal part of A,
f 4 -1 -
-1 4 -1
-1 4 -1
-1 4 -1
M= -1 4 -1
-1 4 -1
-1 4 -1
-1 4 -1
- _1 4_
Note that M, called PRECND in the program, is factored once.
| NTEGER LDA, LDPRE, N, NCCDA, NCOPRE
PARAMETER (N=9, NCODA=3, NCOPRE=1, LDA=2* NCODA+1,
L DPRE=NCOPRE+1)
| NTEGER 1 DO, | TMAX
REAL A(LDA, N), P(N), PRECND(LDPRE, N), PREFAC(LDPRE, N),
R(N), RCOND, RELERR X(N), Z(N)
EXTERNAL LFCQS, LSLQS, MJURBV, PCGRC, SSET, WRRRN
Set Ain band form
DATA A/ 3*0.0, 4.0, -1.0, 0.0, -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0,
-1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0,
4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0,
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& -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0,
& -1.0, 4.0, -1.0, 2*0.0, -1.0, 0.0, -1.0, 4.0, -1.0, 2*0.0,
& -1.0, 0.0, -1.0, 4.0, 3*0.0/
C Set PRECND in band symetric form
DATA PRECNDYO0.0, 4.0, -1.0, 4.0, -1.0, 4.0, 0.0, 4.0, -1.0, 4.0,
& 0.0, 4.0, 0.0, 4.0, -1.0, 4.0, 0.0, 4.0/
C Right side is (1, ..., 1)
CALL SSET (N, 1.0, R 1)
C Initial guess for Xis O
CALL SSET (N, 0.0, X, 1)
C Factor the preconditioning natrix
CALL LFCQS (N, PRECND, LDPRE, NCOPRE, PREFAC, LDPRE, RCOND)
C
| TMAX = 100
RELERR = 1.0E-4
| DO =0
10 CALL PCGRC (IDO, N, X, P, R Z, RELERR, |TMAX)
IF (IDO.EQ 1) THEN
C Set z = Ap
CALL MURBV (N, A, LDA, NCODA, NCODA, N, P, 1, N, 2)
GO TO 10
ELSE IF (I1DO.EQ 2) THEN
C Solve PRECND*z =r for r
CALL LSLQS (N, PREFAC, LDPRE, NCOPRE, R, 2)
GO TO 10
END | F
C Print the solution
CALL WRRRN ('Solution’, N, 1, X, N, 0)
C
END
Output
Solution
1 0.955
2 1241
3 1.349
4 1.578
5 1.660
6 1.578
7 1.349
8 1.241
9 0.955

JCGRC/DJCGRC (Single/Double precision)

Solve areal symmetric definite linear system using the Jacobi-preconditioned
conjugate gradient method with reverse communication.

Usage
CALL JCGRC (IDO, N, DIAG, X, P, R, Z, RELERR, ITMAX)
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Arguments

IDO — Flag indicating task to be done. (Input/Output)

On the initial call DOmust be 0. If the routine returns witbO= 1, then set

Z = A 0P, whereA is the matrix, and callCGRC again. If the routine returns with
I DO= 2, then the iteration has converged antbntains the solution.

N — Order of the linear system. (Input)

DIAG — Vector of lengthN containing the diagonal of the matrix. (Input)
Its elements must be all strictly positive or all strictly negative.

X — Array of lengthN containing the solution. (Input/Output)
On input,X contains the initial guess of the solution. On outguntains the
solution to the system.

P — Array of lengthN.  (Output)
Its use is described undebO.

R — Array of lengthN.  (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residual.

Z — Array of lengthN.  (Input)
Whenl DO= 1, it containg\P, whereA is the linear system. WhemO= 0, it is
ignored. Its use is described und®o.

RELERR — Relative error desired. (Input)

ITMAX — Maximum number of iterations allowed. (Input)

Comments
1. Automatic workspace usage is

JCGRC 8* | TMAX units, or
DICGRC 15* | TMAX units.

Workspace may be explicitly provided, if desired, by use of

J2GRC/DI2GRC. The reference is

CALL J2GRC (IDO N, DIAG X, P, R Z, RELERR, | TMAX,
TR, WK | WK)

The additional arguments are as follows:

TRI — Workspace of length 21 TMAX containing a tridiagonal matrix

(in band symmetric form) whose largest eigenvalue is approximately the
same as the largest eigenvalue of the iteration matrix. The workspace
arraysTRlI, WK andl WK should not be changed between the initial call
with | DO= 0 andJ CGRC/DJ CGRC returning withl DO = 2.

