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Abstract
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1 Introduction

Technological progress in automation is poised to change the future of labor market. Two

leading automation technologies, industrial robots and computing equipment, have advanced

rapidly since the 1990s.1 As Figure 1 shows, the stock of robots in the US increased more

than fourfold and the stock of capital on computing equipment rose more than 14 times

between 1995 and 2015.2 Recent studies have linked the growth in robots (Graetz and

Michaels, 2018; Acemoglu and Restrepo, 2019) and computers (Krueger, 1993; DiNardo

and Pischke, 1997; Autor, Katz, and Krueger, 1998; Autor, Levy, and Murnane, 2003)

to significant effects on employment and wages. The literature has also suggested a more

nuanced view of the impact of technological progress on the demand for different types of

skills, measured either by different education groups (e.g., Katz and Murphy, 1992; Krusell

et al., 2000; Autor, Katz, and Kearney, 2008; Michaels, Natraj, and Van Reenen, 2014) or by

different occupations (e.g., Spitz-Öener, 2006; Goos and Manning, 2007; Goos, Manning, and

Salomons, 2009; Autor and Dorn, 2013) and investigated its contribution to wage inequality.

If new technologies have different complementarity with various skills and have distinct effects

on the demand for them, we would expect that technological progress may also affect male

and female wages differently. In this paper, we examine the impact of robots and computers

on the gender wage gap in US local labor markets.

We first document that there are rapid growth and considerable variation in the adoption

of robot and computer capital across industries and across local labor markets, proxied by

commuting zones (CZs) in the US. We construct our measure of robot adoption in a CZ

using data from the IFR on the increase in the stock of industrial robots across industries

weighted by each industry’s baseline employment share in the CZ from the Census. Our

measure of computer adoption uses data on computing equipment across industries from

the EUKLEMS, also weighted by each industry’s baseline employment share. We show that

1The International Federation of Robotics (IFR) defines an industrial robot as “an automatically con-
trolled, re-programmable, and multipurpose manipulator programmable in three or more axes, which can
either fixed in place or mobile for use in industrial automation applications.” The IFR collects information
on both industrial and service robots. A service robot is defined as a robot that performs useful tasks for
humans or equipment excluding industrial automation application. The publicly available IFR data do not
provide information on the use of service robots. Industrial robots are distinct from other types of machinery
and equipment in that they are fully autonomous machines that do not need a human operator and they can
be reprogrammed to perform multiple tasks and adapted to different applications. Computing equipment
includes computers and all other automatic data processing machines, as well as peripheral equipment such
as storage units and accessories, based on the European Classification of Products by Activity (Jäger, 2018).

2The spread of robotics and computing technologies is expected to accelerate over the decades to come
(Ford, 2015). For example, Boston Consulting Group (BCG, 2015) has projected that the world stock of
robots may quadruple by 2025. According to a forecast from the International Data Corporation (IDC,
2018), spending on cloud computing infrastructure will grow at an annual growth rate of 10.8 % in the next
five years.
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male workers are more likely to be employed in industries that use more robots, whereas

female workers are more likely to be employed in industries that use more computers.

We find that male and female workers cluster into occupations that require different skills.

Using data from the Census and the Dictionary of Occupational Titles (DOT), we show

that female workers are disproportionately employed in occupations that require relatively

more brain skills. Male workers, by contrast are overrepresented in occupations that require

high brawn skills. We further show that at the industry level, the adoption of robots is

positively correlated with an industry’s brawn skill requirement but is uncorrelated with its

brain skill requirement. The adoption of computers, by contrast is uncorrelated with an

industry’s brawn skill requirement and positively associated with its brain skill requirement.

These empirical evidence corroborates the view that robot capital is more substitutable for

brawn skills in which men have a comparative advantage, whereas computer capital is more

substitutable for brain skills in which women have a comparative advantage.

We develop a simple conceptual framework to illustrate the effects of robot and computer

capital on the gender wage gap. Incorporated into the model are different features of robots

and computers consistent with the data: robots are more substitutable for brawn labor,

whereas computers are more substitutable for brain labor. Following Galor and Weil (1996),

we focus on a simplified description of the gender differences in factor endowments: while

men and women have equal quantities of brain skills, men have more brawn skills. The more

robot capital does an economy accumulate, the higher the rewards of brain skills relative

to brawn skills. Similarly, the accumulation of computer capital implies higher rewards of

brawn skills relative to brain skills. Therefore, the model predicts that, all other things being

equal, in regions with more robot capital, gender wage gap is lower; whereas in regions with

more computer capital, gender wage gap is higher. The simple framework provides guidance

for estimating the impact of robots and computers on the gender wage gap across US local

labor markets.

In order to focus on the changes in robot and computer capital driven by technological

advances, we use robot adoption trends in several European economies that are ahead of the

US in robotics to instrument robot adoption in the US. We use the industry-specific initial

level of computer intensity, which presumably captures the industry’s inherent reliance on

computers for technological reasons, as an instrument for computer adoption in the US.

Exploiting these sources of variations and using combined data from the IFR, EUKLEMS,

and Census, we find systematic evidence that the adoption of robot and computer capital

has significant and sizable effects on the gender wage gap. We show that the increase in

the stock of robots decreases male wage more than female wage, leading to a reduction in

the gender wage gap; whereas the increase in computer capital reduces female wage more
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than male wage and has a positive effect on the gender wage gap. One additional unit of

robot per thousand workers is estimated to decrease gender wage gap by 0.3 log points, and

an increase in computer capital by one million dollars per thousand workers is estimated to

increase gender wage gap by 4.1 log points.

The existence of gender wage differentials in the US labor market is well documented

(Altonji and Blank, 1999; Blau and Kahn, 2006, 2017). The principal explanations for the

trends and persistence in gender wage gap include differences in human capital variables

(Altonji and Blank, 1999), computer use and skill-biased technological change (Weinberg,

2000; Card and DiNardo, 2002), deunionization (Blau and Kahn, 2006), employment selec-

tion (Mulligan and Rubinstein, 2008), attitude towards bargaining and competition (Gneezy,

Niederle, and Rustichini, 2003; Babcock and Laschever, 2009), working hours (Goldin, 2014;

Erosa et al., 2017), as well as gender segregation (Bayard, et al., 2003; Blau and DeVaro,

2007). Most closely related to our work is the recent literature that uses the task-based

framework introduced by Autor, Levy, and Murnane (2003) to explain the narrowing of the

gender wage gap. Bacolod and Blum (2010) and Yamaguchi (2018) show that an increase in

the prices of skills in which women have a comparative advantage and a decrease in the prices

of skills in which men have a comparative advantage can account for a significant portion of

the narrowing gender gap. Borghans, Weel, and Weinberg (2014) and Ge and Zhou (2018)

focus on the importance of people skills and their returns in accounting for changes in the

gender wage gap. Black and Spitz-Öener (2010) directly compare women’s work (measured

by job tasks) to that of men using survey data from West Germany and investigate the

potential role of workplace computerization on occupation task requirements. Beaudry and

Lewis (2014) find that changes in skill prices driven by PC adoption is important in explain-

ing the decline in the gender wage gap. In this paper, we rely on data from the IFR and

EUKLEMS to directly measure two potentially skill-biased technological changes, namely

robots and computers, which enable us to exploit plausible exogenous changes in technology

adoption and estimate their impact on the gender gap in local labor markets. Our data also

allow us to consider several alternative explanations, such as overall capital deepening and

changes in trade exposure.

The rest of this paper is organized as follows. Section 2 describes the data, highlighting

some key data patterns that inform subsequent analyses. Section 3 outlines a simple con-

ceptual framework that links the adoption of robotics and computing technologies to gender

wage gap. Section 4 discusses the empirical specifications and presents our results. Section

5 provides the conclusion.
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2 Data and Descriptive Statistics

In this section, we first introduce our data sources, summarize the construction and mea-

surement of our key variables, and describe relevant data patterns of robot capital, computer

capital, and gender wage gap in the US. Then we present simple statistical evidence that is

consistent with two assumptions. First, males have a comparative advantage in brawn skills,

whereas females have a comparative advantage in brain skills; second, robot capital is more

substitutable for brawn labor than for brain labor, whereas computer capital is more sub-

stitable for brain labor than for brawn labor. These assumptions imply that the adoption of

robotics and computing technologies may have differential effects on male and female wages.

We will investigate these relationships in Section 3 through a simple theoretical framework

and form empirical specifications and bring them to the data in Section 4.

2.1 Data on Robot and computer capital

The best accessible data source on the use of robots is the one collected by the IFR, which

compiles data on robots by surveying global robot suppliers (Graetz and Michaels, 2018;

Acemoglu and Restrepo, 2019). The IFR data consist of counts of industrial robots instal-

lation and operational stock by industry, country, and year, covering over 50 countries since

1993. For the United States, the IFR collects country-level data since 1993 and reports

industry-specific data after 2004.3

Our computer capital data are taken from the EUKLEMS database. The EUKLEMS

includes measures of economic growth, productivity, employment, capital formation and

technological change at the industry level for all European Union (EU) member states and

the US in its latest 2017 release (Jäger, 2018). Data for most European countries come from

Eurostat, whereas US data are from the Bureau of Economic Analysis (BEA). Total capi-

tal is decomposed into ten asset types: computing equipment, communication equipment,

transport equipment, other machinery and equipment, total non-residential investment, res-

idential structures, computer software and databases, research and development, cultivated

assets, and other intellectual property products. We use computing equipment as our defi-

nition for computer capital.

We measure robot capital by the number of robots per thousand workers, using the oper-

ational stock of industrial robots from the IFR and employment data from the EUKLEMS.4

3The robots data for the United States are not distinguishable from those for North America in the IFR
data before 2004. Following the literature, we use the North America data to proxy US robot use as the
US accounts for more than 90% of the entire robot use in North America. In the empirical analysis, we
implement an IV procedure to correct for potential bias due to measurement error.

4There are several standard types of industrial robots based on their mechanical structures: articulated

4



Computer capital is measured in million of 2010 US dollars per thousand workers, using the

computing equipment stock and employment figures from the EUKLEMS.5 We compare the

US robot and computer capital intensity with major EU countries between 1995 and 2015

in Figures 1a and 1b.6 Figure 1a shows that the US lags significantly behind Germany (as

well as Italy and Sweden, not shown in Figure 1a) in the adoption of robotics technologies.

The number of industrial robots per thousand workers was much higher in Germany (1.36)

than those in France (0.58), the US (0.44), and the UK (0.31) in 1995. There has been a fast

increase in robot capital since the 1990s but Germany has maintained its leading position

relative to the US and other EU countries over time. By 2015, the number of industrial

robots per thousand workers was at 2.03 in the US, in contrast to 4.86 in Germany. Com-

paring the US to France and the UK, robot use in the US has caught up with and surpassed

France since 2012 and has been consistently ahead of the UK. In contrast, Figure 1b shows

that the US has a leading position in computing technology. Despite being slightly behind

Germany, the US has been consistently ahead of almost all other EU countries in computer

capital intensity. By 2015, the US computer capital intensity was at 1.63 million dollars per

thousand workers, much higher than those in France (0.53) and the UK (0.99).

robots, Cartesian robots, parallel robots, SCARA (selective compliance assembly robot arm), and cylindrical
robots, among which the articulated robots account for more than half of the total operational stock. The
IFR reports counts of industrial robots installation and operational stock, but has no information on robot
prices. As argued by Acemoglu and Restrepo (2019), in principle robots in different sectors may have
different capabilities and values, but in practice they are fairly similar in these dimensions. Robot prices of
different types fall in the range of $24,000 per robot to about $80,000 with an average unit price of $44,000
in 2017. Acemoglu and Restrepo (2019) further show that adjusting robot quantities using differences in
robot prices across industries generates similar results. The statistical method to construct the operational
stock of industrial robots takes capital obsolescence into consideration by withdrawing robots from service
after 12 years.

