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1 Introduction

Substantial evidence exists on large and persistent wage differentials among industries for

workers with the same observed productivity characteristics, such as education and expe-

rience. The (unexplained) inter-industry wage differentials have attracted the attention of

economists for decades because these differentials are used to examine the alternative theories

of wage determination and the underlying forces of wage structural change.1 Explanations

for inter-industry wage differentials largely fall into two categories. The first one emphasizes

the role of worker-specific productive abilities not measured in data (Murphy and Topel,

1987a, 1987b). The second one emphasizes the importance of firm-specific heterogeneity

in the form of compensating wage differences (Rosen, 1986), effi ciency wage (Katz, 1986;

Krueger and Summers, 1988), and rent sharing (Katz and Summers, 1989; Nickell and Wad-

hwani, 1990). Gibbons and Katz (1992) empirically assess both explanations by following

a sample of (approximately) exogenously displaced workers but remain agnostic that either

explanation alone can fit the empirical evidence on inter-industry wage differentials.

Debate persists over howmuch observed inter-industry wage differentials can be explained

by unobserved worker or firm characteristics. To disentangle simultaneous worker- and firm-

level heterogeneity in wage determination, microdata that match the characteristics of firms

to those of their workers are preferred. Several studies (Abowd, Kramarz and Margolis,

1999; Abowd et al., 2005) have decomposed inter-industry wage differences into a worker

fixed effect and a firm fixed effect by using extensive matched employer—employee panel

data.2 However, such matched employer—employee panels are rarely accessible to researchers.

Moreover, the decomposition of inter-industry wage differences by using a worker fixed effect

assumes unobserved worker characteristics to be time-invariant, but this assumption may

not hold in practice. For example, if labor quality evolves over time as a result of learning-

1Thaler (1989) reviews the debate on whether residual inter-industry wage differentials can emerge from
a competitive equilibrium or simply reflect non-competitive forces, such as effi ciency wage. Katz and Auto
(1999) provide a comprehensive survey on changes in wage structure.

2In a related paper, Fox and Smeets (2011) use matched employer—employee panel data from Denmark
to explain productivity dispersion across firms.
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by-doing, a worker fixed effect cannot fully capture the effects of unmeasured quality on

wages.

In this study, we develop an empirical model of labor demand and apply a two-stage

nonparametric procedure to recover unobserved worker and firm heterogeneity in a hedo-

nic wage equation. First, we nonparametrically recover unobserved worker quality by using

an estimator based on Bajari and Benkard (2005), Imbens and Newey (2009), and Norets

(2010). This estimator exploits both the uniqueness of the equilibrium wage function and its

monotonicity in unobserved worker attributes to identify worker quality while allowing unob-

served quality to be correlated with other observed worker characteristics, such as education

and experience. Second, we nonparametrically infer firm-specific willingness to pay (WTP)

with respect to both observed and unobserved worker attributes by using model results re-

lating WTP and first-order conditions for profit maximization. Once unobserved worker and

firm effects are identified, we can quantitatively assess their importance in accounting for

inter-industry wage differentials on the basis of widely available individual data.

Since the pioneer work of Rosen (1974), hedonic models have been widely used in empir-

ical literature. Our approach builds on the classic hedonic model and borrows insights from

recent work on estimating demands for differentiated products in industrial organization.3

We model labor demand as a discrete choice of a set of worker attributes. Worker quality

is modeled as a worker attribute unobserved by econometricians but valued by employers.

Literature on industrial organization has proposed nonparametric methods to identify prod-

uct characteristics observed by consumers but not by researchers (e.g., Bajari and Benkard,

2005). We apply these methods to recover worker quality. As in hedonic literature, the

marginal prices of worker characteristics are estimated as random coeffi cients in a hedonic

3Most of hedonic literature considers a market with a continuum of products and perfect competition
and assumes all product characteristics to be perfectly observed. Rosen’s estimation strategy is criticized
by Brown and Rosen (1982), Epple (1987), and Bartik (1987), who argue that preference estimates are
biased because consumers who strongly prefer a product characteristic purchase more of that characteristic.
Bajari and Benkard (2005) relax these assumptions and propose a hedonic model of demand for differentiated
products; this model accounts for unobserved product characteristics and heterogeneous consumers. Ekeland,
Heckman, and Nesheim (2004) and Heckman, Matzkin, and Nesheim (2010) thoroughly discuss identification
issues in estimating hedonic models.
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wage function.

Our labor demand model is estimated on the basis of individual data from NLSY79 to

explore the importance of worker and firm effects in wage determination. We estimate the

model separately for two different years and identify unobserved worker quality and firm

WTP for productive characteristics in each given year. Our estimates show that the worker

effect captured by unobserved worker quality is statistically more important in explaining

wages than the firm effect measured by firm WTP. Unmeasured worker quality accounts for

approximately two thirds of inter-industry wage differentials. Although worker quality is

persistent, it evolves over time and cannot be captured by a worker fixed effect alone.4

Observed worker characteristics that are supposed to account for productivity differences

typically explain no more than 30 to 40 percent of wage variations across workers. Con-

siderable residual variance suggests differences in unmeasured worker ability: highly skilled

workers earn high wages. Our empirical analysis reveals that the percentage of explained

wage differentials across workers nearly doubles when log wage regressions on observed worker

attributes are augmented by estimated unobserved worker quality.

This paper is organized as follows. In section 2 we present a hedonic model of labor

demand and discuss its properties. In section 3 we outline the estimation methods used to

recover unobserved worker quality and employer preferences for worker attributes. In section

4 we describe the data used in our empirical analysis. Section 5 presents and discusses the

estimation results. Section 6 concludes and outlines possible extensions for future research.

All derivations and auxiliary results can be found in the appendices.

4Using matched employer—employee panel data from France, Abowd, Kramarz, and Margolis (1999) also
find that worker effects are more important than firm effects in explaining inter-industry wage differentials.
However, those authors assume both work and firm effects to be fixed over time, whereas we allow them to
vary.
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2 A Model of Labor Demand

This section describes a labor demand model for heterogeneous workers. Consider an econ-

omy in which labor markets are indexed by t = 1, ..., T. These markets are either a time

series for a single labor market or a cross section of markets. Each market has j = 1, ..., Jt

workers and i = 1, ..., Vt job vacancies. Each job vacancy is a single-worker firm, which

decides whether to hire a worker to fill the vacancy.

Each worker is represented by a set of characteristics that potential employers value

differently. M characteristics can be observed by both the employer and the researcher. Let

Xjt denote a 1 × M vector of worker j’s observed characteristics. Examples of observed

worker characteristics include education, work experience, and gender. We use a scalar ξjt

to represent unobserved worker characteristics valued by the employer but unobserved by

the researcher, such as productive abilities, communication skills, and career ambition. For

simplicity, we interpret the variable ξjt as representing unmeasured worker quality rewarded

in labor markets.

The output of worker j at employer i in market t is given by the production function

Fi(Ejt, Kit), where Ejt is the labor effi ciency unit of worker j and Kit is the composite non-

labor input, including all intermediate inputs and capital. The variable Ejt measures the

different skill levels of labor in terms of different quantities of the effi ciency unit.5 We denote

the set of available labor effi ciency units at time t by Ξt ≡ {E0t, E1t, ..., EJtt}, where E0t

represents no hiring.

Employers are profit maximizers that choose labor input Ejt and non-labor input Kit

given market wage rate wjt, rental price rit of non-labor input Kit, and output price pit.

Formally, employer i’s problem is

max
(Ejt,Kit)∈Ξt×R+0

πit = pitFi(Ejt, Kit)− wjt − ritKit, (1)

5Sattinger (1980, pp. 15—20) provides a review and discussion on the effi ciency unit assumption.
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where the production function Fi(Ejt, Kit) is assumed to be continuously differentiable

and strictly increasing in Kit. The first-order condition on Kit implicitly defines a unique

employer-specific optimal choice of the composite non-labor input given its rental price, a

labor effi ciency level, and the output price.