WK — Workspace of length 51 TVAX.
IWK — Workspace of lengthTvVAX.
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2. Informational errors

Type Code
4 1 The diagonal contains a zero.
4 2 The diagonal elements have different signs.
4 3 No convergence after | TMAX iterations.
4 4 Thelinear system is not definite.
4 5 The linear system is singular.
Algorithm

Routine JCGRC solves the symmetric definite linear system Ax = b using the
Jacobi conjugate gradient method. This method is described in detail by Golub
and Van Loan (1983, Chapter 10), and in Hageman and Y oung (1981, Chapter 7).

Thisroutineisaspecia case of the routine PCGRC, with the diagonal of the
matrix A used as the preconditioning matrix. For details of the algorithm see
PCGRC, page 253.

The number of iterations needed depends on the matrix and the error tolerance

RELERR. As arough guide, | TMAX = N'”? is often sufficient when N » 1. See the

references for further information.

Example

In this example, the solution to a linear system is found. The coefficient ratrix
is stored as a full matrix.

INTEGER  LDA, N
PARAVETER (LDA=3, N=3)

C
| NTEGER I DO, | TMAX
REAL A(LDA/N), B(N), DIAGN, P(N, R(N, RELERR X(N),
& 2N
EXTERNAL  JCCGRC, MJRRV, SCOPY, WRRRN
C ( 1, -3, 2 )
C A= ( -3, 10, -5 )
C ( 2, -5 6 )
DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
C B= ( 27.0, -78.0, 64.0 )
DATA B/ 27.0, -78.0, 64.0/
C Set Rto right side
CALL SCOPY (N, B, 1, R 1)
C Initial guess for Xis B
CALL SCOPY (N, B, 1, X 1)
C Copy di agonal of A to DI AG
CALL SCOPY (N, A, LDA+1, D AG 1)
C Set paraneters
| TMAX = 100
RELERR = 1. 0E-5
| DO =0
10 CALL JCGRC (IDO, N, DIAG X, P, R Z, RELERR | TMAX)
IF (1DO .EQ 1) THEN
C Set z = Ap
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CALL MURRV (N, N, A, LDA, N, P, 1, N, 2
&0 TO 10
END | F
Print the solution
CALL WRRRN (’Solution’, N, 1, X, N, 0)

END

Output
Solution
1 1.001
2 -4.000
3 7.000

GMRES/DGMRES (Single/Double precision)

Use GMREWith reverse communication to generate an approximate solution of
Ax=h.

Usage
CALL GMRES (IDO, N, X, P, R, Z, TOL)

Arguments

IDO — Flag indicating task to be done. (Input/Output)

On the initial call DOmust be 0. If the routine returns witbO= 1, then set

Z = AP, whereA is the matrix, and catBvVRES again. If the routine returns with
| DO= 2, then seZ to the solution of the systeliZ = P, whereM is the
preconditioning matrix, and callVRES again. If the routine returns wittbO = 3,
setz = AM™'P, and callGVRES again. If the routine returns wittbO = 4, the
iteration has converged, aidcontains the approximate solution to the linear
system.

N — Order of the linear system. (Input)

X — Array of lengthN containing an approximate solution. (Input/Output)
On input,X contains an initial guess of the solution. On outguntains the
approximate solution.

P — Array of lengthN.  (Output)
Its use is described undiebO.

R — Array of lengthN.  (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residuad,— Ax.

Z — Array of lengthN.  (Input)
Whenl DO = 1, it containAP, whereA is the coefficient matrix. WherbO= 2,

it containsM™' P. When! DO = 3, it containsAM ™ P. Wheni DO= 0, it is ignored.
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TOL — Stopping tolerance. (Input/Output)
The algorithm attempts to generate a solutisnch thath — Ax| < TOL* |b|. On
output, TOL contains the final residual norm.

Comments
1. Automatic workspace usage is

GVRES N(KDVAX + 2) +KDMVAX® + 3KDVAX + 2 units, or

DGVRES 2N(KDVAX + 2) + KDMAX® + BKDVAX + 4 where
KDVAX =M N(N, 20) units.