5According to the EUKLEMS data, computing equipment grew the fastest between 1990 and 2015 by
more than 29 times, whereas total capital increased by 2.3 times during the same period. Standard perpetual
inventory method (PIM) is used to construct capital stock of computing equipment. Specifically, gross captial
stock is calculated as the weighted average of capital investment in previous years, of which the service
life has not yet expired. The weights constitute the relative efficiency of capital investments of different
vintage. In the formula, At =

∑T
τ=0 θτIt−τ , where At denotes gross capital stock at time t, It represents

capital investment, θτ is the relative efficiency of a capital investment of vintage τ , and T denotes the
expected service life. If the relative efficiency of capital investment declines geometrically, then gross capital
stock at time t can be estimated by At = (1 − δ)At−1 + It, where δ is the capital depreciation rate. The
depreciation rate for computing equipment is 31.19%. The price of computer capital at time t is estimated
by pt = rtp

I
t−1 + δpIt , where rt is the real rate of return, defined as the nominal rate of return adjusted for

asset-specific capital gains, pIt denotes the investment price of buying a unit of capital, and δ is the rate of
depreciation. More details on the methods to estimate the value of capital services can be found in Timmer
et al. (2007).

6Employment is measured as the number of US equivalent workers in 1990 in all countries in Figures 1a
and 1b. More specifically, the EUKLEMS reports total working hours in a year in each industry in a country.
We divide working hours in an industry in a country by working hours per worker in the corresponding US
industry in 1990 to obtain the country’s number of US equivalent workers.
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Robot and computer capital are not evenly distributed across industries in the US.7

Table 1 shows the number of robots per thousand workers in each of the IFR industries.

The first three columns compare robot intensity across industries in 1993 (the first year

robot data are available from IFR), 2000, and 2015, respectively. The automotive industry

had the highest number of robots per thousand workers at 25.81 in 1993, which was much

higher than all other industries and followed by metal products (2.70), plastics and chemicals

(1.72), and electronics (1.51). Many manufacturing industries and all nonmanufacturing

industries used no industrial robot in 1993 according to the IFR. By 2015, the number of

robots per thousand workers reached 129.40 in the auto industry, followed by miscellaneous

manufacturing (16.31), electronics (14.69) and plastics and chemicals (10.60). The last two

columns of Table 1 show the change in robot intensity in each industry over time. Those

industries with higher initial robots per thousand workers, such as automotive, electronics,

plastics and chemicals, tend to experience larger increase in robot use over time. In addition,

the increase in robot capital accelerated after year 2000.

Table 2 shows computer capital intensity measured in million dollars per thousand work-

ers in each of the 24 EUKLEMS industries from 1990 to 2015. The finance and insurance

industry had the highest computer capital intensity at 0.12 million dollars per thousand

workers in 1990. Refined petroleum products, electronics, chemicals and chemical products

were among the other industries that had high computer intensity in 1990. All industries

have experienced rapid rise in computer capital intensity between 1990 and 2015, but the

growth rate varies greatly across industries. The information and communication industry’s

computer capital intensity increased from 0.06 in 1990 to 1.50 in 2000 and 7.61 in 2015, claim-

ing leading position in computer capital. Other industries that have experienced fast growth

in computer capital intensity include mining, finance and insurance, and refined petroleum

products. Overall, industries with higher initial computer capital tend to experience higher

growth in computer capital over time. We also observed an accelerated increase in computer

capital intensity between 2000 and 2015 compared to the 1990s.

Male and female workers sort themselves into different industries. In Table 3, we present

the proportions of male and female workers employed in several high robot intensity indus-

tries (including automotive, electronics, metal products, plastics and chemicals, and basic

metals) and several high computer intensity industries (including information and communi-

cation, finance and insurance, professional and scientific works, refined petroleum products

and electronics) between 1990 and 2015. We use data from the Integrated Public Use Micro

Samples (IPUMS) 5% Census samples of 1990 and 2000, and three-year pooled American

Community Survey (ACS) 2009–2011 and 2014–2016 to represent 2010 and 2015, respec-

7Appendix A provides detailed descriptions of industry-level data construction.
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tively (Ruggles et al., 2015). Among all employed workers between age 16 and 64, the

proportion working in high robot industries declined from 6.18% in 1990 to 4.26% in 2015

(Table 3, Panel A). This trend is consistent and reflects the fact that high robot industries

have experienced more adoption of robots over time (Table 1) and thus more labor has been

replaced by robots in these industries. The proportions of male workers employed in high

robot industries are more than twice as much compared to the proportions of female workers.

In 2015, 6.02% of male workers were employed in high robot industries, whereas only 2.37%

of female workers worked in the same industries. The fraction of workers in high computer

intensity industries was relatively stable between 1990 and 2015 (Table 3, Panel B). Female

workers are more likely than male workers to be employed in high computer intensity indus-

tries, although the gender difference seems shrinking over time. Given that male and female

workers are distributed in industries with different robot and computer capital intensity, the

labor market impact of robots and computers may vary across gender.

2.2 Commuting Zone Data

The concept of commuting zones (CZs) was first introduced in Tolbert and Sizer (1996) and

has been used as a definition of local labor markets (e.g., Autor and Dorn, 2013). A CZ is

a cluster of counties with strong commuting ties. In practice, a CZ usually contains several

counties, but a county may also sit on the borders of several CZs. Unlike Metropolitan

Statistical Areas (MSAs), CZs cover the entire US including both metropolitan and rural

areas. The commuting ties within CZs can also capture industrial similarities. In this study,

we focus on the 722 CZs covering the continental US. To match the Census and ACS micro

data from IPUMS to CZs, we use the procedures provided by Autor and Dorn (2013) to

assign counties or Census Public Use Micro Areas (PUMAs) to CZs.8

Our worker sample consists of non-institutionalized civilian employed workers between

age 16 and 64. Annual working hours are computed by the product of weeks worked times

usual number of hours per week from the 1990 Census and the 2014–2016 ACS. We calculate

individual hourly wage by dividing annual earnings by total working hours, and define gender

wage gap in a CZ as the log difference between the average of male hourly wages and the

average of female hourly wages in the region.9 Figure 2a illustrates the variations in gender

wage gap across CZs in 1990. The darker color represents larger gender wage gap in the

8Autor and Dorn (2013) provide the crosswalks between counties (or PUMAs) and CZs between 1990
and 2010. For 2015, we first use the information on how PUMA borders changed between 2010 and 2015
from the Bureau of Census to match PUMAs in 2015 to PUMAs in 2010, then assign PUMAs to CZs.

9Earnings are top coded in the census and ACS data. We adjust top-coded annual earnings to 1.5 times
of the top codes. To control for extreme values in hourly wage, we assign the 99th percentile value to all
observations above the 99th percentile and assign the 1st percentile value to all values below 1st percentile.
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CZ. The gender wage gap varies significantly across local labor markets, ranging from 14 to

42 log points. Figure 2b shows the decline of gender wage gaps across CZs between 1990

and 2015. The darker color corresponds to larger decline in the gender gap. At the national

level, gender wage gap declined by 10 log points from 26 in 1990 to 16 in 2015. The change

in gender wage gap varies substantially across regions. The gender wage gap narrowed by

more than 20 log points in some CZs, whereas in some other CZs the gender wage gap

barely changed or even increased between 1990 and 2015. In our empirical analysis, we will

investigate the effects of various socioeconomic factors at the local labor market, including

robot and computer adoption, on the observed changes in the gender wage gap.

We use change in robot capital in industry i between time t0 and t1 to measure the

adoption of robotics technology in the industry. More specifically,

∆RAi,(t0,t1) =
Ri,t1 −Ri,t0

Li,1990
− gi,(t0,t1)

Ri,t0

Li,1990
, (1)

where Ri,t is the number of robots in industry i at time t, Li,1990 is the number of workers

(in thousands) in industry i in the baseline year of 1990, and gi,(t0,t1) is the output growth

rate between t0 and t1 in industry i. The employment counts and output growth rates by

industry come from the EUKLEMS dataset. The robot adoption measure in Equation (1)

takes into account industry-level variations in robot use while keeping baseline employment

fixed at 1990 level (Li,1990) and adjusting for the overall expansion of industry-specific output(
gi,(t0,t1)

)
.10

Robot adoption in a CZ j between time t0 and t1 is defined as the sum of industry-level

robot adoption weighted by each industry’s baseline employment share. More specifically,

∆RAj,(t0,t1) =
∑
i

Lij,1990
Lj,1990

∆RAi,(t0,t1), (2)

where
Lij,1990

Lj,1990
is the employment share of industry i in CZ j and ∆RAi,(t0,t1) is defined in

Equation (1).

10Note that we use employment from a fixed base year (1990) instead of current year to calculate change in
robot capital measured by the number of robots per thousand workers. Alternatively, change in robot capital

may be calculated by
Ri,t1

Li,t1
− Ri,t0

Li,t0
, in which if Ri,t1 = Ri,t0 and Li,t1 < Li,t0 , then

Ri,t1

Li,t1
>

Ri,t0

Li,t0
. That is, in

an industry with a steady number of robots but a shrinking workforce, it appears as if the industry adopts
more robots over time. This is the reason why we use the number of workers from 1990 in our calculation for
change in robot capital in Equation (1), as well as for the statistics in Figures 1a and 1b. Because the number

of robots was low in 1993, the adjustment term gi,(t0,t1)
Ri,t0

Li,1990
is not quantitatively important. Between 1993

and 2015, 96.4 percent of the variation in robot adoption across industries as measured in Equation (1) is

driven by the increase in the first term,
Ri,t1

−Ri,t0

Li,1990
.
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Similarly we measure computer adoption in industry i between time t0 and t1 as:

∆CAi,(t0,t1) =
Ci,t1 − Ci,t0
Li,1990

− gi,(t0,t1)
Ci,t0
Li,1990

, (3)

where Ci,t is the computer capital stock (in million dollars) in industry i at time t, Li,1990 and

gi,(t0,t1) have the same definitions as those in Equation (1). Again, the computer adoption

measure keeps baseline employment fixed and adjusts for industry-specific output growth.11

Analogous to Equataion (2), we define computer adoption in a CZ j between time t0 and t1

as follows

∆CAj,(t0,t1) =
∑
i

Lij,1990
Lj,1990

∆CAi,(t0,t1), (4)

where
Lij,1990

Lj,1990
is the industry employment share and ∆CAi,(t0,t1) is defined in Equation (3).

Figure 3a shows the variations in robot adoption defined in (2) between 1993 and 2015

across US CZs. The darker color corresponds to higher level of robot adoption. As the

automotive industry has a dominant position in robot use, areas that host auto manufacturers

and auto parts suppliers have the highest robot adoption. Most of the CZs with the highest

robot adoption cluster in the states of Michigan, Ohio, and Indiana. Besides the areas

around the Great Lakes, CZs with high robot adoption are less clustered. In the CZs with

the lowest robot adoption, agriculture industry tend to account for the largest employment

share in the region. Similarly, Figure 3b shows the variations in computer adoption defined

in (4) between 1990 and 2015, with darker color representing higher computer adoption.