∂πit
∂Kit

= pit
∂Fi
∂Kit

− rit = 0 =⇒ K∗it = K∗i (Ejt, pit, rit). (2)

Replacing the optimal choice of non-labor input in (1) simplifies the employer’s problem and

yields an optimal labor input Ejt:

max
Ejt∈Ξt

πit (Ejt) = Rit(Ejt)− wjt, (3)

where Rit(Ejt) is the employer-specific revenue per worker net of non-labor cost; that is

Rit(Ejt) = pitFi(Ejt, K
∗
i (Ejt, pit, rit))− ritK∗i (Ejt, pit, rit). (4)

We model a worker’s labor effi ciency units as a function of his or her characteristics such

that Ejt = E(Xjt, ξjt). The employer’s decision then becomes a discrete-choice problem of

choosing at most one worker to maximize profit on the job vacancy:

max
j∈{0,1,...,Jt}

πit(Xjt, ξjt) = Rit(Xjt, ξjt)− wjt. (5)

If more than one worker generates the same profits for the employer, we assume that the

employer randomly picks only one worker to fill the vacancy. The option of not hiring is

denoted by j = 0.

In the proposed heterogeneous labor demand model, a unique equilibrium wage function

wt(Xjt, ξjt) in each market t maps the set of worker characteristics onto the set of wages

under weak assumptions. The equilibrium wages have the following properties: (1) there
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is one wage for each set of worker characteristics, and (2) the wage function increases in

unobserved worker quality. The following proposition establishes these results.

Proposition 1 Suppose that Rit(Xjt, ξjt) is (i) Lipschitz continuous in (Xjt, ξjt) and (ii)

strictly increasing in ξjt for all employers i = 1, ..., Vt, then there exists a unique Lipschitz-

continuous equilibrium wage function wt(Xjt, ξjt) that is strictly increasing in ξjt for each

market t.

The proof is provided in Appendix A.6

The wage function in each market is an equilibrium function dependent on market prim-

itives, such as the production function. The wage function is not additively separable a

priori because we have limited information about its form. The proposition is based on

demand-side arguments only; thus, our estimation strategy is robust to various supply-side

assumptions.7

Suppose that worker characteristic m, denoted by xcj,m,t, is a continuous variable and

that worker j∗ maximizes profit for employer i. The following first-order conditions must

then hold:

∂Rit(Xj∗t, ξj∗t)

∂xcj,m,t
=

∂wt(Xj∗t, ξj∗t)

∂xcj,m,t
, (6)

∂Rit(Xj∗t, ξj∗t)

∂ξjt
=

∂wt(Xj∗t, ξj∗t)

∂ξjt
. (7)

Thus, with a firm’s optimal labor demand, the value the firm derives from the last unit of

each worker characteristic is equal to the implicit price it had to pay for that unit. Otherwise,

the firm can increase its profits by employing an alternative worker with a different set of

worker attributes.
6We follow a similar strategy taken by Bajari and Benkard (2005) in their model of the demand for

differentiated products.
7An equilibrium wage function with the same properties as ours can be derived from models based on

different assumptions on firm behavior.
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Some restrictions on the revenue-per-worker function Rit(Xjt, ξjt) will be required for

model identification. Therefore, we use the following linear specification for the revenue

function:

Rit(Xjt, ξjt) ≡ βi,0 +Xjt · βi,X + βi,ξξjt. (8)

In this specification, each firm i’s revenue is linear in terms of worker attributes (Xjt, ξjt).

Coeffi cients βi,X and βi,ξ represent employer i’s preference for characteristic vector Xj and

ξj, respectively. We allow each firm to have a unique set of preference parameters. When

the optimal choice is suspension of hiring, all coeffi cients in the revenue function are equal to

zero. Similar specifications are commonly used to estimate preference parameters in litera-

ture on estimating demand in differentiated product markets (Berry, 1994; Berry, Levinsohn

and Pakes, 1995; Petrin, 2002; Bajari and Benkard, 2005; Bajari and Kahn, 2005). These

random coeffi cient models are considerably more flexible than standard logit or probit mod-

els, where preference parameters are assumed to be identical across individuals. Although

seemingly arbitrary, the linearity assumption can be derived under mild conditions on model

primitives.8 Appendix B shows how the linear revenue function can be derived from common

specifications of labor effi ciency and the production function.

Given the parametric form in (8), the employer’s problem in Equation (5) becomes

max
j∈{0,1,...,Jt}

βi,0 +Xjt · βi,X + βi,ξξjt −wt(Xjt, ξjt). (9)

The firm’s first-order conditions in Equations (6) and (7) on any continuous characteristic

8The proposed functional form is not required for identification. Other parametric specifications may be
considered; these include a linear function in which continuous variables are indicated in logarithms rather
than in levels similar to those in Bajari and Benkard (2005) and Bajari and Khan (2005). We have tried
this linear-in-logs specification, but its performance in explaining inter-industry wage differentials is not
significantly different from that of the linear-in-levels specification used in the present study. The linear-in-
levels case clearly interprets βi as a WTP vector for worker characteristics; thus, we focus our analysis on
this specification.
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xcj,m,t and ξjt evaluated at the observed optimal choice j
∗ become

βi,xcj,m,t =
∂wt(Xj∗t, ξj∗t)

∂xcj,m,t
, (10)

βi,ξ =
∂wt(Xj∗t, ξj∗t)

∂ξjt
. (11)

Therefor, parameter vector βi is intuitively interpreted as firm i’s WTP for worker charac-

teristics.

3 Estimation of Labor Demand Model

The equilibrium pricing function implied by most hedonic models is of the nonseparable

form Y = g(X, ε), where Y is the product price, X is a vector of observed characteristics,

and ε is a variable representing unobserved attributes. Our equilibrium wage function also

consists of a function in whichX and ε are nonseparable. A large body of literature examines

the estimation and identification of both the function g(.) and the unobserved term ε (e.g.,

Matzkin, 2003; Chesher, 2003; Chernozhukov, Imbens and Newey, 2007). Whereas most

estimators proposed in this literature allow for at most one variable in X to be correlated

with ε (e.g., Bajari and Benkard, 2005; Imbens and Newey, 2009), our application considers

multiple variables in X to be correlated with unobserved attributes in ε.

Our estimation strategy proceeds in two stages. In the first stage, we recover unobserved

worker quality up to a normalization by using nonparametric methods based on the iden-

tification results of Matzkin (2003).9 To consider the potential correlation between worker

quality and other observed worker characteristics, we use an extended version of the estima-

tors proposed by Bajari and Benkard (2005) and Imbens and Newey (2009). In the second

stage, we use the first-order conditions in Equations (10) and (11) to infer firm-specific

parameters on their WTP for continuous worker characteristics.

9Matzkin (2003) demonstrates that the unobserved component ε in a nonlinear function Y = g(X, ε) is
identified only up to a normalization.
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3.1 Estimation of Unobserved Worker Quality

Because unobserved worker quality has no inherent units, we normalize ξjt to lie in the

interval [0, 1] by using a monotonic transformation Fξ(ξjt), where Fξ(ξjt) is the cumulative

distribution function (CDF) of ξjt. If observed characteristics Xjt are uncorrelated with

ξjt, then Fξ(ξjt) = Fw|x(wjt|Xjt), where Fw|x(.|.) denotes the CDF of wages conditional on

worker characteristics (Bajari and Benkard, 2005). In the context of our labor demand

model, however, observable worker characteristics, such as education and experience, are

likely correlated with unobserved worker quality. To confront the endogeneity problem, we

develop an estimator that allows for multiple endogenous variables, following Bajari and

Benkard (2005) and Imbens and Newey (2009).

A control variable V is a variable conditional on whichX and ε are independent. The first

step of our estimation builds on estimators conditional on control variables as an alternative

to traditional IV estimators to deal with endogenous regressors (e.g., Blundell and Powell,

2003, 2004; Imbens and Newey, 2009; Bajari and Benkard, 2005; Petrin and Train, 2010;

Farre, Klein and Vella, 2010). Let X0 and X1 be the sub-vectors of the vector of the observed

characteristics such that X = (X0, X1).10 In addition, let X0 = (x01, .., x0M0) represent the

variables in X that may be correlated with unobserved quality ξ, where M0 denotes the

number of endogenous variables in X0. Sub-vector X1 represents the vector of exogenous

variables. We assume that the researcher also observes a vector (Z) of instruments correlated

with X0 but uncorrelated with ξ and that Z has a dimension of G ≥M0.