Workspace may be explicitly provided, if desired, by use of

&RES/D&RES. The reference is

CALL GRES (IDO, N, X, P, R Z TOL, INFO, USRNPR,
USRNRM  WORK)

The additional arguments are as follows:

INFO — Integer vector of length 10 used to change parameters of
GVRES. (Input/Output).

For any components| NFQ( 1) ... | NFQ( 7) with value zero on input, the
default valueis used.
I NFQ( 1) =1 MP, the flag indicating the desired implementation.

I MP Action

1 first Gram-Schmidt implementation

2 second Gram-Schmidt implementation
3 first Householder implementation

4 second Householder implementation
Default: I MP=1

I NFQ( 2) = KDMAX, the maximum Krylor subspace dimension, i.e., the
maximum allowable number of GVRES iterations before restarting. It
must satisfy 1< KDVAX < N.

Default: KDMAX = min(N, 20)

I NFQ( 3) =1 TMAX, the maximum number of GVRES iterations allowed.
Default: | TMAX = 1000

I NFQ(4) =1 RP, the flag indicating whether right preconditioning is
used.

If I RP =0, no right preconditioning is performed. If | RP = 1, right
preconditioning is performed. If | RP =0, then | DO= 2 or 3 will not
occur.

Default: IRP=0

I NFQ( 5) =1 RESUP, the flag that indicates the desired residual vector
updating prior to restarting or on termination.
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| RESUP Action

1 update by linear combination, restarting only

2 update by linear combination, restarting and termination
3 update by direct evaluation, restarting only

4 update by direct evaluation, restarting and termination

Updating by direct evaluation requires an otherwise unnecessary matrix-
vector product. The aternative isto update by forming alinear
combination of various available vectors. This may or may not be
cheaper and may be less reliable if the residual vector has been greatly
reduced. If | RESUP = 2 or 4, then the residua vector isreturned in
WORK( 1), ..., WORK( N) . Thisisuseful in some applications but costs
another unnecessary residual update. It is recommended that | RESUP = 1
or 2 be used, unless matrix-vector products are inexpensive or great
residua reduction isrequired. In this case use | RESUP = 3 or 4. The
meaning of “inexpensive” varies withvP as follows:

I MP <

1 (KDvAX + 1) * N flops

2 N flops

3 (2- KDMAX + 1) * N flops
4 (2- KDMAX + 1) * N flops

“Great residual reduction” means tha&lL is only a few orders of
magnitude larger than machine epsilon.
Default:| RESUP = 1

I NFQ( 6) = flag for indicating the inner product and norm used in the
Gram-Schmidt implementations.IINFQ( 6) = 0,sdot andsnr n2,

from BLAS, are used. IfNFQ(6) =1, the user must provide the
routines, as specified under argumesgBNPR andUSRNRM

Default:| NFQ(6) =0

I NFQ( 7) =1 PRI NT, the print flag. Ifi PRI NT = 0, no printing is
performed. Ifi PRI NT = 1, print the iteration numbers and residuals.
Default:l PRINT =0

I NFQ( 8) = the total number dBVRES iterations on output.

I NFQ( 9) = the total number of matrix-vector productsGvRES on
output.

I NFQ(10) = the total number of right preconditioner solve SMRES on
output ifl RP = 1.

USRNPR — User-supplied FUNCTI ON to use as the inner product in the
Gram-Schmidt implementation, if | NFOQ(6) = 1. If | NFQ( 6) =0, the
dummy function GBRES/DG3RES may be used. The usage is

REAL FUNCTI ON USRNPR (N, SX, I NCX, SY, |INCY)
N — Length of vectorX andy. (Input)
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SX — Real vector of lengthAX(N< 1 ABS( | NCX), 1) . (Input)

I NCX — Displacement between elementsxgf (Input)
X(1) is defined to b&X( 1+(1-1) *I1 NCX) if | NCX is greater than 0, or
SX(1+(1-N)*I NCX) if I NCX is less than 0.

SY — Real vector of lengthiax( N* 1 ABS( I NXY) , 1) . (Input)

I NCY — Displacement between elementswf (Input)

Y(1) is defined to b&Y( 1+(1-1)*1 NCY) if I NCY is greater than 0, or
SY(1+(1-N)*I NCY) if I NCY is less than zero.

USRNPR must be declareBXTERNAL in the calling program.