The regional variations in computer adoption is also largely driven by the distribution of

industries across CZs. For example, many CZs in Louisiana and Texas have high computer

adoption because the concentration of petroleum and mining industries is high. New York

City has high computer adoption because of its heavy concentration in financial industry,

whereas the California bay area also has high computer adoption because of its booming

electronics industry. Both figures reveal significant heterogeneity across CZs.

We construct a measure for overall capital deepening in a CZ by using industry-specific

total capital stock (per thousand workers) from EUKLEMS weighted by each industry’s

employment share in the CZ, in the same way as those in Equations (2) and (4). This

variable is used to control for other non-robot non-computer automation technologies. We

follow Autor, Dorn and Hanson (2013) to construct a measure of US local labor market

11The adjustment term gi,(t0,t1)
Ci,t0

Li,1990
in Equation (3) is also not quantitatively important; 98.5 percent of

the variation in computer adoption across industries is driven by the change in computer intensity captured

by the first term in (3),
Ci,t1−Ci,t0

Li,1990
. When we re-estimate our models by using alternative measures for robot

adoption and capital adoption without including the corresponding adjustment terms, we obtain similar
results.
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exposure to Chinese imports. We obtain industry level Chinese imports from Comtrade,

and then project them to CZ level by using each industry’s employment share in a CZ as

weights. The (change in) exposure to Chinese imports is defined as

∆IPWjt =
∑
i

Lijt
Ljt

∆Mit

Lit
, (5)

where Lit is the start of period (year t) employment in industry i, ∆Mit is the observed

change in US imports from China in industry i between the start and end of the period,

and
Lijt

Ljt
is the employment share of industry i in CZ j at time t. We also consider other CZ

characteristics that may affect gender wage gap. For each CZ, we collect information on total

population, shares of population with different education levels, races, genders, and ages in

1990 from the Census data. We rely on share of employment in manufacturing, fraction

of female workers in manufacturing employment, and fraction of employment in routine

occupations in a CZ to control for differences in industry structure. We also construct

changes in the share of college graduates by gender between 1990 and 2015 in each CZ to

account for changes in skill supply. Table A1 presents summary statistics on commuting

zone gender wage gap, technological changes, and other characteristics.

2.3 The Substitutions between Technologies and Skills

We construct measures of brawn skills and brain skills by using information on skill require-

ments at detailed occupational level and assuming that workers are matched to jobs that

requires skills they have, following the pioneer work by Autor, Levy and Murnane (2003).

We begin with the 1990 US Census, which identify each person’s occupation. Using the 1977

DOT, we construct a measure for brawn skills in each occupation by combining five DOT

variables, including eye-hand-foot coordination, motor coordination, finger dexterity, manual

dexterity, and physical strength. A measure for brain skills is constructed by combining mul-

tiple DOT variables: GED reasoning, GED math, GED language, verbal aptitude, numerical

aptitude, temperaments on DCP (direction, control and planning for an activity), FIF (in-

terpreting feeling, ideas, facts in terms of personal viewpoint), INFLU (influencing people in

their opinions, attitudes or judgment about ideas or things), SJC (making generalizations,

evaluations, or decisions based on sensory or judgmental criteria), MVC (making generaliza-

tion, judgments, or decisions based on measurable or verifiable criteria), and DEPL (dealing

with people beyond giving and receiving instructions). We standardize our brawn and brain

skills measures by taking the average of the relevant DOT variables into percentile values

corresponding to their ranks in the 1970 skill distributions. We choose 1970 as the base year
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for our standardization because it reflects the distribution of skills before the recent progress

in robot and computing technologies.

Table 4 examines the relationship between gender and skills. The table reports top ten

occupations for each gender and their skill content using 1990 Census data. The occupa-

tions with the largest shares of female workers (such as secretaries, dental hygienists, and

kindergarten teachers) typically have high percentile scores on brain skills and low percentile

scores on brawn skills, with household cleaners and servants being the only exception. By

contrast, the occupations with the largest shares of male workers (such as mechanics, oil

drillers and operators) score high on brawn skills and score low on brain skills. Therefore, if

the only contribution of robot was to replace brawn skills, it should hurt male workers more

than female workers. Similarly, if computer capital was to substitute brain skills, it should

hurt female workers more than male workers.

We further explore the relationship between gender and skills in Figure 4, which presents

gender differences in average brawn skills and brain skills between 1990 and 2015. We find

that males on average have much higher brawn skills (Figure 4a) and much lower brain

skills than females (Figure 4b). Average brawn skills have declined slightly for both males

and females, whereas average brain skills have increased since 1990. The gender differences

in brawn and brain skills in Figure 4 are not driven by the differences in a few industries.

Figure 5a plots the male and female difference in brawn skills across industries ordered by

their brawn skill requirement in 1990, 2000, 2010, and 2015, respectively.12 We find that

males have higher brawn skills than females in almost all industry in all years, and gender

differences in brawn skills tend to be higher in industries with higher brawn skill requirement.

Figure 5b plots the male and female difference in brain skills across industries ordered by

their brain skill requirement in each year. In most industries, females on average have higher

brain skills than males. Gender differences in brain skills tend to be higher in industries with

lower brain skill requirement.

Figures 6 and 7 provide evidence on the substitutions between technologies and skills.

Figures 6a shows the correlation between 1990 brawn skill requirement in an industry with

robot adoption in the industry, and Figure 6b depicts the analogous relationship between

brain skill requirement with robot adoption. We find a positive correlation between initial

brawn skill requirement and robot adoption over time, but no relationship between brain

skill requirement and robot adoption. That is, industries that required higher brawn skills

in 1990 are more likely to adopt robotics technology over time, but the initial brain skill

requirement in an industry is not associated with robot adoption. Figures 7a and 7b show

12The brawn skill requirement in an industry is the weighted average of occupation-specific brawn skill
requirement within the industry.
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the correlations between initial skill requirements and computer adoption across industries

and reveal no correlation between initial brawn skill requirement and computer adoption and

a positive correlation between brain skill requirement and computer adoption. Industries

with higher brain skill requirements are more likely to adopt computer technology. These

empirical evidence is consistent with the notion that robot capital is more substitutable for

brawn skills and computer capital is more substitutable for brain skills.

3 Conceptual Framework

In this section, we discuss the potential effects of different technological changes on wages.

Our conceptual framework is based on two postulates that are consistent with the data.

First, robot capital is more substitutable with brawn labor than with brain labor, whereas

computer capital is more substitutable with brain labor than with brawn labor. Second,

males have a comparative advantage in brawn skills, and females have a comparative ad-

vantage in brain skills. We will investigate the relationships between robot and computer

adoption and gender wage gap in a simple model and form empirical specifications based

on them. In the subsequent empirical analysis, we will also consider the effects of other

socioeconomic variables, such as overall capital deepening and trade exposure, on the gender

wage differentials.

We consider a production model with two task inputs, manual and cognitive, that are

used to produce output Y . The tasks are carried out by four factor inputs. Two of these

factors are labor inputs: brawn labor (LA) and brain labor (LB), and they are supplied

by workers of different gender (g = f,m). The other two factors of production are robot

capital (R) and computer capital (C), which have different substitution elasticities with the

two labor inputs. Manual tasks are completed by brawn labor and robot capital, whereas

cognitive tasks are completed by brain labor and computer capital. The aggregate output

at time t is generated by combining all inputs using the following technology:

Yt = zt(R
ρ
t + LρAt)

β/ρ(Cθ
t + LθBt)

(1−β)/θ, (6)

where zt is an efficiency parameter, β is manual tasks’ share and 1−β is cognitive tasks’ share

in the production process, respectively. In this specification, the elasticity of substitution

between robot capital and brawn labor is 1/(1 − ρ), the elasticity of substitution between

computer capital and brain labor is 1/(1− θ), whereas the elasticity of substitution between

robot capital and brain labor and that between computer capital and brawn labor are 1.

We model robots as being more likely to replace brawn labor and computers as being more
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likely to substitute brain labor, thus 1/(1− ρ) > 1, and 1/(1− θ) > 1. By implication, robot

capital is a relative substitute for brawn labor and a relative complement to brain labor,

whereas computer capital is a relative substitute for brain labor and a relative complement

to brawn labor.

There is a continuum of unit mass female workers, f , and a continuum of unit mass male

workers, m. Each worker of gender g is endowed with brawn skills LgA and brain skills LgB,

and they supply labor inelastically. We assume that men and women have the same amount

of brain skills (LfB = LmB ), but men are on average stronger than women physically and have

a comparative advantage in brawn skills (LfA < LmA ) (Galor and Weil, 1996; Pitt et al., 2012;

Rendall, 2018).13

Following Autor and Dorn (2013), the production function of robot and computer capital

are given by Rt = YRte
δRt and Ct = YCte

δCt, where YRt and YCt are the amount of final good

allocated to produce robot and computer capital, respectively. The parameters δR and δC are

positive constants that capture technological progress in producing new robot and computer

capital. Both types of capital are assumed to fully depreciate between periods. Market

competition and the zero profit condition imply that the real prices of capital (PRt, PCt) are

equal to average cost, that is, PRt = YRt/Rt = e−δRt, PCt = YCt/Ct = e−δCt. At time t = 0,

the prices of capital are normalized to 1. Over time, the (quality-adjusted) prices of robot

and computer capital go down continuously as its production efficiency increases.

Without loss of generality, utility is assumed to be linear in consumption. Given PRt and

PCt at time t, the social planner chooses the level of capital (Rt, Ct) to maximize aggregate

utility and solves the following problem:

max
R,C

Yt − PRtRt − PCtCt, (7)

where Yt is given by Equation (6). The first order conditions imply that

∂Yt/∂Rt = e−δRt, and ∂Yt/∂Ct = e−δCt. (8)

We can show that
∂Rt

∂t
> 0, and

∂Ct
∂t

> 0. (9)

Over time, as the prices of robot and computer capital go down, there is wider adoption and

13Besides the evidence shown in Table 4, Figures 4 and 5, Mathiowetz et al. (1985) show that men have
higher grip strength than women on average in a US study, and Pitt et al. (2012) find similar patterns
in Bangladesh. Therefore, the gender difference in physical strength is likely originated from biological
differences rather than cultural or economic differences.
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more production of both robots and computers.14

Factor prices are determined by marginal products of per unit of labor input as following:

wAt = ztβL
ρ−1
At (Rρ

t + LρAt)
β/ρ−1(Cθ

t + LθBt)
(1−β)/θ, (10)

wBt = zt(1− β)Lθ−1Bt (Rρ
t + LρAt)

β/ρ(Cθ
t + LθBt)

(1−β)/θ−1. (11)

It is immediate from Equation (10) that the effect of robots adoption on brawn labor wage

is ambiguous. In particular, ∂wAt/∂Rt < 0, if ρ > β; and ∂wAt/∂Rt > 0, if ρ < β. When the

elasticity of substitution between robots and brawn labor is large and satisfies ρ > β (in the

extreme case they become perfect substitutes when ρ = 1), the rise in robots would increase

manual tasks inputs and push down the marginal product of brawn labor. In contrast, when

the elasticity of substitution between robots and brawn labor is small such that ρ < β,

robots and brawn labor would become relative complements in the production and the rise

in robots would increase the marginal product of brawn labor. Because robots and brain

labor are productive complements, the wage paid to brain labor rises with wider adoption

of robots, i.e., ∂wBt/∂Rt > 0. Similarly, we can show that brawn labor wage increases with

computers, but the effect of computer adoption on brain labor wage depends on the elasticity

of substitution between computer and brain labor.