Theorem 1 of Imbens and Newey (2009) shows that when M0 = 1, the variable η1 =

Fx01|X1,Z(x01|X1, Z) is a control variable, such that X and ξ are independent conditional on

η1. We consider an extended setup for an arbitrary number of endogenous regressors. We

specify reduced-form regression

x0m = hm(X1, Z, ηm), m = 1, ...,M0, (12)

10To simplify notation, we suppress both the individual sub-index j and the market sub-index t.

9



where ηm is an error term such that (ξ, η1, ..., ηM0
) are jointly independent of (X1, Z) and

each hm(.) is an unknown function strictly increasing in ηm. The following proposition shows

that (η1, ..., ηM0
) are control variables that can be used to estimate unobserved worker quality

ξ after a normalization.

Proposition 2 Let Fx0m|X1,Z(.|.) denote the CDF of the endogenous characteristic x0m con-

ditional on the vector of exogenous characteristics X1 and an instrument set Z. If each

ηm is normalized to lie in the interval [0, 1] such that, for each m = 1, ...,M0, ηm =

Fx0m|X1,Z(x0m|X1, Z), then X and ξ are independent conditional on η = (η1, ..., ηM0
) and

ξ =

∫
η∈[0,1]M0

Fw|x,η(w|X, η)dη. (13)

Our proof (Appendix C) extends Theorem 1 of Imbens and Newey (2009) and Theorem

4 of Bajari and Benkard (2005) by allowing for multiple endogenous characteristics.

Unobserved worker quality can be recovered in three steps. First, for each endogenous

variable indexed by m = 1, ...,M0, we estimate the values of ηm by using an empirical analog

of Fx0m|X1,Z(.|.). Second, we use the recovered series of ηm to nonparametrically estimate

Fw|x,η(.|.), the integrand function in Equation (13). Third, worker quality is estimated by

integrating η out by using Halton draws of an M0-dimensional unit cube.11 The same

procedure is applied to all workers j = 1, ..., Jt and markets t = 1, ..., T.

Several nonparametric methods, such as the kernel method and series estimators, have

been proposed to estimate conditional CDFs. Imbens and Newey (2009) find that series

estimators are preferable in empirical frameworks similar to ours. Among series estimators,

mixtures of normal distributions are frequently used nonparametric estimators (e.g., Bajari,

11Halton draws consist of a sequence of numbers within the unit interval that uses a prime number as its
base (Halton, 1960). For example, the first eight numbers in the sequence corresponding to base 3 are 1/3,
2/3, 1/9, 4/9, 7/9, 2/9, 5/9, and 8/9. To span the domain of the M0-dimensional unit cube, Halton draws
can be formed by using different prime numbers for each dimension. Halton draws exhibit advantages over
random draws from U [0, 1] in terms of low variance and few draws (Bhat, 2001; Petrin and Train, 2010).
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Fox and Ryan, 2007; Bajari et al., 2011) because of their desirable approximation and

consistency properties (e.g., Norets, 2010). We use this type of estimator because it fits the

data well and is computationally more tractable for the numeric integration in Equation (13)

than other methods.

Specifically, our estimator for the conditional probability distribution function (PDF)

f̂ of a variable Y, given a 1 × H vector of covariates U , is a weighted mixture of normal

densities:

f̂(Y |U ;θ) ≡
R(N)∑
r=1

αr(U,θ
α)φ(Y |µr, σr), (14)

where R(N) represents the (integer) number of normal densities as an (increasing) function

of sample size N , θ is the vector of the parameters of the density function, and φ(.|µr, σr) is

a normal density with mean µr and standard deviation σr. The corresponding conditional

CDF of Y is

F̂ (Y |U ;θ) ≡
R(N)∑
r=1

αr(U,θ
α)Φ(Y |µr, σr), (15)

where Φ(.|µr, σr) denotes the CDF of the same normal distribution. Each normal density in

Equation (14) is weighted by a multinomial logit function αr(U,θ
α) with an (H + 1) × 1

parameter vector θα defined as

αr(U,θ
α) =


1

1 +
∑R(N)

l=2 exp
(
θα0,l + U · θαU,l

) if r = 1,

exp
(
θα0,r + U · θαU,r

)
1 +

∑R(N)
l=2 exp

(
θα0,l + U · θαU,l

) if r = 2, ..., R(N).

(16)

Norets (2010) demonstrates that this specification well approximates the true conditional

PDF of Y given U .

In each market t = 1, ..., T, our maximum likelihood estimator for the PDF of an endoge-

nous attribute x0,m conditional on exogenous worker characteristics X1 and an instrument
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set Z is defined as

θ̂x0,m ≡ arg max
θ

Jt∑
j=1

log{f̂(x0,m,j,t|X1,j,t, Zjt;θ)}.12 (17)

After θ̂x0,m is estimated for each m = 1, ...,M0, the corresponding estimate for the control

variable for each worker j in market t is

ηm,j,t = F̂ (x0,m,j,t|X1,j,t, Zjt; θ̂x0,m).13 (18)

Our maximum likelihood estimator for the PDF of wages conditional on observed worker

attributes X and control variables η is

θ̂w ≡ arg max
θ

Jt∑
j=1

log{f̂(wjt|Xjt, ηjt;θ)}. (19)

With control variable estimates of ηm,j,t for all m, θ̂w is obtained by solving Equation (19).

We can then estimate the unobserved quality of each worker j in market t by using Equation

(13):

ξ̂jt =

∫
η∈[0,1]M0

F̂ (wjt|Xjt, η; θ̂w)dη. (20)

12We need to select R(N) in order to obtain estimates of distribution parameters. This is analogous
to the selection of smoothing parameters of other nonparametric estimators such as kernels or local linear
regressions. Following Bajari and Benkard (2005) and Bajari and Khan (2005), among others, we guide
our choice by visual inspection of the estimates. Our starting point for choosing the number of normal
distribution in the mixture is R(N) = int(

√
N/2), a rule of thumb proposed by Mardia, Kent and Bibby

(1979). We then decrease the value for R(N) to obtain a model as parsimonious as possible provided that
it does not change the estimated distribution significantly. Intuitively, this corresponds to eliminating those
normal distributions in the mixture with weights close to zero.
13Although there could be effi ciency gains from pooling observations from different markets in the estima-

tion, we choose to estimate the model for each market t seperately for several reasons. First, if wages differ
across markets due to differences in market equilibrium, then pooling observations from different markets is
invalid. Second, if the market index t represents years, estimating the model by year allows one to identify
unmeasured worker quality without imposing structure on its evolution over time.
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3.2 Estimation of Firm WTP Parameters

The labor demand problem described in Equation (5) is characterized by the revenue-per-

worker function Ri(Xj, ξj). As discussed in the previous section, we consider a linear function

of R(Xj, ξj; βi) (Equation 8). Under this model specification, Equation (10) suggests that if

we recover an estimate of ∂wt(Xj∗t, ξj∗t)/∂x
c
j,m,t, then we can learn a firm’s WTP for worker

characteristic m. As we observe each worker’s characteristics in our data, we can flexibly

estimate ∂wt(Xj∗t, ξj∗t)/∂x
c
j,m,t by using nonparametric methods. After we recover unob-

served worker quality, we can also estimate a firm’s WTP for unobserved quality according

to ∂wt(Xj∗t, ξj∗t)/∂ξjt, following Equation (11).

A practical, flexible way to quantify wage function derivatives at each point in data

is to apply local linear regression methods to data on wages, observed worker attributes,

and unobserved quality estimates. Bajari and Khan (2005) use this approach to estimate a

hedonic price function in the housing market and quantify derivatives of the pricing function.