USRNRM — User-suppliedFUNCTI ON to use as the nornx]| in the
Gram-Schmidt implementation,liNFQ( 6) = 1. If | NFQ(6) = 0, the
dummy functiom®RES/ D@RES may be used.The usage is

REAL FUNCTI ON USRNRM (N, SX, 1 NCX)
N — Length of vectorX andy. (Input)
SX — Real vector of lengthaX( N*1 ABS( I NCX) , 1) . (Input)

I NCX — Displacement between elementsxgf (Input)

X(1) is defined to be&sX( 1+(1-1) *1 NCX) if | NCX is greater than 0, or
SX(1+(1-N)*I NCX) if I NCX is less than O.

USRNRMmust be declareBXTERNAL in the calling program.

WORK — Work array whose length is dependent on the chosen
implementation.

I MP length of WORK

1 N* ( KDVAX + 2) + KDVAX* * 2 + 3 * KDVAX + 2
2 N* ( KDMAX + 2) + KDVAX* * 2 + 2 * KDMVAX + 1
3 N* ( KDVAX + 2) + 3 * KDVAX + 2

4 N* ( KDVAX + 2) + KDVAX* * 2 + 2 * KDMVAX + 2

Algorithm

The routineGVRES implements restarte@RES with reverse communication to
generate an approximate solutiorAo= b. It is based on GMRESD by Homer
Walker.

There are four distingBVRES implementations, selectable through the parameter
vectorl NFO. The first Gram-Schmidt implementatiomFQ( 1) =1, is

essentially the original algorithm by Saad and Schultz (1986). The second Gram-
Schmidt implementation, developed by Homer Walker and Lou Zhou, is simpler
than the first implementation. The least squares problem is constructed in upper-
triangular form and the residual vector updating at the end39RES cycle is
cheaper. The first Householder implementation is algorithm 2.2 of Walker
(1988), but with more efficient correction accumulation at the end of @46

cycle. The second Householder implementation is algorithm 3.1 of

Walker (1988). The products of Householder transformations are expanded as

IMSL MATH/LIBRARY

Chapter 1: Linear Systems * 265



sums, allowing most work to be formulated as large scale matrix-vector
operations. Although BLAS are used wherever possible, extensive use of Level 2
BLAS in the second Househol der implementation may yield a performance
advantage on certain computing environments.

The Gram-Schmidt implementations are | ess expensive than the Househol der, the
latter requiring about twice as much arithmetic beyond the coefficient
matrix/vector products. However, the Householder implementations may be more
reliable near the limits of residual reduction. See Walker (1988) for details. Issues
such asthe cost of coefficient matrix/vector products, availability of effective
preconditioners, and features of particular computing environments may serve to
mitigate the extra expense of the Householder implementations.

Example 1

Thisisasimple example of GVRES usage. A solution to asmall linear systemis
found. The coefficient matrix A is stored as afull matrix, and no preconditioning
isused. Typically, preconditioning is required to achieve convergencein a
reasonable number of iterations.

c Decl are vari abl es

INTEGER  LDA, N
PARAMETER (N=3, LDA=N)

c Speci fications for |ocal variables
| NTECER I DO, NOUT
REAL P(N, TOL, X(N, Z(N
REAL A(LDA/ N, R(N
SAVE A R

c Specifications for intrinsics
I NTRINSIC SQRT
REAL SQRT

c Speci fications for subroutines
EXTERNAL  GVRES, MJURRV, SSET, UVACH, WRRRN

c Specifications for functions
EXTERNAL  AMACH
REAL AVACH

c ( 33.0 16.0 72.0)

c A =(-24.0 -10.0 -57.0)

c ( 18.0 -11.0 7.0)

c

c B =(129.0 -96.0 8.5)

c

DATA A/ 33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
DATA R/ 129.0, -96.0, 8.5/

CALL UMACH (2, NOUT)

c Initial guess = (0 ... 0)
c
CALL SSET (N, 0.0, X, 1)
c Set stopping tol erance to
c square root of nachine epsilon
TOL = SQRT(AMACH(4))
IDO =0
10 CONTI NUE
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CALL GVRES (IDO N, X, P, R Z, TQ)
IF (IDO.EQ 1) THEN

c Set z = A'p
CALL MJRRV (N, N, A LDA N P, 1, N 2
GO TO 10
END | F

CALL VRRRN (' Solution’, 1, N, X 1, 0)

WRI TE (NOUT, ' (All, E15.5)') 'Residual ="', TOL
END
Output
So