The relative skill premium between brain and brawn skills (π) can be expressed as a

function of input ratios:

πt =
wBt
wAt

=
1− β
β


(
Rt

LAt

)ρ
+ 1(

Ct

LBt

)θ
+ 1

(LAt
LBt

)
. (12)

The brain skill premium depends on the relative supply of brain and brawn labor inputs

LAt/LBt. Relatively faster growth of brain labor input reduces the brain skill premium. The

brain skill premium also depends on the relative supply of robot capital and brawn labor and

the relative supply of computer capital and brain labor. Under the assumptions that brawn

labor is more substitutable for robots and brain labor is more substitutable for computers,

we have 0 < ρ, θ < 1. In this case, growth in robot capital tends to increase brain skill

premium as it increases the relative demand for brain labor input, whereas rise in computer

capital tends to decrease brain skill premium as it decreases the relative demand for brain

14Following the literature (e.g., Autor, Levy, and Murnane, 2003; Autor and Dorn, 2013), the prices of
robot and computer are assumed to fall exogenously with time due to technical advances. Analyzing the
driving forces of technological advances and the determinants of technology adoption is beyond the scope of
current paper and left for future research.
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labor input:
∂πt
∂Rt

> 0, and
∂πt
∂Ct

< 0. (13)

Gender-specific wage is determined by skill endowments and marginal products of labor

as following:

wgt = wAtL
g
At + wBtL

g
Bt, where g = f,m. (14)

Therefore, the impacts of increasing Rt and Ct on female and male wages, wft , wmt , are all

ambiguous. Gender wage gap can be defined as a function of brain skill premium:

wmt

wft
=
LmAt + LmBtπt

LfAt + LfBtπt
. (15)

That is, women’s relative wage increases in brain skill premium, since women possess rela-

tively more brain skills. As a result, women’s relative wage increases with growth in robot

capital and decreases with growth in computer capital.15

The main goal of this study is to analyze the effect of technological changes, proxied by

the growth in industrial robots and computer capital on gender wage gap. From a simple

time-series study, some other variables that have trended over time may generate spurious

relationship between technological changes and gender wage gap. Therefore, we focus on the

local labor market impact of robot and computer capital in our empirical analysis, following

studies such as Autor and Dorn (2013), Autor, Dorn and Hanson (2013), and Acemoglu

and Restrepo (2019). To guide the subsequent analysis at the level of local labor markets,

we consider a large set of geographic regions, j ∈ {1, 2, ..., J} and allow the structure of

production to vary across regions. Each region is endowed with a unit mass of male workers

and a unit mass of female workers and has the following production function:

Yjt = zjt(R
ρ
jt + LρAjt)

βj/ρ(Cθ
jt + LθBjt)

(1−βj)/θ, (16)

with βj ∈ (0, 1). In this specification, each region produces a differentiated product Yj. A

region with a higher βj produces a product with more intensive use of manual tasks (carried

out by robots or brawn labor), whereas a region with a lower βj has relatively high demand

for cognitive tasks (carried out by computers or brain labor).

15For simplicity, we assume homogeneous skill endowment within each gender group. In Appendix B, we
relax this assumption and allow for individual heterogeneous skill endowment, following Autor, Levy, and
Murnane (2003), Autor and Dorn (2013), and Ottaviano, Peri and Wright (2013). In this extension, workers
sort themselves into different tasks according to comparative advantage, and labor inputs are determined at
the labor market equilibrium. Technological advances due to robot and computer adoption directly change
the allocation of labor inputs across task types. We show that the implications for the effects of robots and
computers on gender-specific wage levels and gender wage gap would be unchanged in the extended model.
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Next, we analyze the cross-region differences in robot and computer adoption (or pro-

duction). The first order conditions of region j′s social planner’s problem are

zjtβj(R
ρ
jt + LρAjt)

βj/ρ−1(Cθ
jt + LθBjt)

(1−βj)/θRρ−1
jt = e−δRt,

zjt(1− βj)(Rρ
jt + LρAjt)

βj/ρ(Cθ
jt + LθBjt)

(1−βj)/θ−1Cθ−1
jt = e−δCt,

(17)

which yield
Rjt + LρAjtR

1−ρ
jt

Cjt + LθBjtC
1−θ
jt

=
βj

1− βj
e(δR−δC)t. (18)

In our simple framework, labor inputs are exogenously given. Equation (18) implies that as

the price of robot or computer capital goes down, i.e., as δR or δC increases, the demand for

robot or computer goes up. Furthermore, we can show that

∂Rjt/∂βj > 0, and ∂Cjt/∂βj < 0. (19)

That is, in regions with higher demand for manual task input, there is faster adoption of

robot capital; and in regions with higher demand for cognitive task input, there is faster

adoption of computer capital.

Gender wage gap in region j is given by

wmjt

wfjt
=
LmAjt + LmBjtπjt

LfAjt + LfBjtπjt
. (20)

where the regional skill premium πjt depends on the adoption of robot and computer capital

in the region:

πjt =
1− βj
βj


(
Rjt

LAjt

)ρ
+ 1(

Cjt

LBjt

)θ
+ 1

(LAjt
LBjt

)
. (21)

In regions with faster adoption of robots, Equation (21) implies that brain skill premium

is higher. As a result, Equation (20) predicts that women’s relative wage is also higher.

Similarly, in regions with faster adoption of computers, brain skill premium and women’s

relative wage are lower. This inference leads to the main hypothesis derived from the simple

conceptual framework that can be tested empirically: In regions with faster adoption of

robot capital, gender wage gap is lower; whereas in regions with faster adoption of computer

capital, gender wage gap is higher, all else being held constant.
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4 Empirical Analysis

In this section,we first formulate our empirical specification using the simple framework in

Section 3 as our guidance. Then we present the effects of robot and computer adoption on

gender wage gap across CZs to test the predictions of the model and discuss the quantitative

implications of our estimates. Finally, we investigate the robustness of our estimates.

4.1 Empirical Specification

The implications of the model in Section 3 can be empirically tested by considering a log

linear approximation of Equation (20) to derive the impact of robot and computer capital

on local gender wage gap as follows:

GAPjt = ηR ln
Rjt

LAjt
+ ηC ln

Cjt
LBjt

+ φ ln
LAjt
LBjt

, (22)

where GAPjt = lnwmjt − lnwfjt is the gender wage gap in region j at time t. Our hypothesis

is that ηR < 0 and ηC > 0.

Our main empirical specification is based on Equation (22). In our data, we measure

robot and computer capital by the quantities of capital stock per thousand workers (R/L

and C/L) and approximate the relative supply of brawn and brain labor inputs by controlling

population shares of workers with different gender and other characteristics. We estimate the

model in long differences (∆) over 25 years to focus on the historical trends and smooth out

measurement error (Autor, Dorn and Hanson, 2013; Michaels, Natraj and Van Reenen, 2014;

Acemoglu and Restrepo, 2019). Some regions had close to zero robot or computer capital in

1990, so their changes in lnR/L and lnC/L are enormous. Therefore, we subsitute changes

in levels of robot and computer capital rather than logarithms in our empirical specifications.

Consequently our key estimating equation is given by:

∆GAPj,(t0,t1) = α0 + α1∆RAj,(t0,t1) + α2∆CAj,(t0,t1) + Xj,(t0,t1)Γ + εj,(t0,t1), (23)

where ∆RAj,(t0,t1) represents robot adoption as defined in Equation (2), ∆CAj,(t0,t1) repre-

sents computer adoption as defined in Equation(4), Xj,(t0,t1) is a vector of regional charac-

teristics and economic variables, and εj,(t0,t1) represents a random error.

Figure 8 shows the correlations between changes in gender wage gap and the two tech-

nological changes across CZs. There appears to be a negative relationship between gender

wage gap and robot adoption (Figure 8a), and a positive relationship between gender wage

gap and computer capital adoption (Figure 8b). The solid lines correspond to fitted lines

17



from linear regressions with CZ population in 1990 (represented by bubble size) as weights.

The dashed lines are for unweighted regressions. We fit the following equations:

∆GAPj,1990−2015 =− 0.077 − 0.007 ∆RAj,1993−2015,

(0.002) (0.001)
(24)

∆GAPj,1990−2015 =− 0.251 + 0.090 ∆CAj,1990−2015.

(0.020) (0.011)
(25)

The point estimate of -0.007 (standard error 0.001) for the robot adoption variable confirms

that a CZ’s robot adoption is predictive of its decline in gender wage gap, whereas the

positive point estimate of 0.090 (standard error 0.011) for the computer adoption variable

indicates that the growth in computer capital is associated with an increase in gender wage

gap. Although these estimates are supportive of our model’s predictions, there are many

other observable and unobservable factors that may affect gender wage gap in local labor

markets. We examine the links between technological changes and gender wage gap more

rigorously in our econometric analysis below.

We augment specification (23) in our subsequent empirical analysis. Since robots and

computers are only two specific aspects of recent technological progress, we also investigate

the impact of overall capital deepening on gender wage gap. Additionally, we control for

trade exposure and various other CZ characteristics and economic variables that may affect

gender wage gap. Even after we take into account all these control variables, there are other

reasons why the US adoption of robot and computer capital could be subject to measurement

error or correlated with the error term εj(t0,t1), leading to biased estimates. For example,

any (unobserved) shock to relative labor demand for female workers in a CZ may affect the

technology adoption decisions of the industries located in the CZ. To identify the effects

of robot and computer adoption on the gender wage gap in US local labor markets, we

implement some instrumental variable strategies.

We instrument the US robot adoption using an analogous measure constructed for several

European countries that are ahead of the US in robot technology (Acemoglu and Restrepo,

2019), which is meant to capture the exogenous component of robot use driven by techno-

logical progress. In particular, the IFR data show that the number of robots per thousand

workers in Germany (shown in Figure 1a), Sweden, and Italy (i.e., EURO3) are ahead of

that in the US throughout the period between 1993 and 2015. Therefore, we combine the

IFR robot data with employment counts and output growth from the EUKLEMS for these
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countries and define their average robot adoption as follows

∆RAi,(t0,t1) =
1

3

∑
c∈EURO3

[
Rc
i,t1
−Rc

i,t0

Lci,1990
− gci,(t0,t1)

Rc
i,t0

Lci,1990

]
, (26)

where Rc
i,t is the number of robots in industry i in country c at time t, gci,(t0,t1) is the growth

rate of output in industry i in country c between time t0 and t1, and Lci,1990 is the baseline

employment level.16 We instrument the US commuting zone robot adoption ∆RAj(t0,t1) in

Equation (23) by

∆RAj,(t0,t1) =
∑
i

Lij,1990
Lj,1990

∆RAi,(t0,t1), (27)

where
Lij,1990

Lj,1990
is the baseline employment share of industry i and ∆RAi,(t0,t1) is defined in

Equation (26). In terms of computing technology, the US plays a leading role in the world

(Figure 1b). Therefore, we use the industry-specific initial levels of computer intensity

weighted by the baseline employment share of industries in a CZ in the US as an instrument

for subsequent growth in computer capital in the CZ defined in (4), following Michaels,

Natraj and Van Reenen (2014).

Appendix Figure A1 depicts the first-stage relationships between our main explanatory

variables and their corresponding instruments. The top panel reveals the substantial pre-

dictive power of the EURO3 robot adoption instrument ∆RAj,(t0,t1) for US robot adoption

∆RAj,(t0,t1) across CZs, consistent with the notion that US robot adoption is driven by tech-

nological advance lead by EURO3. The bottom panel shows a strong correlation between a

CZ’s initial computer capital level in 1990 and computer adoption over time ∆CAj,(t0,t1). In

the following section, we implement a two-stage least squares (2SLS) IV estimation strategy

based on these results.