However, two important differences are observed. First, Bajari and Khan assume that ξ is

independent of all observed characteristics X. Although this assumption is acceptable in

their housing demand model, it is unreasonable for our application because of endogeneity

concerns about schooling and experience. Second, their direct application of local linear

regression to housing data does not separate the derivative ∂wt(Xj∗t, ξj∗t)/∂ξjt from ξjt. We

separate the two values by first quantifying unobserved worker quality through the methods

described above and then treating the estimated ξj,t as an extra regressor for local linear

regression.

Specifically, for given t, the wage function at each data observation j∗ ∈ {1, ..., Jt} (lo-

cally) satisfies the equation

wj∗,t = bj∗,0 + bj∗,1xj∗,1,t + ...+ bj∗,Mxj∗,M,t + bj∗ξξj∗,t, (21)

where each coeffi cient bj∗,m represents the derivative of w with respect to characteristic m
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at point j∗. Intuitively, this corresponds to the fact that by a first-order Taylor expansion

argument, a function w at point (Xj∗t, ξj∗t) is well approximated by a tangent hyperplane in

a neighborhood of the function value at that point, wj∗t.14

In the context of nonparametric regression, Fan and Gijbels (1996) provide a formula for

the coeffi cients in Equation (21) for each observation j∗. The Jt × 1 vector of all wages is

denoted by wt, and the vector that stacks all coeffi cients is denoted by bj∗ , which is solved

according to

bj∗ =
(
ZT
t ΩtZt

)−1
ZT
t Ωtwt, (22)

where Zt and Ωt are matrices defined as

Zt = [1 zt] =


1 (x1,1,t − xj∗,1,t) ... (x1,M,t − xj∗,M,t) (ξ1,t − ξj∗,t)
...

...
...

...

1 (xJt,1,t − xj∗,1,t) ... (xJt,M,t − xj∗,M,t) (ξJt,t − ξj∗,t)

 , (23)

Ωt = diag (KH(zt)) . (24)

KH(zt) is a multivariate kernel function with smoothing parameter matrix H, and KH is a

multivariate standard normal density of dimension M +1. As in other practical applications

of local linear regression with several covariates, the bandwidth matrix H is selected by

visual inspection of estimates.15

The values of bj∗ are estimates of wage function derivatives. According to the first-order

conditions in (10) and (11), these values consist of estimates of firm-specific WTP parameters

βi,xcj,m,t and βi,ξ for observed continuous attributes and unobserved worker quality, where firm

i is the employer of worker j∗.

For worker characteristics that take on discrete values, point identification of the random

14See Judd (1998) and Fan and Gijbels (1996) for a discussion.
15Fan and Gijbels (1996) provide asymptotically optimal methods for bandwidth matrix choice. However,

these approaches are unreliable for applications that use several covariates, such as ours and Bajari and Khan
(2005). We use this matrix as our starting point for selecting bandwidth parameters and make subsequent
adjustments based on goodness-of-fit heuristics.

14



coeffi cients of these characteristics cannot be achieved by using first-order conditions similar

to those in Equation (10). Instead, we can establish bound estimates for these coeffi cients

by using the condition that firm i’s choice of the discrete characteristic observed in the data

maximizes profit in Equation (5). For example, suppose that firm i hires worker j∗. Let X̂j∗t

and X̄j∗t denote the vectors of observed characteristics with female = 1 and female = 0,

respectively, and all other elements equal the corresponding observed attributes in vector

Xj∗t. The implicit price faced by employer i for a female worker is then wt(X̂j∗t, ξj∗t) −

wt(X̄j∗t, ξj∗t). βi,f is denoted as the coeffi cient for the female dummy in the revenue function.

Profit maximization implies that βi,f > wt(X̂j∗t, ξj∗t)−wt(X̄j∗t, ξj∗t) if worker j
∗ is female and

βi,f ≤ wt(X̂j∗t, ξj∗t) − wt(X̄j∗t, ξj∗t) otherwise. That is, if employer i hires a female worker,

then i’s WTP for this characteristic exceeds the implicit price for the characteristic.16

A firm’s WTP for a discrete worker characteristic is not point-identified even if the

researcher assumes a parametric distribution. This lack of point identification precludes the

usage of firm WTP for discrete attributes in our statistical analysis of inter-industry wage

differentials. Thus, we focus on firm WTP on continuous attributes, including, education,

work experience, and unobserved worker quality.17

4 Data

The micro data used in our empirical analysis come from the 1990 and 1993 waves of the

National Longitudinal Survey of Youth 1979 (NLSY79). The NLSY79 is a nationally rep-

resentative sample of 12,686 young men and women who were 14—22 years old when they

were first surveyed in 1979. The NLSY79 data contain rich information on employment and
16Bajari and Khan (2005) provide a similar example in the context of their hedonic housing demand

model, where similar identification concerns arise. Thus, the lack of point identification of WTP for discrete
attributes is an issue that our framework has in common with other applications of hedonic models.
17To remedy for the lack of point identification of WTP for discrete attributes, we estimate the mean

WTP for gender, race, and marital status conditional on firm characteristics on the assumption of a probit
specification, as in Bajari and Khan (2005). We then use the estimated mean WTP in lieu of the true WTP
in our statistical analysis of wage differentials. Not only are the conditional means statistically insignificant,
they also jointly explain less than 1% of the wage variation in the wage regressions. For this reason and for
the sake of exposition, we focus our analysis on WTP for continuous characteristics.
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demographic characteristics. For each individual, the NLSY79 reports age, gender, race,

education, marital status, region of residence, employment status, occupation, and earnings.

In addition, the NLSY79 asks questions on individual background and employer characteris-

tics. We obtain information on parental education, Armed Force Qualification Test (AFQT)

score, and each worker’s industrial affi liation.

Data on individuals’usual earnings (inclusive of tips, overtime, and bonuses but before

deductions) have been collected during every survey year on the first five jobs since the

last interview date in NLSY79. Combining the amount of earnings with information on the

applicable unit of time (e.g., per hour, per day, or per week) yields the hourly wage rate. The

earnings variable used in this study is the hourly wage for the CPS job, that is, the current

or most recent job. We consider hourly wage less than $1.00 and greater than $250.00 to be

outliers and eliminate them from the sample.

We construct the work experience variable from the week-by-week NLSY79 Work History

Data. The usual hours worked per week at all jobs are available from January 1, 1978.

Annual hours are computed by aggregating weekly hours in each calendar year. An individual

accumulates one year of experience if she works for at least 1,000 hours a year. We restrict our

sample to those with complete history of work experience. The sample we analyze contains

4,266 observations from the 1990 survey and 3,522 observations from the 1993 survey.

We use our NLSY data to estimate a standard cross-section Mincer wage equation to ex-

amine industrial wage premiums. Columns (1) and (5) of Table 1 report the raw differences

in log hourly wages by industry for both the 1990 and 1993 observations. These differences

are computed from cross-section regressions of log wage on a set of industry dummy variables

by using one digit Census Industry Classification (CIC) Codes.18 We use two cross-section

wage observations so that we can check the consistency of our results over time and across

different points in the career path. A simple summary measure of the importance of in-

dustry coeffi cients is their standard deviation. We report both weighted and unweighted

18The service industry is used as the reference industry. Because the wage regressions include a constant,
we treat the service industry as having zero effect on wages.
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standard deviations of estimates of the industry coeffi cient. Unweighted standard deviation

measures the difference in wages between a randomly chosen industry and the average indus-

try, whereas weighted standard deviation (by employment) measures the difference in wages

between a worker in a given industry and the average worker. Both statistics demonstrate

substantial variation in wages across industries.

In Columns (2) and (6) we examine the extent to which the raw inter-industry wage dif-

ferentials persist once the usual human capital controls are added. Our strategy is to control

for worker characteristics as well as possible, and then analyze the effects of industry dummy

variables. We estimate industry wage differentials from the cross-section wage function

w = Xζ +Dτ + ε, (25)

where w is the logarithm of the hourly wage, X is a vector of individual attributes, D is

a vector of industry dummy variables, and ε is a random error term. The controls are

education, work experience, gender, race, marital status, occupation, location dummies,

union status, veteran status, and several interaction terms. The industry dummy variables

are statistically significant in both years, substantial in magnitude, and similar to those

estimated with data from the 1970s and 1980s (e.g., Blackburn and Neumark, 1992; Krueger

and Summers, 1988). For example, earnings in construction, transportation, communication,

and public utilities, are substantially higher than those in the wholesale and retail trade and

service industries, even with controls for years of schooling, experience, gender, and race.

Adding human capital controls reduces inter-industry wage differentials, as measured by

their standard deviations, by 8%—10% in 1990 and 15%—20% in 1993.

Even after various human capital controls are included, the coeffi cient estimates on in-

dustry dummies in Equation (25) may pick up the differences in unobserved worker quality

across industries. Previous research has attempted to correct unobserved quality bias in

estimated industry effects by including proxies for worker quality, such as test scores in wage
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regressions (Blackburn and Neumark, 1992). In Columns (3) and (7), we include AFQT

scores as additional independent variables in the wage equations. Compared with the es-

timates from Columns (2) and (6), the standard deviations of the industry effects decline

slightly for both the 1990 (from 0.136 to 0.133, unweighted) and 1993 regressions (from 0.115

to 0.114, unweighted). Furthermore, including parental education in the wage regressions

only slightly affects the standard deviations of the industry effects, as shown in Columns (4)

and (8) of Table 1. These results fail to support the unobserved quality explanation for in-

dustry wage differentials, consistent with the conclusion reached by Blackburn and Neumark

(1992).

Another approach to solving the problem of unobserved labor quality is to analyze longi-

tudinal data and estimate the first-difference specification of wage equations (Gibbons and

Katz, 1992; Krueger and Summers, 1988; Murphy and Topel, 1987a, 1987b). When we pool

the 1990 and 1993 samples, 877 of the workers report changes in their one digit industry

from 1990 to 1993. Column (9) of Table 1 reports the first-difference estimates of the wage

regression. The industry variables are jointly significant. For example, the first-difference

results show that workers who join the construction sector gain a 23.1% pay increase. These

results are consistent with the findings by Krueger and Summers (1988), who interpret their

findings as evidence that differences in labor quality cannot explain inter-industry wage

differentials.19

One potential problem with using test scores and family background as proxies to remove

omitted-quality bias is that test scores and family background are only partly correlated with

the types of ability rewarded in labor markets. The ability to do well in standard tests may

differ from the motivation and perseverance necessary to succeed in the workplace. On the

other hand, first-difference estimates rely on the assumption that unobserved quality is time

19One notable difference between our first-difference results and those of previous studies (Gibbons and
Katz, 1992; Krueger and Summers, 1988) is that they attempt to correct for selection bias from industry
changes by using samples of displaced workers. Such a sample of displaced workers is not available from
NLSY79. However, our estimates yield similar results to those of analyzing non-displaced longitudinal data
in Krueger and Summers (1988).
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invariant and equally rewarded in all industries and can therefore be differenced out as an

individual fixed effect. If labor quality evolves over time, perhaps through learning-by-doing,

or if it is valued differently across firms, then an individual fixed effect can no longer capture

its effect on wages. Therefore, we cannot conclude from Table 1 that inter-industry wage

differentials are not attributable to variations in unobserved labor quality.

5 Empirical Results

This section presents estimates of our hedonic labor demand model. We first outline estima-

tion results for the unobserved worker quality recovered in our first stage of estimation. We

then present firm WTP distribution estimates based on our model specification. Finally, we

assess how much unobserved worker quality and firm WTP for education, work experience,

and quality account for inter-industry wage differentials.

5.1 Unobserved Worker Quality

We use NLSY79 data on wages and observed worker characteristics to estimate unobserved

worker quality based on Equation (20). Our approach is flexible enough to allow unobserved

worker quality to evolve over time and allow firms to reward both observed worker attributes

and unobserved labor quality differently. The variables of observed worker characteristics,

represented by the vectorX, include years of schooling, years of work experience, and dummy

variables on gender, race, and marital status.20 Out of these variables, years of schooling

and experience are potentially correlated with unobserved worker quality and constitute the

sub-vector X0. To estimate the control variables for education and experience, we use an

instrument vector Z that includes worker age and location dummies. All other observed

characteristics are included in sub-vector X1.

20We experiment with alternative specifications of vector X containing other worker characteristics ob-
served in NSLY79. The results on quality estimates and subsequent wage differential analysis do not change
significantly. Given that more variables in X would increase computational costs drastically, we focus our
analysis on the current parsimonious specification of X without loss of generality.
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Table 2 shows the joint distribution between some of the observed worker characteristics

and worker quality. As for worker attributes on human capital, average worker quality

increases with educational attainment, work experience, and AFQT scores. Across industries,

we also observe substantial differences in average worker quality; transportation and public

utilities, finance, and construction have higher average worker quality than wholesale and

retail trade and service.

The top two panels of Table 3 report correlations between the estimated quality and

human capital variables in each year. The correlations of these variables are positive but

relatively low; all six correlations are less than 0.40. The estimated quality is less significantly

correlated with experience than AFQT score and education in both years, but worker quality

becomes significantly correlated with experience over time. Learning-by-doing may explain

the increasing correlation between worker quality and experience. The correlations between

the estimated quality and AFQT score are 0.361 and 0.352 in 1990 and 1993, respectively.

The relatively low correlations imply that worker quality rewarded in labor markets may

not reflect completely in the AFQT score. Therefore, explicitly incorporating AFQT scores

into wage regressions cannot fully account for variations in unobserved worker quality across

industries. The bottom panel of Table 3 reports the correlation between the quality estimates

in 1990 and 1993 to be fairly high at 0.712. Worker quality is by no means fixed over time

according to our estimates, even though it is highly persistent. The evolution of labor

quality over the career path may be related to post-school human capital investment, such

as learning-by-doing. Thus, standard first-difference estimators cannot difference out the

effects of unobserved quality on wages.

5.2 Distributions of WTP Parameters

We estimate the structural model of labor demand presented in Section 2 for both 1990

and 1993. This estimation yields for each firm a WTP parameter for schooling, experience,

and unobserved worker quality, respectively. We present histograms of WTP parameters for
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these attributes for the 1990 and 1993 firms with the estimated kernel densities. In each

figure, we plot the distribution of WTP parameters for firms across all industries, followed

by the distribution of the same parameters in each one-digit industry. WTP considerably

varies for both observed education and work experience, and unobserved worker quality. All

the distributions are right-skewed and are not normally distributed.

Panel A of Figure 1 presents the histogram of firm-specific WTP for one year of education

in all industries in 1990. The distribution has a long right tail, with a mean of 15.4 and

a standard deviation of 4.7. On average, a firm is willing to pay 15.4 cents per hour for

each additional year of education.21 Panels B to H present histograms of firm WTP for

education in each one-digit industry. Finance, insurance, and real estate industry has the

highest mean WTP for education at 16.3, whereas the mining industry has the lowest mean

WTP for education of 14.5. All industry-specific distributions are right-skewed. Specifically,

the distribution in the service industry has the longest tail with a standard deviation of

5.0, and the distribution in the construction industry is the least dispersed with a standard

deviation of 4.2.

Figure 2 presents the histograms of 1990 firm-specific WTP for work experience in all

industries in Panel A and in each one-digit industry in Panels B to H. The average WTP for

a year of work experience (6.3 cents per hour) is lower than the average WTP for a year of

education (15.4 cents per hour), but WTP for experience is highly dispersed with a standard

deviation of 6.1. Firms in the finance, insurance, and real estate industry and the service

industry value work experience the most, with a mean WTP of 6.9, whereas experience is the

least valued in the construction industry with a mean WTP of 5.5. In terms of dispersion,

the service industry has the longest right tail, and the distribution of WTP for experience

is most concentrated in the mining industry.