4.2 Estimation Results

We estimate specification (23) on the full sample of 722 CZs. Table 5 reports estimation

results for a long difference specification between 1990 and 2015, where we regress the change

in gender wage gap between 1990 and 2015 on robot and computer adoption for the same

period. We instrument robot adoption in the US by the average change in the three leading

European countries and instrument computer adoption by initial level of computer intensity

16Acemoglu and Restrepo (2019) use the average robot penetration in five EU countries (EURO5), com-
prising Italy, Sweden, France, Denmark and Finland, to instrument US robot adoption. We exclude France,
Denmark and Finland from our measure in Equation (26) because the US had surpassed these countries in
the number of robots per thousand workers by 2015. However, using EURO5 average as instrument for US
robot adoption does not change our results.
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as described above and present the 2SLS estimates.17 The first-stage estimates presented

in Panel B of Table 5 suggest our instruments have positive and significant effects on our

measures of robot and computer adoption. The F -statistics are large, thereby suggesting

that these IVs have a high explanatory power for the variables of interest. We weight each

observation of CZ by its 1990 population. Standard errors are clustered at the state level to

account for spatial correlation across CZs.

The first column of Table 5 provides estimates of a parsimonious specification that only

includes geographic dummies for the nine Census divisions as covariates. We estimate a

strong negative effect of robot adoption on gender wage gap in a CZ with a coefficient of

−0.003 (standard error 0.001) and a strong positive effect of computer adoption on gender

wage gap with a coefficient of 0.063 (standard error 0.014). These estimates indicate that

an increase of one robot per thousand workers in our robot adoption measure in a CZ is

predicted to reduce its gender wage gap by 0.3 log points and an increase of one million

dollars per thousand workers in our computer adoption measure is predicted to increase

gender wage gap by 6.3 log points.

In the rest of columns in Table 5, we include a set of controls to eliminate potential

confounds. In the second column, we add change in total capital in a CZ between 1990

and 2015 as a proxy for other non-robot non-computer technological progress. The effect of

total capital on gender wage gap is negative but not statistically different from zero. The

inclusion of total capital does not change our estimate of the impact of robot adoption on

gender wage gap but reduces our estimate of the impact of computer adoption on gender

wage gap to 0.048 (standard error 0.021).

The two most widely cited explanations for the evolution of US wage structure in the

1980s and 1990s are skill-biased technical change and trade with low-wage countries. Of

these two, skill-biased technical change was often believed to be the dominant explanation

in the 1980s (Katz and Autor, 1999), whereas trade in the form of foreign outsourcing also

played a significant role in explaining the rise in wage inequality (Feenstra and Hanson,

1999). In the third column of Table 5, we control for international competition using US

exposure to Chinese imports defined in Equation (5), as trade exposure has been shown to

have significant effect on local labor market outcomes in recent decades (Autor, Dorn and

Hanson, 2013) and may affect technology adoption decision (Bloom, Draca and Van Reenen,

2016).18 To account for the potential endogeneity of US trade exposure, we instrument for

17We present the ordinary least squares (OLS) estimates of Equation (23) in Appendix Table A2.
18As a very large proportion of the US imports growth comes from China, recent trade literature has

focused on the effects of rising Chinese import competition on the US labor market (Autor, Dorn and
Hanson, 2013; Pierce and Schott, 2016). Autor, Dorn and Hanson (2013) also show that the local labor
market effects of imports from all low-income countries are almost identical to the effects of China imports
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the growth in US imports from China using Chinese import growth in eight other high-

income countries, following Autor, Dorn and Hanson (2013). Specifically, we instrument

the import exposure variable ∆IPWjt with a non-US exposure variable ∆IPWojt that is

constructed by

∆IPWojt =
∑
i

Lijt−1
Ljt−1

∆Moit

Lit−1
, (28)

where imports from China to other eight developed countries (including Australia, Denmark,

Finland, Germany, Japan, New Zealand, Spain, and Switzerland) by industry (∆Moit) re-

places US imports by industry (∆Mit) in Equation (5). In addition, employment levels from

the prior decade in 1980 replaces start-of-period employment levels by industry and region as

contemporaneous employment by region may be affected by China trade. Our IV estimates

show a negative and insignificant effect of trade exposure to Chinese imports on gender wage

gap (column 3).19 This additional control has little impact on our estimate of the effect of

robot adoption. The point estimate remains at -0.003. This specification finds a slightly

smaller effect of computer adoption on gender wage than does the corresponding estimate in

the second column, but the estimate remains economically large and statistically significant.

The next column includes an additional variable on the share of employment in routine

jobs or occupations in 1990 to capture the susceptibility of a CZ’s occupations to substitution

by technology. Routine occupations are a set of jobs whose primary activities follow a set

of rules that make them easy to be automated (Autor, Levy and Murnane, 2003). One

percentage point increase in the share of employment in routine occupations in a CZ in 1990

is found to decrease gender wage gap in the CZ by 0.4 log points. With this additional

control, the point estimates on robot and computer adoption have the same sign and are

close in magnitude compared with those in column 3.

In column 5, we augment the regression model with baseline CZ characteristics in 1990,

which include the log of population, the shares of population by race, age, and education,

share of employment in manufacturing, and share of female workers in manufacturing em-

ployment in a CZ. These variables capture the baseline demographic characteristics and

industrial structure of a CZ that may affect gender wage gap. The estimated effects of robot

and computer adoption on gender wage gap from this augmented model do not change sig-

nificantly. This outcome suggests that the effects of robot and computer adoption on gender

wage gap are robust to the initial differences in demographics and industry structure across

alone.
19We have also constructed gender-specific trade exposure variables by replacing total employment in

Equation (5) by gender-specific employment and instrumented them by corresponding gender-specific in-
struments. With the alternative trade exposure measures, the estimated results on the effects of trade
exposure, robot and computer adoption on gender wage gap are all very similar to those using the single
trade exposure measure.
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CZs.

Our empirical analyses so far have focused on the effects of demand shocks, such as

technological changes and trade exposure, on the gender wage gap between 1990 and 2015.

During the same time period, skill supplies by gender have also shifted significantly. In

particular, college enrollment in the US has increased substantially, and the college gender

gap has reversed (Goldin, Katz and Kuziemko, 2006; Ge and Yang, 2013). In column 6 of

Table 5, we include two additional controls that measure the changes in college-educated

male and female workers’ shares in total male and female employment in a CZ, respectively,

to control for changes in gender-specific skill supply. Not surprisingly, an increase in female

college share is found to substantially reduce gender wage gap, whereas an increase in male

college share enlarges gender wage gap. It is reassuring that the additional supply-side

controls have little impact on our estimate of the effect of robot adoption. The estimated

effect of computer adoption on gender wage gap is a little smaller in column 6, but remains

economically and statistically significant.

Table 5 focuses on our main outcome variable, gender wage gap. We present the effects of

robot and computer adoption on male and female hourly wages in Table 6. Robot adoption

has a statistically significant negative effect on both male and female wages. The impact of

robot adoption on male wage is larger than that on female wage, consistent with the notion

that robot capital is more substitutable for male labor as males have a comparative advantage

in brawn skills. In our preferred specifications with full controls presented in columns 3 and

6 in Table 6, an increase of one robot per thousand workers in our robot adoption measure in

a CZ is predicted to reduce male log hourly wage by 0.010 (standard error 0.002) and female

log hourly wage by 0.006 (standard error 0.001). Computer adoption also has a negative

effect on both male and female wages. But the impact on female wage is significantly

larger than that on male wage, indicating that computer capital is more substitutable for

female labor. An increase of one million dollars per thousand workers in our computer

adoption measure in a CZ reduces male log hourly wage by 0.051 in the specification with

full controls (column 3) even though the estimate is not statistically significant. The same

change in computer adoption lowers female log hourly wage significantly by 0.109 (column

6). Therefore, the recent automation technologies, as measured by robot and computer

adoption, are substitutes with both male and female labor, but the elasticities of substitution

are significantly different by gender, leading to changes in gender wage gap.

We can combine the estimates in Table 5 with changes in robot and computer adoption

presented in Figures 3a and 3b to conduct a “back-of-the-envelope” calculation on how much

the technological changes in robots and computers can account for the observed change in
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the gender wage gap in the US.20 According to the estimates from our preferred specification

with full controls in column 6 of Table 5, the adoption of one additional robot per thousand

workers in a CZ reduces its gender wage gap by 0.3 log points relative to other CZs. An

average increase in the number of robots per thousand workers from 0.34 in 1990 to 2.03 in

2015 would lead to a decline in gender wage gap by 0.51 [= 0.3 × (2.03− 0.34)] log points,

accounting for approximately 6% of the observed decline in gender wage gap between 1990

and 2015. The adoption of one additional million dollars computer capital per thousand

workers in a CZ increases its gender wage gap by 4.1 log points relative to other regions. An

average increase in computer adoption from 0.06 (in 1990) to 1.63 (in 2015) million dollars per

thousand workers would lead to an increase in gender wage gap by 6.44 [= 4.1×(1.63− 0.06)]

log points. That is, the average gender wage gap would have been 6.44 percentage points

lower if there were no growth in computer capital between 1990 and 2015.

4.3 Robustness Checks

Over the time period that we examine, gender wage gap in the US experienced a secular

decline. One concern for our analysis is that some (unobserved) common causal factor

is behind both the decline in gender wage gap and the adoption of robot and computer

capital. For example, gender wage gap in the CZs that adopt more robot or computer

capital could have been on a downward or upward trend because of social economic changes

such as international competition and other technological changes. Thus, our estimates

might confound the impact of robot and computer adoption with pre-existing CZ trends. To

verify that our results capture the period-specific effects of robot and computer adoption,

we conduct a falsification exercise in Table 7 by regressing past changes in gender wage gap

between 1970 and 1990 in a CZ on future robot and computer adoption between 1990 and

2015. The estimates provide little evidence suggesting pre-trends. All specifications in Table

7 show that there is no quantitatively or statistically significant association between robot

or computer adoption and pre-1990 change in gender wage gap.

We conduct a series of additional robustness checks in Table 8. We present estimates

of the more detailed specification in column 6 of Table 5 that exploits geographic varia-

tions in robot and computer adoption conditional on changes in total capital, trade expo-

sure and employment share of routine occupations, and with controls on Census division

dummies, population demographics, baseline industry employment shares, and changes in

gender-specific skill supplies. Panel A of Table 8 shows the effects of robot and computer

20The “back-of-the-envelope” calculations need to be interpreted cautiously because they are based on
point estimates and simple extrapolation, and the IV estimator is known to identify only the local treatment
effect (Imbens and Angrist, 1994). Thus, the quantitative implications are only suggestive.
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adoption on gender wage gap, and Panels B and C show the corresponding effects on male

and female hourly wages. Column 1 estimates an unweighted regression model. We have an

estimated coefficient of -0.003 (standard error 0.001) on robot adoption and an estimated

coefficient of 0.039 (standard error 0.021) on computer adoption, which are not statistically

different from the baseline estimates. The estimated effects on gender-specific wage are also

similar between the weighted and unweighted regressions.

In Figures 3a and 3b, the presence of large variations in the adoption of robot capital

and computer capital across CZs is apparent. One concern is that our results are driven by a

number of CZs with very high robot or computer adoption. In column 2 of Table 8, we exclude

the top one percent CZs with the greatest robot adoption from our sample and re-estimate

the model. The coefficient estimate on robot adoption becomes −0.002 (standard error

0.001) and the coefficient on computer adoption decreases slightly to 0.036 (standard error

0.022). The negative effect of robot adoption and the positive effect of computer adoption

on gender wage gap are not due to the CZs with very large robot adoption. Column 3

demonstrates that our results are not driven by the CZs with very large computer adoption

either by re-estimating the model after excluding the top one percent CZs with the highest

computer adoption. When we exclude both the top one percent CZs with the highest robot

adoption and the top one percent CZs with the highest computer adoption in column 4 of

Table 8, the results remain robust.