Firm-specific WTP for worker quality in all industries and in each one-digit industry in

21The estimated WTP for education is low because the estimation is conditional on all other observable
characteristics and unobserved worker quality. If we do not consider unobserved worker quality explicitly,
the WTP for education would be higher because of the correlation between education and labor quality.
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1990 is presented in Figure 3. Because worker quality has no intrinsic units and is normalized

between 0 and 1, the values of WTP parameters for quality are unimportant; thus, we focus

on their relative levels across industries. The distribution of WTP for worker quality across

all industries depicted in Panel A appears bimodal because most firms in several industries

(e.g., mining) do not value worker quality much, whereas most firms in several others (e.g.,

finance, insurance, and real estate) highly value worker quality. The two modes in the

distributions in the construction and service industries also contribute to the overall bimodal

distribution. Based on Panels B to H, (unobserved) worker quality is less valuable to firms

in the mining, construction, and wholesale and retail trade industries than to firms in the

finance, insurance and real estate, service, and transportation, communication and public

utilities industries. Similar to the distribution of WTP for education, that for quality is most

dispersed in the service industry and least dispersed in the construction industry.

Similarly, we present the distributions of WTP for education, work experience, and worker

quality from 1993 in Figures 4 to 6. Firms in all industries value education more in 1993 than

in 1990. The 1993 distributions of WTP for education in Figure 4 are also more dispersed

than the 1990 distributions in Figure 1, and they show two modes. Likewise, Figure 6

shows that firms in all industries value worker quality more highly in 1993 than in 1990,

and the distributions of WTP for quality are more dispersed in 1993. These results are

consistent with the increasing returns to both education and unobserved ability documented

in literature. On the contrary, work experience is less valued by firms, and firms’valuation

of experience is less dispersed in 1993 than in 1990, as indicated by the lower means and

variances of WTP parameters in Figure 5 than those in Figure 2.

Firm WTP across workers’human capital attributes are not independently distributed.

Table 4 reports the correlation matrix of WTP across worker attributes on education, expe-

rience, and quality in each year. In both years, firm WTP for all human capital attributes

have strong positive correlations with each other.
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5.3 Inter-industry Wage Differentials

Columns (2) and (6) of Table 5 present estimates of coeffi cient τ in Equation (25) by adding

recovered worker quality as an extra control variable in the 1990 and 1993 cross-section wage

regressions. For comparison, Columns (1) and (5) report the same estimates with all con-

trols, including AFQT scores and family background, but without estimated quality. The

coeffi cient on worker quality is high and statistically significant. The magnitude of the coef-

ficients on industry dummies declines, and many of them become statistically insignificant

after worker quality is included. The standard deviation of the unweighted inter-industry

wage differentials decreases by 82% from 0.133 to 0.024 in 1990 and by 90% from 0.114 to

0.011 in 1993. The weighted standard deviation of wage differentials declines by a similar

magnitude. These results suggest that unmeasured worker quality is an important driving

force of inter-industry wage differentials. Worker quality also accounts for a large portion

of the overall wage variation as the adjusted R2 of the log wage regression increases from

0.356 to 0.861 in 1990 and from 0.376 to 0.857 in 1993 once worker quality is included in the

regressions.22

Columns (3) and (7) of Table 5 present estimates of τ coeffi cients in Equation (25)

by adding recovered firm-specific WTP to education, experience, and quality as additional

control variables. The industry wage premiums in both years decrease but remain significant.

The standard deviation of the unweighted inter-industry wage differentials decreases from

0.133 to 0.122 in 1990 and barely changes in 1993. The adjusted R2 of the log wage regression

increases slightly from 0.356 to 0.390 in 1990. Compared with worker quality (columns 2 and

6), firm WTP can account for only a small portion of the inter-industry wage differentials

and overall wage dispersion. When both worker quality and firm WTP are included in the

OLS wage regressions in columns (4) and (8), the standard deviations of industry wage

differentials almost stay the same as in the regressions that control only for worker quality.

22Using a different dataset and different methodology, Abowd, Kramarz and Margolis (1999) also find
that wage regressions that include person effects can explain between 77% to 83% of wage variance, whereas
regressions that exclude person effects can explain only between 30% to 55% of the variance.
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We further decompose the contribution of worker heterogeneity (in terms of unobserved

labor quality) and firm heterogeneity (measured by WTP for human capital attributes) to

inter-industry wage differentials. We estimate inter-industry wage differentials by regressing

(25) with two-digit industry dummies while controlling for education, years of experience

and its square, gender, race, marital status, union and veteran status, region dummies, oc-

cupation, parental education, AFQT test score, and several interaction terms.23 Table 6 uses

the industry-level averages of worker quality and firm-specific WTP parameters to account

for the industry wage differentials. The first column of Table 6 shows the separate influence

of worker heterogeneity on explaining industry effects by regressing the estimated industry

wage premiums on industry-average worker quality alone. Similarly, column (2) of Table

6 presents industry-level regressions using industry-average firm WTP parameters alone.

Industry-average worker quality alone accounts for approximately two thirds of observed

inter-industry wage variation, whereas the explanatory power of industry-average firm WTP

parameters is relatively low. Therefore, individual effects, as measured by average worker

quality, are more important than firm effects, as measured by WTP parameters, for explain-

ing inter-industry wage differentials.24 The combination of worker quality and firm WTP

can explain close to 80% of the overall variations in inter-industry wage differentials in both

years.

6 Concluding Remarks

In this paper we propose an alternative approach to explain inter-industry wage differentials

by using a hedonic model of labor demand. The model allows the nonparametric identifica-

23These results are available from the authors upon request.
24Using matched employer—employee data from France, Abowd, Kramarz, and Margolis (1999) find that

individual heterogeneity alone explains 84%—92% of the inter-industry wage variation, whereas firm hetero-
geneity alone explains only 7%—25%. Thus, they reach the same conclusion as ours that individual effects
are more important than firm effects for explaining inter-industry wage differentials. However, our approach
does not require the use of matched employer—employee data and does not impose the assumption that
unobserved labor quality is fixed over time.
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tion of unobserved worker quality as well as employer-specific WTP for worker attributes.

Our approach does not require the use of matched employer—employee panels to separate the

worker effect and the firm effect in inter-industry wage differentials. Instead, we can rely on

widely available household or individual micro data sets. Using data from NLSY79, we find

that unmeasured worker quality accounts for most of inter-industry wage differentials and

that unmeasured worker quality varies over one’s career despite its high degree of persistence.

An important caveat to the effects of firm WTP on industry wage premiums is that

the hedonic labor demand model does not point-identify employer-specific WTP for dis-

crete worker characteristics, such as gender, race, and marital status, even if the researcher

makes strong assumptions about the distribution of WTP parameters. Our framework shares

this feature with other related models (e.g., Bajari and Benkard, 2005; Bajari and Khan,

2005). Therefore, we cannot identify which portion of inter-industry wage differentials can

be explained by WTP for discrete attributes. Finding a set of mild assumptions that can

point-identify employer WTP for discrete attributes is beyond the scope of this study and is

thus left for future work.

As in the hedonic model of differentiated products proposed by Bajari and Benkard

(2005), supply-side assumptions on worker behavior are not required in our model. An

interesting extension of our framework is to explicitly model labor supply behavior and

allow workers to choose which firm to work for. In such an equilibrium model, compensating

differences may be separately identified from WTP parameters, but such exercise involves

various challenges in identification and remains an important topic for future research.
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Appendix A: Proof of Proposition 1

Proposition 1 is illustrated as follows. For any two workers j and j′ employed in market

t, three conditions hold:

(1) If Xjt = Xj′t and ξjt = ξj′t, then wjt = wj′t.

(2) If Xjt = Xj′t and ξjt > ξj′t, then wjt > wj′t.

(3) |wjt − wj′t| ≤M(|Xjt −Xj′t|+ |ξjt − ξj′t|) for some M <∞.

Suppose that wjt > wj′t for some market t in which both workers j and j′ are employed

and Xjt = Xj′t and ξjt = ξj′t. Then Rit(Xjt, ξjt)−wjt < Rit(Xj′t, ξj′t)−wj′t for all employers

i = 1, ..., Vt. This observation implies that no one would hire worker j in market t and is

thus a contradiction.

Suppose that wjt ≤ wj′t for some market t in which both workers j and j′ are employed

and Xjt = Xj′t and ξjt > ξj′t. Given that Rit(Xjt, ξjt) strictly increases in ξjt, Rit(Xjt, ξjt)−

wjt > Rit(Xj′t, ξj′t)−wj′t for all employers i = 1, ..., Vt. This observation implies that no one

would hire worker j′ in market t and is thus a contradiction.

The assumption that Rit(Xjt, ξjt) is Lipschitz-continuous in (Xjt, ξjt) implies that for any

two workers j and j′ differing in at least one characteristic,

|Rit(Xjt, ξjt)−Rit(Xj′t, ξj′t)| ≤M(|Xjt −Xj′t|+ |ξjt − ξj′t|),

for some M < ∞. Given that |Rit(Xjt, ξjt) − Rit(Xj′t, ξj′t)| = |[(Rit(Xjt, ξjt) − wjt) −

(Rit(Xj′t, ξj′t)− wj′t)] + (wjt − wj′t)|,

|[(Rit(Xjt, ξjt)− wjt)− (Rit(Xj′t, ξj′t)− wj′t)] + (wjt − wj′t)|

≤ M(|Xjt −Xj′t|+ |ξjt − ξj′t|).

Assuming that without loss of generality wjt > wj′t, then the second term on the left-hand

side, wjt−wj′t, is positive. Because the demand for worker j is positive, the first term must
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be positive for some employer i. For these employers, we can ignore the absolute sign.

|[(Rit(Xjt, ξjt)− wjt)− (Rit(Xj′t, ξj′t)− wj′t)] + (wjt − wj′t)|

= [(Rit(Xjt, ξjt)− wjt)− (Rit(Xj′t, ξj′t)− wj′t)] + (wjt − wj′t) > wjt − wj′t.

Therefore,

wjt − wj′t ≤M(|Xjt −Xj′t|+ |ξjt − ξj′t|) for employer i that prefers j to j′.

In this instance, we use the fact that both workers have positive demand to limit how much

their wages can vary.

Appendix B: An Example of Deriving Linear Revenue Function

In what follows, we illustrate how a linear revenue function can be derived from common

specifications of labor effi ciency and production function. We suppress the market subindex

t in our notation for ease of exposition.

Consider the following specification for the labor effi ciency units of worker j with char-

acteristic vector
(
xj,1, xj,2, · · · , xj,M , ξj

)
:

Ej = ρ0 + ρ1xj,1 + ρ2xj,2 + · · ·+ ρMxj,M + ρξξj, ∀j = 1, ..., J.

In addition, consider a CES production function:

Fi(Ej, Ki) = [λiE
σi
j + (1− λi)Kσi

i ]1/σi ,

where λi governs the income shares between labor and non-labor inputs and σi determines

the elasticity of substitution between inputs.

The first-order condition of the employer’s problem with respect to Ki implies that its
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optimal demand takes the form of K∗i = δiEj, where

δi =

 λi(
ri

pi(1−λi)

)σi/(1−σi)
− (1− λi)


1/σi

.

Profit from hiring worker j, given the optimal choice of non-labor input, becomes

πij = piFi(Ej, δiEj)− wj − riδiEj.

Therefore, under the model specification, the employer’s problem is simplified to

πi = max
j∈{0,1,...,J)

{R(Ej)− wj, 0},

where the revenue function R(Ej) = γiEj and the profit of not hiring (j = 0) is equal to

zero. Intuitively, γi represents the dollar value of the marginal productivity of labor effi ciency

units for employer i. Under the model primitives, this coeffi cient is given by

γi = pi [λi + (1− λi)δσii ]1/σi − riδi.

Given the specification for labor effi ciency, the revenue per worker function has the fol-

lowing parametric form

R(Xj, ξj;βi) = γiEj = βi,0 +Xj · βi,X + βi,ξξj,

where the coeffi cient vector βi is the product of the vector of effi ciency unit coeffi cients ρ
′s

and γi.

Appendix C: Proof of Proposition 2

We use the assumption that each function hm(., ηm) is strictly monotonic in ηm to define

h−1
m (x0,m, X1, Z) as the inverse of hm(X1, Z, ηm). According to the proof of Lemma 1 of
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Matzkin (2003), for each m = 1, ...,M0,

FX0,m|X1,Z(x0,m|x1, z) = Pr(X0,m ≤ x0,m|X1 = x1, Z = z)

= Pr(hm(x1, z, ηm) ≤ x0,m|X1 = x1, Z = z)

= Pr(ηm ≤ h−1
m (x0,m, x1, z)|X1 = x1, Z = z)

= Pr(ηm ≤ h−1
m (x0,m, x1, z))

= Fηm(h−1
m (x0,m, x1, z)) = h−1

m (x0,m, x1, z) = ηm,

where the third equality follows from the monotonicity assumption, the fourth equality

follows from the independence between (X1, Z) and η = (η1, ..., ηM0
), and the last equality

is the result of normalizing ηm so that it lies in U [0, 1].

Next, we show that vector η consists of control variables conditional on whichX and ξ are

independent by adapting the proof of Theorem 1 of Imbens and Newey (2009) for multiple

endogenous variables. For any bounded function a(x0, x1), it follows from the independence

of (X1, Z) and (ξ, η) that

E[a(x0, x1)|ξ, η] = E[a(h1(x1, z, η1), ..., hM0(x1, z, ηM0
), x1)|ξ, η]

=

∫
a(h1(x1, z, η1), ..., hM0(x1, z, ηM0

), x1)dFX1,Z(x1, z)

= E[a(x0, x1)|η].

Thus, for any bounded function b(ξ), it follows from the law of iterated expectations that

E[a(x0, x1)b(ξ)|η] = E[b(ξ)E[a(x0, x1)|ξ, η]|η]

= E[b(ξ)E[a(x0, x1)|η]|η]

= E[b(ξ)|η]E[a(x0, x1)|η],

which indicates the independence between X and ξ conditional on η.
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Finally, given that ξ and each ηm are normalized such that all of them follow U [0, 1], for

each market t and worker j,

∫
Fw|x,η(wjt|Xjt, η)dη =

∫
Pr(wt(X, ξ) ≤ wjt|X = Xjt, η)dη

=

∫
Pr(ξ ≤ w−1

t (X,wjt)|X = Xjt, η)dη

=

∫
Pr(ξ ≤ w−1

t (Xjt, wjt)|η)dη

=

∫
Pr(ξ ≤ ξjt|η)dη=Fξ(ξjt) = ξjt,

where we exploit the fact that the equilibrium wage function is strictly monotonic in ξ.
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Fixed Effects
Industry (1) (2) (3) (4) (5) (6) (7) (8) (9)

  Mining 0.211 0.287 0.275 0.276 0.112 0.126 0.118 0.120 0.159
(0.097) (0.082) (0.081) (0.081) (0.119) (0.098) (0.097) (0.097) (0.211)

  Construction 0.215 0.273 0.266 0.265 0.153 0.216 0.214 0.212 0.231
(0.032) (0.028) (0.028) (0.028) (0.037) (0.033) (0.033) (0.033) (0.064)

  Manufacturing 0.101 0.160 0.158 0.159 0.103 0.139 0.138 0.139 0.161
(0.022) (0.019) (0.019) (0.019) (0.026) (0.022) (0.022) (0.022) (0.051)

  Transportation, Communication, 0.208 0.178 0.174 0.172 0.224 0.168 0.164 0.163 0.065
     Public Utilities (0.033) (0.028) (0.028) (0.028) (0.038) (0.032) (0.032) (0.032) (0.065)

  Wholesale and Retail Trade -0.159 -0.083 -0.084 -0.086 -0.178 -0.118 -0.118 -0.120 -0.036
(0.022) (0.019) (0.019) (0.019) (0.026) (0.022) (0.022) (0.022) (0.048)

  Finance, Insurance, and Real Estate 0.228 0.173 0.166 0.166 0.233 0.142 0.143 0.142 0.133
(0.034) (0.029) (0.029) (0.029) (0.038) (0.033) (0.033) (0.033) (0.071)

  Other Control Variablesb No Yes Yes Yes No Yes Yes Yes Yes
  AFQT No No Yes Yes No No Yes Yes No
  Parental Education No No No Yes No No No Yes No

  Unweighted St.d. of Differentials 0.147 0.136 0.133 0.133 0.143 0.115 0.114 0.114 0.096
  Weighted St.d. of Differentials 0.052 0.047 0.046 0.046 0.052 0.044 0.043 0.043 0.038

  Adjusted R Squared 0.056 0.345 0.355 0.356 0.048 0.370 0.376 0.376 0.044

b Other control variables are education, years of experience and its square, gender dummy, race dummy, ever married dummy, union and veteran 
status, four region dummies, three occupation dummies, marriage x gender interaction, education x gender interaction, education squared x gender 
interaction, age x gender interaction, and a constant. 