We estimate a long-difference specification for 1990–2015 in our baseline specifications.

To examine the potentially confounding effects of the Great Recession, column 5 of Table

8 present results for a shorter time window that ends in 2007. We rescale the outcomes to

a 25-year equivalent change in column 5 so that the estimates are comparable with other

specifications. The estimated effects have the same signs and are modestly larger for the

pre-Great Recession period.

In the last column of Table 8, we consider an alternative specification in which we stack

the first differences for the two periods, 1990 to 2000 and 2000 to 2015, and include separate

time dummies for each period. The stacked-differences model explores the variations in

robot and computer adoption between these two time periods. It is reassuring that we still

estimate (after converting to a 25-year equivalent change for consistency) a negative impact

of robot adoption and a positive impact of computer adoption on gender wage gap.

5 Conclusion

The rapid development of automation technologies in recent decades suggests that the labor

market consequences of technological change may be substantial. Much previous research
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has studied the effects of skill-biased technological change on wages for worker of different

education or occupations. In this paper, we estimate the impact of two leading automation

technologies, industrial robots and computing equipment, on changes in the gender wage

gap between 1990 and 2015 on US local labor markets. Results suggest that one more

unit of robot per thousand workers would decrease gender wage gap by 0.3 log points, and

the increase of robots would account for 6% of the total reduction in the gender wage gap

between 1990 and 2015. By contrast, an increase in computer capital by one million dollars

per thousand workers is estimated to increase gender wage gap by 4.1 log points. The gender

wage gap would have been 6.4 percentage points lower if there were no growth in computer

capital between 1990 and 2015.

The present study focuses on the effects of robots and computers on the gender wage gap

in the US. Although gender wage differentials worldwide have fallen substantially over time,

the gaps persist and their sizes vary considerably (Blau and Kahn, 1992, Weichselbaumer and

Winter-Ebmer, 2005). Using microdata from 22 countries over the 1985–1994 period, Blau

and Kahn (2003) find that a country’s wage structure and collective bargaining are related to

the gender pay gap. The meta-analysis by Weichselbaumer and Winter-Ebmer (2005) shows

that most of the decrease in gender pay gap is due to better labor market endowments of

females. Although technological changes in most other countries are not as rapid as those in

the US, the fundamental forces governing technological change and labor market outcomes

are likely to be similar. Whether the different aspects of technological changes identified

in the US context can explain changes in gender pay gaps in other countries remains an

important topic for future research.
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Figure 1: Trends in Robot and Computer Capital in the United States and Europe

(a) Robot Capital

(b) Computer Capital

Notes: Robot capital is measured by operational stock of industrial robots per thousand US-equivalent
workers. Computer capital is measured in million 2010 US dollars per thousand US-equivalent workers. The
robot data come from the IFR, and the computer capital and employment data come from the EUKLEMS.
The EUKLEMS reports capital stock in each country’s home currency. We use the corresponding exchange
rates to convert all values to 2010 US dollars.
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Figure 2: Gender Wage Gap across Commuting Zones

(a) Gender Wage Gap in 1990

(b) Decline in Gender Wage Gap, 1990–2015

Notes: The data come from the 1990 Census and the 2014–2016 ACS. Hourly wage is computed by dividing
annual earnings by total working hours for non-institutionalized civilian employed workers between age 16
and 64. Gender wage gap in a commuting zone is defined as the log difference between the average of male
hourly wages and the average of female hourly wages in the region.

32



Figure 3: Robot and Computer Adoption across Commuting Zones

(a) Robot Adoption, 1993–2015

(b) Computer Adoption, 1990–2015

Notes: The robot data come from the IFR and the computer capital data come from the EUKLEMS. Robot
(computer) adoption in a commuting zone is defined as the sum of industry-level robot (computer) adoption
weighted by each industry’s 1990 employment share in the commuting zone.
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Figure 4: Gender Differences in Brawn and Brain Skills

(a) Brawn Skills by Gender

(b) Brain Skills by Gender

Notes: The data come from the 1990 and 2000 censuses, 2009-2011 and 2014-2016 ACS, and the 1977 DOT.
Brawn skills and brain skills are standardized into percentile values corresponding to their ranks in the 1970
skill distributions.
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Figure 5: Gender Differences in Brawn and Brain Skills Across Industries

(a) Gender Differences in Brawn Skills

(b) Gender Differences in Brain Skills

Notes: The data come from the 1990 and 2000 censuses, 2009-2011 and 2014-2016 ACS, and the 1977 DOT.
Brawn skills and brain skills are standardized into percentile values corresponding to their ranks in the 1970
skill distributions.

35



Figure 6: Substitutions between Robot Capital and Skills

(a) Brawn Skills and Robot Adoption

(b) Brain Skills and Robot Adoption

Notes: The robot data come from the IFR, and the data on skills come from the 1990 census and the 1977
DOT. Brawn skills and brain skills are standardized into percentile values corresponding to their ranks in
the 1970 skill distributions.
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Figure 7: Substitutions between Computer Capital and Skills

(a) Brawn Skills and Computer Adoption

(b) Brain Skills and Computer Adoption

Notes: The computer capital data come from the EUKLEMS, and the data on skills come from the 1990
census and the 1977 DOT. Brawn skills and brain skills are standardized into percentile values corresponding
to their ranks in the 1970 skill distributions.
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Figure 8: Correlations between Gender Wage Gap and Technological Changes

(a) Gender Wage Gap vs. Robot Adoption

(b) Gender Wage Gap vs. Computer Adoption

Notes: The wage data come from the Census and ACS, the robot data come from the IFR, and the computer
capital data come from the EUKLEMS. The solid lines correspond to fitted lines from linear regressions with
commuting zone population in 1990 as weights. The dashed lines are for unweighted regressions. Bubble
size indicates the 1990 population size in the corresponding commuting zone.
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Table 1: Robot Capital by Industry in the United States, 1993-2015

Industries
Robot Capital Change in Robot Capital

1993 2000 2015 1993-2000 2000-2015

All industries 0.34 0.70 2.03 0.36 1.33
Manufacturing

Automotive 25.81 53.38 129.40 27.57 76.02
Metal products 2.70 5.59 8.28 2.89 2.69
Plastics and chemicals 1.72 3.56 10.60 1.84 7.04
Electronics 1.51 3.12 14.69 1.61 11.56
Food and beverages 1.12 2.31 6.55 1.19 4.24
Apparel and textiles 0.00 0.00 0.07 0.00 0.07
Wood and furniture 0.00 0.00 0.17 0.00 0.17
Paper and publishing 0.00 0.00 0.14 0.00 0.14
Glass and minerals 0.00 0.00 0.92 0.00 0.92
Basic metals 0.00 0.00 8.87 0.00 8.87
Industry machinery 0.00 0.00 2.53 0.00 2.53
Aerospace 0.00 0.00 0.72 0.00 0.72
Miscellaneous manufacturing 0.00 0.00 16.31 0.00 16.31

Nonmacufacturing
Agriculture 0.00 0.00 0.04 0.00 0.04
Mining 0.00 0.00 0.06 0.00 0.06
Utilities 0.00 0.00 0.09 0.00 0.09
Construction 0.00 0.00 0.02 0.00 0.02
Education and research 0.00 0.00 0.08 0.00 0.08
Services 0.00 0.00 0.00 0.00 0.00

Notes: Robot capital is measured by the number of robots per thousand workers. The number of
robots comes from the IFR and the number of workers in each industry comes from the EUKLEMS.
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Table 2: Computer Capital by Industry in the United States, 1990-2015

Industries
Computer capital

Change in
computer capital

1990 2000 2015 1990-2000 2000-2015

All industries 0.06 0.52 1.63 0.46 1.11
Manufacturing

Refined petroleum products 0.11 0.60 5.31 0.49 4.71
Electronics 0.07 0.65 2.56 0.57 1.92
Chemicals and chemical products 0.07 0.72 2.07 0.65 1.35
Transport equipment 0.05 0.25 0.75 0.20 0.51
Industrial machinery 0.05 0.45 0.72 0.40 0.27
Basic metals and metal products 0.03 0.17 0.50 0.14 0.33
Wood and paper 0.03 0.21 0.64 0.18 0.43
Food and beverages 0.02 0.19 0.71 0.17 0.52
Plastics 0.02 0.14 0.65 0.12 0.51
Miscellaneous manufacturing 0.02 0.14 0.47 0.12 0.33
Apparel and textiles 0.01 0.08 0.22 0.07 0.14

Nonmanufacturing
Finance and insurance 0.12 1.62 4.73 1.50 3.11
Professional and scientific works 0.07 1.13 2.90 1.06 1.76
Information and communication 0.06 1.50 7.61 1.44 6.11
Mining 0.06 0.57 6.45 0.51 5.88
Utilities 0.05 0.34 1.52 0.29 1.18
Whole sales and retails 0.05 0.42 1.47 0.37 1.05
Social services 0.01 0.17 1.18 0.16 1.01
Real estate 0.01 0.40 2.33 0.39 1.93
Recreational services 0.01 0.14 0.60 0.13 0.46
Transportation and storage 0.01 0.31 0.97 0.30 0.66
Accommodation services 0.01 0.06 0.42 0.05 0.37
Agriculture 0.00 0.05 0.18 0.04 0.14
Construction 0.00 0.11 0.28 0.11 0.17

Notes: Computer capital is measured in million dollars per thousand workers. Data on computer
capital and the number of workers in each industry come from the EUKLEMS.
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Table 3: Employment Shares in High Robot and High Computer Industries

1990 2000 2010 2015

Panel A: High robot industries
All workers 6.18 5.73 4.50 4.26
Male 8.04 7.53 6.23 6.02
Female 3.94 3.69 2.63 2.37

Panel B: High computer industries
All workers 11.69 11.61 12.22 11.65
Male 10.14 10.61 11.89 11.64
Female 13.55 12.75 12.60 11.67

Notes: Microdata come from the IPUMS 5% Census samples of 1990 and 2000,
and three-year pooled ACS 2009–2011 and 2014–2016 to represent 2010 and 2015.
High robot industries include automotive, electronics, metal products, plastics
and chemicals, and basic metals. High computer industries include information
and communication, finance and insurance, professional and scientific works,
refined petroleum products and electronics.
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Table 4: Top Occupations by Gender, with Skill Measures

Occupation description
Employment

% female % male
Brain Brawn

in 1990 skills skills

Top ten female occupations
Secretaries 183,610 98.88 1.12 88 48
Dental hygienists 3,442 98.34 1.66 53 20
Kindergarten teachers 12,065 98.13 1.87 64 45
Dental assistants 8,310 97.72 2.28 60 3
Receptionists 34,102 96.22 3.78 41 22
Child care workers 35,849 96.18 3.82 37 3
Typists 27,547 95.16 4.84 39 35
Registered nurses 84,476 94.66 5.34 84 65
Household cleaners and servants 13,620 94.35 5.65 5 32
Licensed practical nurses 19,658 94.23 5.77 50 65