Table 1. Estimated Wage Differentials for One-Digit Industries, NLSY79a

(Standard Errors in Parentheses)

a The dependent variable is log (hourly wage). The reported estimates are the coefficient values for the industry dummy variables. The reference
industry is service.                                                                                                                                                                                

1990 Cross Section 1993 Cross Section



Normalized Worker Quality Mean (Std.) Mean (Std.)

All workers 0.507 (0.274) 0.495 (0.272)

By education
  High school incomplete  0.403 (0.249) 0.382 (0.240)
  High school graduates 0.448 (0.262) 0.433 (0.260)
  Some college 0.533 (0.267) 0.511 (0.269)
  College graduates 0.674 (0.241) 0.654 (0.238)

By work experience
  0 - 4 years 0.414 (0.272) 0.343 (0.253)
  5 - 9 years 0.534 (0.275) 0.466 (0.280)
  10+ years 0.547 (0.248) 0.551 (0.253)

By AFQT percentile scores
  AFQT ≤ 25 0.403 (0.248) 0.394 (0.245)
  25 < AFQT ≤ 50 0.507 (0.267) 0.499 (0.265)
  50 < AFQT ≤ 75 0.580 (0.265) 0.560 (0.267)
  AFQT > 75 0.660 (0.256) 0.644 (0.253)

By industry
  Mining 0.583 (0.264) 0.530 (0.229)
  Construction 0.581 (0.268) 0.556 (0.265)
  Manufacturing 0.529 (0.256) 0.522 (0.262)
  Transportation, Communication, 0.605 (0.263) 0.596 (0.265)
     Public Utilities
  Wholesale and Retail Trade 0.397 (0.250) 0.389 (0.249)
  Finance, Insurance, and Real Estate 0.608 (0.252) 0.588 (0.251)
  Service 0.503 (0.283) 0.482 (0.276)

Table 2. Conditional Worker Quality Distribution

1990 1993



1990 cross-section
Education Experience AFQT

  Estimated quality 0.338 0.196 0.361

1993 cross-section
Education Experience AFQT

  Estimated quality 0.348 0.251 0.352

1990 and 1993 pooled

  Estimated quality in 1990

Education Experience
1990
     Experience 0.894
     Quality 0.925 0.774

1993
     Experience 0.978
     Quality 0.958 0.965

Table 3. Correlations of Estimated Quality and Observed Human Capital Variables

Estimated quality in 1993
0.712

Table 4. Correlation Matrix of WTP Parameters by Year



Industry (1) (2) (3) (4) (5) (6) (7) (8)

  Mining 0.276 0.056 0.232 0.050 0.120 0.006 0.119 0.006
(0.081) (0.038) (0.079) (0.037) (0.097) (0.047) (0.097) (0.046)

  Construction 0.265 0.060 0.247 0.059 0.212 0.016 0.212 0.012
(0.028) (0.013) (0.028) (0.013) (0.033) (0.016) (0.033) (0.016)

  Manufacturing 0.159 0.042 0.147 0.042 0.139 0.017 0.139 0.019
(0.019) (0.009) (0.019) (0.009) (0.022) (0.011) (0.022) (0.010)

  Transportation, Communication, 0.172 0.008 0.155 0.009 0.163 -0.008 0.163 -0.007
     Public Utilities (0.028) (0.013) (0.027) (0.013) (0.032) (0.015) (0.032) (0.015)

  Wholesale and Retail Trade -0.086 0.016 -0.087 0.017 -0.120 -0.011 -0.118 -0.006
(0.019) (0.009) (0.018) (0.009) (0.022) (0.011) (0.022) (0.011)

  Finance, Insurance, and Real Estate 0.166 0.026 0.153 0.026 0.142 0.011 0.142 0.013
(0.029) (0.013) (0.028) (0.013) (0.033) (0.016) (0.033) (0.016)

  Worker Quality No Yes No Yes No Yes No Yes
  Firm's Willingness to Pay No No Yes Yes No No Yes Yes

  Unweighted St.d. of Differentials 0.133 0.024 0.122 0.022 0.114 0.011 0.114 0.010
  Weighted St.d. of Differentials 0.046 0.008 0.043 0.008 0.043 0.004 0.043 0.004

  Adjusted R Squared 0.356 0.861 0.390 0.865 0.376 0.857 0.376 0.860

Table 5. Estimated Wage Differentials for One-Digit Industries with Quality and WTP Estimates, NLSY79a

(Standard Errors in Parentheses)
1990 Cross Section 1993 Cross Section

a The dependent variable is log (hourly wage). The reported estimates are the coefficient values for the industry dummy
variables. The reference industry is service. Other control variables are education, years of experience and its square, gender
dummy, race dummy, ever married dummy, union and veteran status, four region dummies, three occupation dummies,
marriage x gender interaction, education x gender interaction, education squared x gender interaction, age x gender interaction,
mother's schooling, father's schooling, AFQT test score, and a constant. 



(1) (2) (3)

Quality 1.018 1.543
(0.114) (0.139)

Firm WTP parameters No Yes Yes

R squared 0.664 0.235 0.824
Adjusted R squared 0.656 0.174 0.805

Quality 1.000 1.369
(0.104) (0.157)

Firm WTP parameters No Yes Yes

R squared 0.697 0.423 0.811
Adjusted R squared 0.689 0.377 0.790

1990 two-digit industry premiums

1993 two-digit industry premiums

Table 6. Decomposition of Inter-Industry Wage Differentials



Figure 1: Firm WTP for Education Across Industries, 1990
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Figure 2: Firm WTP for Work Experience Across Industries, 1990
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Figure 3: Firm WTP for Worker Quality Across Industries, 1990

0
.0

5
.1

.1
5

Fr
ac

tio
n

mean=1537

1500 1600 1700 1800 1900
WTP for Quality

A. All Industries

0
.1

.2
.3

.4
Fr

ac
tio

n

mean=1525

1500 1600 1700 1800 1900
WTP for Quality

B. Mining
0

.0
5

.1
.1

5
Fr

ac
tio

n

mean=1529

1500 1600 1700 1800 1900
WTP for Quality

C. Construction

0
.0

5
.1

.1
5

Fr
ac

tio
n

mean=1535

1500 1600 1700 1800 1900
WTP for Quality

D. Manufacturing

0
.0

5
.1

.1
5

.2
Fr

ac
tio

n

mean=1542

1500 1600 1700 1800 1900
WTP for Quality

E. Transportation and Public Utilities

0
.0

5
.1

.1
5

.2
Fr

ac
tio

n

mean=1529

1500 1600 1700 1800 1900
WTP for Quality

F. Wholesale and Retail Trade

0
.0

5
.1

.1
5

.2
Fr

ac
tio

n

mean=1549

1500 1600 1700 1800 1900
WTP for Quality

G. Finance, Insurance, and Real Estate

0
.0

5
.1

.1
5

.2
Fr

ac
tio

n

mean=1541

1500 1600 1700 1800 1900
WTP for Quality

H. Service



Figure 4: Firm WTP for Education Across Industries, 1993
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Figure 5: Firm WTP for Work Experience Across Industries, 1993
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Figure 6: Firm WTP for Worker Quality Across Industries, 1993
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