Top ten male occupations
Bus engine mechanics 13,258 0.84 99.16 42 91
Heavy equipment mechanics 9,557 0.94 99.06 43 92
Heating mechanics 8,780 1.13 98.87 42 67
Drillers of oil wells 1,809 1.15 98.85 24 82
Paving equipment operators 3,731 1.24 98.76 23 91
Railroad brake operators 1,536 1.35 98.65 23 65
Plumbers 22,100 1.41 98.59 46 90
Concrete workers 3,028 1.43 98.57 25 80
Roofers and slaters 7,971 1.46 98.54 27 91
Elevator installers 1,149 1.54 98.46 28 92

Notes: The table reports the top ten occupations for male and female, along with mean skill
measures, using 1990 US Census microdata and the 1977 DOT. Brawn skills and Brain skills are
standardized into percentile values corresponding to their ranks in the 1970 skill distributions.
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Table 5: The Effects of Robots and Computers on Gender Wage Gap, 1990-2015

(1) (2) (3) (4) (5) (6)

Robot adoption -0.003** -0.003** -0.003** -0.003*** -0.003** -0.003**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Computer adoption 0.063*** 0.048*** 0.047** 0.045** 0.045** 0.041**
(0.014) (0.021) (0.021) (0.021) (0.020) (0.020)

Total capital -0.000 -0.000 -0.000 -0.000** -0.000**
(0.000) (0.000) (0.000) (0.000) (0.000)

Trade exposure -0.095 -0.135 -0.033 -0.040
(0.078) (0.098) (0.086) (0.084)

% Routine jobs -0.004*** -0.004*** -0.004***
(0.001) (0.001) (0.001)

∆ Female college share -0.970***
(0.166)

∆ Male college share 0.771***
(0.165)

Census division
yes yes yes yes yes yes

dummies
Demographics and

yes yes
industry shares

Observations 722 722 722 722 722 722
R-squared 0.28 0.28 0.29 0.31 0.36 0.36

First-stage results
Robot adoption 1.530*** 1.533*** 1.494*** 1.544*** 1.585*** 1.583***

(0.091) (0.092) (0.093) (0.094) (0.092) (0.091)
F-statistics 147.41 159.39 228.91 165.34 134.09 132.86
R-squared 0.92 0.92 0.91 0.92 0.93 0.93

Computer adoption 51.095*** 37.017*** 36.355*** 36.419*** 35.225*** 35.205***
(1.825) (2.013) (1.862) (1.876) (1.832) (1.913)

F-statistics 184.40 214.36 213.88 253.74 235.29 288.90
R-squared 0.66 0.77 0.79 0.81 0.95 0.96

Trade exposure 1.017*** 0.946*** 0.938*** 0.937***
(0.159) (0.198) (0.236) (0.237)

F-statistics 20.08 13.51 9.98 9.54
R-squared 0.56 0.57 0.59 0.59

Notes: The table presents 2SLS estimates of the impact of robot and computer adoption on gender
wage gap for 1990-2015. In all specifications, we instrument the US robot adoption using the average
robot adoption from Germany, Italy, and Sweden and instrument the US computer adoption using its
initial computer level in 1990. We also instrument the US trade exposure to Chinese imports using the
trade exposure of other developed economies to Chinese imports. All estimates are from regressions
weighted by population in 1990. Column 1 only includes Census division dummies. Columns 2-4 add
change in total capital, the US trade exposure to Chinese imports, and share of employment in routine
jobs. Column 5 adds demographic characteristics of commuting zones (log of population, shares of
population with high school, some college, college, and postgraduate education, share of whites, and
shares of workers between age 35-49 and 50-64) and employment share of manufacturing and share
of female workers in manufacturing employment in 1990. Column 6 includes changes in the shares of
workers with at least college education for both genders. We also report the first-stage coefficients
and F-statistics in all models. Robust standard errors are in the parentheses. *** and ** stand for
significance at the 1% and 5% level, respectively.
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Table 6: The Effects of Robots and Computers on Changes in Male and Female Wages

Male wage Female wage

(1) (2) (3) (4) (5) (6)

Robot adoption -0.014*** -0.013*** -0.010*** -0.011*** -0.010*** -0.006***
(0.003) (0.003) (0.002) (0.002) (0.002) (0.001)

Computer adoption -0.100*** -0.090** -0.051 -0.143*** -0.118*** -0.109***
(0.024) (0.038) (0.041) (0.021) (0.033) (0.036)

Total capital -0.000 -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

Trade exposure -0.524*** -0.017 -0.465*** 0.053
(0.152) (0.027) (0.135) (0.076)

% Routine jobs -0.008*** -0.004***
(0.002) (0.001)

∆ College share 1.234*** 1.457***
(0.081) (0.055)

Census division
yes yes yes yes yes yes

dummies
Demographics and

yes yes
industry shares

Observations 722 722 722 722 722 722
R-squared 0.32 0.32 0.47 0.28 0.29 0.36

First-stage results
Robot adoption 1.530*** 1.494*** 1.583*** 1.530*** 1.544*** 1.581***

(0.091) (0.093) (0.091) (0.091) (0.093) (0.091)
F-statistics 147.41 230.40 135.27 147.41 227.21 135.10
R-squared 0.92 0.92 0.92 0.92 0.92 0.93

Computer adoption 51.095*** 36.348*** 40.405*** 51.095*** 36.355*** 35.206***
(1.825) (1.962) (1.919) (1.825) (1.962) (0.1981)

F-statistics 184.40 212.71 244.12 184.4 214.96 246.83
R-squared 0.66 0.79 0.92 0.66 0.79 0.96

Trade exposure 0.997*** 0.897*** 1.000*** 0.910***
(0.150) (0.219) (0.169) (0.254)

F-statistics 20.41 10.07 19.65 7.74
R-squared 0.52 0.58 0.56 0.58

Notes: The table presents 2SLS estimates of the impact of robot and computer adoption on changes
in male and female hourly wages for 1990-2015. In all specifications, we instrument the US robot
adoption using the average robot adoption from Germany, Italy, and Sweden and instrument the US
computer adoption using its initial computer level in 1990. We also instrument the US trade exposure
to Chinese imports using the trade exposure of other developed economies to Chinese imports. All
estimates are from regressions weighted by population in 1990. Columns 1 and 4 only include Census
division dummies. Columns 2 and 5 add change in total capital and the US trade exposure to Chinese
imports. Columns 3 and 6 include share of employment in routine jobs, demographic characteristics
of commuting zones (log of population, shares of population with high school, some college, college,
and postgraduate education, share of whites, and shares of workers between age 35-49 and 50-64)
and employment share of manufacturing and share of female workers in manufacturing employment
in 1990, and change in the gender-specific share of workers with at least college education. We also
report the first-stage coefficients and F-statistics in all models. Robust standard errors are in the
parentheses. *** and ** stand for significance at the 1% and 5% level, respectively.
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Table 7: The Effects of Robots and Computers on (Pre-exposure) Gender Wage Gap in 1970-1990

(1) (2) (3) (4) (5) (6)

Robot adoption 1990-2015 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Computer adoption 1990-2015 -0.009 -0.006 -0.004 -0.003 -0.003 -0.003
(0.025) (0.040) (0.039) (0.041) (0.049) (0.047)

Total capital 1990-2015 0.000 0.000 0.000 0.000 0.000
(0.002) (0.000) (0.000) (0.000) (0.000)

Trade exposure 1990-2015 -0.254 -0.214 0.179 0.163
(0.207) (0.262) (0.214) (0.187)

% Routine jobs in 1970 -0.005*** -0.013*** -0.013***
(0.001) (0.002) (0.002)

∆ Female college share -0.368**
(0.151)

∆ Male college share 0.175
(0.155)

Census division
yes yes yes yes yes yes

dummies
Demographics and

yes yes
industry shares

Observations 722 722 722 722 722 722
R-squared 0.15 0.16 0.16 0.19 0.42 0.43

Notes: The table presents 2SLS estimates of the impact of robot and computer adoption on past
change in gender wage gap between 1970-1990. In all specifications, we instrument the US robot
adoption using the average robot adoption from Germany, Italy, and Sweden and instrument the US
computer adoption using its initial computer level in 1990. We also instrument the US trade exposure
to Chinese imports using the trade exposure of other developed economies to Chinese imports. All
estimates are from regressions weighted by population in 1970. Column 1 only includes Census division
dummies. Columns 2-4 add change in total capital, the US trade exposure to Chinese imports, and
share of employment in routine jobs in 1970. Column 5 adds demographic characteristics of commuting
zones (log of population, shares of population with high school, some college, college, and postgraduate
education, share of whites, and shares of workers between age 35-49 and 50-64) and employment share of
manufacturing and share of female workers in manufacturing employment in 1970. Column 6 includes
changes in the shares of workers with at least college education for both genders between 1970 and
1990. For comparison with our main results, the outcomes are scaled to a 25-year equivalent change.
Robust standard errors are in the parentheses. *** and ** stand for significance at the 1% and 5%
level, respectively.
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Table 8: Robustness Checks

Unweighted
No top No top No top Effects Stacked
robot computer robot and between Differences
CZs CZs computer 1990-2007

CZs
(1) (2) (3) (4) (5) (6)

Panel A: Change in gender wage gap
Robot adoption -0.003** -0.002** -0.003** -0.002** -0.004** -0.005***

(0.001) (0.001) (0.001) (0.001) (0.002) (0.001)
Computer adoption 0.039** 0.036* 0.033* 0.033* 0.050** 0.064**

(0.021) (0.022) (0.020) (0.020) (0.029) (0.032)
Observations 722 712 712 702 722 1444
R-squared 0.53 0.52 0.53 0.47 0.30 0.22

Panel B: Change in male wage
Robot adoption -0.011*** -0.009*** -0.011*** -0.010*** -0.013*** -0.012***

(0.001) (0.002) (0.002) (0.002) (0.003) (0.002)
Computer adoption -0.068** -0.065* -0.068** -0.062** -0.109*** -0.091**

(0.035) (0.036) (0.037) (0.032) (0.045) (0.040)
Observations 722 712 712 702 722 1444
R-squared 0.48 0.44 0.46 0.44 0.45 0.24

Panel C: Change in female wage
Robot adoption -0.006*** -0.006** -0.005*** -0.006** -0.008*** -0.009***

(0.002) (0.003) (0.002) (0.003) (0.003) (0.002)
Computer adoption -0.113*** -0.119*** -0.114*** -0.114*** -0.152*** -0.156***

(0.036) (0.036) (0.035) (0.035) (0.043) (0.051)
Observations 722 712 712 702 722 1444
R-squared 0.37 0.35 0.36 0.35 0.35 0.28

Notes: The table presents 2SLS estimates of the impact of robot and computer adoption using alternative
specifications. In all specifications, we instrument the US robot adoption using the average robot adoption
from Germany, Italy, and Sweden, instrument the US computer adoption using its initial computer level
in 1990, instrument the US trade exposure to Chinese imports using the trade exposure of other developed
economies to Chinese imports, and include all the control variables as the specification in column 6 of
Table 5. Panel A presents results for change in gender wage gap. Panels B and C present results for change
in male and female hourly wage, respectively. Column 1 presents results from an unweighted regression.
Column 2 presents results excluding the top one percent commuting zones with the highest robot adoption.
Column 3 presents results excluding the top one percent commuting zones with the highest computer
adoption. Column 4 presents results excluding both types of commuting zones. Column 5 presents
results for the period 1990-2007. Column 6 presents stacked-differences estimates for two periods, 1990
to 2000 and 2000 to 2015. We scale the outcomes in columns 5-6 to a 25-year equivalent change. Robust
standard errors are in the parentheses. ***, **, and * stand for significance at the 1%, 5% and 10% level,
respectively.
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A Appendix: Description of Industry-Level Data

The IFR reports the use of robots at two or three digit level within manufacturing and at

one digit level for non-manufacturing industries. Following Acemoglu and Restrepo (2019),

we use robot data for 19 IFR industries in this study. Within manufacturing, the IFR

covers 13 disaggregated industries: food and beverages; textiles (including apparel); wood

and furniture; paper and printing; plastic and chemicals; glass and non-metals; basic metals;

metal products; industrial machinery; electronics; automotive; shipbuilding and aerospace;

and miscellaneous manufacturing. The IFR miscellaneous manufacturing industry covers

industries in divisions 32 and 33 of the International Standard Industrial Classification (ISIC)

and includes industries such as jewelry, sports goods, games and toys, dental instruments, and

repair and installation of machinery and equipment. Outside manufacturing, there are six

broad industries: agriculture, forestry and fishing; mining; utilities; construction; education,

research and development; and services. Robot use data are not available at industry level

before 2004 for the US. We use the distribution across industries in 2004 to split the previous

years’ total number of robots into the IFR industries.

Due to confidentiality concern, the IFR does not report robot data for a particular indus-

try in a country if the number of suppliers to the industry is less than four. Instead, the IFR

categorizes these robots as unspecified. The percentage of unspecified robots has decreased

significantly from over 50% in 1993 to less than 20% in 2015. We use the proportions across

industries in the specified data from 2015 as weights and allocate the unspecified robots to

each industry. Alternatively, one can use the proportions across specified industries in each

year as weights to allocate the unspecified robots, which would allow the composition of un-

specified robots to change with the specified industries. However, many non-manufacturing

industries have zero entries before 2015, which may be the result of data unreported for

confidentiality concern rather than the actual absence of robots in these industries. Thus

using the alternative variable weights may allocate unspecified robots to manufacturing in-

dustries disproportionately, especially in early years. We have tried to use variable weights

to allocate unspecified robots, and the distribution of robots across industries is very similar

to that reported in this paper.

The EUKLEMS releases capital data at two-digit NACE industry level within manufac-

turing sector and at one-digit level outside manufacturing sector.21 We construct computer

capital data for 24 industries. Within manufacturing, there are 11 industries: electronics;

21NACE is the statistical classification of economic activities in the European Community, derived from
the French term “nomenclature statistique des activités économiques dans la Communauté européenne”.
US data are originally reported under the North American Industry Classification System (NAICS) and
converted to the NACE system.
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industrial machinery; chemical products; petroleum products; transport equipment; basic

metal and metal products; food and beverages; wood and paper; plastics; apparel and tex-

tiles, and miscellaneous manufacturing. Besides agriculture, mining, utilities, construction,

we have computer data on 9 disaggregated service industries: information and communica-

tion; transportation and storage; finance and insurance; real estate; professional and scien-

tific works; wholesale and retail trade; social services; recreational services; accommodation

services.

B Appendix: Model Extension

In the simple conceptual framework presented in Section 3, skill endowments are homo-

geneous among workers with the same gender, and workers are bound to given skills and

corresponding tasks. We now consider an extension of the framework, in which workers are

endowed with different skills and will choose tasks according to their comparative advantage.

We consider the same production function as in Equation (6) and leave the time depen-

dence of variables t implicit for ease of notation. There is a continuum of income-maximizing

workers, each of whom inelastically supplies one unit of labor. Workers have heterogeneous

skill endowments in both brawn and brain skills, with Ei = [Ai, Bi], and both Ai and Bi

are uniformly distributed between 0 and 1 for all i. Each worker i can choose to supply Ai

units of brawn labor, Bi unites of brain labor, or any convex combination of the two. Define

the relative efficiency of individual i at brain skill versus brawn skill as ηi = Bi/Ai. Our

assumptions above imply that ηi ∈ (0,∞). Let wA and wB be the wage per unit of brawn

skill and brain skill, respectively. At the labor market equilibrium, the marginal worker with

relative efficiency η∗ is indifferent between supplying brawn and brain skills when

η∗ = wA/wB. (29)

Individual i supplies brawn labor if ηi < η∗, and supplies brain labor if ηi > η∗. The total sup-

ply of brawn labor is given by LA =
∫ 1

0

∫ η∗
0
Aif(ηi|Ai)dηidAi and LB =

∫ 1

0

∫∞
η∗
Bif(ηi|Bi)dηidBi,

where f(ηi|Ai) and f(ηi|Bi) are conditional density functions. It is straightforward to see

that LA is an increasing function of η∗ and LB is a decreasing function of η∗.

Labor demand is determined by the first order conditions for profit maximization:

wA = zβLρ−1A (Rρ + LρA)β/ρ−1(Cθ + LθB)(1−β)/θ, (30)

wB = z(1− β)Lθ−1B (Rρ + LρA)β/ρ(Cθ + LθB)(1−β)/θ−1. (31)

48



The brain skill premium, wB/wA, is given by:

1− β
β


(
R
LA

)ρ
+ 1(

C
LB

)θ
+ 1

(LA
LB

)
=

1

η∗
, (32)

where η∗ is an implicit function of R and C. The allocation of labor inputs across skill/task

types depends on the levels of robots and computers.

Over time, as the prices of robot and computer capital go down, there is wider adoption

of both robots and computers. Next we analyze how wider adoption of robots and computers

affects employment and wages. Taking total differentiation on Equation (32) with respect

to R yields

∂η∗

∂R
=[−(1− β)ρη∗Rρ−1Lθ−1B ]/

[(1− β)(θ − 1)η∗Lθ−2B (Rρ + LρA)
∂LB
∂η∗
− βθLρ−1A Lθ−1B

∂LB
∂η∗

+(1− β)ρη∗Lθ−1B Lρ−1A

∂LA
∂η∗
− β(ρ− 1)Lρ−2A (Cθ + LθB)

∂LA
∂η∗

+(1− β)Lθ−1B (Rρ + LρA)].

(33)

Given that 0 < ρ, θ, β < 1, ∂LA

∂η∗
> 0, and ∂LB

∂η∗
< 0, we obtain ∂η∗

∂R
< 0. Similarly we can show

that ∂η∗

∂C
> 0. That is, marginal workers will reallocation their labor input from brawn to

brain labor with the rise of robot adoption and from brain to brawn labor with the increase

of computers. It is immediate that the brain skill premium (π = 1/η∗) satisfies:

∂π

∂R
> 0, and

∂π

∂C
< 0. (34)

However, the effects of R and C on brawn and brain wage levels, wA and wB, are ambiguous,

which can be shown by taking total differentiation on Equations (30) and (31).

We assume that men have a comparative advantage in brawn skills and women have a

comparative advantage in brain skills. For example, let Bf
i , Bm

i , Afi all uniformly distributed

between 0 and 1, and Ami uniformly distributed between ε and 1 + ε, where ε > 0. Then

the average relative efficiency at brain skills versus brawn skills, ηi, is higher for females.

That is, more women will choose to supply brain labor at the labor market equilibrium.

Therefore, women’s relative wage increases with brain skill premium. As a result, women’s

relative wage increases with growth in robots and decreases with growth in computers.

In summary, workers sort themselves into different tasks according to comparative ad-
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vantage when they have heterogeneous skill endowments. Robot and computer adoption

directly changes the allocation of labor inputs across skill types. We show that the implica-

tions for the effects of robots and computers on gender-specific wage levels and gender wage

gap would be unchanged in this extended model.

C Appendix: Additional Figures and Tables
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Figure A1: First Stage Regressions

(a) Robot Adoption in Europe and the US

(b) Initial Computer Intensity and Computer Adoption

Notes: The robot data come from the IFR, and the computer capital data come from the EUKLEMS. The
solid lines correspond to fitted lines from linear regressions with commuting zone population in 1990 as
weights. The dashed lines are for unweighted regressions. Bubble size indicates the 1990 population size in
the corresponding commuting zone.
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Table A1: Summary Statistics on Commuting Zone Data

Mean Standard Min Max
Deviation

Variables in 1990
Gender wage gap 0.261 0.046 0.143 0.419
Robot capital 0.295 0.350 0.013 3.136
Computer capital 0.042 0.003 0.030 0.052
Total capital 176.057 89.898 90.970 738.875
Exposure to Chinese imports 0.363 0.641 0.000 8.965
Share of routine occupations 0.283 0.034 0.200 0.377
Log population 11.484 1.573 7.166 16.490
Population shares by education

High school dropout 0.158 0.051 0.066 0.353
High school graduate 0.392 0.055 0.224 0.569
Some college 0.284 0.046 0.166 0.428
College graduate 0.112 0.030 0.043 0.226
Postgraduate 0.053 0.016 0.024 0.159

Population shares by race
Non-white 0.110 0.111 0.004 0.666
White 0.890 0.111 0.334 0.996

Population shares by gender
Female 0.500 0.016 0.422 0.537
Male 0.500 0.016 0.463 0.579

Population shares by age
Age 16 to 34 0.461 0.034 0.331 0.638
Age 35 to 49 0.321 0.021 0.230 0.413
Age 50 to 64 0.218 0.028 0.131 0.307

Employment shares of
Manufacturing 0.221 0.128 0.007 0.618
Female in manufacturing 0.078 0.050 0.014 0.303

Change between 1990-2015
∆ Gender wage gap -0.085 0.072 -0.278 0.205
∆ Robot adoption 1.685 2.138 0.228 24.302
∆ Computer adoption 1.723 0.213 1.172 2.780
∆ Total capital 132.269 22.525 86.105 235.351
∆ Exposure to Chinese imports 2.846 2.917 -1.490 28.375
∆ Share of college male workers 0.047 0.038 0.081 0.217
∆ Share of college female workers 0.119 0.038 0.021 0.285

Notes: See text for variable definitions and data sources. The initial year for variables on robots
is 1993.
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Table A2: The Effects of Robots and Computers on Gender Wage Gap, OLS Estimates

(1) (2) (3) (4) (5) (6)

Robot adoption -0.003** -0.003** -0.003** -0.003** -0.003** -0.003**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Computer adoption 0.040*** 0.039** 0.037** 0.038** 0.036** 0.036**
(0.013) (0.017) (0.017) (0.017) (0.020) (0.018)

Total capital -0.000 -0.000 0.000 -0.000*** -0.000**
(0.000) (0.000) (0.001) (0.000) (0.000)

Trade exposure -0.068 0.086 0.058 0.031
(0.093) (0.098) (0.083) (0.075)

% Routine jobs -0.004*** -0.004*** -0.004***
(0.001) (0.001) (0.001)

∆ Female college share -0.974***
(0.167)

∆ Male college share 0.786***
(0.168)

Census division
yes yes yes yes yes yes

dummies
Demographics and

yes yes
industry shares

Observations 722 722 722 722 722 722
R-squared 0.36 0.36 0.36 0.38 0.53 0.54

Notes: The table presents OLS estimates of the impact of robot and computer adoption on gender
wage gap for 1990-2015. All estimates are from regressions weighted by population in 1990. Column
1 only includes Census division dummies. Columns 2-4 add change in total capital, the US trade
exposure to Chinese imports, and share of employment in routine jobs. Column 5 adds demographic
characteristics of commuting zones (log of population, shares of population with high school, some
college, college, and postgraduate education, share of whites, and shares of workers between age 35-49
and 50-64) and employment share of manufacturing and share of female workers in manufacturing
employment in 1990. Column 6 includes changes in the shares of workers with at least college
education for both genders. Robust standard errors are in the parentheses. *** and ** stand for
significance at the 1% and 5% level, respectively.
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